ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 1 – SPAZI TOPOLOGICI

Esercizio 1. Sia $X = \{1, 2, 3\}$. Mostrare che $\mathcal{T} = \{\emptyset, X, \{1, 2\}, \{2, 3\}, \{2\}\}$ è una topologia su X.

Esercizio 2. Mostrare che se \mathcal{T}_i con $i \in I$ (ed I un insieme di indici) sono topologie su X, allora $\mathcal{T} = \bigcap_{i \in I} \mathcal{T}_i$ è una topologia su X, meno fine di ciascuna delle \mathcal{T}_i .

Esercizio 3. Sia $X = \mathbb{R}^2$. Per ogni intero $n \in \mathbb{Z}$, definisco gli insiemi $S_n = \{(x, y) \in \mathbb{R}^2 | x < n\}$ e $T_n\{(x, y) \in \mathbb{R}^2 | y < n\}$. Mostrare che $\mathcal{T}_1 = \{X, \emptyset, S_n, n \in \mathbb{Z}\}$ e $\mathcal{T}_2 = \{X, \emptyset, T_n, n \in \mathbb{Z}\}$ sono topologie su X. (Come osservato a lezione, notare che $\mathcal{T}_1 \cup \mathcal{T}_2$ non è una topologia su X.)

Esercizio 4. Sia (X, d) uno spazio metrico. Mostrare che, fissato $x \in X$, gli insiemi

$$D(x,r) = \{ y \in X | d(x,y) < r \}$$

al variare di r>0 sono un sistema fondamentale di intorni (aperti) di x.

Esercizio 5. Imitando l'esercizio svolto a lezione, mostrare che $\mathcal{B} = \{(a, +\infty) : a \in \mathbb{R}\}$ è una base per una topologia su \mathbb{R} , strettamente meno fine di quella euclidea.

Esercizio 6. Supponiamo che \mathcal{T}_1 e \mathcal{T}_2 siano due topologie su X, a fissiamo due loro basi \mathcal{B}_1 e \mathcal{B}_2 , rispettivamente. Espandendo l'osservazione fatta a lezione, notare che per dimostrare che $\mathcal{T}_1 \subseteq \mathcal{T}_2$ basta notare che per ogni $B \in \mathcal{B}_1$, esistono $B_i \in \mathcal{B}_2$, $i \in I$ un insieme di indici, tali che $B = \bigcup_{i \in I} B_i$. Concludere che $\mathcal{T}_1 = \mathcal{T}_2$ se e solo se valgono le due seguenti condizioni:

- Per ogni $B \in \mathcal{B}_1$, esistono $B_i \in \mathcal{B}_2$, $i \in I$ un insieme di indici, tali che $B = \bigcup_{i \in I} B_i$;
- Per ogni $B \in \mathcal{B}_2$, esistono $B_i \in \mathcal{B}_1$, $i \in I$ un insieme di indici, tali che $B = \bigcup_{i \in I} B_i$.

Utilizzare questa ultima osservazione per verificare che la topologia euclidea \mathcal{E} di \mathbb{R}^2 coincide con la topologia generata da

$$\mathcal{B} = \{Q(x,r)|x \in \mathbb{R}^2, r > 0\}$$

dove, posto $x = (x_1, x_2), Q(x, r)$ indica il quadrato di centro x e lato 2r:

$$Q(x,r) = \{(y_1, y_2) | |x_1 - y_1| < r, |x_2 - y_2| < r\}.$$

Esercizio 7. Sia \mathcal{F} una famiglia di sottoinsiemi di X (quindi \mathcal{F} è un sottoinsieme dell'insieme $\mathcal{P}(X)$ delle parti di X, ovvero è un insieme i cui elementi sono sottoinsiemi di X). La topologia $\mathcal{T}(\mathcal{F})$ generata da \mathcal{F} è la meno fine di tutte le topologie che contengono \mathcal{F} . Mostrare che la definizione è ben posta e che si ha

$$\mathcal{T}(\mathcal{F}) = \bigcap_{\mathcal{F} \subseteq \mathcal{T}} \mathcal{T}$$

dove \mathcal{T} è una topologia che contiene \mathcal{F} . (Suggerimento: notare che l'intersezione è non vuota, visto che la topologia discreta certamente contiene \mathcal{F} ; è una topologia perché intersezione di topologie è una topologia; infine, se una topologia contiene \mathcal{F} , allora contiene anche $\mathcal{T}(\mathcal{F})$, quindi $\mathcal{T}(\mathcal{F})$ è la meno fine delle topologie che contengono \mathcal{F}).