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1. [4 points] Consider the regular expression R = ((a+ b)∗ab)∗. Convert R into an equivalent ϵ-NFA
using the construction provided in the textbook, and report all the intermediate steps.
Important: do not use any other construction different from the one presented in the textbook, and
do not simplify the regular expression R before applying the construction.

Solution

The construction to convert a regular expression into an equivalent ϵ-NFA is presented in Theorem 3.7
from Chapter 3 of the textbook. The construction must be applied using structural induction, that
is, it must be applied to all the subexpressions of the input regular expression. For a subexpression S
of R, we write γ(S) to represent its conversion into an equivalent ϵ-NFA.

We first need to parse R into a tree representing its internal structure and all of its subexpressions.
According to the recursive definition of regular expression, R can be associated with the following tree
(we use the left-associative property of the concatenation operator, and we ignore the round brackets):
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·
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For the base case, we convert the regular expressions a and b, resulting in the following automata (we
do not annotate the start states, since these are always the leftmost states in the graph representation):

γ(a):
a

γ(b):
b

Next, we use γ(a) and γ(b) to convert the regular expression a+b, resulting in the following automaton:

γ(a+ b):

ε

ε

a

b

ε

ε



We can now process the innermost Kleen-star operator and convert the regular expression (a + b)∗.
We use the automaton γ(a+ b), resulting in the following automaton:

γ((a+ b)∗):
ε

ε

ε
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b

ε

ε

ε

ε
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To convert the regular expression (a + b)∗a we use the automata γ((a + b)∗) and γ(a), resulting in
the following automaton:

γ((a+ b)∗a):
ε

ε
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ε

ε
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Similary, to convert the regular expression (a + b)∗ab we use the automata γ((a + b)∗a) and γ(b),
resulting in the following automaton:

γ((a+ b)∗ab):
ε
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ε
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The last step processes the outermost Kleen-star operator, using the automaton γ((a + b)∗ab) and
producing the desired ϵ-NFA for our input regular expression R:
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2. [9 points] Consider the following languages, defined over the alphabet Σ = {a, b}:

L1 = {anban | n ≥ 1}
L2 = {an(ba)n | n ≥ 1}
L3 = {(aba)n | n ≥ 1}

For each of the above languages, state whether it belongs to REG, to CFL∖REG, or else whether it
is outside of CFL. Provide a mathematical proof for all of your answers.

Solution

(a) L1 belongs to the class CFL∖REG.

We first show that L1 is not a regular language, by applying the pumping lemma for this class.
In what follows, we view each string in L1 as composed by two blocks of occurrences of symbol
a, one at the left of the occurrence of b and the other to its right. These two blocks must have
the same length.

Let N be the pumping lemma constant for L1. We choose the string w = aNbaN ∈ L1 with
|w| ≥ N . We now consider all possible factorizations of the form w = xyz satisfying the conditions
|y| ≥ 1 and |xy| ≤ N of the pumping lemma. Since |xy| ≤ N , string y can only span over the
block of a’s placed at the left of b. Therefore we need to consider only one case in our discussion.

We choose k = 0 in the pumping lemma, and obtain the new string wk=0 = xy0z = xz, which
has the form aN−|y|baN . Since |y| ≥ 1, the two blocks of a’s do not have the same length, and
thus wk=0 ̸∈ L1. We conclude that L1 does not satisfy the pumping lemma, and therefore cannot
be a regular language.

As a second part of the answer, we need to show that L1 belongs to the class CFL. Consider the
CFG G1 with productions:

S → aSa | aBa

B → b

It is not too difficult to see that L(G1) = L1.



(b) L2 belongs to the class CFL∖REG.

We first show that L2 is not a regular language, by applying the pumping lemma for this class.
To this end, it is very useful to observe that every string in L2 has the property that the number
of occurrences of symbol a is twice the number of occurrences of symbol b.

Let N be the pumping lemma constant for L2. We choose the string w = aN (ba)N ∈ L2 with
|w| ≥ N . We now consider all possible factorizations of the form w = xyz satisfying the conditions
|y| ≥ 1 and |xy| ≤ N of the pumping lemma. Since |xy| ≤ N , string y can only span over the first
(left-to-right) N occurrences of symbol a in w, that is, string w cannot include any occurrence of
symbol b from w.

We then choose k = 0 in the pumping lemma, and obtain the new string wk=0 = xy0z = xz, which
has the form aN−|y|(ba)N . Since |y| ≥ 1, it is immediate to see that wk=0 violates the condition
that the number of occurrences of symbol a is twice the number of occurrences of symbol b, and
thus wk=0 ̸∈ L2. This is a violation of the pumping lemma, and we conclude that L2 cannot be
a regular language.

