StocuasTic METHODS FOR ENGINEERING

Exam 1

Exercise 1. Let (W;);>o be the Brownian Motion. For every s,¢ > 0 compute
i) E[W, W]
i) E[W,W?]
i) E[W2W?2]
iv) E[Wge"].
Exercise 2. We recall that X ~ I'(a, ) for a, A > 0 if

fx(x) = %x

(recall that I'(a) = jgwx“_le_/lx dcandT'(n)=(n—1)!forneN,n> 1)
i) Let ¢x be the characteristic function of X. Show that

0e0x(6) = = 0x(©)

a—le—/lxl[o’+oo[(x)‘

and deduce, from this ¢x.

ii) Check thatif X; ~ I'(a;, 1) for j = 1,...,n are independent, then X; +---+ X,, ~I'(a, 4) for a
suitable a.

iii) Let X and Y be i.i.d. random variables ~ I'(1,1) and let Z = X + Y. Show that the following
formula holds:

1 VA
ElW(X)12) = 5 | o a.

) 5. P . . .
Exercise 3. What does it mean that X, 2% X and X, — X? What relationships exist between these
two types of convergence?

Let Xy ~ U([0,1]) and (Y,,) are i.i.d. .4 (0, 1) random variables. For n > 1 define

Xn-1
X, = '; +Y,.

d
ii) Show that X,, — X where X = .. ..
iii) Is X, — X?
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Exercise 4. Let (X,,) be i.i.d. random variables with exponential distribution, X,, ~ exp(1). Let also
N be independent of (X)) with geometric distribution of parameter 0 < p < 1 (namely, P(N = n) =
(1=p)"'p,n>1). Define
Y, :=min{Xy,...,X,}.
1) Determine the cdf of ¥,,.
ii) Determine the cdf of Y.
iii) Compute E[Yy].

Exercise 5. Let U,V be i.i.d. uniformly distributed on [0, 1]. Derive
R=+-2loglU, ©:=2nV.
i) Determine the joint distribution of (R, ®) and the marginal distributions of R and ©.
ii) Set
X :=Rcos®, Y :=Rsin0.

WHat is the joint distribution of (X,Y)? Are X and Y independent? What are their univariate
distributions?

Exercise 6. Let (X,,) be a sequence of random variables such that
1
Xo=1, Xpy1 - X, = EYane
where Y,, is a Bernoulli r.v. with P(Y,, = 1) = % and Y, is independent of Yy,...,Y,—1. We may
interpret X,, as the amount of money an investor will have after n days if he wins or loses half of the
money daily, both with probability 1/2).

i) Prove that X,, 250 (hint: start estimating P(|X,,| > %) for m € N fixed, then use Borel-
Cantelli’s Lemma).

1
ii) What about lim,, E[X,,]? Does X,, — 07
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Exercise 7. Let X € L'(Q).
i) Prove the triangular inequality

[E[X | ]| < E[IX] | Z].

ii) Show thatif X,Y € L'(Q) are such that E[X | Y] = 0, then || X + Y||; > ||Y|]:.
iii) Show that if X,Y € L!(Q) are such that uxy = pyx then

E[XxY|X=FY]=0.
Use this to deduce ||3X - Y||; = || X +Y]|;.

Exercise 8. Let (X,,) be independent with X,, uniformly distributed on [—1 — %, 1+ %]. Let

1 n
Y, = — X k-
- ;
Discuss convergence in distribution of (Y},) identifying also the limit (if any).

(hint: Xi = 22X ~ U[-1, 1]).

Exercise 9. Let (W;),>0 be the Brownian Motion and define

t Wl /t7 t> 0,
Bt =
0, t=0.
i) Check that (B;) are gaussian random variables (determining their distributions), and that the
increments of (B;), namely B, B;,—By,, ..., B;, — B;, ,—B;, are independent random variables.

Check also that B; (w) € €(]0, +oo]).
ii) Check that

B, —0, 1 — 0+.
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Exercise 10. Let X, Y be independent random variables both with geometric distribution of parameter
p €]0, 1] (thatis, P(X = n) = P(Y = n) = (1 — p)"*~!p). Define
Z :=min(X,Y), W:=|X-Y]|.
i) Determine the distribution of (Z, W).
ii) Are Z and W independent?

Exercise 11. What does Borel-Cantelli’s Lemma state?

Let now (X},) be i.i.d. random variables, X, ~ exp(1). For n > 2 define
_ Xn—logn
" log(logn)”

n

Prove that, for every & > 0 fixed,

D P (Uy Nulu <148} =1
i) P(Ny Un{¥n > 1 -8} = 1.

(it might be helpful to know that ), <+ooiffa > 1)

-] 1
n=2 n(logn)®
Exercise 12. Let W be a BM on (Q, #,P). For T > 0 fixed, let #7 := oo(W; : 0 <t < T) and define

)
Q(E) =E [1E€aWT_2T , E e Fr.

i) Check that Q is a well defined probability measure on (Q, F7).
i1) Check that

a2
Eg[X] =E [Xe“WT_2T] )
ii) Let B, := W, — at. Check that (B;)o<;<7 is a BM on (Q, Fr, Q).
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Exercise 13. Let 0 < a < b and set
A={(x,y) eR? : |x—y|<a, |x+y| <b}.
Let (X,Y) have uniform distribution in A, that is

fxy(x,y) = La(x,y),

A2(A)
where 1, (A) stands for the Lebesgue measure of A.

1) Determine fy.
ii) Compute E[X | Y].
iii) Compute the density of E[X | Y].

Exercise 14. Let (W,) be a BM on (Q, #,P) and define

612

X, ="~ T" peN.

i) Check that X,, € L'(Q) for every a € R.
ii) Show that (X,,) is a martingale w.r.t. %, := o0 (W,, : m € N, m < n).
iii) Show that lim,, X,, = 0 a.s.

