Foglio di Esercizi N.7

Geometria 2 - parte A

Esercizio 1. Considerare la retta proiettiva complessa $\mathbb{P}^1_{\mathbb{C}}$ e identificarla, tramite $j_0: \mathbb{C} \to \mathbb{P}^1_{\mathbb{C}}$, $z \mapsto [1:z]$, all'insieme $\mathbb{C} \cup \{\infty\}$, indentificando quindi ∞ con [0:1]. Sia \mathcal{C} un cerchio di Möbius di equazione $E(X^2 + Y^2) + AX + BY + C = 0$, con $A, B, C, E \in \mathbb{R}$ e $A^2 + B^2 - 4EC > 0$.

Quindi \mathcal{C} è il sottoinsieme di $\mathbb{C} \cup \{\infty\}$ descritto da $\{z = x + iy \in \mathbb{C} \mid x, y \in \mathbb{R} \in E(x^2 + y^2) + Ax + By + C = 0\}$ se $E \neq 0$, e $\{z = x + iy \in \mathbb{C} \mid x, y \in \mathbb{R} \in Ax + By + C = 0\} \cup \{\infty\}$ se E = 0.

- i. Dato un cerchio di Möbius $\mathcal C$ di equazione $E(X^2+Y^2)+AX+BY+C=0$, con $A,B,C,E\in\mathbb R$ e $A^2+B^2-4EC>0$ e $E\neq 0$, determinare il centro e il raggio di $\mathcal C$.
- ii. Scrivere l'equazione di \mathcal{C} in $z, \bar{z} \in \mathbb{C}$, e scrivere l'equazione di $f^{-1}(\mathcal{C})$ in $z, \bar{z} \in \mathbb{C}$, dove f(z) = 1/z è la trasformazione di Möbius inversione.
- iii. Trovare tutti i cerchi di Möbius stabili per l'inversione: tali che $f^{-1}(\mathcal{C}) = \mathcal{C}$.
- iv. Scrivere un'equazione in z_0, z_1 , con $z_0, z_1 \in \mathbb{C}$, soddisfatta da tutti i punti $[z_0:z_1]$ del cerchio di Möbius \mathcal{C} , incluso (eventualmente) $\infty := [0:1]$, visto come sottoinsieme di $\mathbb{P}^1_{\mathbb{C}}$.
- v. Trovare una forma hermitiana $h: \mathbb{C}^2 \to \mathbb{C}$, tale che $h((z_0, z_1), (z_0, z_1)) = 0$ se e solo se $[z_0: z_1] \in \mathcal{C}$.
- vi. Mostrare che la forma hermitiana definita sopra è non degenere. È definita positiva? È Definita negativa?

Esercizio 2. Sia $\mathbb{H} = \{z \in \mathbb{C} \mid \Im(z) > 0\} \subset \mathbb{C}$, dove $\Im(z) = (z - \overline{z})/2i$ è la parte immaginaria di z.

- i. Sia $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})$ una matrice invertibile a coefficienti reali, $z \in \mathbb{C} \setminus \{-d/c\}$, mostrare che $\Im(\frac{az+b}{cz+d}) = \frac{ad-bc}{|cz+d|^2}\Im(z)$.
- ii. Sia $PGL_2^+(\mathbb{R})$ il sottogruppo di $PGL_2(\mathbb{R})$ formato dalle classi di matrici con determinante positivo. Mostrare che le trasformazioni di Möbius

$$f: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\} , \ z \mapsto \frac{az+b}{cz+d} , \text{ con } A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PGL_2^+(\mathbb{R}) ,$$

verificano $f(\mathbb{H}) = \mathbb{H}$.

- iii. Considerare la famiglia \mathfrak{C} di cerchi di Möbius di equazione $E(X^2 + Y^2) + BX + C = 0$, con $E, B, C \in \mathbb{R}$ e $B^2 4EC > 0$. Mostrare che le trasformazioni di Möbius in $PGL_2^+(\mathbb{R})$ definite sopra trasformano cerchi di Möbius della famiglia \mathfrak{C} in cerchi di Möbius della famiglia \mathfrak{C} .
- *iv.* Mostrare che ogni cerchio di Möbius \mathcal{C} della famiglia \mathfrak{C} verifica $\mathcal{C} \cap \mathbb{H} \neq \emptyset$.
- v. Mostrare che per 2 punti distinti di $\mathbb H$ passa un unico cerchio di Möbius della famiglia $\mathfrak C$.
- vi. Definire l'angolo di incidenza in un punto $z \in \mathbb{H}$ tra due cerchi di Möbius della famiglia \mathfrak{C} passanti per z. Verificare che per i "triangoli" tra 3 punti di \mathbb{H} ottenuti tramite cerchi di Möbius della famiglia \mathfrak{C} , la somma degli angoli i interni al triangolo è minore di π .
- vii. Verificare che dato un cerchio di Möbius \mathcal{C} della famiglia \mathfrak{C} e un punto $z_0 \in \mathbb{H}$ con $z \notin \mathcal{C}$, esistono infiniti cerchi di Möbius della famiglia \mathfrak{C} che passano per z_0 e che non intersecano $\mathcal{C} \cap \mathbb{H}$.
- viii. Verificare che dati due cerchi di Möbius \mathcal{C}, \mathcal{D} della famiglia \mathfrak{C} incidenti in un punto $z_0 \in \mathbb{H}$, e data una trasformazione di Möbius $f: z \mapsto \frac{az+b}{cz+d}$ con $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PGL_2^+(\mathbb{R})$, l'angolo in $f^{-1}(z_0)$ tra i due cerchi di Möbius $f^{-1}(\mathcal{C})$ e $f^{-1}(\mathcal{D})$ è uguale all 'angolo in z_0 tra i due cerchi di Möbius \mathcal{C} e \mathcal{D} .