GEOMETRIA 2 - Parte A

Corso di Laurea in Matematica

Appello 21/01/2021 - Mistretta / Longo

Esercizio 1. Considerare 5 punti distinti $P_1, P_2, P_3, P_4, P_5 \in \mathbb{P}^2_{\mathbb{C}}$ sul piano proiettivo complesso.

- a) Supponendo che comunque si scelgano 4 punti tra $P_1, \dots P_5$ questi non sono colineari, mostrare che esiste un'unica conica per $P_1, \dots P_5$.
- b) Nel caso sopra è possibile che la conica sia degenere? Se sì, quando?
- c) Nel caso in cui vi siano esattamente 4 punti tra P_1, \ldots, P_5 che giacciono su una stessa retta, quante coniche ci sono passanti per i 5 punti P_1, \ldots, P_5 ?
- d) Mostrare che in ogni caso la famiglia $\mathcal{F} = \{\mathcal{C} \text{ conica in } \mathbb{P}^2_{\mathbb{C}} \mid P_1, \dots, P_5 \in \operatorname{Supp}(\mathcal{C})\}$ è un sistema lineare, e calcolarne la dimensione in funzione della disposizione dei 5 punti.

Esercizio 2. Considerare i 3 punti $A = [0:0:1], B = [2:0:1], C = [1:1:1] \in \mathbb{P}^2_{\mathbb{C}}$ sul piano proiettivo complesso.

- a) Determinare se la famiglia $\mathcal{F} = \{\mathcal{C} \text{ conica in } \mathbb{P}^2_{\mathbb{C}} \mid A, B, C \in \text{Supp}(\mathcal{C}), \text{ e } \mathcal{C} \text{ tangente alla retta } Y Z = 0\}$ è un fascio di coniche.
- b) Determinare una conica degenere C_1 e una non degenere C_2 nella famiglia \mathcal{F} , calcolare la loro intersezione (con molteplicità), e "disegnarle" sul piano.
- c) Determinare se la famiglia $\mathcal{G} = \{\mathcal{C} \text{ conica in } \mathbb{P}^2_{\mathbb{C}} \mid A, B, C \in \text{Supp}(\mathcal{C}), \text{ e } \mathcal{C} \text{ tangente alla retta } Y + Z = 0\}$ è un fascio di coniche.
- d) Determinare una conica degenere \mathcal{D}_1 e una non degenere \mathcal{D}_2 nella famiglia \mathcal{G} e calcolare la loro intersezione (con molteplicità), e "disegnarle" sul piano. Descrivere la differenza tra la famiglia \mathcal{F} e \mathcal{G} . A cosa è dovuta?
- e) Considerare la retta proiettiva $H = \{[x:y:z] \in \mathbb{P}^2_{\mathbb{C}} \mid y-z=0\}$, e l'insieme $U = \mathbb{P}^2_{\mathbb{C}} \setminus H$. Descrivere le mappe $j: \mathbb{A}^2_{\mathbb{C}} \to U$ e $j^{-1}: U \to \mathbb{A}^2_{\mathbb{C}}$ determinate da un riferimento affine su U. Considerare la conica non degenere C_2 trovata al punto (b), scrivere un'equazione di $C_2 \cap U$ nel riferimento affine scelto, e determinare di che tipo di conica affine si tratta.

Esercizio 3. Considerare lo spazio vettoriale reale $V = \mathbb{R}[X]^{\leq 2}$ dei polinomi di grado al più 2. Sia

$$\beta \colon V \times V \to \mathbb{R} ,$$

$$(P(X), Q(X)) \mapsto \int_{-1}^{1} t P(t) Q(t) dt$$

- a) Determinare se β è una forma bilineare e se è simmetrica, scrivere la matrice di β in una base di V.
- b) Determinare la segnatura di β .
- c) Trovare uno spazio isotropo per β di dimensione massimale.