Exercise 15. Let (Q, #,P) be a probability space, X € L(Q) such that X > 0 a.s.
i) Show that, if X is N valued (that is P(X € N) = 1) then

E[X] = i}?(x > n).
n=0

ii) Show that, in general,
+00
E[X] :J P(X > t) dt.
0
Hint for both cases: P(E) = E[1g] ...
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Exercise 16. Let (X,Y) ~ A4(0, C) where

~[1]

i) For which values of p matrix C is a true covariance matrix for (X, Y)?

ii) Imagine (X,Y) as the coordinates of a random point in the cartesian plane. Let (R, ®) its polar
coordinates (R > 0, ® € [0,2x[). Determine the joint distribution of (R, ®) and, in particular,
the distribution of ©.

iii) Compute E[R | ®] and E[R? | ®].
iv) Under which conditions are R and ® independent? In this case, determine also the density of R.

Exercise 17. Let X,, be i.i.d. random variables with common density

I _
fx, (x) = ¢ I~
Prove that, Ve > 0,
P ( Xnl < 1 + & for all but finitely many n) =1.

logn =

i) P (M > 1 — & for infinitely many n) - 1.

logn

Exercise 18. Let (W,) be a BM. Define
t
W
o u

i) Explain why, for # > 0 fixed and for almost every w, X; is a well defined random variable.
ii) Compute E[X, ] and E[X?] (hint: ([; fu du)® = [} fu du [, f; ds...)
iii) Define B; := W; — X;. Compute E[B;] and V[B;].
iv) Let F :=c (W, : 0 <r <s). Compute E[B; | F] for0 < s < 1.

(if needed, you are allowed to switch E with f(;)
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Exercise 19. Let (Q, #,P) be a probability space, & C F a sub o—algebra.
i) Let X € L?(Q). What is the conditional expectation E[ X | €]? How is characterized? Prove that
IELX | €12 < (X2
ii) Let X,Y € L*(€) be such that
E[X|Y]=Y, E[Y]|X]=X.
Deduce that X =Y a.s. (hint: check that || X — Y||§ =0)
iii) Let X,Y, Z € L*>(Q) be such that
E[X|Y]=Y, E[Y|Z] =2, E[Z|X]=X.
Provethat X =Y = Z as.

Exercise 20. Let N
F(x):=e¢ ,x€eR.
1) Check that F' is a cumulative distribution function.
Let now (Xj,) be i.i.d. random variables with Fx, (x) = (1 — &™) 1[0 o[ ().
ii) Determine the cdf of ¥, := max{Xy,..., X, }.
iii) Use ii) to prove that ¥;, — log n converges in distribution, determining also the limit distribution.

Exercise 21. Show that, if X and Y are absolutely continuous independent random variables with densities
fx and fy respectively, then X + Y is also absolutely continuous and

fxay (%) = fx * fy(x), a.e.x €R. (3)

Letnow X,,, n € N, n > 1 be i.i.d. exponential random variables, fx, (x) = /le"lxl[o,wo[(x).
i) Determine the distribution of X; + - - - + X,, (hint: use FT)
ii) Let N be independent of (X,,)nen, with P(N = n) = (1 — p)"*~!p, with 0 < p < 1. Determine
the distribution of
Xi+ -+ Xn.
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Exercise 22.
1) What is the characteristic function of a random variable X?
i) Justifying carefully the calculations, show that if E[X?] < +co then the characteristic function
¢x of X is twice differentiable, and compute 8; ¢x(0).

iii) Justifying your answer, say if there exists a r.v. X such that ¢x (&) = e ¢ ’

Exercise 23. Let (W;) be a BM.
i) What are the characteristic properties of any Brownian Motion (BM)? And what are the charac-
teristic properties of a martingale? Is the BM a martingale?
ii) Prove that Wf — 3tW, is a martingale.
iii) Determine what terms you should add to W} in order to get a martingale.

Exercise 24. Suppose that (X,,) are i.i.d. random variables taking strictly positive values and such that
E[|log X,|] < +o0. Discuss the limit of

1/k

Y, =

n
[Tx
k=1
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Exercise 25. Let X, Y be absolutely continuous random variables with densities, resp., fx and fy.

i) By using the injectivity of the L' FT, prove that X and Y are independent iff ¢x.y (¢,7) (charac-
teristic function of random vector (X, Y)) coincides with ¢x(&)dy (7).

Let now X, Y be independent and both standard Gaussian ./ (0, 1).

ii) Show that X +Y and X — Y are also independent and gaussian.
iii) Compute the conditional expectation E[XY | X — Y] (hint: (x +y)> = (x —y)>=...)

Exercise 26. Let Ny be i.i.d. random variables with E[Ny] = 0 and V[N?] = E[(Nx — E[N¢])?] = o2,
Vk € N. We define (X}) as

Xo:=x0 €R, Xg =aXg_1+Ng-1, k > 1.
with |@| < 1 and x¢ € R fixed.

i) Calculate means E[ X ] and variance V[Xg].
ii) Let Fx = o(X1,..., Xx). Is (Xi) a martingale w.r.t. F;? Justyify your answer.
iii) Compute E[(Xz4+1 — X1)?]. What can you conclude about convergence in L? of (Xi)?
iv) Assume also that Ny ~ (0, 0%), Vk € N. Prove that X; converges in distribution and determine
the limit distribution.

Exercise 27. Let (W;) be a Brownian Motion (BM).
i) What are the characteristic properties of W,?
ii) Let
t
X; ::Wf—3j W, dr, t > 0.
0

Check that X, is a martingale w.r.t. % := (W, : s < r). (if needed, you are allowed to
.. . . . . t
exchange the conditional expectation with the Riemann integral Io ...dr)
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Exercise 28. Let (X,Y) ~ A4(0, C) where
112
€= [ /2 1 ]

1) Is C a well defined covariance matrix?
ii) Check that Y and 2X — Y are independent.
ii) Compute E[X?Y | 2X — Y] (hint: X = 12X -Y) +1Y...).

