Foglio di Esercizi N.9

Geometria 2 - parte A

Esercizio 1. Sia \mathbb{A}^n_k , $RA(O, \mathbb{E})$ lo spazio affine standard con riferimento affine canonico. Siano $c, d \in k$ tali che $cd \neq 1$ e cd $\neq 0$. Siano P_0, P_1 punti distinti di \mathbb{A}^n_k . Verificare che l'affinità

$$f = \omega_{P_0,c} \circ \omega_{P_1,d}$$

è un'omotetia di cefficiente di dilatazione cd ed indicarne il centro P_2 . In quali casi risulta $P_2 = P_1$? In quali $P_2 = P_0$?

Esercizio 2. Sia $\mathbb{P}^2_{\mathbb{R}}$, $RP(F_0, F_1, F_2, U)$ lo spazio proiettivo standard con riferimento proiettivo canonico. Sia $f: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}}$ la proiettività che trasforma i punti F_0, F_1, F_2, U rispettivamente nei punti U, F_0, F_1, F_2 .

- i. Determinare le equazioni di f nel riferimento proiettivo canonico.
- ii. Calcolare i punti fissi di f.

Esercizio 3. Sia $\mathbb{P}^2_{\mathbb{R}}, RP(\mathbb{E})$ lo spazio proiettivo standard con riferimento proiettivo canonico. Sia $f: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}}$ la proiettività associata all'automorfismo φ di \mathbb{R}^3 avente, in base \mathbb{E} , matrice

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

- i. Scrivere le equazioni di f e di f^{-1} in RP(E).
- ii. Siano $P_1 = [1, 0, 1], P_2 = [1, 1, 0] \in P$. Determinare un'equazione cartesiana della retta $\mathbf{r} = \mathcal{L}(P_1, P_2)$ e della sua immagine $f(\mathbf{r})$.
- iii. Sia s la retta di equazione $X_0 X_1 + X_2 = 0$. Calcolare un'equazione di f(s).

Esercizio 4. In $\mathbb{P}^2_{\mathbb{R}}$, con riferimento proiettivo canonico $RP(\mathbb{E})$, sono assegnati i punti:

$$P_0 = [1, 0, 0], \quad P_1 = [-1, 1, 0], \quad P_2 = [2, -1, 1], \quad P_3 = [0, 0, 1].$$

- i. Verificare che tali punti sono in posizione generale in P_R^2 .
- ii. Determinare l'unica proiettività f che trasforma ordinatamente P_0, P_1, P_2, P_3 nei punti [1,0,0], [0,1,0], [0,0,1] e [1,1,1].

iii. Calcolare i punti fissi di f.

Esercizio 5. In $\mathbb{P}^3_{\mathbb{R}}$, con riferimento proiettivo canonico $RP(\mathbb{E})$, è assegnata la proiettività f di equazioni:

$$\begin{cases} x'_0 = \alpha(-x_0 - 6x_3) \\ x'_1 = \alpha(-2x_0 + x_1 + x_2 - 6x_3) \\ x'_2 = \alpha(-2x_0 + x_2 - 6x_3) \\ x'_3 = \alpha(2x_3) \end{cases}$$
 (con $\alpha \in \mathbb{R}^*$)

- i. Verificare che f ha tre punti fissi e determinarne le coordinate.
- ii. Verificare che f fissa il piano \mathbf{H} di equazione $x_3 = 0$. Se F è l'affinità di $\mathbb{A}^3_{\mathbb{R}}$ corrispondente ad f rispetto all'omogeneizzazione j_3 , determinare le equazioni di F rispetto al riferimento standard di $\mathbb{A}^3_{\mathbb{R}}$
- iii. Sia f' la proiettività f ristretta ad \mathbf{H} . Scrivere le equazioni di f' rispetto al riferimento proiettivo $RP'(P_0, P_1, P_2, U')$ di \mathbf{H} tale che:

$$P_0 = [1, 0, 0, 0], P_1 = [0, 1, 0, 0], P_2 = [0, 0, 1, 0] \in U' = [2, 1, -1, 0].$$

Esercizio 6. Sia $\mathbb{P}^2_{\mathbb{R}}$, $RP(\mathbb{E})$ lo spazio proiettivo standard con riferimento proiettivo canonico. . Sono assegnate le tre rette:

$$\mathbf{r}_1: x_0 - x_1 = 0, \ \mathbf{r}_2: x_1 + x_2 = 0, \ \mathbf{r}_3: x_0 + 2x_2 = 0.$$

- i. Verificare che le tre rette non formano fascio.
- ii. Determinare le equazioni della proiettività T di $P_{\mathbb{R}}^2$ definita dalle seguenti condizioni:

$$T(\mathbf{r}_1) = \mathbf{r}_2, T(\mathbf{r}_2) = \mathbf{r}_3, T(\mathbf{r}_3) = \mathbf{r}_1 \in T(P) = P, \text{ con } P = [1, 0, 1].$$

[Suggerimento. Si determinino le immagini tramite T dei tre punti $\mathbf{r}_i \cap \mathbf{r}_j$ [per ogni $i \neq j$].]

Esercizio 7. Sia $\mathbb{A}^2_{\mathbb{R}}$, $RA(O,\mathbb{E})$ lo spazio affine standard con riferimento affine canonico. Sia ω l'omotetia di centro $P_0 = (1,2)$ e valore $\lambda = 3$.

- i. Scrivere le equazioni di ω .
- ii. Rispetto all'omogeneizzazione j_0 , l'omotetia ω si estende ad una proiettività f di $\mathbb{P}^2_{\mathbb{R}}$. Scriverne l'equazione.

Esercizio 8. Sia $\mathbb{A}^2_{\mathbb{R}}$, $RA(O,\mathbb{E})$ lo spazio affine standard con riferimento affine canonico. Sia $f = \omega \circ t$ l'affinità di $\mathbb{A}^2_{\mathbb{R}}$ ottenuta componendo la traslazione t di vettore $\underline{v} = (1,2)$ con l'omotetia ω di centro $P_0 = (-1,2)$ e dilatazione $\lambda = -2$. Determinare le equazioni di f, e della sua proiettificazione \bar{f} rispetto all'omogeneizzazione j_1 .

Esercizio 9. In $\mathbb{P}^2_{\mathbb{R}}$, con riferimento proiettivo standard $RP(\mathbb{E})$, è assegnata la proiettività F di equazioni:

$$\begin{cases} x'_0 = \alpha (x_0 - 2x_2) \\ x'_1 = 2\alpha x_1 \\ x'_2 = \alpha (-x_1 + 2x_2) \end{cases} (\operatorname{con} \alpha \in \mathbb{R}^*).$$

- i. Verificare che F fissa la retta \mathbf{H}_1 (di equazione x_1 = 0).
- ii. Determinare l'affinità F_a di $A^2_{\mathbb{R}}$, rispetto al riferimento affine standard, la cui proiettificazione $\overline{F_a}$, rispetto a j_1 , coincida con F.