Foglio di Esercizi N.10

Geometria 2 - parte A

Esercizio 1. Sia $\mathbb{P}^2_{\mathbb{Q}}$ lo spazio proiettivo standard di dimensione 2 sul campo \mathbb{Q} , con riferimento proiettivo canonico $RP(\mathbb{E})$. Sono assegnate in $\mathbb{P}^2_{\mathbb{Q}}$ le coniche proiettive \mathcal{C}, \mathcal{D} aventi rispettivamente equazioni:

$$F = 4x_0^2 - x_1^2 = 0$$
, $G = x_0^2 - 4x_2^2 = 0$.

- i. Verificare che \mathcal{C} e \mathcal{D} sono proiettivamente equivalenti, determinando una proiettività f di $\mathbb{P}^2_{\mathbb{Q}}$ tale $f^{-1}\mathcal{C} = \mathcal{D}$.
- ii. Scrivere le equazioni di una proiettività di $\mathbb{P}^2_{\mathbb{Q}}$ che trasforma il supporto di \mathcal{C} nel supporto di \mathcal{D} .

Esercizio 2. Sia $\mathbb{P}^2_{\mathbb{R}}$ lo spazio proiettivo standard di dimensione 2 sul campo \mathbb{R} , con riferimento proiettivo canonico $RP(\mathbb{E})$. Verificare che le due coniche proiettive $\mathcal{C}_1, \mathcal{C}_2$ aventi rispettivamente equazioni:

$$F_1 = 2x_0^2 - x_1^2 = 0$$
, $F_2 = x_1^2 - 3x_2^2 = 0$

sono proiettivamente equivalenti. Determinare le equazioni di una proiettività f di $\mathbb{P}^2_{\mathbb{R}}$ tale che $f^{-1}\mathcal{C}_1=\mathcal{C}_2$.

Esercizio 3. Sia \mathbb{P}^2_k lo spazio proiettivo standard di dimensione 2 sul campo k, con riferimento proiettivo canonico $RP(\mathbb{E})$. È assegnata la conica proiettiva \mathcal{C} di equazione:

$$F = -x_0^2 + x_1^2 - 2x_2^2 = 0.$$

Rispetto ai campi $k = \mathbb{R}$ e $k = \mathbb{C}$:

- i. Determinare il tipo di $\mathcal C$ escrivere l'equazione della forma canonica ad essa proiettivamente equivalente.
- ii. Determinare un riferimento proiettivo $RP(\mathbb{F})$ di \mathbb{P}^2_k rispetto a cui \mathcal{C} si scrive in forma canonica.

Esercizio 4. Sia $\mathbb{P}^2_{\mathbb{R}}$ lo spazio proiettivo standard di dimensione 2 sul campo \mathbb{R} , con riferimento proiettivo canonico $RP(\mathbb{E})$. Sia \mathcal{C} la conica proiettiva in $\mathbb{P}^2_{\mathbb{R}}$ di equazione:

$$F = x_0^2 + 4x_0x_1 + 5x_1^2 + 2x_1x_2 + x_2^2 = 0.$$

i. Indicare il tipo di $\mathcal C$ e determinare un riferimento proiettivo nel quale $\mathcal C$ si scrive in forma canonica.

ii. Determinare le equazioni di una proiettività f che trasforma il supporto di \mathcal{C} nel supporto della forma canonica \mathcal{D} proiettivamente equivalente a \mathcal{C} .

Esercizio 5. Sia \mathbb{P}^2_k , $RP(\mathbb{E})$ lo spazio proiettivo standard di dimensione 2 sul campo k, con riferimento proiettivo canonico. Sia \mathcal{C} la conica proiettiva di equazione:

$$F = 4x_0x_1 = 0.$$

- i. Posto $k = \mathbb{C}$, determinare un riferimento proiettivo $RP(\mathbb{F})$ di $\mathbb{P}^2_{\mathbb{C}}$ nel quale \mathcal{C} ha l'equazione di una forma canonica.
- ii. Posto $k = \mathbb{R}$, classificare \mathcal{C} , determinando una proiettività f di $\mathbb{P}^2_{\mathbb{R}}$ che trasformi il supporto di \mathcal{C} nel supporto della forma canonica \mathcal{D} di \mathcal{C} .