Exercise 29. i) What does the Borel-Cantelli Lemma says? Provide a precise statement (no proof is
required).
Let now X,, be independent Bernoulli random variables with

1 1
P(X,=1)=—, P(X,=0)=1- —.
i) Let E := {X,, = Xj,41 = Xus2 = 1, for infinitely many n}. Check that E is an event and prove that

P(E) =0.
ii) Let F := {X,, = X;,+1 = 1, for infinitely many n}. Check that F is an event. What about P(F)?

Exercise 30. Let X; ~ U([0, 1]) i.i.d. random variables, and let S,, := }.7_, Xj. Define
N:=min{n >2 : §, > 1}
i) Compute P(N > n) and P(N = n) for n € N.
ii) Compute E[N] and V[N].
iii) Compute E[Sy].
It may be helpful to know that
1

J =T
(i) vy dvn = Z e

I,Jl. =

.....



SoLUTIONS.

Exercise 2. i) We have

ox(8) = () = jR ()€ dx =

/l(t +c>0xa/ _/lxeié‘x dx _ /la +00
F(a) 0 F(a) 0

Now, being x¢~! = 9, %, by integrating by parts we have

+00 X« . 1 . X=+00 +00 .
J O | — | e 1> gy = — [x“e_(/l_‘§>x] + (- if)J x@e”(TIEX gy
0 o a x=0 0

xa—le—(/l—if)x dx.

and since [x@e~(ATHOX " = 0 we get

A—if A7 [+

— @ —Ax i€
dx (&) = T T(@ Jo x%e "M e'$Y dx.
On the other hand
/l(l “+00 . 1
detx(€) =igs | e e =i ) = o ex@©

So,

log px(€) = —alog(& +id) +k,
from which

¢x(§) = K(&+i1)~“.
Now, since ¢x(0) = 1, we have 1 = K(i1)~¢, thatis K = (i1)®, from which we obtain

dx(&) = ()Y(E+i)™ Y = (1 + %)_Q = (1 - if—;)_a.

ii) If X; ~ I'(a, A) are independent, then

~ n ~ n é‘: —aj _ f —(a1++an)
x4+, (§) = g%(j(f) = l_l (1 - 1/—1) = (1 - l/_l) :

j=1
From this, and from the uniqueness of the FT, X; +--- + X, ~T'(a; +-- - + @y, A).
ii1) We have
E[y(X) | Z] = ¢(2),

where
0(2) = | Wzl d.
R
with fep(.)
_ fxz(x,z
fx1z(xlz) = O

(provided XZ is abs. cont.). Now, (X,Z) = (X, X +Y) =T(X,Y) where T(x,y) = (x,x + y) is clearly a
bijection on R?, so

fxz(x,2) = fxr (T (x,2)) [ det(T™") (x, 2)].



12

Now (x,z) = (x,x +y) iff (x,y) = (x,z —x), det(T~') = (detT’)"' = 1, so

indep

Ixz(x,2) = fxy(x,z—x) =" fx(x)fy(z—x).
Since X,Y ~ I'(1, 1) we have
fx(x) = 26" 1[0 too»
and, by ii), about f~ we have
2
I'(2)

26 10 400[ (2) = P22 1[0 4oo[ (2).

fz(z) =

Therefore

e e T o Lo ()1 [04e (2 —X) 1
X|z) = g . =-1 ool (Z 1 X),
Ix|z(x]2) e 110,00 () Lo [(2)1[0,21(x)

from which we obtain
1 1(*
6@ = [ $0 T 11000 D010 = (; [ v dx) 0o (2.

So, since Z > 0 with probability 1,
1 (2
2= [Cvwa o
0

Exercise 3. See notes for definitions and relations between convergence in distribution and in proba-
bility.
1) We use characteristic functions. We notice that

1 11 1 S
Xn—z n—l+Yn—§ EXn—2+Yn—l +Yn—§Xn—2+;)2_kYn—k

Iterating, after n steps we arrive at formula

Because of the assumptions on independence

n—1 n-1 1 & 2 i fenot 1
53,6 = 0 O | |13, 6 = 05, (25) HE Z gy, (25) ot
k=0

Letting n — +oco we have
_Lfye 1) g2 1442
¢Xn(§) — ¢XO(0)3 Z(Zk:() 4k)§ =1-¢723% = ¢/¢/(0,§)(§)-

We conclude that X, N X ~ (0, 3.
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ii) Since convergence in probability is stronger than convergence in distribution, if (X,) converges
in probability then it converges also in distribution to the same limit. Thus, the unique possibility is

P P )
X, — X. But then also X,,_; — P, whence, being

X, X,
X, = "21+Yn, = Y,=X,- ”21

X
2

o] <

i) , = Y, i> #X. O
Exercise 4. 1) Let
Y, :=min{X,..., X, }.

We have
n
Yo <y} ={min(Xy,.... X,) <yb=| [{Xi >y, Xt >y, Xe <y}
k=1
SO
n n k-1
P(Y, <) = ) PG>y Xemr > v Xe <3) = ) [ B > 9) - B(Xk < ),
k=1 k=1 j=1

(]).:1 = 1. Since X; ~ exp(4), we have

with the agreement that [
Fx;(x) =P(X; <x) = (1 = ¢ ) {0 too[ (),

for y > 0 we have

n n-1
Fr,(0) =B(¥y <3) = ) (™) 1 =e™) = 3 (™) (1 -e)
k=1 k=0
I e Gl A
_ _ Ay —1_ naly
=(l-e ) T 1—¢ .