As a second part of the answer, we need to show that L2 belongs to the class CFL. Consider the
CFG G2 with productions:

S → aSB | aB
B → ba

It is not too difficult to see that L(G2) = L2.

(c) L3 belongs to the class REG.

It is very easy to see that L3 is generated by the regular expression R = aba(aba)∗.

3. [5 points] Consider the CFG G implicitly defined by the following productions:

S → ABA | BAB | BBB

A → aAB | bBB

B → b | ε

Apply the methods specified in the textbook, in the proper order, to transform G into a new CFG G′

in Chomsky normal form such that L(G′) = L(G) ∖ {ε}. Report the CFGs obtained at each of the
intermediate steps.
Important: do not use any other construction different from the one presented in the textbook.

Solution

The algorithms that need to be applied to the grammar G are specified in the following list, in the
required order, and are all reported in Chapter 7 of the textbook

• elimination of ε-productions

• elimination of unary productions

• elimination of useless symbols

• construction of a CFG in Chomsky normal form



(a) The set of nullable variables of G is n(G) = {B}. After elimination of the ε-productions we
obtain the intermediate CFG G1

S → ABA | BAB | BBB | AA | AB | BA | BB | A | B
A → aAB | bBB | aA | bB | b
B → b

(b) There are two unary productions in G1: S → A and S → B. Thus the set of unary pairs of G1 is

u(G1) = {(S,A), (S,B)} ∪ {(X,X) | X ∈ {S,A,B}}.

After elimination of the unary productions we obtain the intermediate CFG G2

S → ABA | BAB | BBB | AA | AB | BA | BB

S → aAB | bBB | aA | bB | b
A → aAB | bBB | aA | bB | b
B → b

(c) All nonterminals in G2 are reachable and generating, that is, there are no useless nonterminals
in G2. Therefore this step does not change the intermediate CFG obtained at the previous step.

(d) The construction of a CFG in Chomsky normal form from G2 proceeds in two steps. The first
step eliminates terminal symbols in the right-hand side of the productions of G2, in case they
appear along with some other symbols. To do this we introduce new nonterminal symbols Ca, Cb

and produce the intermediate CFG G3

S → ABA | BAB | BBB | AA | AB | BA | BB

S → CaAB | CbBB | CaA | CbB | b
A → CaAB | CbBB | CaA | CbB | b
B → b

Ca → a

Cb → b

The second step factorizes productions of G3 having right-hand side of length larger than two.
To do this we introduce new nonterminal symbols D,E, F and produce CFG G4

S → AD | BE | BF | AA | AB | BA | BB

S → CaE | CbF | CaA | CbB | b
A → CaE | CbF | CaA | CbB | b
B → b

D → BA

E → AB

F → BB

Ca → a

Cb → b



CFG G4 is in Chomsky normal form, and we have L(G4) = L(G)∖ {ε}. The desired CFG G′ is then
G4.

4. [6 points] Assess whether the following statements are true or false, providing motivations for all of
your answers.

(a) There exists languages L1, L2 in REG, defined over alphabet Σ = {a, b}, such that L1 ∩ L2 = ∅
and L1 ∪ L2 = Σ∗.

(b) There exists languages L1, L2 in CFL∖REG, defined over alphabet Σ = {a, b}, such that L1∩L2 =
∅ and L1 ∪ L2 = Σ∗.

(c) For every language L in CFL and for every string w ∈ L, we have that L∖ {w} is in CFL.

(d) The class P of languages that can be recognized in polynomial time by a TM is closed under
union.

Solution

(a) True. We can satisfy the conditions in the question by taking L1 = ∅ and L2 = Σ∗.

More generally, observe that for every language L1 in REG and L2 = L1, that is, L2 is the
complement of L1, we have that L1 and L2 satisfy the conditions in the question.

(b) True. For a string w defined over Σ and for any symbol X ∈ Σ, let us write #X(w) to denote
the number of occurrences of X in w. We then define

L1 = {w | w ∈ Σ∗,#a(w) = #b(w)}
L2 = {w | w ∈ Σ∗,#a(w) ̸= #b(w)}

We know from the textbook that both L1 and L2 are in CFL∖REG. It is also easy to see that
L1 ∩ L2 = ∅ and L1 ∪ L2 = Σ∗.