Esercizio 6. Sia $\mathbb{P}^2_{\mathbb{R}}$, $RP(\mathbb{E})$ lo spazio proiettivo standard di dimensione 2 sul campo \mathbb{R} , con riferimento proiettivo canonico. Sia \mathcal{C} la conica proiettiva di equazione:

$$F = 2x_0x_1 - x_2^2 = 0.$$

- i. Verificare che \mathcal{C} è una conica generale a punti reali.
- ii. Determinare un riferimento proiettivo $RP(\mathbb{F})$ di $\mathbb{P}^2_{\mathbb{R}}$ rispetto a cui \mathcal{C} si scrive in forma canonica.
- iii. Determinare le equazioni di una projettività f di $\mathbb{P}^2_{\mathbb{R}}$ tale che $f^{-1}\mathcal{C}$ è una forma canonica di \mathcal{C} .

Esercizio 7. Sia $\mathbb{P}^2_{\mathbb{R}}$, $RP(\mathbb{E})$ lo spazio proiettivo standard di dimensione 2 sul campo \mathbb{R} , con riferimento proiettivo canonico. Sono assegnate le due coniche proiettive reali $\mathcal{C}_1, \mathcal{C}_2$ aventi equazioni:

$$F_1 = x_0^2 - 2x_2^2 = 0$$
, $F_2 = x_1^2 - 4x_2^2 = 0$.

Verificare che C_1, C_2 sono proiettivamente equivalenti e determinare una proiettività $f \in \mathbf{PGL}(\mathbf{P}_{\mathbf{R}}^2)$ tale che $f^{-1}C_1 = C_2$.

Esercizio 8. Sia $\mathbb{P}^2_{\mathbb{R}}$, $RP(\mathbb{E})$ lo spazio proiettivo standard di dimensione 2 sul campo \mathbb{R} , con riferimento proiettivo canonico. È assegnata in $P^2_{\mathbb{R}}$ la famiglia di coniche:

$$C_{\lambda}: \lambda x_0^2 - 2\lambda x_1 x_2 + x_1^2 = 0, \, \forall \, \lambda \in \mathbf{R}$$

- i. Verificare che C_x è una conica generale $\iff \lambda \neq 0$.
- ii. Determinare i valori $\lambda \in \mathbb{R}$ per i quali \mathcal{C}_{λ} è una conica generale a punti reali.

Esercizio 9. Sia $\mathbb{A}^2_{\mathbb{R}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico $RA(O,\mathbb{E})$. Sia \mathcal{C} la conica di $\mathbb{A}^2_{\mathbb{C}}$ di equazione:

$$x^2 - 2xy + i = 0.$$

- i. Determinarne il tipo e indicare l'equazione della forma canonica $\mathcal D$ ad essa affinemente equivalente.
- ii. Scrivere le equazioni di un'affinità f di A_c^2 tale che $f^{-1}\mathcal{C} = \mathcal{D}$.
- iii. Determinare un riferimento affine in cui $\mathcal C$ ha equazione canonica.

Esercizio 10. Sia $\mathbb{A}^2_{\mathbb{C}}$, $RA(O,\mathbb{E})$ lo spazio affine standard di dimensione 2 sul campo \mathbb{C} , con riferimento affine canonico. Sia \mathcal{C} la conica di $\mathbb{A}^2_{\mathbb{C}}$ avente equazione:

$$x^2 + 2ixy - y^2 + x - y = 0.$$

- i. Classificare $\mathcal C$ e scrivere l'equazione della forma canonica $\mathcal D$ ad essa affinemente equivalente.
- *ii.* Determinare le equazioni di un'affinità ℓ tale che $\ell^{-1}\mathcal{C} = \mathcal{D}$.
- iii. Determinare un riferimento affine nel quale $\mathcal C$ si scriva in forma canonica.

