ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 2 – SOTTOINSIEMI NOTEVOLI DI SPAZI TOPOLOGICI

Esercizio 1. Siano S e T due sottoinsiemi di uno spazio topologico X. Dimostrare che se $S \subseteq T$ allora $\bar{S} \subseteq \bar{T}$.

Esercizio 2. Dimostrare che ogni sottoinsieme infinito di $\mathbb R$ dotato della topologia di Zariski è denso.

Esercizio 3. Siano A e B due sottoinsiemi di uno spazio topologico X. Dimostrare le seguenti relazioni:

- $Fr(A \cup B) \subseteq Fr(A) \cup Fr(B)$, e trovare un controesempio per l'altra inclusione;
- $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B);$
- $\operatorname{Int}(A \cup B) \supseteq \operatorname{Int}(A) \cup \operatorname{Int}(B)$ e trovare un controesempio per l'altra inclusione;
- $\bullet \ \overline{A \cup B} = \overline{A} \cup \overline{B};$
- $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$, e trovare un controesempio per l'altra inclusione.

Esercizio 4. Sia E un sottoinsieme denso di uno spazio topologico X e sia $U \subseteq X$ un aperto. Dimostrare che $\overline{E \cap U} \supseteq U$. Trovare un esempio in cui U è aperto e $\overline{E \cap U} \neq U$. La relazione $\overline{E \cap A} \supseteq A$ vale anche se A è chiuso?

Esercizio 5. Sia $X = \{a, b, c, d, e\}$ e $\mathcal{T} = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$. Mostrare che \mathcal{T} è una topologia su X e calcolare chiusura, derivato, frontiera e interno degli insiemi $\{a\}, \{e\}, \{d, e\}, \{a, c\}, \{a, b\}, \{a, d, e\}$.