Clearly, Fy, (y) =0fory < 0.
i1) We notice that

{YN<y}=|_|{YN<y, N=n}:U{Yn<y, N =n}.
n=1 n=1

Thus,
Fry () =P(Yn <y) = ) P(Y, <y, N =n).

n=1
Since N is independent of the (X,,), N is independent of ¥,, for every n, so we have

P(Y, <y, N=n) =P(Y,<y, N=n)=P(Y, <y)P(N=n)=(1-p)" pP(Y, <y)

=p(l-p)" (1 -eV).
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Therefore,

(o)

Fy(y) = ip(l )" (1 — W) = ip(l =P e ) ((1 - p)e—Ay)"
n=1 n=1

n=1

=1

1 -V
I-(1=ple® 1—-(1-p)e’

=1-pe ¥
For y < 0 clearly Fy(y) =0.
iii) We have
+00
BV = | of ) .

where
Jrn () = 0y Fyy () = =09y (1 = Fyy (¥)).
Integrating by parts,

y=+00 i i Pe_/ly
E[Yn] = [-y(1 - FYN()’)]yZO +J‘0 1 = Fyy(y) dy = L == peb dy.

=0

Setting u = e~ (thatis y = —% log u) we obtain

III pu du p plogp
0

E[Yn] =< A el = (1 =pu)liZ = 7.

Ao 1-(I=-puu  A1-p)

Exercise 5. i) Notice that (R,0) = W(U,V) where ¥(u,v) = (y-2logu,2nv). Since (U,V) €
[0, 1]%, and since P(U = 0) = 0 and same for V, actually (U, V) €]0, 1]?> with probability 1, we consider
¥ 110,112 — ¥(]0,1]?) c [0, +00[x]0,27]. ¥ is invertible and (r,0) = W(u,v) iff r = \/-2logu,

2 2
0 =2nv,thatisu =e~ 2 and v = % so ¥~1(r,0) = (e~7,0/2r). According to the change of variable

formula, we have
2

2 —re”7 0
fre(r,0) = fuy (¥ (r,0)|det(¥~") (r,0)| = 1j0,17(e ) 110,17 (5%) |det
0

2
=|rle™ - 3=1[0.271(6)
In particular,
_2 1
fr(r) =lrle” 7, fo(0) = EI[O,ZH](O)-
i) (X,Y) = Y(R, ®) where ¥(r, ) = (rcos @, rsin 0) is the usual polar coordinate map. We have

fxr (x,) = fro (P~ (x, y))| det(P™") (x, y)!.



Since det W (p, 0) = p and

arccos —=—, y >0,
vl(x,y) = (w/xz +y2, Q(x,y)) , where 0(x,y) = Arecos Y i y<0
x2+y
we deduce
fir (e, y) = x4 y2eF = Lo

from which (X,Y) ~ 47(0,1) (where I is the identity matrix). Clearly X,Y are independent, each
distributed as a standard Gaussian. O

Exercise 6. i) We recall that X,, — 0 iff

v8>0,P(ﬂU |Xn|>s):0.

N n>N

According to Borel-Cantelli’s Lemma, a sufficient condition for this happens is

D UP(IXal > &) < +oo,
n

‘We notice that,

Y, Y, Y1 - Yi . Y
Xp=[1+—]X—1=|1+—=—|]1 Xy o=...= 1+ —1Xp= 1+—|>0.
n (+2) n—1 (+2)(+ D) ) n-2 ) +2 0 +2

For convenience, let € = sz So

{|Xn|>s}:{Xn>s}={ : (1+&)>L}

Notice that, for n > m,

1

1 n n ~
X,,:z—n]_[(2+yk)>2—m, — l—[(2+Yk)>2" m
k=0 k=0

and this happens iff at least n — m of the Y, = 1. Because of independence

1
P(YkIZI,...,Yk 21): 5

n-m n—m

SO

!
P(Xo> =] < " |-b o " Lom
2m n—m|2""m (n—m)lm!2"

1 2m n!
ZP(X,, g 2_’") < m! Z 2n(n —m)!”
nzm

n

and
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Now the last series converges by root test because, if a,, := then

2"(n m)"
Ansl (n+1)! 2"(n—m)!_1 n+1 1<1
a, 2" (n+1-m)! n! 2n+l-m 2 '

Thus, we conclude that

and Borel-Cantelli’s Lemma applies.
i) Since

by the independence of Y we have

n
1
E 1=1,
=[G 35 3) -]
so lim, E[X},] = 1. We conclude that X,, /— 0 in L'. Indeed, if this would happen,
1 = [E[Xn]| < E[|IXnl] = [ Xalli — 0,
which is impossible.
Exercise 7. i) Recalling of the monotonicity property of the conditional expectation, we have
-1 X| < X< |X|, as. = -E[|X||%] <E[X]|¥€] <E[|X]||¥Z],
from which
|E[X | ]| <E[IX]]Z].
i1) We notice that
E[X+Y|Y]=E[X|Y]+E[Y|Y] =
So,
Y[ =|E[X+Y |Y]| <E[|X+Y]||Y], a.s
and, by taking expectations,
E[IY] <E[E[IX+Y|[Y]] =E[lX+YI],
which is the conclusion.
iii) We notice that if A := E[X —Y | X + Y] then A is characterized by

E[Ap(X +Y)] =E[(X -YV)o(X + V)] = [, (x = y)@(x +y) duxy (x,y)
= [ (x = Y)@(x +y) duyx(x,y) = E[(Y = X)p(Y + X)]

—E[Ap(X +Y)],

from which
2E[Ap(X+Y)] =0, Vo(X +Y) € L§+y-

In particular, since A € L;( .y We conclude that A = 0 a.s., as desired.
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Now, setting Z = X+Y and W insuch away that 3X-Y = Z+W, thus W = (3X-Y)—(X+Y) = 2(X-Y),

being E[Z | W] =E[X+Y | X - Y] =0, by ii) we get
Wl <IZ+Wl1, = 2IX-Y|i <I3X =Y,
from which the conclusion follows.

k_Xi ~U[-1,1]. Then

T
1 © 1\ =

Y, = — 1+—| Xg.

