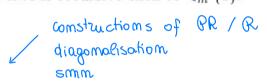
Computability Jan 19 2022

Exercise 1

- a. Provide the definition of reducibility, i.e., given sets $A, B \subseteq \mathbb{N}$ define what it means that $A \leq_m B$.
- b. Show that if A is not recursive and $A \leq_m B$ then B is not recursive.
- c. Show that if A is recursive then $A \leq_m \{1\}$.



Exercise 2

Is there a non-computable total function $f: \mathbb{N} \to \mathbb{N}$ such that f(x) = f(x+1) on infinitely many inputs x, i.e., such that the set $\{x \in \mathbb{N} \mid f(x) = f(x+1)\}$ is infinite? Provide an example or show that such a function cannot exist.

classify sets (recursive), saturaledmess

Exercise 3

Say that a function $f: \mathbb{N} \to \mathbb{N}$ is quasi-total if it is undefined on a finite number of inputs, i.e., $\overline{dom(f)}$ is finite. Classify the set $A = \{x \in \mathbb{N} \mid \varphi_x \text{ quasi-total}\}$ from the point of view of recursiveness, i.e., establish whether A and \overline{A} are recursive/recursively enumerable.

Exercise 4

Classify the set $B = \{x \in \mathbb{N} \mid \exists y > 2x. \ y \in E_x\}$ from the point of view of recursiveness, i.e., establish whether B and \bar{B} are recursive/recursively enumerable.

Note: Each exercise contributes with the same number of points (8) to the final grade.

Exercise 1

- a. Provide the definition of reducibility, i.e., given sets $A, B \subseteq \mathbb{N}$ define what it means that $A \leq_m B$.
- b. Show that if A is not recursive and $A \leq_m B$ then B is not recursive.
- c. Show that if A is recursive then $A \leq_m \{1\}$.
- (a) Given $A_iB \subseteq IN$ we define $A \le mB$; f there is a total computable function $f: IN \to IN$ s.t. $\forall x \qquad x \in A \quad \text{iff} \quad f(x) \in B$
- (b) We prove the counter mominal: if B is recursive and A≤m B them A is recursive

assume $A \leq_m B$, i.e. there is a total computable function $f \colon \mathbb{N} \to \mathbb{N}$

s.t. $\forall x \quad x \in A \quad \text{iff} \quad f(x) \in B \quad (*)$

Since B is recursive, the characteristic function $\chi_{B}(z) = \begin{cases} 1 & \text{if } z \in B \\ 0 & \text{otherwise} \end{cases}$ is computable

Them $X_{A}(x) = \begin{cases} 1 & \text{if } x \in A \iff f(x) \in B \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{if } f(x) \in B \\ 0 & \text{otherwise} \end{cases}$

= $\chi_B(f(\alpha))$

is computable, since χ_B , fore computable.

Thus A is recursive, as desized.

(c) if A is secusive them
$$A \leq_m \{1\}$$

Let $A \leq N$ be becausive, i.e.

$$\chi_{A}(z) = \begin{cases} 1 & \text{if } z \in A \\ 0 & \text{otherwise} \end{cases}$$
 computable

Note that χ_A is total computable

$$x \in A$$
 iff $\chi_A(x) = 1$ iff $\chi_A(x) \in \{1\}$

hence XA reduces A to {1}.

ADDITIONAL QUESTION: Is it true that

if A recursive them
$$A \leq_m \{k\}$$
 KEIN fixed?
Yes: $f(\alpha) = \chi_A(\alpha) \cdot K$ is the reduction function

ADDITIONAL QUESTION: Is the converse of point (c) true? If $A \leq_m \{1\}$ then A is becausive?

YES: Since (1) is recursive (because it is finite)

DIRECT PROOF: let $f: |N \to N|$ be the reduction function for $A \le m \{1\}$ i.e. f total computable s.t.

$$\forall x \quad x \in A \quad \text{iff} \quad f(x) \in \{1\} \quad \text{iff} \quad f(x) = 1$$

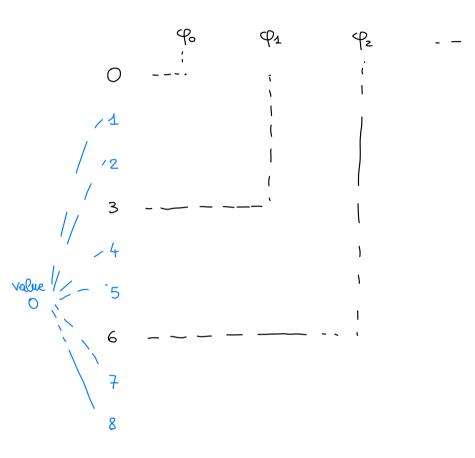
hence

$$\chi_A(x) = s\bar{g}(|f(x)-1|)$$
 computable.

Exercise 2

Is there a non-computable total function $f: \mathbb{N} \to \mathbb{N}$ such that f(x) = f(x+1) on infinitely many inputs x, i.e., such that the set $\{x \in \mathbb{N} \mid f(x) = f(x+1)\}$ is infinite? Provide an example or show that such a function cannot exist.

solution 1



$$g(x) = \begin{cases} \varphi_y(x) + 1 & \text{if } x = 3y \text{ for some } y \text{ and } \varphi_y(x) \\ \text{of } x = 3y \text{ " " " } \varphi_y(x) \end{cases}$$

$$\begin{cases} \text{or } x = 3y + 1 \text{ or } x = 3y + 2 \text{ for some } y \end{cases}$$

mote that a is

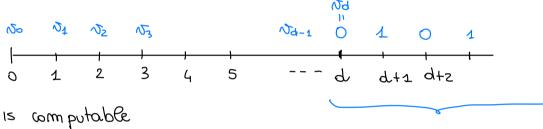
- total
- not computable, since it differs from all total computable functions

$$\forall y \text{ if } \varphi_y \text{ is total them } g(3y) = \varphi_y(3y) + 1 + \varphi_y(3y)$$

solution 2

Comsider XK: IN -> IN

OBSERVATION: let $f: |N \rightarrow |N|$ be a total function with $cod(f) \le \{0,1\}$ and assume that there is $d \in |N|$ st. $\forall x \ge 0$ $f(x) \ne f(x+1)$



