GEOMETRIA 2 - Parte A

Corso di Laurea in Matematica

Appello 26/11/2021 - Mistretta / Longo

Esercizio 1. Considerare lo spazio vettoriale reale $V = \mathbb{R}[X]^{\leq 3}$ dei polinomi di grado al più 3, e la seguente funzione:

$$q: V \to \mathbb{R} ,$$

 $P(X) \mapsto P(0)^2 + P(1)^2 + P(-1)^2 .$

- a) Mostrare che q è una forma quadratica, e descrivere la forma bilineare simmetrica associata β .
- b) Determinare se β è definita positiva, semidefinita positiva, definita negativa, semidefinita negativa, o indefinita.
- c) Determinare il nucleo di β e il cono isotropo di β .
- d) Determinare la segnatura di β e trovare una base di V diagonalizzante per β .

Esercizio 2. Considerare le seguenti coniche nello spazio euclideo \mathbb{E}^2 con riferimento standard:

$$C_1: X^2 + 2X + Y^2 = 0$$

 $C_2: X^2 + 2X - Y^2 = 0$

$$C_3: X^2 + 2X - Y + 2 = 0$$

- a) Per ogni conica C_i determinare se si tratta di una conica a centro e in caso affermativo trovare il centro.
- b) Per ogni conica C_i determinarne il tipo, la forma canonica, e trovare un riferimento euclideo in cui la conica sia in forma canonica.
- c) Per ogni conica C_i scrivere un'equazione della proiettificazione $\overline{C_i}$ in $\mathbb{P}^2_{\mathbb{R}}$.
- d) Per ogni conica $\overline{\mathcal{C}_i}$ considerare l'equazione trovata sopra come un'equazione a cefficienti complessi di una conica \mathcal{D}_i in $\mathbb{P}^2_{\mathbb{C}}$. Determinare le seguenti intersezioni con molteplicità: $\mathcal{D}_1 \cap \mathcal{D}_2$, $\mathcal{D}_1 \cap \mathcal{D}_3$, $\mathcal{D}_2 \cap \mathcal{D}_3$.

Esercizio 3. Siano P_1 e P_2 due punti distinti di $\mathbb{P}^5_{\mathbb{C}}$. Considerare la famiglia di iperpiani di $\mathbb{P}^5_{\mathbb{C}}$:

$$\Lambda = \{ H \subset \mathbb{P}^5_{\mathbb{C}} \mid H \text{ iperpiano che contiene } P_1 \in P_2 \}$$

- a) Determinare se Λ è un sistema lineare, motivando la risposta.
- b) Calcolare la dimensione dim Λ .
- c) Determinare se $\bigcap_{H \in \Lambda} H$ è un sottospazio proiettivo, e in caso affermativo calcolarne la dimensione.