Foglio di Esercizi N.8

Geometria 2 - parte A

Esercizio 1. Siano P_1 e P_2 due punti distinti di \mathbb{P}^2_k . Considerare $F_1, F_2 \subset (\mathbb{P}^2)^{\vee}$ i fasci di rette di centro rispettivamente P_1 e P_2 . Sia $f: F_1 \to F_2$ una funzione. Mostrare che le seguenti affermazioni sono equivalenti:

- i. L'applicazione f è un isomorfismo proiettivo tale che $f(L(P_1, P_2)) = L(P_1, P_2)$.
- ii. Esiste una retta r non passante per P_1 né per P_2 tale che $f(s) = L(s \cap r, P_2)$ per ogni $s \in F_1$.

Esercizio 2. Considerare su $\mathbb{P}^2_{\mathbb{R}}$ le rette l_1, l_2, l_3 di equazioni rispettivamente $X_2 = 0, X_2 - X_1 = 0$, e $X_2 - 2X_1 = 0$ e la retta l_4 di equazione $\alpha(X_0 - X_1) + X_2 - 4X_1 = 0$, con $\alpha \in \mathbb{R}$. Considerare inoltre le rette m_1, m_2, m_3, m_4 di equazioni rispettivamente $X_1 = 0, X_1 - X_0 = 0, X_0 = 0, X_1 - \gamma X_0 = 0$ con $\gamma \in \mathbb{R}$.

- i. Trovare per quali valori di α e γ esiste una proiettività f di $\mathbb{P}^2_{\mathbb{R}}$ tale che $f(l_i) = m_i$ per $i = 1, \ldots, 4$, e che trasformi la retta $X_0 = 0$ nella retta $x_2 = 0$.
- ii. Dopo aver fissato α e γ in uno dei modi così trovati, descrivere esplicitamente una proiettività f con le proprietà richieste.

Esercizio 3. Siano $r, r' \in \mathbb{P}^3_k$ rette sghembe e sia $P \in \mathbb{P}^3_k \setminus (r \cup r')$.

- i. Si dimostri che esiste un'unica retta $\ell \subset \mathbb{P}^3_k$ che contiene P e che interseca sia r sia r'.
- ii. Si determinino equazioni cartesiane per ℓ nel caso in cui $k = \mathbb{R}$, r abbia equazioni $X_0 X_2 + 2X_3 = 2X_0 + x_1 = 0$, r' abbia equazioni $2X_1 3X_2 + X_3 = X_0 + X_3 = 0$ e sia P = [0:1:0:1].

Esercizio 4. Siano A, A', B, B' quattro punti distinti di \mathbb{P}^2_k non tutti allineati. Si dimostri che A, A', B, B' sono in posizione generale se e solo se esiste una proiettività $f: \mathbb{P}^2_k \to \mathbb{P}^2_k$ tale che $f(A) = B, f(A') = B', f^2 = Id$.

Esercizio 5. Sia $f \colon \mathbb{P}^1_{\mathbb{R}} \to \mathbb{P}^1_{\mathbb{R}}$ la proiettività definita da:

$$f([x_0:x_1]) = [-x_1:2x_0+3x_1]$$
.

- i. Si determinino i punti fissi di f.
- ii. Se $P = [2:5] \in \mathbb{P}^1_{\mathbb{R}}$, sicalcoli il birapporto $\beta(A, B, P, f(P))$, dove $A \in B$ sono i punti fissi di f.

Esercizio 6. Sia f una proiettività di \mathbb{P}^1_k .

