GEOMETRIA 2 - Parte A

Corso di Laurea in Matematica

Appello 18/01/2022 - Mistretta / Longo

Esercizio 1. In $\mathbb{P}^2_{\mathbb{C}}$ con riferimeto proiettivo canonico, considerare i seguenti punti A = [0:0:1], B = [0:4:2], C = [6:0:3], D = [8:8:4].

- a) Considerare la famiglia $\mathcal{F} := \{ \mathcal{C} \text{ conica di } \mathbb{P}^2_{\mathbb{C}} \mid A, B, C, D \in \operatorname{Supp}(\mathcal{C}) , \mathcal{C} \text{ è tangente alle retta } r : Z + (1 + \sqrt{2})Y = 0 \}$. Determinare se \mathcal{F} è un sistema lineare di coniche.
- b) Determinare tutte le coniche degeneri nella famiglia \mathcal{F} . Scrivere un'equazione di una conica C_1 non degenere della famiglia \mathcal{F} .
- c) Sia C_2 la conica di equazione $X^2 + Y^2 + 2XZ + 2YZ = 0$. Determinare l'intersezione con molteplicità di C_1 e C_2 .
- d) Considerare la retta r di cui sopra, sia $U = \mathbb{P}^2_{\mathbb{C}} \setminus r$. Descrivere delle coordinate affini di U e le rispettive applicazioni $j \colon \mathbb{A}^2_{\mathbb{C}} \to U$ e $\vartheta \colon U \to \mathbb{A}^2_{\mathbb{C}}$. Determinare un'equazione della conica affine $C_2 \cap U$ nelle coordinate affini scelte, e classificarla.

Esercizio 2. Considerare lo spazio vettoriale reale $V = \mathbb{R}[X]^{\leq 2}$ dei polinomi reali di grado al più 2, e la seguente funzione:

$$q: V \to \mathbb{R}$$

 $P(X) \mapsto P(2)^2 - P'(0)^2 - 2P''(1)P(3)$,

dove P'(X) è la derivata di P(X) e P''(X) la derivata seconda.

- a) Mostrare che q è una forma quadratica, e descrivere la forma bilineare simmetrica associata β .
- b) Determinare se β è definita positiva, semidefinita positiva, definita negativa, semidefinita negativa, o indefinita.
- c) Determinare il nucleo di β e il cono isotropo di β .
- d) Determinare la segnatura di β .

Esercizio 3. Sia $\mathbb{P}^3_{\mathbb{C}}$ lo spazio proiettivo tridimensionale con riferimeto proiettivo canonico di coordinate [x:y:z:w]. Considerare l'applicazione definita da:

$$\varphi \colon [x : y : z : w] \mapsto [-3x + y + z + w : x - 3y + z + w : x + y - 3z + w : x + y + z - 3w] \ .$$

- a) Determinare se si tratta di un'applicazione ben definita $\varphi \colon \mathbb{P}^3_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}$
- b) Determinare se si tratta di una proiettività, o di una trasformazione proiettiva degenere.
- c) Nel caso si tratti di una trasformazione proiettiva degenere determinare il luogo dove è definita, deteminare se si tratta di una proiezione e in caso affermativo determinarne il centro e l'immagine.
- d) Considerare la quadrica \mathcal{Q} di $\mathbb{P}^3_{\mathbb{C}}$ di equazione $X^2 + Y^2 + Z^2 + W^2 = 0$, sia $X \subset \mathbb{P}^3_{\mathbb{C}}$ il sottoinsieme $\varphi^{-1}(\operatorname{Supp}(\mathcal{Q}))$. Mostrare che esiste una quadrica \mathcal{Q}' tale che $X \subset \operatorname{Supp}(\mathcal{Q}')$. Scrivere un'equazione di \mathcal{Q}' , determinare se \mathcal{Q}' è degenere.