Esercizio 11. Sia \mathbb{A}^2_k , $RA(O,\mathbb{E})$ lo spazio affine standard di dimensione 2 sul campo k, con riferimento affine canonico. Si consideri la conica affine \mathcal{C} di equazione:

$$x^2 + y^2 - 2xy - 4x + 4y + 6 = 0$$

Rispetto ai campi $k = \mathbb{C}$ e $k = \mathbb{R}$:

- i. Classificare $\mathcal C$ e scrivere l'equazione della forma canonica $\mathcal D$ ad essa affinemente equivalente.
- ii. Ridurre C a forma canonica, determinando un riferimento affine rispet a cui C si scrive in forma canonica.

Esercizio 12. Sia \mathcal{C} una parabola affine reale. Verificare che, se \mathcal{C} è degenere, \mathcal{C} ha infiniti centri di simmetria, mentre se \mathcal{C} è generale non ha alcun centro di simmetria.

Esercizio 13. Sia $\mathbb{A}^2_{\mathbb{R}}$, $RA(O,\mathbb{E})$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico. Sia \mathcal{C} la conica affine di equazione:

$$x^2 - 2y + 3 = 0.$$

- i. Classificare $\mathcal C$ e scrivere l'equazione della forma canonica $\mathcal D$ ad essa affinemente equivalente.
- ii. Determinare un'affinità di A^2_R che trasforma il supporto di ${\mathcal C}$ nel supporto di ${\mathcal D}$

Esercizio 14. Sia $\mathbb{A}^2_{\mathbb{R}}$, $RA(O,\mathbb{E})$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico. Sia \mathcal{C} la conica affine di $\mathbb{A}^2_{\mathbb{R}}$ di equazione:

$$2xy - 2x + 1 = 0$$
.

- i. Determinarne il tipo e indicare la forma canonica \mathcal{D} ad essa affinemente equivalente.
- *ii.* Scrivere le equazioni di un'affinità ℓ tale che $\ell^{-1}\mathcal{C} = \mathcal{D}$.

Esercizio 15. Sia $\mathbb{A}^2_{\mathbb{R}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico $RA(O,\mathbb{E})$. Sia \mathcal{C} la conica di $\mathbb{A}^2_{\mathbb{R}}$ di equazione:

$$x^2 + 4y^2 - 4xy + 1 = 0.$$

- i. Determinarne il tipo.
- ii. Ridurre $\mathcal C$ alla sua forma canonica $\mathcal D$ e determinare un riferimento affine in cui $\mathcal C$ ha equazione canonica.
- iii. Calcolare i punti impropri di \mathcal{C} .

Esercizio 16. Sia $\mathbb{A}^2_{\mathbb{R}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico $RA(O,\mathbb{E})$. Sia \mathcal{C} la conica di $\mathbb{A}^2_{\mathbb{R}}$ di equazione:

$$x^2 + y^2 - 2xy + 2x - 2y = 0.$$

- i. Verificare che $\mathcal C$ è una parabola semplicemente degenere e determinare un riferimento affine in cui $\mathcal C$ ha equazione canonica.
- ii. Determinare le equazioni (in RA) delle due rette (eventualmente complesse) in cui $\mathcal C$ è spezzata.
- iii. Calcolare il punto improprio di \mathcal{C} .

Esercizio 17. Sia $\mathbb{A}^2_{\mathbb{R}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico $RA(O,\mathbb{E})$. È assegnata la conica affine reale \mathcal{C} di equazione:

$$F = x^2 - 4xy + 4y^2 + 2x - 4y + 4 = 0.$$

- i. Determinare il tipo di conica e indicarne la forma canonica ${\mathcal D}$ corrispondente.
- ii. Determinare le equazioni di un'affinità f tale che $f^{-1}\mathcal{C} = \mathcal{D}$.

Esercizio 18. Sia $\mathbb{A}^2_{\mathbb{R}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico $RA(O,\mathbb{E})$. Sia \mathcal{C} la conica di $\mathbb{A}^2_{\mathbb{R}}$ di equazione:

$$xy - 3x - 2y + 4 = 0$$
.

