ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 6 – SEPARAZIONE

Esercizio 1. Siano X e Y due s.t. e $f: X \to Y$ una funzione continua. Definiamo il *grafico di f* come

$$\Gamma_f = \{(x, f(x)) | x \in X\}$$

dotato della topologia di sottospazio $\Gamma_f \subseteq X \times Y$. Supponiamo che Y sia di Hausdorff. Dimostrare che Γ_f è chiuso.

Esercizio 2. Trovare uno spazio topologico X in cui la diagonale $\Delta = \{(x, x) | x \in X\} \subseteq X \times X$ non è chiusa.

Esercizio 3. Dimostrare che lo spazio proiettivo $\mathbb{P}^n(\mathbb{R})$ è di Hausdorff.

Esercizio 4. Dimostrare che la striscia di Moebius è di Hausdorff.

Esercizio 5. Dimostrare che uno spazio quoziente di uno spazio topologico X è T_1 se e solo se ogni classe di equivalenza è un sottoinsieme chiuso di X.

Esercizio 6 (Versione generale di un esercizio precedente). Sia X uno spazio topologico di Hausdorff e $G\subseteq \operatorname{Aut}(X)$ un sottogruppo, dove indico con $\operatorname{Aut}(X)$ il gruppo degli omeomorfismi $\varphi:X\to X$, con la legge di gruppo data dalla composizione. Dico che G agisce in modo propriamente discontinuo su X se per ogni coppia di punti x,y di X esistono intorni aperti U di x e V di y tali che $g(U)\cap V\neq\emptyset$ per al più un numero finito di $g\in G$. Considero lo spazio quoziente X/G le cui classi di equivalenza sono gli insiemi $\{g(x)|g\in G\}$ al variare di $x\in X$. Dimostrare che se G agisce in modo propriamente discontinuo su X tallora X/G è di Hausdorff.

Soluzione. Fisso x, y gli intorni U e V come nel testo, e indico con g_1, \ldots, g_n gli elementi di G tali che $g_i(U) \cap V \neq \emptyset$. Se x ed y sono due classi distinte di X/G, allora $g_i(x) \neq y$, dunque esistono due intorni U_i di $g_i(x)$ e V_i di y tali che $U_i \cap V_i = \emptyset$. Sia $V' = V \cap_{i=1}^n V_i$, $W_i = g_i^{-1}(U_i)$ e $U' = U \cap_{i=1}^n W_i$. Allora

(*)
$$gU' \cap V' = \emptyset$$
, per ogni $g \in G$.

Per mostrare (*), notiamo che se $g \neq g_i$, allora $g(U') \cap V' \subseteq g(U) \cap V = \emptyset$, mentre se $g = g_i$, allora $g_i(U') \cap V' \subseteq g_i(W_i) \cap V_i = \emptyset$. In particolare, da (*) segue anche che $gU' \cap hV' = \emptyset \neq \emptyset$, allora $(h^{-1}g)U' \cap V' \neq \emptyset$, che contraddice quanto abbiamo già mostrato. Abbiamo quindi dimostrato che se $[x] \neq [y]$ in X/G, allora esiste un intorno $\bar{U} = \pi(U')$ ed un intorno $\bar{V} = \pi(V')$ in X/G tali che $\bar{U} \cap \bar{V} = \emptyset$, dove con $\pi : X \to X/G$ abbiamo indicato la proiezione canonica; dunque X/G è di Hausdorff.

Esercizio 7 (Confrontare con l'esercizio precedente). Sia X uno spazio topologico di Hausdorff e $G \subseteq \operatorname{Aut}(X)$ un sottogruppo finito, dove indico con $\operatorname{Aut}(X)$ il gruppo degli omeomorfismi $\varphi: X \to X$, con la legge di gruppo data dalla composizione. Considero lo spazio quoziente X/G le cui classi di equivalenza sono gli insiemi $\{g(x)|g\in G\}$ al variare di $x\in X$ (che sono dunque insiemi finiti). Dimostrare che X/G è di Hausdorff.

Soluzione. Fisso $[x] \neq [y]$ in X/G, quindi $x \neq g(y)$ per ogni $g \in G$. Fisso un aperto A di x ed un aperto B di y in modo tale che $A \cap B = \emptyset$. Considero ora per ogni $g \in G$ l'aperto g(B) e fisso B_g intorno di g(y) e A_g intorno di x tali che $A_g \cap B_g = \emptyset$. Considero ora $V_g = g(B) \cap B_g$, aperto contenente g(y), e pongo $V = \bigcap_{g \in G} g^{-1}(V_g) = B \cap_{g \in G} g^{-1}(B_g)$, aperto che contiene y (uso che G è finito). Definisco $U = \bigcap_{g \in G} A_g$, aperto che contiene x (ancora uso la finitezza di

G). Allora $g(V)\cap h(U)=\emptyset$ per tutti gli elementi $g\in G$ e $h\in G$: se $g(V)\cap h(U)\neq\emptyset,$ allora $(h^{-1}g)(V)\cap U\neq\emptyset,$ ma abbiamo

$$(h^{-1}g)(V)\cap U\subseteq (h^{-1}g)((h^{-1}g)^{-1}B_{h^{-1}g})\cap U\subseteq B_{h^{-1}g}\cap A_{h^{-1}g}=\emptyset$$

contraddizione; quindi $g(V)\cap h(U)=\emptyset$ per ognigeh in G, dunque X/Gè Hausdorff. \qed