Foglio di Esercizi N.3

Geometria 2 - parte A

Esercizio 1. Sia $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ e sia S lo spazio vettoriale delle matrici reali simmetriche di ordine 2. Si consideri l'applicazione $\varphi: S \times S \to \mathbb{R}$ definita da $\varphi(X,Y) = \text{Tr}(XAY)$, dove Tr è la traccia di una matrice.

- i. Verificare che φ è una forma bilineare simmetrica.
- ii. Determinare la segnatura di φ individuando una base di S rispetto alla quale φ assuma la forma canonica.
- iii. Determinare l'insieme dei vettori isotropi rispetto a φ e stabilire se esso è un sottospazio vettoriale.

Esercizio 2. Si consideri l'applicazione $\varphi: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$ definita da $\varphi(X,Y) = \text{Tr}({}^tX \cdot Y)$.

- i. Dimostrare che φ è un prodotto scalare.
- ii. Sia $S_n(\mathbb{R})$ il sottospazio delle matrici simmetriche. Determinare il suo ortogonale rispetto a φ .

Esercizio 3. Si consideri l'applicazione $\varphi: \mathbb{R}^{\leq 2}[X] \times \mathbb{R}^{\leq 2}[X] \to \mathbb{R}$ definita da $\varphi(P,Q) = \int_0^1 P(x)Q(x)dx$.

- i. Dimostrare che φ è un prodotto scalare.
- ii. Scrivere la matrice A associata a φ rispetto alla base $\{1, x, x^2\}$ di $\mathbb{R}^{\leq 2}[X]$.
- iii. Determinare una base ortonormale per φ .
- iv. Determinare una matrice C tale che ${}^tCAC = I$.
- v. Costruire un'isometria di $\mathbb{R}^{\leq 2}[X]$ con lo spazio vettoriale euclideo standard \mathbb{R}^3 , e definire un prodotto vettoriale su di $\mathbb{R}^{\leq 2}[X]$. Calcolare il prodotto vettoriale rispetto a φ dei polinomi 1 e x.

Esercizio 4. Si consideri lo spazio vettoriale $V = \mathbb{R}^{\leq 2}[X]$ dei polinomi reali di grado minore o uguale a 2. Si dica se esiste una forma bilineare simmetrica $\varphi \colon \mathbb{R}^{\leq 2}[X] \times \mathbb{R}^{\leq 2}[X] \to \mathbb{R}$ tale che:

• Il radicale di φ sia il sottospazio generato da X.

- X + 1 e $X^2 + 1$ siano vettori isotropi.
- $\varphi(X^2 + 4X + 2, X^2 + 4X + 2) = 2.$

In caso affermativo scrivere la matrice associata a φ rispetto alla base $\{1, x, x^2\}$ di $\mathbb{R}^{\leqslant 2}[X]$.

Esercizio 5. Si consideri lo spazio vettoriale $V = M_n(\mathbb{C})$ e l'applicazione $\varphi: V \times V \to \mathbb{C}$ definita da $\varphi(A, B) = \text{Tr}({}^t\overline{A} \cdot B)$, dove Tr è la traccia di una matrice.

- i. Dimostrare che φ è una forma hermitiana definita positiva.
- ii. Sia $F:V \to V$ l'applicazione lineare definita ponendo $F(A) = {}^tA$. Dimostrare che F è un operatore unitario rispetto a φ , cioè che

$$\varphi(F(A), F(B)) = \varphi(A, B)$$

per ogni coppia di matrici A e B.

iii. Sia $M \in M_n(\mathbb{C})$ una matrice, considerare l'endomorfismo $f_M: V \to V$ definito da $f_M(A) = MA - AM$ per $A \in V$. Dimostrare che se M è hermitiana, allora f_M è un operatore hermitiano rispetto a φ , cioè

$$\varphi(f_M(A), B) = \varphi(A, f_M(B))$$

per ogni coppia di matrici A e B.

iv. Per $M=\begin{pmatrix} 0 & i\\ -i & 0 \end{pmatrix}$ determinare una base di autovettori di f_M ortonormale rispetto a φ .

Esercizio 6. Su \mathbb{C}^2 si consideri la forma hermitiana h la cui matrice associata, rispetto alla base canonica, è:

$$H = \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix} .$$

- i. Si dimostri che h è un prodotto hermitiano e si determini una base di C2 ortonormale rispetto ad h.
- ii. Dire se esiste una base di \mathbb{C}^2 ortogonale sia rispetto ad h che al prodotto hermitiano standard. In caso affermativo, esibirne una.

Esercizio 7. Al variare di $a \in \mathbb{C}$, si consideri l'endomorfismo φ_a di \mathbb{C}^2 , la cui matrice associata rispetto alla base canonica è:

$$A = \begin{pmatrix} 1 & -1 - i \\ 1 + i + a & 1 \end{pmatrix} .$$

- i. Per quali valori di $a \in \mathbb{C}$ l'endomorfismo φ_a è unitario rispetto al prodotto hermitiano standard?
- ii. Per quali valori di $a \in \mathbb{C}$ l'endomorfismo φ_a è hermitiano? Per tali a, determinare una base di autovettori di φ_a ortonormale rispetto al prodotto hermitiano standard.