Verificare che $\mathcal C$ è un'iperbole generale e calcolarne i punti impropri, il centro e gli asintoti.

Esercizio 19. Sia $\mathbb{A}^2_{\mathbb{R}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico $RA(O,\mathbb{E})$. Sono assegnate in $\mathbb{A}^2_{\mathbb{R}}$ le due coniche:

$$C: x^2 - 1 = 0$$
 e $\mathcal{D}: x^2 - y^2 = 0$.

- i. Indicarne il tipo; determinarne i punti impropri (rispetto a j_0) e dire se \mathcal{C} e \mathcal{D} sono affinemente equivalenti.
- ii. Siano \overline{C} e \overline{D} le proiettificazioni di C e D. Scriverne le equazioni; verificare che \overline{C} e \overline{D} sono proiettivamente equivalenti; determinare le equazioni di una proiettività f di $\mathbb{P}^2_{\mathbb{R}}$, tale che $f^{-1}\overline{C} = \overline{D}$.

Esercizio 20. Sia $\mathbb{A}^2_{\mathbb{R}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico $RA(O,\mathbb{E})$. Determinare le equazioni di tutte le iperboli affini non degeneri, aventi centro $P_0 = (1,0)$ e punti impropri rispetto a j_0 : [0:1:2], [0:1:-1].

Esercizio 21. Sia $\mathbb{A}^2_{\mathbb{C}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{C} , con riferimento affine canonico $RA(O,\mathbb{E})$. Determinare le equazioni di tutte le coniche degeneri a centro, aventi centro $P_0 = (0,-1)$ e passanti per i due punti $P_1 = (1,2i)$ e $P_2 = (2,1)$.

Esercizio 22. Sia $\mathbb{A}^2_{\mathbb{R}}$ lo spazio affine standard di dimensione 2 sul campo \mathbb{R} , con riferimento affine canonico $RA(O,\mathbb{E})$. Sia \mathcal{C} una conica affine di $\mathbb{A}^2_{\mathbb{R}}$ verificante le seguenti condizioni:

- (a) \mathcal{C} è semplicemente degenere;
- (b) C passa per i punti $A = (1, -2) \in B = (3, 0)$;
- (c) La proiettificazione $\overline{\mathcal{C}}$ (rispetto a j_0) passa per i punti $Q_1 = [0, 2, 1]$ e $Q_2 = [0, 1, -1]$.
 - i. Dimostrare che esistono due sole coniche verificanti le condizioni assegnate ed indicarne il tipo.
 - ii. Scrivere le equazioni di tali coniche.
 - iii. Determinarne il centro [o il vertice, se si tratta di parabole].

[Suggerimento: Esaminare i punti impropri di \mathcal{C}].

Esercizio 23. Sia $\mathbb{P}^2_{\mathbb{R}}$ lo spazio proiettivo standard di dimensione 2 sul campo \mathbb{R} , con riferimento proiettivo canonico $RP(\mathbb{E})$. È assegnata la conica proiettiva \mathcal{C} di equazione:

$$F = x_0^2 + 2x_0x_2 - 2x_1x_2 = 0.$$

- i. Indicarne il tipo e determinare una proiettività f che trasformi \mathcal{C} nella sua forma canonica \mathcal{D} .
- ii. Sia C_a l'affinizzazione di C [rispetto a $j_0: [x_0, x_1, x_2] \to \left(\frac{x_1}{x_0}, \frac{x_2}{x_0}\right)$]. Indicare la forma canonica di C_a (come conica affine reale) e determinarne l'eventuale centro, gli eventuali punti impropri e gli eventuali asintoti. Tracciare un approssimativo grafico di C_a .

Esercizio 24. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia \mathcal{C} la conica euclidea di equazione:

$$x^2 + y^2 - 2xy - 4x + 4y + 6 = 0$$

[già studiata nel caso affine, cfr. Eserc. 11].

