ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 3 – CONTINUITÀ

Esercizio 1. Dimostrare che se $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ è un isomorfismo di spazi vettoriali, allora è anche un omeomorfismo.

Esercizio 2. Dare un esempio di omeomorfismo $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ che non sia un isomorfismo di spazi vettoriali (basta trovare una funzione $\varphi : \mathbb{R} \to \mathbb{R}$ che sia biettiva, continua con inversa continua che non sia del tipo $x \mapsto ax + b$).

Esercizio 3. Dimostrare che una funzione $f: X \to Y$ tra due spazi topologici, continua e biettiva, è un omeomorfismo se e solo se è chiusa.

Esercizio 4. Siano X un insieme, (Y, \mathcal{T}_Y) uno spazio topologico e $f: X \to Y$ una funzione (in insiemi). Dimostrare che la famiglia di sottoinsiemi di X definita da

$$f^{-1}(\mathcal{T}_Y) = \{ f^{-1}(A) | A \in \mathcal{T}_Y \}$$

è una topologia su X rispetto alla quale f è continua, ed è la meno fine di tutte le topologie su X che rendono continua f.

Esercizio 5. Siano (X, \mathcal{T}_X) uno spazio topologico, Y un insieme e $f: X \to Y$ una funzione (in insiemi). Dimostrare che la famiglia di sottoinsiemi di Y definita da

$$f_*(\mathcal{T}_X) = \{ A \subseteq Y | f^{-1}(A) \in \mathcal{T}_X \}$$

è una topologia su Y rispetto alla quale f è continua, ed è la più fine di tutte le topologie su X che rendono continua f.

Esercizio 6. Dimostrare che il determinante det : $M_{n\times n}(\mathbb{R}) \to \mathbb{R}$ è una funzione continua, dove $n \geq 1$ è un intero e denotiamo con $M_{n\times n}(\mathbb{R})$ lo spazio vettoriale su \mathbb{R} delle matrici quadrate a n righe ed n colonne a coefficienti in \mathbb{R} , dotata della topologia indotta dall'isomorfismo $\varphi: M_{n\times n}(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ definito mandando una matrice $A = (a_{i,j})_{i,j=1,\dots,n}$ nell'elemento

$$(a_{1,1}, a_{1,2}, \dots, a_{1,n}, a_{2,1}, a_{2,2}, \dots, a_{n,n-1}, a_{n,n})$$

(ottenuto giustapponendo le righe della matrice).

Esercizio 7. Sia $f: X \to Y$ una funzione biettiva tra due spazi topologici. Dimostrare che f è un omeomorfismo se e solo se vale la seguente condizione:

• $A \subseteq X$ è aperto se e solo se $f(A) \subseteq Y$ è aperto.