Foglio di Esercizi N.4

Geometria 2 - parte A

Esercizio 1. Si considerino in $\mathbb{P}^3_{\mathbb{R}}$ i punti $P_1 = [1:0:1:2], P_2 = [0:1:1:1], <math>P_3 = [2:1:2:2], P_4 = [1:1:2:3].$

- i. Si dica se P_1 , P_2 , P_3 , P_4 sono in posizione generale.
- ii. Si calcoli la dimensione del sottospazio generato da P_1 , P_2 , P_3 , P_4 e se ne determinino equazioni cartesiane.
- iii. Si completi, se possibile, l'insieme $\{P_1, P_2, P_3\}$, ad un riferimento proiettivo di $\mathbb{P}^3_{\mathbb{R}}$.

Esercizio 2. Nel piano proiettivo \mathbb{P}^2_k : per i=0,1,2, considerare l'applicazione $j_i:k^2\to U_i\subseteq\mathbb{P}^2_k$ che definisce un riferimento affine sull'a[erto fondamentale U_i (ricordare che, per esempio per i=0, si ha $j_0(x,y)=[1:x:y]$).

- i. Si determinino due rette proiettive distinte $r, s \in \mathbb{P}^2_k$ tali che $(j_1)^{-1}(r \cap U_1)$ e $(j_1)^{-1}(s \cap U_1)$ siano rette (affini) parallele in k^2 , e che lo stesso valga per $(j_2)^{-1}(r \cap U_2)$ e $(j_2)^{-1}(s \cap U_2)$.
- ii. Esistono rette proiettive distinte $r, s \in \mathbb{P}^2_k$ tali che per ogni i = 0, 1, 2 le rette affini $(j_i)^{-1}(r \cap U_i)$ e $(j_i)^{-1}(s \cap U_i)$ siano parallele in k^2 ?

Esercizio 3. Sia $\ell \subset \mathbb{P}^2_k$ la retta diequazionex $X_0 + X_1 = 0$, si ponga $U := \mathbb{P}^2_k \setminus \ell$ e siano $\alpha, \beta : U \to \mathbb{A}^2_k$ definite da

$$\alpha\big(\big[x_0:x_1:x_2\big]\big)=\big(\frac{x_1}{x_0+x_1},\frac{x_2}{x_0+x_1}\big) \ , \ \beta\big(\big[x_0:x_1:x_2\big]\big)=\big(\frac{x_0}{x_0+x_1},\frac{x_2}{x_0+x_1}\big)$$

- i. Si calcoli $\alpha \circ \beta^{-1}$, e si verifichi che tale mappa è un'affinità.
- ii. Si trovino 2 sistemi di riferimento affini per il piano affine U, tali che la mappa $\alpha \circ \beta^{-1}$ isa il cambiamento di riferimento affine da uno all'altro.
- *iii.* Si descriva un riferimento proiettivo per \mathbb{P}^2_k tale che la mappa α sia la mappa j_0 , e uno tale che la mappa β sia j_1 .

Esercizio 4. Sia $\mathcal{RP}(P_0, \dots, P_{n+1})$ un sistema di riferimento dello spazio proiettivo $\mathbb{P}(V)$ e sia $0 \le K \le n$. Siano $S = L(P_0, P_1, \dots, P_K)$, $S' = L(P_{K+1}, \dots, P_{n+1})$.

- i. Si dimostri che esiste $Q \in \mathbb{P}(V)$ tale che $S \cap S' = \{Q\}$.
- ii. Si dimostri che $\{P_0, \ldots, P_K, Q\}$ è un sistema di riferimento proiettivo di S, e che $\{P_{k+1}, \ldots, P_{n+1}, Q\}$ è un sistema di riferimento proiettivo di S'.
- iii. Provare a dimostrare le affermazioni sopra "con" e "senza" coordinate.

Esercizio 5. Nel piano proiettivo \mathbb{P}^2_k :

i. Dimostrare la seguente affermazione: se $A,B,C,D\in\mathbb{P}^2_k$ sono 4 punti in posizione generale e

$$P=L(A,B)\cap L(C,D)\ ,\ Q=L(A,C)\cap L(B,D)\ ,\ R=L(A,D)\cap L(B,C)\ ,$$
 allora P,Q,R non sono allineati.

ii. Enunciare la proposizione duale.

Esercizio 6. Siano $r, s \in \mathbb{P}^3_k$ due rette tali che $r \cap s = \emptyset$. Sia $P \in \mathbb{P}^3_k$ un punto tale che $P \notin r$ e $P \notin s$.

- i. Mostrare che per ogni iperpiano $H \subset \mathbb{P}^3_k$ tale che $r \notin H$ e $s \notin H$, le rette affini $r \cap (\mathbb{P}^2 \setminus H)$ e $s \cap (\mathbb{P}^2 \setminus H)$ sono rette sghembe nello spazio affine $\mathbb{P}^2 \setminus H$
- ii. Mostrare che esiste un'unica retta (proiettiva) $\ell \subset \mathbb{P}_k^3$ tale che $\ell \cap r \neq \emptyset$, $\ell \cap s \neq \emptyset$ e $P \in \ell$.
- iii. Se $k=\mathbb{R}$, r ha equazioni $x_0-x_2+2x_3=2x_0+x_1=0$, s ha equazioni $2x_1-3x_2+x_3=x_0+x_3=0$, e P=[0:1:0:1], determinare le equazioni cartesiane della retta ℓ descritta sopra.

Esercizio 7. Siano W_1 , W_2 , W_3 piani proiettivi in \mathbb{P}^4_k tali che $W_i \cap W_j$ sia un punto per ogni $i \neq j$, e che $W_1 \cap W_2 \cap W_3 = \emptyset$.

Dimostrare che esiste un unico piano W_0 tale che per i=1,2,3 l'insieme $W_0 \cap W_i$ sia una retta proiettiva in \mathbb{P}^4_k .

Esercizio 8. Siano r_1 , r_2 , r_3 rette di \mathbb{P}^4_k a due a due sghembe, e non tutte contenute in un iperpiano. Si dimostri che esiste un'unica retta che interseca sia r_1 , sia r_2 , sia r_3 .