ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 6 – COMPATTEZZA

Esercizio 1. Siano X e Y compatti. Mostrare che $X \times Y$ è compatto.

Esercizio 2. Una funzione continua $f: X \to Y$ si dice *propria* se per ogni compatto $K \subseteq Y$ si ha che $f^{-1}(K)$ è compatto in X. Mostrare che se $f: X \to Y$ è continua, X è compatto e Y è T_2 , allora f è propria.

Esercizio 3. Sia (X, d) uno spazio metrico. Se $A \in B$ sono due chiusi di X, definisco

$$d(A, B) = \inf\{d(a, b) | a \in A, b \in B\}.$$

Suppongo che A oppure B sia compatto. Dimostrare che allora vale la seguente equivalenza:

$$d(A, B) = 0 \iff A \cap B \neq \emptyset.$$

Esercizio 4. Sia $K_1 \supseteq K_2 \supseteq \cdots \supseteq K_n \supseteq K_{n+1} \supseteq \cdots$ una successione di chiusi e compatti di uno spazio topologico X, ciascuno contenuto nel precedente. Mostrare che $\bigcap_{n>1} K_n \neq \emptyset$.

Esercizio 5. Sia X uno spazio di Hausdorff e siano K ed L due sottoinsiemi compatti e disgiunti di X (quindi $K \cap L = \emptyset$). Dimostrare che esistono due aperti disgiunti U e V di X tali che $K \subseteq U$, $L \subseteq V$ e $U \cap V = \emptyset$.