GEOMETRIA 2 - Parte A

Corso di Laurea in Matematica

Appello 03/02/2022 - Mistretta / Longo

Esercizio 1. In $\mathbb{P}^2_{\mathbb{C}}$ con riferimeto proiettivo canonico, considerare i seguenti punti A=[2:-2:-1], B=[2:-2:-2], C=[2:-2:2], D=[2:-2:1].

- a) Considerare la famiglia $\mathcal{G} := \{\mathcal{C} \text{ conica di } \mathbb{P}^2_{\mathbb{C}} \mid A, B, C, D \in \operatorname{Supp}(\mathcal{C})\}$. Determinare se \mathcal{L} è un sistema lineare di coniche. In caso affermativo calcolarne la dimensione.
- b) Considerare la famiglia $\mathcal{F} := \{\mathcal{C} \text{ conica di } \mathbb{P}^2_{\mathbb{C}} \mid A, B, C, D \in \operatorname{Supp}(\mathcal{C}) , \mathcal{C} \text{ è tangente alle retta } r : X Y = 0\}$. Determinare se \mathcal{F} è un sistema lineare di coniche, in caso affermativo calcolarne la dimensione. Che relazione c'è tra la famiglia \mathcal{F} e la famiglia \mathcal{G} ?
- c) Determinare tutte le coniche degeneri nella famiglia \mathcal{F} . Se esiste, scrivere un'equazione di una conica non degenere C_1 della famiglia \mathcal{F} . Se esiste, scrivere un'equazione di una conica degenere C_0 della famiglia \mathcal{F} .
- d) Sia C_2 la conica di equazione $X^2 + Y^2 + 2XZ + 2YZ = 0$. Determinare l'intersezione con molteplicità di C_0 e C_2 , dove C_0 è la conica descritta sopra.

Esercizio 2. Considerare lo spazio vettoriale $V=k^2$ canonico di dimensione 2 sul campo $k=\mathbb{F}_2=\mathbb{Z}/2\mathbb{Z}$ di caratteristica 2, e la seguente funzione

$$q: V \to k$$

 $(x, y) \mapsto x^2 + xy$,

dove v = (x, y) è un vettore di $V = k^2$.

- a) Mostrare che q è una forma quadratica, e caclolare la matrice (in base canonica) della forma bilineare simmetrica $\eta(v_1, v_2) = q(v_1 + v_2) q(v_1) q(v_2)$.
- b) Esiste una base di V che diagonalizzi la forma quadratica η ?
- c) Determinare se esiste una forma bilineare simmetrica $\beta \colon V \times V \to k$ tale che per ogni $v \in V$ si abbia $q(v) = \beta(v, v)$. In caso affermativo esibire la matrice in base canonica, in caso negativo motivare la risposta.
- d) Esiste una forma bilineare (non necessariamente simmetrica) $\vartheta \colon V \times V \to k$ tale che per ogni $v \in V$ si abbia $q(v) = \vartheta(v, v)$?
- e) Sia ora W lo spazio vettoriale $W = \mathbb{R}^2$ canonico di dimensione 2 sul campo dei numeri reali, considerare la seguente funzione $r: W \to \mathbb{R}, (s,t) \mapsto s^2 + st$. Determinare una forma bilineare simmetrica $\beta: W \times W \to \mathbb{R}$ tale che per ogni $w \in W$ si abbia $r(w) = \beta(w, w)$. Calcolare la matrice in base canonica, il rango e la segnatura di β . Determinare il nucleo e il cono isotropo di β .

Esercizio 3. Sia $\mathbb{P}^3_{\mathbb{R}}$ lo spazio proiettivo tridimensionale reale con riferimeto proiettivo canonico di coordinate [x:y:z:w]. Considerare i punti:

$$A = [1:1:1:1]$$
, $B = [3:3:2:1]$, $C = [1:-1:2:-2]$, $D = [4:-4:2:-2]$

- a) Qual è il massimo numero di punti linearmente indipendenti in $\mathbb{P}^3_{\mathbb{R}}$? Quanti punti sono necessari per avere un riferimento proiettivo in $\mathbb{P}^3_{\mathbb{R}}$? Determinare se i punti A, B, C, D sono linearmente indipendenti.
- b) Determinare la posizione reciproca delle rette $\ell_1 := L(A, B)$ e $\ell_2 := L[C, D]$
- c) Descrivere la proiezione sulla retta ℓ_2 di centro la retta ℓ_1 in coordinate canoniche, ed esibirne una matrice.

