GEOMETRIA 2 - Parte A

Corso di Laurea in Matematica

Appello 12/02/2021 - Mistretta / Longo

Esercizio 1. Considerare 6 punti distinti $P_1, P_2, P_3, P_4, P_5, P_6 \in \mathbb{P}^2_{\mathbb{R}}$ sul piano proiettivo reale.

- a) Supponendo che comunque si scelgano 4 punti tra $P_1, \dots P_6$ questi non sono colineari, mostrare che ne esistono 4 tra $P_1, \dots P_6$ che sono in posizione generale.
- b) Disegnare un esempio di 6 punti tali che comunque si scelgano 4 punti tra $P_1, \dots P_6$ questi non sono colineari, e tali che comunque si scelgano 5 punti tra $P_1, \dots P_6$ questi non sono in posizione generale.
- c) Nel caso sopra (6 punti distinti $P_1, P_2, P_3, P_4, P_5, P_6 \in \mathbb{P}^2_{\mathbb{R}}$ tali che comunque si scelgano 4 punti tra $P_1, \dots P_6$ questi non sono colineari, e tali che comunque si scelgano 5 punti tra $P_1, \dots P_6$ questi non sono in posizione generale), può esistere una conica il cui supporto contiene tutti e sei i punti $P_1, P_2, P_3, P_4, P_5, P_6$? Descrivere ulteriori condizioni affinché una tale conica esista, e motivare la risposta.

Esercizio 2. Considerare lo spazio vettoriale reale $V = \mathbb{R}[X]^{\leq 2}$ dei polinomi di grado al più 2. Sia

$$q: V \to \mathbb{R} ,$$

 $P(X) \mapsto P(-1)^2 + P(0)^2 - P(1)^2$

- a) Mostrate che q è una forma quadratica, determinare la forma bilineare simmetrica β indotta da q, e scrivere la matrice di β in una base di V.
- b) Determinare la segnatura di β .
- c) Trovare una base di V dove β sia in forma canonica.
- d) Scrivere un'equazione per il cono isotropo $I_{\beta}(V) \subset V$ nella base $\mathbb{E} = \begin{pmatrix} 1 & X+2 & X^2 \end{pmatrix}$ di V.
- e) L'equazione del cono isotropo descritta sopra determina un'ipersuperficie in $\mathbb{P}(V)$? Determinare di che ipersuperficie si tratta e classificarla.

Esercizio 3. Si considerino i seguenti punti in $\mathbb{P}^2_{\mathbb{C}}$:

$$P_1 = [0:0:1], P_2 = [1:-1:-1], P_3 = [2:0:-1], P_4 = [1:1:-1], P_5 = [1:0:1], P_6 = [0:1:1], P_7 = [1:0:-1], P_8 = [0:1:-1].$$

- a) Gli otto punti P_1, \ldots, P_8 sono in posizione generale? Determianre il massimo numero di punti tra P_1, \ldots, P_8 che siano in posizione generale.
- b) Determinare tutte le coniche C tali che $P_1, P_2, P_3, P_4 \in \text{Supp}(C)$ e che la retta $r: X_0 + 2X_2 = 0$ sia tangente a C. Quante ce ne sono? Scrivere l'equazione di una conica C_1 non degenere tra esse.
- c) Determinare tutte le coniche C tali che $P_5, P_6, P_7, P_8 \in \text{Supp}(C)$ e che la retta $s: X_1 + X_2 = 0$ sia tangente a C. Scrivere l'equazione di una conica C_2 non degenere tra esse.
- d) Scrivere le equazioni del fascio di coniche $\mathcal{F}(\mathcal{C}_1,\mathcal{C}_2)$. Quante coniche degeneri ci sono nel fascio? Determinarle tutte.
- e) Calcolare l'intersezione (con molteplicità) $C_1 \cap C_2$.