" \F;( k)"

Exercise 8. Let X :=

So
by, (&) =E [eifﬁ Zk(“i)i"] indep ¢ (i (1 + l)) ,
1

where
sinn

¢(n) = px(n) = N

Now, since for & fixed \% (1 + %) — 0, recalling that

$01) = 6(0) + ¢/ (O + 36" (O + o),

and being,
() = 21, $(0) =1,
¢'(n) = % ¢'(0) = lim,) o ¢’ (1) 2 lim, o % -0,
72 ]3 3
& () = — % sin -2(17 cos —sin 1) 7(0) = lim, - _'72('”0(”))_2('7(I_ITW("Z))_(”_IT*O(U‘)))
= 7’ = n— 7
we have
772 2
¢(n)=1—g+0(n )-
Therefore,
L 1£2 1\? 1 1£2\" o
= l——2(1+—| +o|=]||~[1-== “6¢
o0 =[](1=55 (3] o 2)) - (--45) —
Therefore

Y, -5 4(0,1/3).

Alternative solution. We may notice that

1 © 1\ = l v | Kl=
Y, = — I+ Xk =— ) Xai+— ) —Xk.
D (R R DR DI

[SSTE
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Now, by the CLT
1 &=~
W, = — > X, -5 #(0,1/3).
\/ﬁkzl
‘We claim that
7 1 vwl= as; o
ni=— ) =X —0.
Vi i k

If this is true we have Y, = W, + Z, 4, A(0,1/3). Indeed
Oy, (€) =Bl €Wnel €70 = B | (/€% — 1) /€W | + E[e/€Wr].

By dominated convergence the first expectation goes to 0 while the second goes to e 5¢7,
To prove that Z,, 2% 0 we notice that, being | X,,| < 1 with probability 1,

1 &1 1 Sk 1
|Z,| < — -<— |1+ I —dx|=—=(1+logn) — 0. O
AP IR O L)
Exercise 9. i) We have
05,(6) =E[e€Win] = 721067 = 0728 — B, ~ #(0.1).
IfO<s<t,then0 < % < %and

(Bs, B = Bs) = (sWiy, tWise — sWiy) = (s (Wips = Wige) + sWiye, (8 = $)Wiye = s(Wiys = Wiy))

s(L=1)(Wyjs = Wipe) + (s, = 5)Wy;.
Being W/, independent of Wy,; — Wy, we have that

B [e/(6BoB=B)| = | [¢is(Em Wijs=Wip) oi(s£+=5)m Wiy |

E [eis(f—fl)(Wl/s—Wl/z)] E [ei(sf+(l—s)'7)W1/t]

— o 3(3-1)52 (=) g3t (tm4s(£-1))?
= o2 (&2 -28n) p =3 1 (P45 (E2407 26 ) 425t (§-17)
— o3 ls(E P 2&m P +2sn(E-n)]

= ¢ 1 (5EH1=)1?) = =358 =3 (1=5)07"

that, at once, says By ~ #(0,s) and B, — By ~ 4 (0,t — s) and they are independent. Finally,
B; € €(]0, +c0[) being W; € €([0, +0[).



ii) We have

P(|B;| > ¢e) =P(|tWiy|>e)=P(Wi,l>%£)=2- f o T _dx_

1
2y

y2

2j/{e T A —0,1-0+. O

Exercise 10. i) Notice that Z, W € N. So, let z, w € N and let’s compute
P(Z=z, W=w) =P(min(X,Y) =2z, [ X-Y|=w).

We distinguishw =0 fromw > 1. If w =0,

P(Z=z W=0) =P(min(X,Y)=z, [X-Y[=0)=P(X=Y,X=2)=P(X=2zY=2)

"EPR(XO= R = 2) = (1= p)*p) = (1 )R

If w > 1, noticed that | X — Y| =w iff X =Y + w we have

P(Z=z W=w) =P(min(X,Y) =2z, X=Y = w)
=P(X=Y-w, X=2)+P(X=Y+w, Y =2
=P(X=z,Y=z+w)+PY =2 X=z+w)
AP X = )P(Y = 2+ w) +P(Y = )P(X = 2 +w)

=2(1-p)*'p(1-p)=™'p

=2(1 - p)*2p?,

ii) Z and W are independent iff

P(Z=z, W=w)=P(Z=2)P(W=w).
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From previous calculation we have

|_|Z=z,W:w):i]P(Z:z,W=w)

w=0

P(Z=z) =P

— (1 _p)22—2p2 + i 2(1 _p)2z+w—2p2 — p2(1 _p)22—2 (1 +2§:(1 _p)w)
w=1

w=1

_ 201 _ )2z2-2 1 —
=ri-») P+2(1—u—p) Q)

(1 —
=P D gt )

Similarly,
P(W = w) :P(I_IZ:z,W:w) =Y B(Z=2,W=w)
z>1 w=1
w=0, X2,(1-p)*?p>= Pzrl_mz = %,
w>1 2p°(1=p)" 22,(1-p)*77 =2(1 - p)* L5
So

w=0, p(1-p)*22=-p)- 355 =p*(1-p)*72
P(Z=2)P(W=w) =
w>1, p(1-p)*2(2-p)-2(1 - p)"rts =2p*(1 - p)>+=2
=P(Z=z,W=w).
We conclude that Z and W are independent.

Exercise 11. See notes for Borel-Cantelli’s Lemma.

1) We prove that
P(ﬂU{Yn > 1+g}) =0.
N n

To this aim we apply first Borel-Cantelli’s Lemma proving that

ZP(Yn > 1+¢g) < +c0.
n

We have
P(Y,>1+¢e)=P (Xn > logn + (1 +¢)log(logn) = log (n(logn)1+"3)) .