- a) Considerare la famiglia $\mathcal{G} := \{\mathcal{C} \text{ conica di } \mathbb{P}^2_{\mathbb{C}} \mid A, B, C, D \in \operatorname{Supp}(\mathcal{C})\}$. Determinare se \mathbf{Z} è un sistema lineare di coniche. In caso affermativo calcolarne la dimensione.
- b) Considerare la famiglia $\mathcal{F} := \{\mathcal{C} \text{ conica di } \mathbb{P}^2_{\mathbb{C}} \mid A, B, C, D \in \operatorname{Supp}(\mathcal{C}) , \mathcal{C} \text{ è tangente alle retta } r : X Y = 0\}$. Determinare se \mathcal{F} è un sistema lineare di coniche, in caso affermativo calcolarne la dimensione. Che relazione c'è tra la famiglia \mathcal{F} e la famiglia \mathcal{G} ?
- c) Determinare tutte le coniche degeneri nella famiglia \mathcal{F} . Se esiste, scrivere un'equazione di una conica non degenere C_1 della famiglia \mathcal{F} . Se esiste, scrivere un'equazione di una conica degenere C_0 della famiglia \mathcal{F} .
- d) Sia C_2 la conica di equazione $X^2 + Y^2 + 2XZ + 2YZ = 0$. Determinare l'intersezione con molteplicità di C_0 e C_2 , dove C_0 è la conica descritta sopra.

Sydginento:

(a) Poiché ogui condizione del tipo PE Supple) è

Cirevre, la famiglia G è un sistema linerre di coniche,

interrezione de 4 iperpiani nello apozio de tatte le coniche,

Per colcobere la dimensione, osservia una che tati c 4 i

punti sono alli neati, infatti verificana tati l'oquazione

x+y=0, qui not apportengona alla sette si x+y=0.

Per calcoberne la dimensione, osserviona che il

passaggio per 3 punti alli neati, implica che la coica è

degenere e contiene la rela per i 3 punti nel supporto,

c il passaggio per il 4º punto è sempre saddinatalo

in questo caro.

Lu famiglie à quindi interezione de 3 perposici linermente indipendenti, ed à un sistemo livere di dimensione 2. la famiglio G può essere descritto así: G= {E = 5+ l / r: x+y=0, le P2* } =

= $[C: (x+y)(Ax+By+C2)=0][A:b:C] \in \mathbb{P}^{2}$ = $[C: (x+y)(Ax+By+C2)=0][A:b:C] \in \mathbb{P}^{2}$ | = $[C: Ax^{2}+By^{2}+(A+B)xy+Cx_{2}+Cy_{2}=0][A:b:C] \in \mathbb{P}^{2}$ |

(b) Priché les Juniglis G è composts de caiche degeneri C=S+l, con S: x+y=0 final, e le P2n, uns tale conce à tayente des rets 5: X-y=0 se e solo se Soler, Questo aniene se e salo se SnI=[0:0:1] El La famiglia & è quind

J= [E = s+l / six+y=0, lcP2 reta per [orori]] d è un sistema lineare di coniche di dimensione 1, cisé un fiscis di coniche (totte degeneri). Inoltre chisomente £ cf, e J é quind' una sets projective dentro al pismo projectivo G. © le couche i f (e in G) sous tate degeneri. Quindi uon existens con che von degener in £ né in q. Sieglien $C_{0}=S+\Gamma:(X+Y)(X-Y)=0$, è us conics degenere is £ = 4.

$$G_{2} \cap S = \begin{cases} 1 = -x \\ 1 = -x \\ 1 = -x \end{cases}$$
 $G_{2} \cap S = 2 [0:0:1]$

$$G_{2} \cap J : \begin{cases} y = x \\ x^{2} + x^{2} + 4x^{2} = 0 \end{cases} \begin{cases} y = x \\ 2x(x+2^{2}) = 0 \end{cases}$$

$$q: V \to k$$

 $(x, y) \mapsto x^2 + xy$,

dove v = (x, y) è un vettore di $V = k^2$.

