Foglio di Esercizi N.5

Geometria 2 - parte A

Esercizio 1. Nel piano proiettivo reale $\mathbb{P}^2_{\mathbb{R}}$ con riferimento proiettivo standard, considerare i punti fondamentali $F_0 = [1:0:0], F_1 = [0:1:0], F_2 = [0:0:1],$ e il punto unità U = [1:1:1].

- i. Mostrare che esiste un'unica proiettività $f: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}}$ tale che $f(P_0) = U$, $f(P_1) = P_0$, $f(P_2) = P_1$, $f(U) = P_2$.
- ii. Si esprima f in coordinate nel riferimento proiettivo standard.
- iii. Trovare tutti i punti fissi di f,cioè i punti $P\in\mathbb{P}^2_{\mathbb{R}}$ tali che f(P) = P.
- iv. Considerare l'analoga proiettività sul piano proiettivo complesso $\mathbb{P}^2_{\mathbb{C}}$, e trovarne i punti fissi.

Esercizio 2. Nel piano proiettivo reale $\mathbb{P}^2_{\mathbb{R}}$ considerare il riferimento proiettivo standard, associato alla base canonica \mathbb{E} di \mathbb{R}^3 , e la proiettività $f:\mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}}$ associata all'endomorfismo di \mathbb{R}^3 avente matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} .$$

- i. Scrivere $f \in f^{-1}$ in coordinate (nel riferimento proiettivo standard).
- ii. Siano $P_1 = [1:0:1]$ e $P_2 = [1:1:0]$. Scrivere un'equazione della retta $\mathbf{r} = L(P_1, P_2)$ e delle sue immagini $f(\mathbf{r})$ e $f^{-1}(\mathbf{r})$.
- iii. Sia s la retta in $\mathbb{P}^2_{\mathbb{R}}$ di equazione $X_0+X_1+X_2=0$, scrivere un'equazione cartesiana della retta $f^{-1}(\mathbf{s})$.

Esercizio 3. Nel piano proiettivo complesso $\mathbb{P}^2_{\mathbb{C}}$ considerare i 3 punti con coordinate nel riferimento proiettivo standard: $P_0 = [1:0:0], P_1 = [-1:1:0], P_2 = [2:-1:1], e <math>P_3 = [0:0:1].$

- i. Mostrare che i 4 punti sopra sono in posizione generale.
- *ii.* Mostrare che esiste un'unica proiettività $f: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}}$ che trasforma ordinatamente i punti $P_0 = [1:0:0], \ P_1 = [-1:1:0], \ P_2 = [2:-1:1],$ e $P_3 = [0:0:1]$ nei punti $F_0 = [1:0:0], \ F_1 = [0:1:0], \ F_2 = [0:0:1],$ e U = [1:1:1].

- iii. Scrivere la proiettività f in coordinate.
- iv. Sia s la retta in $\mathbb{P}^2_{\mathbb{R}}$ di equazione $X_0 + X_1 + X_2 = 0$, scrivere un'equazione cartesiana della retta $f^{-1}(\mathbf{s})$.
- v. Trovare tutti i punti fissi di f.
- vi. Mostrare che esiste una retta $\mathbf{r} \subset \mathbb{P}^2_{\mathbb{R}}$ tale che $f(\mathbf{r}) = \mathbf{r}$, e scriverne un'equazione cartesiana.

Esercizio 4. Nello spazio proiettivo reale $\mathbb{P}^3_{\mathbb{R}}$ con riferimento proiettivo standard, considerare la seguente applicazione:

$$f([X_0:X_1:X_2:X_3]) = ([-X_0-6X_3:-2X_0+X_1+X_2-6X_3:-2X_0+X_2-6X_3:2X_3])$$

- i. Mostrare che l'applicazione f è ben definita, che è una proiettività, e scriverne una matrice associata.
- ii. Trovare tutti i punti fissi della proiettività f
- iii. Trovare tutti i punti fissi di f.
- iv. Mostrare che l'iperpiano $H \subset \mathbb{P}^3_{\mathbb{R}}$ di equazione $X_3 = 0$ verifica f(H) = H. È l'unico iperpiano con questa proprietà?
- v. Mostrare che f ristretta a $\mathbb{P}^3_{\mathbb{R}} \setminus H$ è un'affinità e scriverne le equazioni (cioè l'espressione dell'applicazione in coordinate) in un riferimento affine opportuno.
- vi. Considerare il riferimento proiettivo $RP(P_0, P_1, P_2, F)$ dello spazio proiettivo H, dove $P_0 = [1:0:0:0]$, $P_1 = [0:1:0:0]$, $P_2 = [0:0:1:0]$, F = [2:1:-1:0]. Determinare una base dello spazio vettoriale di equazione $X_3 = 0$ in \mathbb{R}^4 che induca il sistema di riferimento proiettivo $RP(P_0, P_1, P_2, F)$ su H.
- vii. Scrivere le equazioni (cioè l'espressione dell'applicazione in coordinate) di $f' = f_{|H}$ nelle coordinate del riferimento proiettivo descritto sopra.

Esercizio 5. Nel piano proiettivo \mathbb{P}^2_k considerare le 3 rette con equazioni (nel riferimento proiettivo standard):

$$\mathbf{r}_1: X_0 - X_1 = 0$$
 ; $\mathbf{r}_2: X_1 + X_2 = 0$; $\mathbf{r}_3: X_0 + 2X_2 = 0$.

- i. Mostrare che le 3 rette non sono concorrenti.
- ii. Mostrare che esiste un'unica proiettività $T: \mathbb{P}^2_k \to \mathbb{P}^2_k$ che verifica le seguenti condizioni:

$$T(\mathbf{r}_1) = \mathbf{r}_2$$
; $T(\mathbf{r}_2) = \mathbf{r}_3$; $T(\mathbf{r}_3) = \mathbf{r}_1$; $T(P) = P$ con $P = [1, 0, 1]$.

- iii. Scrivere le equazioni della proiettività T.
- iv. Ragionare sulla caretteristica di k (quali casi escludere per i punti sopra?)