Being X,, ~ exp(1), we have
P(Xl’l > a) = e_a’

N
1

P(Y, > 1+ — —log(n(logn)“g) R
(Y &) =e n(logn)l+e

from which

1
Zn:P(Yn>l+8)=ZW<+OO

n

ii) According to second Borel-Cantelli’s Lemma, if the events E,, are independent and

D P(E,) =+, = P(ﬂUEn)zL
n N n

So, since the Y,, are independent, to prove that

P(QL’){Y,I> 1—.9}):1

we just need to verify that

ZP({Y,, > 1 - g}) = +oo.

By a calculation similar to that of 1),

1 1
PY,>1-¢g)=——m—, = PY,>1-¢)= S —
(¥ ?) n(logn)!-¢ Zn: (¥ &) Zn: n(logn)!-¢ «
and the conclusion follows.
Exercise 13. i) We have
=X— = 1
A (A) = J‘ dxdy R g J dudv = 2ab,
Ix-yl<a, |x+y|<b 2 Jjur<a,lvi<b
SO
1
fY(y) = J fX,Y(xa Y) dx = — 1y—a<x<y+a, —y—b<x<—y+b(x) dx
R 2ab R
= LJ 1 - dx = M]
2ab " max(y—a,—y—-b)<x<min(y+a,—y+b) 2ab m(y)<M(y)
where
-y - b, y<—b%a, y+a,
m(y) = max(y-a, —y—b) = M(y) = min(y+a, —y+b) =
y—a, y> —b%“. -y+b

21
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Returning to fy (y) we have

y< _b%a’ = ﬁ I]R 1[—y—b,y+a]()€) dx,
fr(y) = _b%a Sy < b%a’ = ﬁ IR Ly—a,y+a)(x) dx = %,
y > 4, = 545 [n Hy-a,—y+0) (x) dx.
Now, -y —b < y+aiff y > -2, and since —42 < —254 we have
> y <,
fr(y) = X 1 i i .
55 (2y+a+b) = %(y+%), —42 Ly < =554
Similarly,
b
0 y> 5t
fr(y) = - . ,
at. —a +a
a_b(T_y)’ - S y< 7>
We conclude that
0 y <-4,
5y ra+h) = (veask), —ok <y <-bre,
fr(y) = %, _%a<y<b%a,
a (44 ). ba gy < by,
0, y > a42-b
ii) We have
a+b

E[X|Y=y]=0, |y| > 5

while, for |y| < 42,

1 1
E[X | Y = y] = JRfoIY(x | y) dx = fY(y) ﬂ JRx1max(y—a,—y—b)<x<min(y+a,—y+b) dx.

Denoting by m(y) := max(y — a,—y — b) and M(y) := min(y + a, —y + b), we have

1 J 41 . g = M)+ M)
M(y) — m(y) = max(y—a,—y—-b)<x<min(y+a,—y+b) ) s

and since fy(y) = ﬁ(M(y) —m(y)), we have

_my)+ M)

B[X | ¥ =) .



23
Here we have the following cases:

e casea = b. Thenm(y) =max(y—a,-y—a) =|y|—a, M(y) =min(y+a,-y+a) = —|y|+a so
E[X|Y=y]=0, |yl<a, = E[X|Y=y]=0.

e case 0 < a < b: if we have

—y—b+y+ — -
Y 2ya=_b2a’ _a;b <y<_b2a,
—a+y+ z -
E[X |Y =y] =4 e - —boa <y < bsay
y—a+(=y+b) _ b-a b-a b+a
2 =7, 2 SYST
e case 0 < b < a: if we have
+ +b -
y—a ( y+b) _ 2(1, _a%z-b <y< _bza,
- b+ +b - =
E[X|Y=y]= y= (y ) _b2a<y<b2a’
m _b-a b=a b+a
2 70 2 SYSS
iii) Since in all cases take constant values with positive probability, E[X | Y] is not absolutely
continuous, so there is no density for it.

O
Exercise 15. i) Let X > 0 natural valued. By monotone convergence

ZP(X > k) = ZE Ixsk] = Z 1X>4

Now, assume X () = n. Then

-1
Z Ix(w)ok = Z 1=n=Xw),
k=0

From this the conclusion follows.
ii) We have

O
0 ~—— 0

+00 +00 +00 X
J P(X > 1) dt :J E[lxs:] dt = E J Ixs; dt|=E U dt| = E[X].
0 0

=ljo,x[(?)

Exercise 16. i) To be a true covariance matrix C must be symmetric and positive definite. Clearly, C
is symmetric. To be positive definite we need that

)G}

A quick condition for positivity, if you remind, is that all the k& X k sub-determinants on the diagonal are
positive. These are 1 and 1 — p2, so the condition is 1 — p? > 0, thatis =1 < p < 1.

Equivalently,
+
C(x) : (x) = (x py) (x) = (x+py)x + (px+y)y =x> +y> +2pxy
y) v \pex+y/ly
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2

If x = +y we have x? + x% + 2px? = 2x*(1 = p) > 0iff 1 + p > 0, thatis —1 < p < 1. For such p,

24y 4 20xy > 2+ 92— 20xllyl = (x| + [y])? > O, v(’;) 0.
ii) We know that (X,Y) = (Rcos ®, Rsin®) = ®(R, ®), so
fro(r,0) = fxy(®(r,0))| det®'(r, 6)|

where
1 —p ]
o 37 G)-G)
O, R S 1ol (919 S [ S N
\J(2n)2detC V2r)2(1 - p?)
= —; = 6_2(]_1/72) (x2+y2_2px}))‘
Ver)2(1-p?)
Thus,
1 _ r2 _ 0
fro(r0) = ————— 2 TP (D) 110201 (6).