- a) Mostrare che q è una forma quadratica, e caclolare la matrice (in base canonica) della forma bilineare simmetrica $\eta(v_1, v_2) = q(v_1 + v_2) q(v_1) q(v_2)$.

 b) Esiste una base di V che diagonalizzi la forma quadratica $\eta(v_1, v_2) = q(v_1 + v_2) q(v_1) q(v_2)$.
- b) Esiste una base di V che diagonalizzi la forma q
- c) Determinare se esiste una forma bilineare simmetrica $\beta \colon V \times V \to k$ tale che per ogni $v \in V$ si abbia $q(v) = \beta(v, v)$. In caso affermativo esibire la matrice in base canonica, in caso negativo motivare la risposta.
- d) Esiste una forma bilineare (non necessariamente simmetrica) $\vartheta \colon V \times V \to k$ tale che per ogni $v \in V$ si abbia $q(v) = \vartheta(v, v)$?
- e) Sia ora W lo spazio vettoriale $W=\mathbb{R}^2$ canonico di dimensione 2 sul campo dei numeri reali, considerare la seguente funzione $r\colon W\to\mathbb{R},\ (s,t)\mapsto s^2+st$. Determinare una forma bilineare simmetrica $\beta \colon W \times W \to \mathbb{R}$ tale che per ogni $w \in W$ si abbia $r(w) = \beta(w, w)$. Calcolare la matrice in base canonica, il rango e la segnatura di β . Determinare il nucleo e il cono isotropo di β .

Svolgimento

Sieus
$$\sigma_1 = \begin{pmatrix} \chi_1 \\ \chi_1 \end{pmatrix}$$
 $\sigma_2 = \begin{pmatrix} \chi_2 \\ \chi_2 \end{pmatrix}$ vettiri di $V = k^2$ $k = \frac{\chi_2}{2}$

Shows
$$y(x_1, x_2) = q(x_1, x_2) - q(x_1) - q(x_2) =$$

$$(x_1 + x_2)^2 + (x_1 + x_2)(y_1 + y_2) - (x_1)^2 - x_1y_1 - (x_1)^2 - x_2y_2 =$$

$$= x_1^2 + 2x_1x_2 + x_2^2 + x_1y_1 + x_1y_2 + x_1y_1 + x_2y_2 - x_1^2 - x_1y_1 - x_2^2 - x_1^2 - x_1y_1 - x_1y_2 - x_1^2 - x_1y_1 - x_1y_2 - x_1^2 - x_1y_1 - x_1y_1 - x_1y_1 - x_1y_2 - x_1^2 - x_1y_1 - x_1y_1 - x_1y_2 - x_1^2 - x_1y_1 - x_$$

Poidré sisma su consteriética 2, non possia mo appliare l'algoritume et higrange.

Cerchi, us se exste un austrice PEGL, (k) tole che tPAP = (° 1), cioè se 3 un bose for, ozh di V tale the y (J, , J2) = 0

Poichi + v = (") M (v, v) = q(v + v) - q(v) - q(v) =0, in uns tile base la forma bilinere y dourebbe essere unla, impsibile poiché y +0.

ALTERNATIVAMENTE: Posiumo cercire un motria PEGL/k) truite : 2000 coefficienti. Poiche 19 (+PAP) = 17 (A) =2 dons evere tPAP = (10). Sis P= (20) e Ghz(k) all 13 $tPAP = \begin{pmatrix} 3 & c \\ 6 & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 6 \\ c & d \end{pmatrix} = \begin{pmatrix} 6 & d \\ 3 & c \end{pmatrix} \begin{pmatrix} 2 & 6 \\ c & d \end{pmatrix} =$ $= \begin{pmatrix} 3b + cd & b^2 + d^2 \\ 3^2 + c^2 & 3b + cd \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{on} \quad a_1b_1c_1d_1 \in \mathcal{Z}_{12} = \{0, 1\}$ Per trere 22+c2=0 dabbitus vuere d=C=0 oppure d=C=1 Auslogsmete 62+d2=0 b=d=0 b=d=1 Se J=C=0 Mors det P=0 e non è possibile Se b=d=0 — det P=0 — . Quindr dere usere a=b=c=d=1, mo albra det P=0 4 Qu'unt non vriste PE(L2(k) / tPAP à disgonale. © Se p: VxV - 0 k è f. bilinere simetion, allows $\beta(J_1,J_2) = (x, y,) \beta(\frac{x_2}{y_2})$ con $\beta = (\frac{\beta}{q}, \frac{q}{r}) \in M_{2\times 2}(k)$ allors $\beta(v,v) = (xy)\beta(y) = px^2 + 2qxy + ry^2$ qu'int NON existe une tale forma po con $\beta(v, v) = x^2 + xy$.