- i. Classificare $\mathcal C$ indicando una conica $\mathcal D$ in forma canonica ad essa congruente.
- ii. Scrivere le equazioni di un'isometria g di \mathbf{E}^2 tale che $g^{-1}\mathcal{C} = \mathcal{D}$.
- iii. Determinare un riferimento cartesiano in cui $\mathcal C$ si scrive in forma canonica.

Esercizio 25. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia \mathcal{C} la conica euclidea di equazione:

$$2xy - 2y + 3 = 0.$$

- i. Classificare \mathcal{C} , indicando la forma canonica \mathcal{D} ad essa congruente.
- ii. Determinare un riferimento cartesiano in cui \mathcal{C} si scrive in forma canonica.
- iii. Scrivere le equazioni di un'isometria che trasforma il supporto di \mathcal{C} nel supporto di \mathcal{D} .

Esercizio 26. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O,\mathbb{E})$. Sia \mathcal{C} la conica euclidea di equazione:

$$xy - x - y - 1 = 0.$$

- i. Classificare $\mathcal C$ e scrivere l'equazione della forma canonica $\mathcal D$ congruente a $\mathcal C$.
- ii. Determinare i punti impropri di \mathcal{C} .
- iii. Scrivere le equazioni di un'isometria che trasforma il supporto di \mathcal{D} nel supporto di \mathcal{C} .

Esercizio 27. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia \mathcal{C} la conica euclidea di equazione:

$$x^2 + 4y^2 - 4xy + 6x - 12y + 9 = 0.$$

- i. Verificare che \mathcal{C} è doppiamente degenere.
- ii. Determinare un riferimento cartesiano rispetto a cui $\mathcal C$ si scrive in forma canonica.
- iii. Determinare l'equazione della retta ${\bf r}$ coincidente con il supporto di ${\cal C}$.

Esercizio 28. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia \mathcal{C} la conica euclidea di equazione:

$$7x^2 - 3y^2 - 10\sqrt{3}xy + 12\sqrt{3}x - 12y - 12 = 0.$$

i. Determinarne il tipo.

ii. Determinare un insieme di isometrie di \mathbf{E}^2 (indicandone il tipo e scrivendone le equazioni) che trasformino \mathcal{C} nella forma canonica \mathcal{D} ad essa congruente.

Esercizio 29. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia \mathcal{C} la conica euclidea di equazione:

$$\frac{1}{4}x^2 + y^2 - \frac{1}{2}x + 2y + \frac{5}{4} = 0.$$

- i. Determinarne il tipo.
- ii. Ridurre C nella sua forma canonica D.
- iii. Scrivere le equazioni delle isometrie che intervengono in tale riduzione.
- iv. Scrivere l'equazione dell'isometria che trasforma il supporto di $\mathcal C$ nel supporto di $\mathcal D$.
- v. Determinare un riferimento cartesiano in cui $\mathcal C$ assume forma canonica.

Esercizio 30. Sia \mathcal{D} una conica euclidea a centro in forma canonica.

- i. Determinare gli assi di \mathcal{D} .
- ii. Verificare che, indicato con \mathbf{r} un asse di \mathcal{D} e con ρ la riflessione intorno ad \mathbf{r} , risulta $\rho^{-1}\mathcal{D} = \mathcal{D}$ [cioè \mathcal{D} è simmetrica rispetto ad ogni suo asse].

Esercizio 31. Sia \mathcal{D} uma parabola euclidea in forma canonica. Fissato in \mathbf{E}^2 m riferimento cartesiano RC(O, E), verificare che:

- i. L'autospazio $\mathbf{E}_0(\mathcal{D})$ coincide con $\langle \underline{e}_1 \rangle$.
- ii. L'asse x è l'unica retta parallela ad \underline{e}_1 rispetto a cui $\mathcal D$ è simmetrica.

