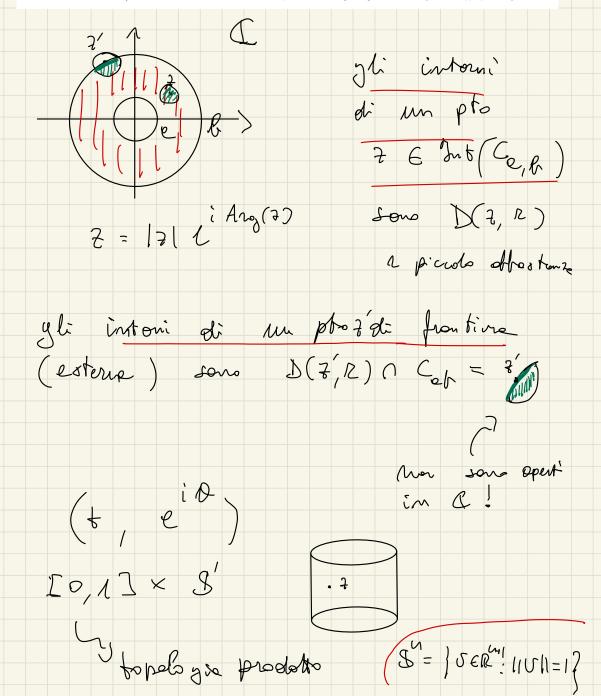
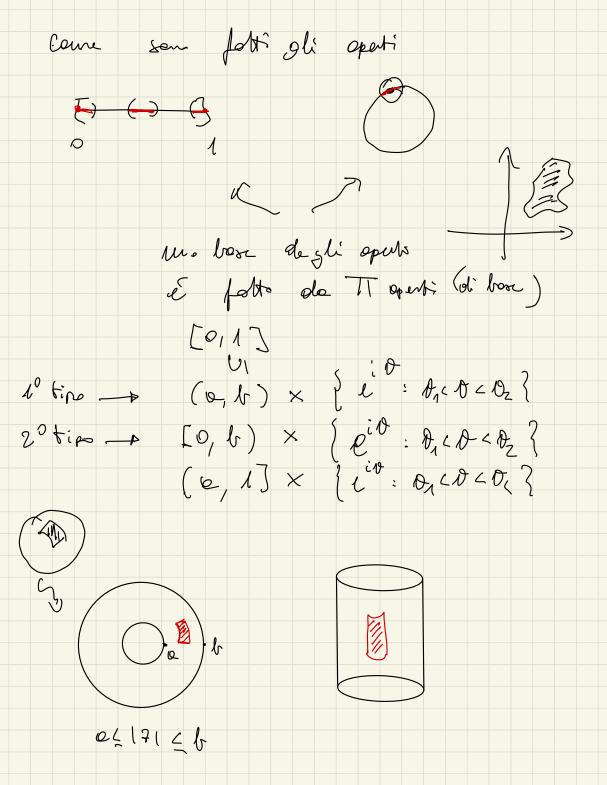
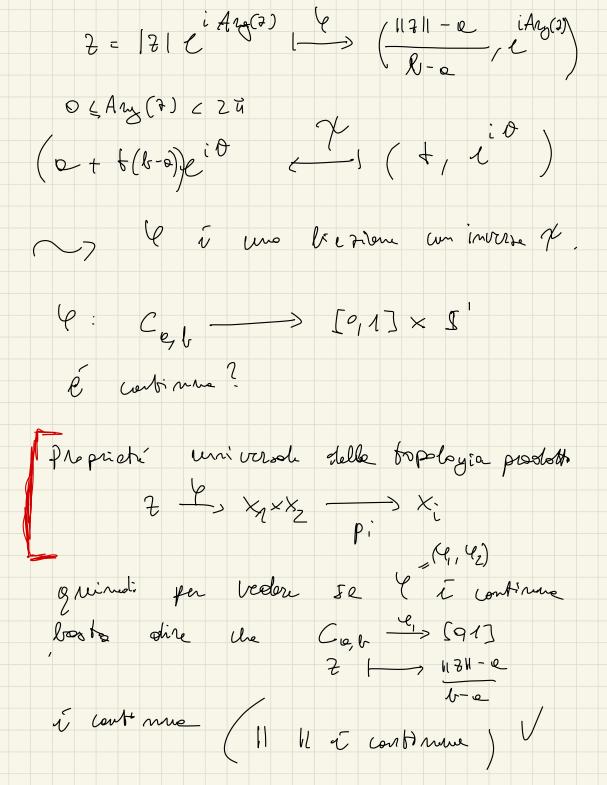
LEZIONE 5 05/04/22

Esercizio 4. Fissiamo due numeri reali 0 < a < b e definiamo la corona circolare $C_{a,b} = \{z \in \mathbb{C} | a \le |z| \le b\}.$

Mostrare che $C_{a,b}$ è omeomorfa a $\mathbb{I} \times \mathbb{S}^1$ (dove $\mathbb{I} = [0,1]$ e $\mathbb{S}^1 = \{z \in \mathbb{C} | |z| = 1\}$.