d Possians seglier $\beta(\sqrt{3}, \sqrt{2}) = (x, y,) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_2 \end{pmatrix}$,

in questo caso $(x y) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = x^2 + xy.$ Osservione du onde $\beta(v, v_z) = (x, x_z) \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ y_z \end{pmatrix}$ Soddisfa be analizione $\beta(v, v_z) = x^2 + y$ sicerati). Osservismo che $\beta((x_1,y_1),(x_2,y_2))=(x,y_1)(x_2,y_2)(x_2,y_2)$ soddista $\beta(\alpha,y),(\alpha,y) = \alpha + \alpha y$ quindi p è la forma bilinere ricercata, e la sus matrice e (1/2) quint og (β) = 2. Servisure the squ(β) \neq (2,0) in quanto β (e_{2} , e_{2}) =0 e gn(B) \(\pm(0,2)\) per la steno motivo. @ vind = (1,1). Poiche $rg(\beta) = 2$, $ker(\beta) = 0$.

Luice il aux isotropo è $\overline{L}_{\beta}(V) = \left(\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 / x^2 + ny = x(x + y) = 0 \right) \subset \mathbb{R}^2$ e l'unione delle 2 rete s, x=0 e sz: x+y=0. (Quindi Ip (V) CR² è il supporto di m'iperbole degenere).

Esercizio 3. Sia $\mathbb{P}^3_{\mathbb{R}}$ lo spazio proiettivo tridimensionale reale con riferimeto proiettivo canonico di coordinate [x:y:z:w]. Considerare i punti:

$$A = [1:1:1:1] , B = [3:3:2:1] , C = [1:-1:2:-2] , D = [4:-4:2:-2]$$

- a) Qual è il massimo numero di punti linearmente indipendenti in $\mathbb{P}^3_{\mathbb{R}}$? Quanti punti sono necessari per avere un riferimento proiettivo in $\mathbb{P}^3_{\mathbb{R}}$? Determinare se i punti A, B, C, D sono linearmente indipendenti.
- b) Determinare la posizione reciproca delle rette $\ell_1 := L(A, B)$ e $\ell_2 := L[C, D]$
- c) Descrivere la proiezione sulla retta ℓ_2 di centro la retta ℓ_1 in coordinate canoniche, ed esibirne una matrice.

Sublyimento:
$$A = [1:1:2:1]$$
 $B = [3:3:2:1]$ $C = [1:-1:2:2]$
 $D = [2:-2:1:-1]$

Deficient $P_R^3 = P(R^4)$ ci possono cosere el più

Le parti lin. INDIP. Un rif. projettivo el formato

do 5 parti: Le parti lin. inotip. e il parto unito:

 $\begin{bmatrix} 1 & 3 & 1 & 2 \\ 1 & 3 & -1 & -2 \\ 1 & 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -3 & 2 \\ 1 & 0 & 1 & -2 \\ 1 & 1 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 1 & -1 & 0 & 1 \\ 1 & -2 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & -3 \end{bmatrix}$
 $= 3 \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -2 & 0 & -1 \end{bmatrix} = -18 \neq 0$
 $\Rightarrow I$ parti A, B, C, D sons C : nor mento $INDIP$.

B) Poiché i
$$\mu$$
 point som l'herronnée indipendent, le rele $\ell_1 = L(A,B)$ e $\ell_2 = L(C,D)$ som squembe.

 $\ell_2 = L(C,D) = \left[\left(\lambda \cdot 2\mu \cdot - \lambda \cdot 2\mu \cdot 2\lambda \cdot \mu \cdot 2\lambda \cdot \mu \right) / \left(\lambda \cdot \mu \right) \in \mathbb{R}^4 + \left(t \cdot t \cdot s \cdot - s \right) / \left(t \cdot s \right) \in \mathbb{R}^4 \right]$