Them f is computable

$$f(x) = \delta_x$$
 for $x \le d$,

and assume (without loss of generality) Nd = 0

Define g: N→N

$$\begin{cases} g(0) = 0 \\ g(x+4) = \overline{Sg}(g(x)) \end{cases}$$
 computable

Them

$$f(x) = \prod_{i=0}^{d-1} \overline{sg}(|x-i|) \cdot \delta_i + g(x-d)$$

- if
$$x < d$$
 them $x = i$ $0 \le i \le d - 1$

$$f(x) = \delta i + g(\underline{i-d}) = \delta i$$

$$- \text{ if } x > d$$

$$f(x) = 0 + g(x-d)$$

Them f is computable by composition.

Hence the function g required by the exercise combe $g = \chi_K$ -v χ_K total

- 71 K mot computable
- -> $d \propto 1$ $\chi_{K}(x) = \chi_{K}(x+1)$ is imfinite (otherwise by the dosexvation above, χ_{K} would be computable).

Exercise 3

Say that a function $f: \mathbb{N} \to \mathbb{N}$ is <u>quasi-total</u> if it is undefined on a finite number of inputs, i.e., $\overline{dom(f)}$ is finite. Classify the set $A = \{x \in \mathbb{N} \mid \varphi_x \text{ quasi-total}\}$ from the point of view of recursiveness, i.e., establish whether A and \overline{A} are recursive/recursively enumerable.

A is saturated

$$A = \{x \in |N| \mid P_x \in A\}$$

 $A = \{f \mid f \mid \text{quasi total}\} = \{f \mid \text{dom}(f) \mid \text{fimite}\}$

* A is not ze.

doserve that
$$id \in A$$
 (since $dom(id) = \overline{IN} = \emptyset$ fimite)
 $\forall \theta \in id \quad \theta \text{ fimite}$ $dom(\theta) = IN \cdot dom(\theta)$ imfinite
hence $\theta \notin A$

Thus by Rice-shapizo, A mot e.e.

*
$$\overline{A}$$
 is mot ze. $(\overline{A} = \{f \mid \overline{dom(f)} \text{ imfinite}\})$
mote that $id \not\in \overline{A}$
 $\vartheta = \not= id$ $\vartheta \in \overline{A}$ $(\overline{dom(\phi)} = \overline{\phi} = iN)$ imfinite)

them by Rice-Shapizo, A mot ze.

$$\sqrt{3z} \varphi_{x}(z) > 2x$$

establish whether B and \bar{B} are recursive/recursively enumerable.

Im fact
$$SC_{B}(x) = A \left(\mu(z,y,t) . \left(S(x,z,y,t) \wedge y > zx \right) \right)$$

$$= A \left(\mu(z,h,t) . S(x,z,zx+1+h,t) \right)$$

$$= A \left(\mu\omega . S(x,(\omega)_{1}, 2x+4+(\omega)_{2}, (\omega)_{3}) \right)$$

$$= A \left(\mu\omega . | \chi_{S}(x,(\omega)_{1}, 2x+1+(\omega)_{2}, (\omega)_{3}) - 1 \right)$$
computable

* B mot recursive

We show that K (mot recursive) reduces to B K≤m B We need a reduction function s: IN > IN total computable s.t. $\forall x$

define

$$g(x,y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{if } x \notin K \end{cases} = y \cdot SC_K(x)$$

computable

By smm theorem, there is $S: \mathbb{N} \to \mathbb{N}$ total computable s.t.

$$\varphi_{S(x)}(y) = g(x,y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{if } x \notin K \end{cases}$$

We claim that s is the reduction function for KEm B

* if x & K them

and thus if y = 2S(x)+1 > 2S(x) them $Q_{S(x)}(y) = y > 2S(x)$ Hence $S(x) \in B$

* If xx K Grem

and thus there is no ye $E_{S(x)}$ s.t. y > 2S(x).

Thus S(x) & B

Hence K < m B and Hous B is not recusive.

Summing up, B re., mot securoive

hunce B not r.e. (otherwise if B r.e., since also B re.

we would have B rewroise)

and thus B not recursive.

ADDITIONAL QUESTION: Is B saturated?

$$B = \{x \in \mathbb{N} \mid \exists y > 2x. \ y \in E_x\}$$

NO: We show that there are $e, e' \in \mathbb{N}$ s.t. $q_e = q_{e'}$ but $e \in B$, $e' \not\in B$

We show that there is e \in IN

Define

$$g(x,y) = 2x + 1$$
 computable

hence by smm theorem there is S: IN > IN total computable s.t.

$$\forall x, y$$
 $\varphi_{S(x)}(y) = g(x, y) = 2x + 1$

Sima s is total computable by the 2md recursion theorem. There is easy s.t. $qe = q_{sie}$

Thus
$$\varphi(y) = \varphi_{s(e)}(y) = g(e,y) = 2e + 1$$

Observe :

$$- e \in B$$
 simce $E_e = \{2e+1\}$

- if e'> e s.t.
$$q_{e'} = q_{e}$$
 (it exists for sure similar than)

them

$$e' \notin B$$
 since $E_{e'} = E_{e} = \sqrt{2e+1}$
and $2e+1 < 2e+2 = 2(e+1) < 2e'$

Therefore B is not saturated.