- i. Se M è una matrice associata a f, si verifichi che f è una involuzione (ossia $f^2 = Id$) diversa dall'identità se e solo se Tr(M) = 0.
- ii. Si mostri che f è una involuzione diversa dall'identità se e solo se esistono due punti distinti Q_1, Q_2 che si scambiano, ossia tali che $f(Q_1) = Q_2$ e $f(Q_2) = Q_1$.
- iii. Supponiamo che f sia una involuzione diversa dall'identità. Si mostri che f ha esattamente 0 o 2 punti fissi, e che se $k=\mathbb{C}$ ha esattamente 2 punti fissi.
- iv. Supponiamo che f ammetta due punti fissi A, B. Si mostri che f è un'involuzione diversa dall'identità se e solo se, scelto comunque $P \in \mathbb{P}^1_k \setminus \{A, B\}$, si ha $\beta(A, B, P, f(P)) = -1$.
- v. Si mostri che f è composizione di due involuzioni.

Esercizio 7. Sia $f: \mathbb{P}^1_k \to \mathbb{P}^1_k$ una proiettività, e siano $A, B, C \in P^1_k$ tre punti distinti, tali che f(A) = A, f(B) = C. Si mostri che A è l'unico punto fisso di f se e solo se $\beta(A, C, B, f(C)) = -1$.

Esercizio 8. Siano A_1, A_2, A_3, A_4 punti di \mathbb{P}^2_k in posizione generale, e siano

$$P_1 \coloneqq L(A_1,A_2) \cap L(A_3,A_4) \ , \quad P_2 \coloneqq L(A_2,A_3) \cap L(A_1,A_4) \ ,$$

$$r := L(P_1, P_2)$$
, $P_3 := L(A_2, A_4) \cap r$, $P_4 := L(A_1, A_3) \cap r$.

Si calcoli $\beta(P_1, P_2, P_3, P_4)$.

Esercizio 9. Si considerino in $P_{\mathbb{R}}^3$ il piano T_1 di equazione $X_3 = 0$, il piano T_2 di equazione $X_0 + 2X_1 - 3X_2 = 0$ e ilpunto Q = [0:1:-1:1].

Sia $f:T_1 \to T_2$ la prospettività di centro Q (cioè la proiezione dal punto $Q \in \mathbb{P}^2$ a T_2 , ristretta a T_1).

Si determinino equazioni cartesiane dell'immagine per f della retta r, intersezione di T_1 con il piano di equazione $X_0+X_1=0$.

Esercizio 10. Si ricorda che un'involuzione è una proiettività $f: \mathbb{P}^n_k \to \mathbb{P}^n_k$ tale che $f \circ f = id_{\mathbb{P}^n_k}$.

- i. Siano A, A', C, C' punti di \mathbb{P}^1_k tali che $A \notin \{C, C'\}$ e $A' \notin \{C, C'\}$. Si mostri che esiste un'unica involuzione $f: \mathbb{P}^1_k \to \mathbb{P}^1_k$ diversa dall'identità tale che f(A) = A', f(C) = C'.
- ii. Siano A, A', B, B', C, C' punti di \mathbb{P}^1_k tali che le quaterne A, B, C, C' e A', B'C', C siano formate da punti distinti tra loro. Si mostri che esiste un'unica involuzione $f: \mathbb{P}^1_k \to \mathbb{P}^1_k$ tale che f(A) = A', f(B) = B', f(C) = C' se e solo se $\beta(A, B, C, C') = \beta(A', B', C', C)$.

Esercizio 11. Si considerino in $\mathbb{P}^2_{\mathbb{R}}$ il punto P = [1:2:1] e le rette di equazioni:

$$\ell_1: X_0 + X_1 = 0$$
, $\ell_2: X_0 - X_1 = 0$, $l_3: X_0 + 2X_1 = 0$,

$$m_1: X_0 + 3X_2 = 0$$
, $m_2: X_2 = 0$, $m_3: 3X_0 + X_2 = 0$.

Si determinino i punti $Q \in \mathbb{P}^2_{\mathbb{R}}$ per cui esista una proiettività $f: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}}$ tale che f(P) = Q e $f(\ell_i) = m_i$ per i = 1, 2, 3.

Esercizio 12. Siano P = [1:1:1] e $\ell: X_0 + X_1 - 2X_2 = 0$ un punto ed una retta di $\mathbb{P}^2_{\mathbb{R}}$. Si costruisca esplicitamente una proiettività $f: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}}$ tale che $f(\ell) = \ell$ e che abbia P come unico punto fisso.

