Foglio di Esercizi N.2

Geometria 2 - parte A

Esercizio 1. Sia $Q: \mathbb{R}^3 \to \mathbb{R}$ la forma quadratica così definita:

$$Q((x,y,z)) = x^2 + z^2 - 2xy - 2xz + 2yz$$
, $\forall (x,y,z) \in \mathbb{R}^3$.

- i. Scrivere la matrice A della forma polare di Q, cioè la forma bilineare β di cui Q è forma quadrata associata, rispetto alla base canonica $\mathbb{E} = (e_1 \ e_2 \ e_3)$ di \mathbb{R}^3 .
- ii. Scrivere la matrice B e l'espressione di Q (come polinomio omogeneo) rispetto alla base $\mathbb{E}' = (e_1 + e_3 \ e_1 \ e_2)$.
- iii. Calcolare il rango di β , la segnatura e l'espressione canonica di Q, determinando una base rispetto a cui Q si scrive in forma canonica.

Esercizio 2. Sia β la forma bilineare simmetrica di \mathbb{R}^4 definita rispetto ad una base $\mathbb{E} = (e_1 \ e_2 \ e_3 \ e_4)$ di \mathbb{R}^4 dalla matrice:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & -2 & 0 \end{pmatrix} .$$

- i. Ridurre β in forma diagonale con il metodo di Lagrange, determinando l'espressione di β ed una base diagonalizzante \mathbb{F} di \mathbb{R}^4 .
- ii. Determinare il rango e la segnatura di β e scriverne la matrice canonica.
- iii. Scrivere l'equazione del cono isotropo $I_{\beta}(\mathbb{R}^4)$ rispetto alla base \mathbb{F} .

Esercizio 3. Sia $Q: \mathbb{R}^4 \to \mathbb{R}$ la forma quadratica così definita:

$$Q((x_1, x_2, x_3, x_4)) = x_2^2 - x_4^2 + 2x_1x_4 - 4x_2x_3$$
, $\forall (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$.

- i. Determinare l'espressione di Q rispetto ad una sua base diagonalizzante. Indicare il rango e la segnatura di Q.
- ii. Scrivere l'espressione di Q rispetto ad una sua base canonica.

Esercizio 4. Sia $\beta: V \times V \to \mathbb{R}$ una forma bilineare simmetrica su uno spazio vettoriale reale. Dimostrare che se $I_{\beta}(V) = \{0\}$ allora β è definita positiva o definita negativa.

Esercizio 5. Sia β la forma bilineare simmetrica di \mathbb{R}^4 definita rispetto ad una base $\mathbb{E} = (e_1 \ e_2 \ e_3 \ e_4)$ di \mathbb{R}^4 dalla matrice:

$$A = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & -1 & 0 & 0 \end{pmatrix} .$$

- i. Ridurre β in forma diagonale con il metodo di Lagrange, determinando l'espressione di β ed una base diagonalizzante \mathbb{F} di \mathbb{R}^4 .
- ii. Determinare il rango e la segnatura di β e scriverne la matrice canonica.
- iii. Scrivere l'equazione del cono isotropo $I_{\beta}(\mathbb{R}^4)$ rispetto alla base \mathbb{F} .

Esercizio 6. Sia β la forma bilineare simmetrica di \mathbb{C}^2 definita rispetto ad una base $\mathbb{E} = (e_1 \ e_2)$ di \mathbb{C}^2 dalla matrice:

$$A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} .$$

- i. Ridurre β in forma diagonale con il metodo di Lagrange, determinando l'espressione di β ed una base diagonalizzante \mathbb{F} di \mathbb{C}^2 .
- ii. Determinare la matrice canonica di β e la corrispondente base \mathbb{F}' .
- iii. Scrivere l'equazione del cono isotropo $I_{\beta}(\mathbb{C}^2)$ rispetto alla base \mathbb{F} .

Esercizio 7. Sia $k=\mathbb{F}_3=\mathbb{Z}/3\mathbb{Z}$. Considerare la forma quadratica Q su $V=k^3$ definita dal polinomio

$$Q(x, y, z) = x^2 - 2y^2 + xy - xz \in k[x, y, z]$$
.

- i. Scrivere la matrice A della forma quadratica Q (o della forma bilineare cui essa è associata) determinarne il rango.
- ii. Diagonalizzare Q (con l'algoritmo di Lagrange) e indicarne l'espressione in una base Q-diagonalizzante.

Esercizio 8. Si consideri in \mathbb{R}^3 la forma bilineare β così definita:

$$\beta(x,y) = x_1y_1 + 2x_2y_2 + 3x_3y_3$$
, $\forall x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3$.

- i. Scrivere la matrice di β rispetto alla base canonica $\mathbb E$ di $\mathbb R^3$ e verificare che β è un prodotto scalare.
- ii. Determinare l'espressione di β rispetto alla base

$$\mathbb{E}' = (e_3 \ e_2 + e_3 \ -e_1 + e_2 - e_3)$$
.

Esercizio 9. Sia β la forma bilineare simmetrica di \mathbb{R}^3 definita, rispetto alla base canonica $\mathbb{E} = (e_1 \ e_2 \ e_3)$ di \mathbb{R}^3 , dalla matrice:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} .$$

- i. Scrivere l'espressione di $\beta(x,y)$ per $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3$, e verificare che β è un prodotto scalare.
- ii. Ortonormalizzare rispetto a β la base canonica \mathbb{E} di \mathbb{R}^3 .
- iii. Calcolare equazioni cartesiane e basi β -ortonormali dei seguenti sottospazi vettoriali di \mathbb{R}^3 :

$$e_1^{\perp}$$
, e_2^{\perp} , e_3^{\perp} , $\langle e_1, e_2 \rangle^{\perp}$, $\langle e_1, e_3 \rangle^{\perp}$, $\langle e_2, e_3 \rangle^{\perp}$.

Esercizio 10. Sia β la forma bilineare simmetrica di \mathbb{R}^4 definita rispetto alla base canonica $\mathbb{E} = (e_1 \ e_2 \ e_3 \ e_4)$ di \mathbb{R}^4 dalla matrice:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} .$$

- i. Verificare che β è un prodotto scalare.
- ii. Sia S l'iperpiano di \mathbb{R}^4 di equazione (rispetto ad \mathbb{E}) $x_1 2x_3 + x_4 = 0$. Determinare un sistema di generatori e di equazioni cartesiane dello spazio β -ortogonale S^{\perp} .
- iii. Determinare delle basi $\beta\text{-ortogonali}$ di S e $S^{\perp}.$

Esercizio 11. Sia $u0 = (1, -2) \in \mathbb{R}^2$ e sia β il prodotto scalare su \mathbb{R}^2 definito, rispetto alla base canonica \mathbb{E} , dalla matrice

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} .$$

- i. Determinare (rispetto ad \mathbb{E}) la matrice B dell'operatore lineare $P: \mathbb{R}^2 \to \mathbb{R}^2$ di proiezione β -ortogonale sulla retta $< u_0 >$.
- ii. Determinare (rispetto ad \mathbb{E}) la matrice C dell'operatore lineare $Q: \mathbb{R}^2 \to \mathbb{R}^2$ di proiezione β -ortogonale rispetto alla direzione u_0 .
- iii. Verificare che $P+Q=1_{\mathbb{R}^2}.$