Esercizio 32. Sia \mathbb{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia \mathcal{C} la conica euclidea di equazione:

$$x^{2} + y^{2} + 6xy + \frac{1}{\sqrt{2}}16x = 0.$$

- i. Verificare che \mathcal{C} è un'iperbole generale.
- ii. Ridurre \mathcal{C} nella sua forma canonica \mathcal{D} .
- iii. Determinare il centro, gli asintoti ed i punti impropri di \mathcal{C} .

Esercizio 33. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia C la conica euclidea di equazione:

$$\frac{1}{2}x^2 + \frac{1}{2}y^2 - xy - \frac{7}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y + 7 = 0.$$

- i. Verificare che \mathcal{C} è una parabola generale.
- ii. Ridurre C nella sua forma canonica D, descrivendo tutte le isometrie che intervengono in tale riduzione.
- iii. Senza ricorrere alla forma canonica \mathcal{D} , determinare l'asse ed il vertice di \mathcal{C} .

Esercizio 34. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia \mathcal{C} la conica euclidea di equazione:

$$xy + x + y + 1 = 0.$$

- i. Verificare che \mathcal{C} è un'iperbole.
- ii. Determinarne il centro e gli asintoti.
- iii. Determinare un riferimento cartesiano rispetto a cui $\mathcal C$ si scrive in forma canonica.

Esercizio 35. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. È assegnata la conica euclidea \mathcal{C} di equazione:

$$F = x^2 - 4xy + 4y^2 + 2x - 4y + 4 = 0.$$

[già considerata (come conica affine) nell'Eserc. 17]. Ridurre C in forma canonica e tracciare il grafico del supporto di C.

Esercizio 36. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O, \mathbb{E})$. Sia C la conica euclidea di equazione:

$$\frac{1}{4}x^2 + y^2 - x - 2y + 1 = 0.$$

- i. Riconoscere che \mathcal{C} è un'ellisse generale.
- ii. Determinarne (senza ridurre C a forma canonica) il centro, i due assi ed i quattro vertici [cioè le intersezioni tra C ed i suoi assi].

Esercizio 37. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O,\mathbb{E})$. È assegnata l'iperbole euclidea \mathcal{C} , avente equazione:

$$F(x,y) = 50xy + 1 = 0.$$

- i. Indicare centro e asintoti di $\mathcal C$ e tracciarne (approssimativamente) il grafico. Determinare un'isometria f che trasformi $\mathcal C$ nella sua forma canonica.
- ii. Sia ρ la riflessione di asse la retta ${\bf r}$ di equazione 2x-y+1=0. Scrivere le equazioni di ρ .
- iii. Scrivere la matrice dell'iperbole trasformata $\rho^{-1}\mathcal{C}$. Calcolarne centro e asintoti e tracciarne (approssimativamente) il grafico.

Esercizio 38. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O,\mathbb{E})$. Sono assegnate le due rette ortogonali:

$$\mathbf{r}_1 : x + 2y + 2 = 0, \quad \mathbf{r}_2 : 2x - y - 1 = 0$$

ed i rispettivi punti $Q_1 = (4, -3), Q_2 = (\frac{1}{2}, 0)$. Determinare l'equazione dell'ellisse \mathcal{C} avente assi \mathbf{r}_1 ed \mathbf{r}_2 e passante per i punti Q_1, Q_2 .

Esercizio 39. Sia \mathbf{E}^2 lo spazio euclideo standard di dimensione 2, con riferimento euclideo canonico $RE(O,\mathbb{E})$. Sia \mathcal{C} la parabola generale verificante le seguenti condizioni:

- (a) C ha vertice V = (1,1);
- (b) C ha per asse la retta $\mathbf{r}: x y = 0$;
- (c) C passa per il punto Q = (4,0).

Sia RC' un riferimento cartesiano equiverso ad RC, rispetto a cui C si scrive in forma canonica, cioè $(y')^2 = 2px'$.

- i. Scrivere le formule del cambiamento di coordinate da RC^\prime ad RC e viceversa.
- ii. Determinare il parametro p dell'equazione canonica di \mathcal{C} .
- iii. Scrivere l'equazione di \mathcal{C} nel riferimento RC.