e Ce, b -> \$'
7 1---> 2
171 É continue Vidiamo le Y à continue $\gamma: [0,1] \times S' \longrightarrow C_{\omega, \nu}$ Prendiens operté di box delle conon. Circolor e vodiens che sono sperté del Cilindo Sem pli Jichians sugliende una bou un Sem pli y chrono po^2 p in Comodo de Coph $O_1O_2 = \{7: C \in \{2\} \in A\}$ C, d $O_1 \in A_3(2) \in A_2$ $O_2 \in A_3(2)$ $O_2 \in A_3(2)$ $\begin{array}{c}
\nabla_{1} \nabla_{2} \\
\nabla_{2} \\
\nabla_{3} \\
\nabla_{4} \\
\nabla_{5} \\$

$$\begin{array}{c} O_{1} D_{2} \\ C_{1} D_{2} \\ C_{2} D_{3} D_{2} \\ C_{3} D_{4} D_{5} \\ C_{4} D_{5} D_{5} \\ C_{5} D_{5} D_{5} \\ C_{5} D_{5} D_{5} \\ C_{5} D_{5} D_{5} D_{5} \\ C_{5} D_{5} D$$

Esercizio 6. Fisso un intero $n \ge 1$. Dimostrare che $\mathbb{R}^{n+1} \setminus \{0\}$ è omeomorfo a $\mathbb{S}^n \times \mathbb{R}$, dove $\mathbb{S}^n \subseteq \mathbb{R}^{n+1}$ è l'insieme degli elementi di norma 1. Come si scrive e come si interpreta il risultato per n = 0?

Come so pre.
$$\mathbb{R}^{N+1}(40) \longrightarrow \mathbb{B}^{N} \times \mathbb{R}_{>0}$$
 $\mathbb{F}^{N+1}(40) \longrightarrow \mathbb{F}^{N+1}(60)$

pu mother once morphine hagy in come

sopre (pur' & più facile)

 $\mathbb{R}^{N+1}(60) \cong \mathbb{S}^{N} \times \mathbb{R}_{>0}$
 $\mathbb{R}^{N+1}(60) \cong \mathbb{S}^{N} \times \mathbb{R}_{>0}$
 $\mathbb{R}^{N+1}(60) \cong \mathbb{S}^{N} \times \mathbb{R}_{>0}$

interpreta $\mathbb{R}^{N}(\mathbb{R}) = \mathbb{R}^{N+1}(60) = \mathbb{S}^{N} \times \mathbb{R}_{>0} = \mathbb{S}^{N}$
 \mathbb{R}^{N}
 \mathbb{R}^{N}
 $\mathbb{R}^{N+1}(60) \cong \mathbb{R}^{N} \times \mathbb{R}_{>0} = \mathbb{S}^{N} \times \mathbb{R}_{>0}$
 \mathbb{R}^{N}
 $\mathbb{R$

Esercizio 2. Sia $n \ge 1$ un intero. Dimostrare che il gruppo ortogonale

$$O(n) = \{ A \in M_{n \times n}(\mathbb{R}) | A^{\mathrm{T}} \cdot A = \mathrm{Id}_n \}$$

è un chiuso di $M_{n\times n}(\mathbb{R})$ e di $GL_n(\mathbb{R})$ (dove X^T denota la matrice trasposta di X e Id_n rappresenta la matrice identità, definita richiedendo che la sua entrata al posto (i,j) sia 1 se i=j se 0 altrimenti).

Esercizio 3. Sia $n \ge 1$ un intero. Dimostrare che il gruppo unitario

$$U(n) = \{ A \in M_{n \times n}(\mathbb{C}) | \overline{A}^{\mathrm{T}} \cdot A = \mathrm{Id}_n \}$$

è chiuso in $M_{n\times n}(\mathbb{C})$ e in $GL_2(\mathbb{C})$ (dove \overline{A} è la matrice che si ottiene applicando il coniugio complesso alle entrate di A, mentre A^T e Id_n sono come nell'esercizio precedente).

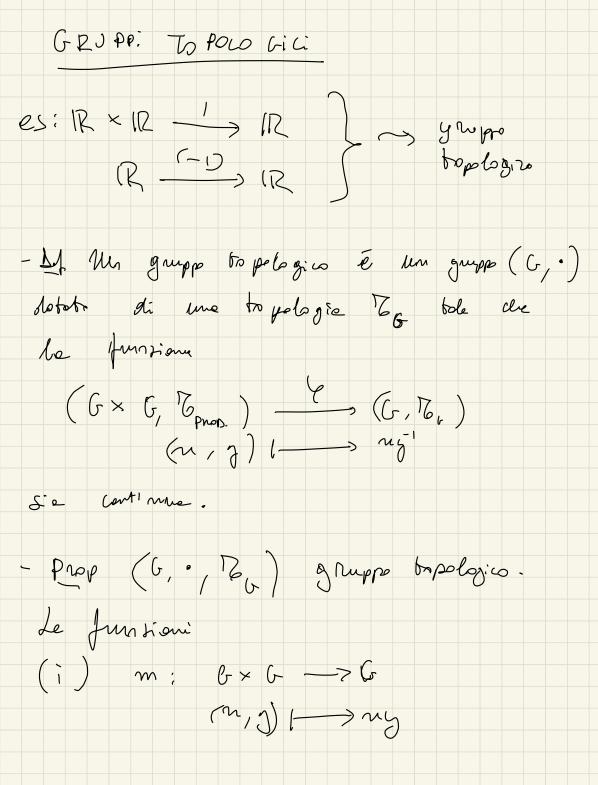
Esercizio 4. Sia $K = \mathbb{R}$ oppure $K = \mathbb{C}$. Sia $g \ge 1$ un intero. Pongo