Esercizio 13. Si considerino in $\mathbb{P}^2_{\mathbb{R}}$ i punti:

$$P_1 = \begin{bmatrix} 1:0:0 \end{bmatrix} \;, \quad P_2 = \begin{bmatrix} 0:1:0 \end{bmatrix} \;, \quad P_3 = \begin{bmatrix} 0:0:1 \end{bmatrix} \;, \quad P_4 = \begin{bmatrix} 1:1:1 \end{bmatrix} \;,$$

$$Q_1 = [1:-1:-1], \quad Q_2 = [1:3:1], \quad Q_3 = [1:1:-1], \quad Q_4 = [1:1:1].$$

- i. Si costruisca una proiettività f di $\mathbb{P}^2_{\mathbb{R}}$ tale che $f(P_i) = Q_i$ per i = 1, 2, 3, 4 e si dica se è unica.
- ii. Si determinino tutte le rette di $\mathbb{P}^2_{\mathbb{R}}$ invarianti per f.

Esercizio 14. Si considerino in $\mathbb{P}^2_{\mathbb{R}}$ i punti:

$$P_1 = [1:0:0], P_2 = [0:-1:1], P_3 = [0:0:-1], P_4 = [1:-1:2],$$

$$Q_1 = [3:1:-1], \quad Q_2 = [-1:-3:3], \quad Q_3 = [-1:1:3], \quad Q_4 = [1:-1:5].$$

- i. Si costruisca, se esiste, una proiettività f di $\mathbb{P}^2_{\mathbb{R}}$ tale che $f(P_i) = Q_i$ per i = 1, 2, 3, 4 e si dica se è unica.
- ii. Si verifichi che f ha un punto fisso P e una retta r di punti fissi tali che $P \notin r$.
- iii. Sia s una retta passante per P e sia $Q = s \cap r$. Si provi che il birapporto $\beta(P,Q,R,f(R))$ è costante al variare di $R \in s \setminus \{P,Q\}$ e di s nel fascio di rette di centro P.

Esercizio 15. Siano r, s rette distinte di $\mathbb{P}^2_{\mathbb{R}}$ e sia $R = r \cap s$. Siano A, B, C punti distinti di $r \setminus R$, e sia $g: r \to r$ l'unica proiettività tale che g(A) = A, g(R) = R e g(B) = C. Per ogni $P \in \mathbb{P}^2_{\mathbb{R}} \setminus r$, sia $t(P) = L(B, P) \cap s$, e sia $h(P) = L(C, t(P)) \cap L(A, P)$.

- i. Si provi che esiste un'unica proiettività $f:\mathbb{P}^2_{\mathbb{R}}\to\mathbb{P}^2_{\mathbb{R}}$ tale che $f_{\mathbb{P}^2_{\mathbb{R}}^{\times r}}=h$ e $f_{|r}=g$.
- ii. Si determinino i punti fissi di f.
- iii. Si provi che f è un'involuzione se e solo $\beta(A, R, B, C) = -1$.

Esercizio 16. Sia $f: \mathbb{P}^2_{\mathbb{Q}} \to \mathbb{P}^2_{\mathbb{Q}}$ una proiettività tale che $f^4 = Id$, e $f^2 \neq Id$. Si determini il numero di punti fissi di f.

Esercizio 17. Siano P_1,P_2,P_3 tre punti di \mathbb{P}^2_k in posizione generale, e sia r una retta tale che $P_i \notin r$ per i=1,2,3.

- i. Si dimostri che esiste un'unica proiettività f di \mathbb{P}^2_k tale che $f(P_1)=P_1,f(P_2)=P_3,f(P_3)=P_2,f(r)=r.$
- ii. Si dimostri che il luogo dei punti fissi di f è costituito da un punto $M\in r$ e da una retta $s\subseteq \mathbb{P}^2_k$ tali che $M\notin s.$