Foglio di Esercizi N.1

Geometria 2 - parte A

Esercizio 1. Siano V, W due spazi vettoriali sul campo k. Considerare l'applicazione:

$$\Psi: \operatorname{Hom}_k(V, W) \to \operatorname{Hom}_k(W^*, V^*)$$

$$f \mapsto {}^t f$$

- i. Mostrare che Ψ è lineare.
- ii. Mostrare che, se V e W hanno dimensione finita, Ψ è un isomorfismo.
- iii. Cosa si può dire se V e/o W hanno dimensione infinita?

Esercizio 2. Sia V uno spazi vettoriale sul campo k. Sia $\beta: V \times V \to k$ una forma bilineare. quando possiamo concludere che β alternante implica β antisimmetrica?

Esercizio 3. Siano V, W due spazi vettoriali sul campo k. Considerare le applicazioni:

$$\operatorname{Bil}_k(V \times W, k) \to \operatorname{Hom}_k(V, W^*) , e$$

 $\beta \mapsto \beta_1$

$$\mathrm{Bil}_k(V\times W,k)\to \mathrm{Hom}_k(W,V^*)\ .$$

$$\beta\mapsto\beta_2$$

- i. Mostrare sono due isomorfismi canonici.
- ii. Mostrare che, se V e W hanno dimensione finita, β_1 e β_2 sono trasposte una dell'altra. (consiglio: mostrarlo sia fissando delle basi, che "senza basi")
- iii. Cosa si può dire se Ve/oWhanno dimensione infinita?
- iv. Mostrare che β è simmetrica se e solo se $\beta_1 = \beta_2$, e β è antisimmetrica se e solo se $\beta_1 = -\beta_2$.

Esercizio 4. Sia V uno spazio vettoriale di dimensione finita sul campo k. Sia $\beta: V \times V \to k$ una forma bilineare. Mostrare che le segenti affermazioni sono equivalenti:

- i. β è non-degenere a sinistra.
- ii. β è non-degenere a destra.
- iii. β_1 è un isomorfismo.
- iv. β_2 è un isomorfismo.
- v. Per ogni $v_0 \neq 0$ in V esiste $w_0 \in V$ tale che $\beta(v_0, w_0) \neq 0$.
- vi. Per ogni $w_0 \neq 0$ in V esiste $v_0 \in V$ tale che $\beta(v_0, w_0) \neq 0$.

Esercizio 5. Sia $V = k^2$ lo spazio vettoriale canonico di dimensione 2 sul campo k, e sia $D: V \times V \to k$ l'applicazione definita da $D((x_1, x_2), (y_1, y_2)) = x_1y_2 - x_2y_1$.

- i. Verificare che D è una forma bilineare antisimmetrica.
- ii. Scrivere la matrice di D nella base canonica di k^2 .
- iii. Definire il cono isotropo per una forma antisimmetrica e calcolare il cono isotropo di D.
- iv. Verificare che D è una forma bilineare alternante.

Esercizio 6. Sia $k = \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ il campo con 2 elementi, e sia $V = k^2$.

- i. Trovare una forma bilineare su V che sia anitismmetrica ma non alternante.
- ii. Trovare le condizioni su una forma bilineare su V affinché sia alternante.
- iii. Trovare le condizioni su una forma bilineare su $W=k^n$ affinché sia alternante

Esercizio 7. Sia $k = \mathbb{R}$ il campo dei numeri reali, e sia $V = \mathbb{R}^3$. Rappresentare con un disegno il cono isotropo $I_{\beta}(\mathbb{R}^3)$ per β una forma bilineare definita (in base canonica) dalle segenti matrici:

$$i. \ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix};$$

$$ii. \ B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

iii.
$$C = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 con $a, b > 0$ oppure con $a > 0$ e $b < 0$.

Esercizio 8. Sia V uno spazio vettoriale di dimensione finita sul campo k. Sia $\beta: V \times V \to k$ una forma bilineare simmetrica.

- i. Mostrare che se il cono isotropo è $I_{\beta}(V) = 0$ allora β è non-degenere. Fornire un esempio di V con $\dim_k V \ge 2$ e $I_{\beta}(V) = 0$.
- ii. Mostrare con un controesempio che non vale l'implicazione inversa.
- iii. Se $k = \mathbb{C}$, può essere $I_{\beta}(V) = 0$? E se $k = \mathbb{C}$ e dim $\mathbb{C}V \ge 2$?
- iv. Mostrare che in generale $I_{\beta}(V)$ non è un sottospazio vettoriale di V.

Esercizio 9. Sia k un campo di caratteristica diversa da 2, e sia $V=k^3$. Trovare una base diagonalizzante per la forma bilineare β definita (in base canonica) dalla matrice:

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ -1 & 2 & 0 \end{pmatrix} .$$

Esercizio 10. Sia V uno spazio vettoriale di dimensione finita sul campo k. Sia $\beta \colon V \times V \to k$ una forma bilineare simmetrica. Sia v_0 un vettore non isotropo, sia $\alpha_{v_0} \colon V \to k$ la mappa che associa a un vettore $w \in V$ il suo cofficiente di Fourier rispetto a v_0 , cioè $\alpha_{v_0}(w) = \frac{\beta(v_0, w)}{\beta(v_0, v_0)}$.

- i. Mostrare che $\alpha_{v_0}: V \to k$ è lineare.
- ii. Determinare $\ker(\alpha_{v_0})$ e $\operatorname{Im}(\alpha_{v_0})$.
- iii. Se car(k) \neq 5, $V=k^3$, β ha matrice associata $A=\begin{pmatrix}0&2&-1\\2&1&2\\-1&2&0\end{pmatrix}$, e $v_o=\begin{pmatrix}-1&3&2\\0&1&2&0\end{pmatrix}$

 $(-1,3,2) \in V$, mostrare che v_o non è isotropo, e determinare la matrice di $\alpha_{v_o}: V \to k$ rispetto alle basi canoniche di $V = k^3$ e k.

- iv. Per la forma al punto sopra, determinare un'equazione cartesiana di $\underline{e}_{2}^{\perp}$.
- v. Per la forma al punto (iii) sopra, decomporre il vettore \underline{e}_2 in $< v_o > \oplus v_0^{\perp}.$