V(2m)2(1 = p?)

For the distribution of ® we have

fol0) = fR fro(r.6) dr =

_l-psin(20) 2

e 2" dr - 1102x) (6)

1 J+°°
;
2r4/1 = p? Jo

L 20 [
211 = p? 1 — psin(26)

L Ve e

211 - psin(26) 10.27]
iii) R and © are independent iff fr @ = fr fo. It is evident that this can happen iff p = 0, that is iff X and
Y are independent. In this case we have

110,271(0)

r=0

1
fe(0) = El[o,zn] (9),

and

,0 2

iv) We have

27(1 — psin(20)) 1 J+°° 2,- 1-psin(20) 2
r
0

2001 dr
V1 -p? 241 — p?

EIR10=0] = | rfio(rlo) dr -

R S ure™ T du= r(1-p?)
1 - psin(26) Jo ~ N 2(1-psin(26))



Similarly,
1 _ : 29 +00 _1-psin(26) 2
E[R?|@=0] = J r frio(r]0) dr = — L2227 Smg ) J e 2007 "
R l-p 0
1-— 2 +00 2
= —p we T du.
1 — psin(26) J,
Noticed that
+eo u? u? e +oo u?
‘[ we T du= [uz(—e_z)] +J 2ue” 2 du=2
0 r=0 0
we deduce
1 - p?
R[R?|®@=0]=2—— " .
(R | 1 — psin(26)

Exercise 17. 1) We have to show that

X, X,
P(M<1+gfora11butﬁnite1ymanyn):P(Uﬂ 1 Xs| <1+s)

logn
that is, taking the complementaries,

P(ﬂ U {é"}'q > 1+g}) = 0.

N n>N

We apply first Borel-Cantelli’s Lemma. Notice first that

X
p(' n| >1+5):P<|Xn|><1+e>1ogn>.
logn

Now, for a > 0,

1 oo
P(X,| = @) :‘[ —e~ ¥l dx:J e dx=e"?,

]-00,—@]U[ @, +o0[ 2 @

SO

1
P(|X,| = (1 +&)logn) = e~ (1+&)logn _ —.
n +&

X 1
ZP |"|>1+g :Z < +0o, Ve > 0,
logn nl+e

n n

Therefore

so the conclusion follows.
ii) We now have to prove that

dr

‘ X
P(—l i > 1 — g for infinitely many n) :P(ﬂ { | X > l—a}) =1.
N n>=N

logn logn

25
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Here we can apply the second Borel-Cantelli Lemma: since the X, are independent, the conclusion will
follow once we prove

As above,

X
]P({ [ X > 1 —s}) =P(|X,| > (1-¢)logn) = e (178 loen — ____
logn nl-¢

SO

n 1
ZP({llj(grlz > 1—5})=an_g =+4c0. O

n n

Exercise 19. In L2, conditional expectation is the orthogonal projection ITX. In particular X — ITX L
I1X so, by Pythagorean’s theorem,

XI5 = ITX13 + [|1X - TIX|[5 > [|[TIX])3,

that is
IELX | 21115 < IIX]13,

from which the conclusion follows.
i) By the Pythagorean theorem,

X113 = ELX [ Y3+ 11X —B[X [ Y] = Y5+ 1X = Y3, = IX=Y[3=1X]5-IYI5
For the same argument, from E[Y | X] = X we have
I = XI5 = IY13 - 1IX15,
and summing these identities we get
21X -Y|3=0, = X =Y as.

ii) Arguing as in i) we get

I1X = Y113 = 1115 = Y115,

1Y =ZI5=1YI5- 1215, = IX-YI3+Y-ZI3+IZ-X|3=0, = X=Y=Zas. O

1Z - X113 = 112115 = 1IX113,

Exercise 20. i) Clearly F is well defined, increasing, F(—o0) = ¢~ **) = 0 and F(+) = ¢70 = 1.
Moreover F € € (R), so F is a cdf.
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ii) We have
Fy,(y) =P, <y)=P(max{Xy,...,Xu} <)

=

(I—-e ", y>0.
iii) Let Z, :=Y,, —logn. Then
Fz (2) =P(Z, < z) =P(Y, < z+logn) = Fy, (z+logn).
For z € R fixed and n large enough, z + logn > 0 so
e~

n
Fz,(2) = (1 - e_(“log"))n = (1 - —) — ¢ ¢ " =F(z), VzeR.
n

. . . d
Since F is a continuous cdf, we conclude that Z,, — Z where Fz = F. O

Exercise 21. We notice that

POCHY €8) = || 1uGray) fr () dudy = | 1ox ) ) 0) ddy

ey vx j 16 () fx () fy (= v) dud
RZ

-| (jR S fir(u—v) dv) du

= J‘ fx * fy(u) du.
E

This says that fx.y (1) = fx * fy(u).
i) By induction,
fxpwoax, = Ixg %% fx,
Applying the FT,
fX1+---+Xn (éj) = le (f) e 'an (f)
Notice that

+00 +oo
fx (&) = J fx, (x)e % dx = J Ae e iEX gy = AJ e~ (MHEX gy
R 0 0

[e—(/l+i§)x

X=+00 1 1
=4 —(A+18) | = :/l(o_—(/l+i§))=/l+i§'
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So,
N A2 \" i
fX1+~~~+Xn(§) = (/l +l§) = (—i)”‘l(n _ 1)'62_1(/1 +i§)_1'
Applying the FT,
— At
27 fx et X (%) = fxpreax, (X) = mag_l(ﬂ +if)~! (x)

