GEOMETRIA 2 - Parte A

Corso di Laurea in Matematica

Appello 08/07/2021 - Mistretta / Longo

Esercizio 1. Sia $k = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ il campo con 3 elementi. E sia $\mathbb{P}_k^n = \mathbb{P}(k^{n+1})$ lo spazio proiettivo canonico di dimensione n sul campo k.

- a) Quanti elementi ha \mathbb{P}_k^1 ? Elencarli tutti.
- b) Quati elementi ha \mathbb{P}_k^2 ? E \mathbb{P}_k^3 ? Motivare la risposta.
- c) Quante rette proiettive ci sono in \mathbb{P}^2_k ?
- d) <u>Facoltativo</u>: Sia $q \in \mathbb{N}$ un numero primo. Sia $F = \mathbb{F}_q = \mathbb{Z}/q\mathbb{Z}$ il campo con q elementi. Quante rette proiettive ci sono in \mathbb{P}_F^2 ?

Esercizio 2. Considerare lo spazio vettoriale complesso $V = \mathbb{C}^2$. E sia $V_{\mathbb{R}}$ lo spazio vettoriale V considerato come spazio vettoriale reale (si considera solo la moltiplicazione per scalari reali).

Considerare la seguente applicazione

$$h \colon V \times V \to \mathbb{C}$$

$$((x_1, x_2), (y_1, y_2)) \mapsto \begin{pmatrix} \overline{x_1} & \overline{x_2} \end{pmatrix} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

- a) Mostrate che h è una forma hermitiana su V.
- b) Chiamare $V_{\mathbb{R}}$ lo spazio vettoriale V considerato come spazio vettoriale reale (si considera solo la moltiplicazione per scalari reali), e considerare la seguente applicazione:

$$s: V_{\mathbb{R}} \times V_{\mathbb{R}} \to \mathbb{R}$$

 $(v_1, v_2) \mapsto \mathcal{R}e(h(v_1, v_2))$,

dove $\Re e$ è la parte reale di un numero complesso. Dimostrare che s è una forma bilineare simmetrica.

- c) Determinare una base di $V_{\mathbb{R}}$. Determinare una matrice della forma bilineare simmetrica s nella base scelta. Determinare se la forma bilineare s è non degenere.
- d) Facoltativo: Trovare una base di $V_{\mathbb{R}}$ diagonalizzante per s, e calcolarne la segnatura.

Esercizio 3. Si considerino le rette in $\mathbb{P}^2_{\mathbb{C}}$ determinate dalle seguenti equazioni: $r_1: x=0, \ r_2: y=0, \ r_3: z=0, \ r_4: 2x+2y-z=0$. Si consideri l'insieme di coniche proiettive in $\mathbb{P}^2_{\mathbb{C}}$:

$$\mathcal{F} := \{ \mathcal{C} \text{ coninca in } \mathbb{P}^2_{\mathbb{C}} \mid \mathcal{C} \text{ è tangente alle rette } r_1, r_2, r_3, r_4 \}$$

- a) L'insieme \mathcal{F} è un fascio di coniche? L'insieme \mathcal{F} contiene coniche singolari? Motivare la risposta.
- b) Mostrare che la conica C di equazione $X^2 + Y^2 + Z^2 2XY 2XZ 2YZ = 0$ appartiene all'insieme \mathcal{F} . Determinare se la conica C è singolare.
- c) Considerare la conica affinizzata di C nell'aperto affine $U = \{[x:y:z] \in \mathbb{P}^2_{\mathbb{C}} \mid z \neq 0\}$. Determinare di che conica si tratta, scriverne l'equazione, e disegnarne la parte reale (in \mathbb{R}^2), insieme alle 4 rette r_1, r_2, r_3, r_4 .