(c) True. We can express set difference through intersection and complementation, and write L ∖
{w} = L∩{w}. We also observe that {w} is a finite language, and hence a regular language. Since
regular languages are closed under complementation, {w} is also a regular language. Finally, the
class of context-free languages is closed under the intersection with regular languages. Therefore
we have that L ∩ {w} is still in CFL.

(d) True. Let L1 and L2 be two arbitrary languages in P. From the definition of P, there exist TMs
M1 and M2, both running in polynomial time, such that L(M1) = L1, and L(M2) = L2.

Consider the Turing machine M defined in the following block diagram.

w

M

M1 no

yes

M2
no

yes

yes

Start

no



It is immediate to see that L(M) = L1 ∪ L2. Furthermore, since both M1 and M2 run in
polynomial time and are simulated only once, M also runs in overall polynomial time.

5. [9 points] In relation to the theory of Turing machines (TMs), answer the following questions. All
the TMs introduced below are defined over the input alphabet Σ = {0, 1}.
For a string w ∈ Σ∗ we write w to represent the string obtained from w by changing all occurrences
of 0 into 1 and all occurrences of 1 into 0. As an example, we have 011001 = 100110. Consider the
following property of the RE languages

P = {L | L ∈ RE, for every string w ∈ L we have w ̸∈ L}

and define LP = {enc(M) | L(M) ∈ P}.

(a) Use Rice’s theorem to prove that LP is not in REC.

(b) Prove that LP is not in RE.

(c) For TMsM1,M2 we write enc(M1,M2) to represent some fixed binary encoding of these machines.
Consider the language

L = {enc(M1,M2) | for every string w ∈ L(M1) we have w ̸∈ L(M2)} .

Show that L is not in RE by establishing a reduction LP ≤m L.

Solution

(a) We show that the property P is nontrivial, that is, P is neither empty nor equal to RE.

• P ̸= ∅. The language L1 = {011001} is in RE, since it is finite. We now have to check that
for every string w ∈ L1 we have w ̸∈ L1. There is only one string in L1, namely 011001, and
011001 = 100110 is not in L1. We conclude that L1 ∈ P and thus P ≠ ∅.

• P ≠ RE. The language L2 = {011001, 100110} is in RE, since it is finite. For string
011001 ∈ L2 we have that 011001 = 100110 ∈ L2. This means that L2 ̸∈ P and then
P ≠ RE.

We can now apply Rice’s theorem and conclude that, since P is nontrivial, LP is not in REC.

(b) We now show that LP is not in RE. The most convenient way to do this is to consider the
complement language LP = LP , where P is the complement of the class P with respect to RE,
and can be specified as

P = {L | L ∈ RE, there exists a string w ∈ L such that w ∈ L} .

We now define a nondeterministic TM N such that L(N) = LP . Since every nondeterministic
TM can be converted into a standard TM, this shows that LP is in RE. Our nondeterministic
TM N takes as input the encoding enc(M) of a TM M and performs the following steps.

• N nondeterministically guesses a string w ∈ Σ∗.



• N simulates M on w. If this computation terminates with a positive answer, then N moves
on with the next step. If the computation terminates with a negative answer, then N does
not accept and halts. If the simulation of M on w does not halt, then N runs for ever and
therefore does not accept its input.

• N simulates M on w. If this computation terminates with a positive answer, then N accepts
and halts. If the computation terminates with a negative answer, then N does not accept
and halts. Finally, if the simulation of M on w does not halt, then N runs for ever and
therefore does not accept its input.

It is not difficult to see that L(N) = LP .

Since LP is in RE, if its complement language LP were in RE as well, then we would conclude
that both languages are in REC, from a theorem in Chapter 9 of the textbook. But we have
already shown in (a) that LP is not in REC. We must therefore conclude that LP is not in RE.

(c) Recall from Chapter 9 that, in order to provide a reduction LP ≤m L, we need to establish a
mapping m from input instances of LP to output instances of L such that positive instances are
mapped to positive instances and negative instances are mapped to negative instances. From a
known theorem about reductions, since LP is not in RE then L cannot be in RE as well.

We need to map strings of the form enc(M) into strings of the form enc(M1,M2). Our reduction
m does this by setting M1 = M2 = M . To conclude the proof, we now show the desired relation
between the mapped instances, by means of the following chain of logical equivalences:

enc(M) ∈ LP iff L(M) ∈ P (definition of LP)
iff for every string w ∈ L(M), w ̸∈ L(M) (definition of P)
iff for every string w ∈ L(M1), w ̸∈ L(M2) (definition of reduction m)
iff enc(M1,M2) ∈ L (definition of L) .