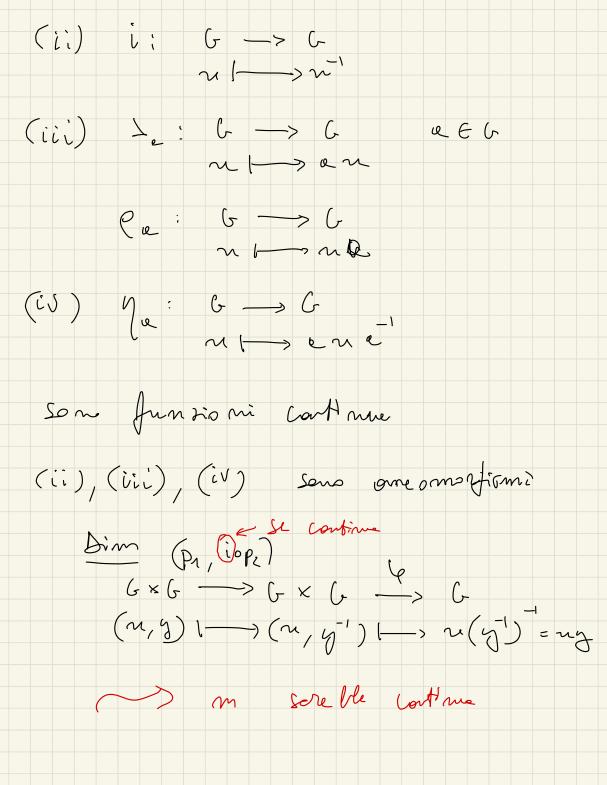
$$J_g = \begin{pmatrix} 0_g & \mathrm{Id}_g \\ -\mathrm{Id}_g & 0_g \end{pmatrix} \in \mathrm{GL}_{2g}(K),$$

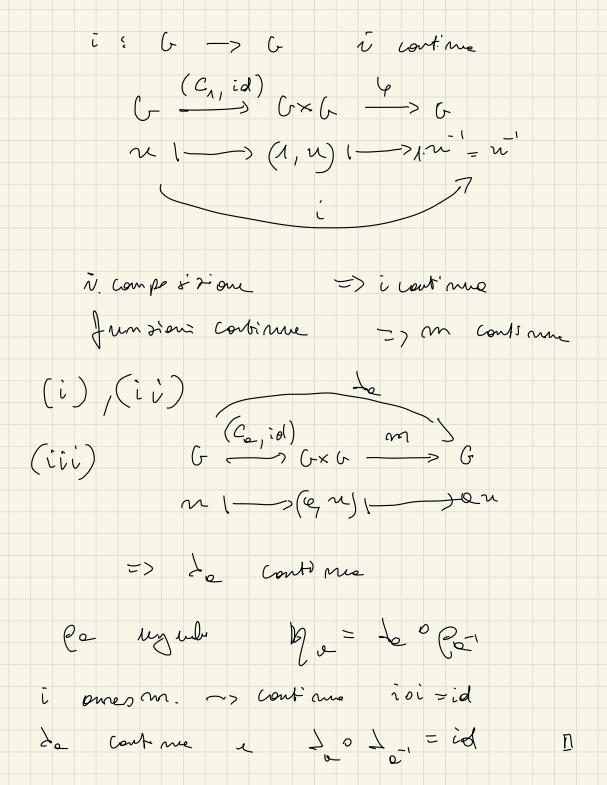
dove, con notazioni standard, indico $O_g \in M_{g \times g}(K)$ la matrice con tutte le entrate nulle, con $\mathrm{Id}_g \in \mathrm{GL}_g(K)$ la matrice identità come nei due esercizi precedenti, e con $-\mathrm{Id}_g$ la matrice definita richiedendo che la sua entrata al posto (i,j) sia -1 se i=j se 0 altrimenti. Dimostrare che il gruppo simplettico

$$\operatorname{Sp}_{q}(K) = \{ A \in \operatorname{GL}_{2q}(K) | A^{\operatorname{T}} \cdot J_{q} \cdot A = J_{q} \}$$

è chiuso sia in $M_{2g\times 2g}(K)$ che in $GL_{2g}(K)$.







Correlloris (6, , 20) à gruppo tropologia sse m, i sous Crent' mue. Esercizo Es (R,+), (R,+) gruppi toplogici (TR*,-), (GLn(R), .)

mon abelians