ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 4 – SOTTOSPAZI

Esercizio 1. Dimostrare che la funzione $z \mapsto \frac{z-i}{z+i}$ definisce un omeomorfismo tra il semipiano complesso superiore $\mathcal{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$ e il disco apert $\mathbb{D} = \{z \in \mathbb{C} | || z || < 1\}$ (entrambi dotati della topologia di sottospazio di \mathbb{C}).

Esercizio 2. Sia $n \ge 1$ un intero. Dimostrare che il gruppo ortogonale

$$O(n) = \{ A \in M_{n \times n}(\mathbb{R}) | A^{T} \cdot A = Id_n \}$$

è un chiuso di $M_{n\times n}(\mathbb{R})$ e di $GL_n(\mathbb{R})$ (dove X^T denota la matrice trasposta di X e Id_n rappresenta la matrice identità, definita richiedendo che la sua entrata al posto (i,j) sia 1 se i=j se 0 altrimenti).

Esercizio 3. Sia $n \ge 1$ un intero. Dimostrare che il gruppo unitario

$$U(n) = \{ A \in M_{n \times n}(\mathbb{C}) | \overline{A}^{T} \cdot A = Id_{n} \}$$

è chiuso in $M_{n\times n}(\mathbb{C})$ e in $GL_2(\mathbb{C})$ (dove \overline{A} è la matrice che si ottiene applicando il coniugio complesso alle entrate di A, mentre A^{T} e Id_n sono come nell'esercizio precedente).

Esercizio 4. Sia $K=\mathbb{R}$ oppure $K=\mathbb{C}.$ Sia $g\geq 1$ un intero. Pongo

$$J_g = \begin{pmatrix} 0_g & \mathrm{Id}_g \\ -\mathrm{Id}_g & 0_g \end{pmatrix} \in \mathrm{GL}_{2g}(K),$$

dove, con notazioni standard, indico $O_g \in \mathcal{M}_{g \times g}(K)$ la matrice con tutte le entrate nulle, con $\mathrm{Id}_g \in \mathrm{GL}_g(K)$ la matrice identità come nei due esercizi precedenti, e con $-\mathrm{Id}_g$ la matrice definita richiedendo che la sua entrata al posto (i,j) sia -1 se i=j se 0 altrimenti. Dimostrare che il gruppo simplettico

$$\operatorname{Sp}_g(K) = \{ A \in \operatorname{GL}_{2g}(K) | A^{\operatorname{T}} \cdot J_g \cdot A = J_g \}$$

è chiuso sia in $M_{2q\times 2q}(K)$ che in $GL_{2q}(K)$.