= (-1)"! - 1)!x”_1(/l +if) "1 (x).
Now, since

AA+i€)7" = Ae M1 g poo[ (),
we have

A+ )1 (x) = e H1 g oo () = 2726 1[0 o0 (—2),
from which, finally,
(_M)n—l

fxiaax, (x) = 4 eilx1[0,+oo[(x)-

(n—=1)!
ii) Let S, := X1 + - - - + X;,. We compute the cdf of Sy: forx > 0,
P(SN <x) = ) P(Sy <x,N=n)= > P(S, <x)(1-p)"'p
n=1 n=1

e X (—/ly)n_l _ .
=ﬂp;L o Dre (1 -p)" " dy

X

x X 1=p)A n—1
mon.conv, /1[) J;) Z ( ( P) y) e—/ly dy Zﬂpj e—(l—p)/lye—/ly dy
n=1

(n—1! 0
that is .
Fsy(x) = Ap L e WY dy, = fs\(x) = Ape P 1 [g o[ (x). O

Exercise 22. i) See notes.
ii) Let ¢x (¢) := E[e?¢X]. To show that ¢y is differentiable we apply the differentiability under integral
theorem. Formally

d¢9x(£) = B[iXe'#X].
Notice that |iXe'¢X| = |X| € L'(Q) being, by Cauchy-Schwarz inequality, E[|X|] < E[X?]'/? < +co.
Thus differentiability theorem applies. Then,
0z px(€) = B[(iX)%e'*X].
Again, being |(iX)%e!¢X| = X? € L1(Q), because E[ X?] < +co. In particular,
0;¢x(0) = E[(iX)*] = -E[X7].
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iii) Notice that dzpx(£) = —c4¢3e=¢¢" and 6§¢X(§) = ¢¢"(16¢2£5 — 12¢£2), so, in particular,
82¢x(0) = 0. By ii), E[X?] = 0, thus X = 0 a.s., from which ¢x(¢) =E[1] = 1 =¢~" iffc =0. O

Exercise 23. i) See notes.
i) Let & = (W, : s < t). We have to verify

E (W] - 3tW, | %] = W = 3sW,, Vi > 5 > 0.
‘We have
W3 = (W, = Wy + Wy)® = (W, — W) +3(W, — Wy)2Ws + 3(W, — W) W2 + W3,

so, recalling that W, — W, independent of &% and Wy is F;, by the properties of the conditional expectation
we have

E[W; | F] =E[(W, = Wy)*] + 3W,E [(W, — W)? | F| + 3WZE[W, — W, | F] + W
=0+ 3W,E[(W; — W,)?] + 3W2E[W,; — W,] + W?

=3W,(t—s) + W}
SO
E (W} = 3tW, | F| =3W(t—s)+ W] = 3E[W, | F] =3W,(t —s) + W} = 3tW,
= W3 -3sw;,

which is the conclusion.
iii) We start noticing that

W= (W, = Wy + Wo)* = (W, = W)* + 4(W, = W) Wi + 6(W, — Wo)* W7 +4(W, — W)W, + Wy,
SO
E[W} | F] =3t —s)?+6(t—s)W2+W?
Now, notice also that

E[W? | F]=t-s+W?, & E[W>-t|F]|=W>—5,

N

SO
6tW?2 = 6t (E[Wtz 1 F] + s) —E[6/W? | Fy] - 61(t - 5),
from which
E[W} - 6tW2 | F] = Wi —6sW2+3(t —s)> - 6t(t —s) =
= Wi - 6sW2 - 3(1% - 5%),
so, finally,

E[W} — 6tW? + 31 | F;] = W — 65sW? + 352,

that is, W' — 6tW? + 31? is a martingale. m|
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Exercise 25 i) Assume (X, Y) are independent, so fxy = fxfr. Then

bxr(Em) =ElED D] |

eI £y (. ) dxdy = j IO i (x) fi (v) ddy
R R

- JR e'¢* fx(x) dx JR"’i”ny<y> dy = E["*¥]E[e"""] = ¢x(&)dy (1)

this for every (&,7) € R.
Vice versa: assume ¢x y = ¢x¢y. The previous calculation shows that

fxy = fxfr,

and since both fx.y, fxfr € L'(R?) because they are probability densities, by the injectivity of L! FT
we conclude that fy y = fx fr as claimed.
1) We can use the characteristic functions:

bxey x_y(&m) =F [ei(X+Y,X—Y)-(§,n)] R [e(§+n)X+(f—f7)Y] -E [ei(-in)X] B [ei(f—n)Y]

— o2&t = (E-n)? | =387 _ - -
On the other hand
Fxar (1) = B[] =B [¢X] B[] = o5 e =,

We can conclude that ¢x.y x-y = ¢x+vdx-y, thus X + Y, X — Y are independent and that they are both
Gaussian (0, 2).
iii) As suggested, (x + y)? — (x — y)? = 4xy, so

E[XY | X -Y] = %E[(X+Y)2— (X-Y)*|X-Y|

By independence,

E[(X+Y)? | X-Y]=E[(X+Y)*] =2,
while

E[(X-Y)|X-Y]=(X-Y)~

Therefore

E[XY | X - Y] :i(z—(X—Y)z). O

Exercise 26 i) We start noticing that
X = aXp—1 + Ni—1 = a(@Xk—2 + Nx—_2) + Nk=| = @*Xi—2 + Nk—1 + aNi_».

Iterating this we get
k=1 k=1
X = a/kX() + Z CYij—l—j = a'kxo + Z a/ij_l_j.
J=0 Jj=0
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Clearly,

k-1
E[Xi] = a¥xo + ) o/B[Ni_1-] = a*xo.
7=0
About the variance we have
2
k=1
V[Xc] =E[X;] - E[Xk]* = E || a*xo + Z @/ Nioi—j | | - oxg.

=0

Noticed that E[a*xoa’/ Ni_1 - i1 =0, and being the N independent, we have

k-1 k-1 1 — g2k
2%k 2 25 A2 2k 2 NS
VIXe] = o + ) VBN, ] - atxo =0 ) (o) = o
Jj=0 j=0
. _ .k
because of the formula Zf;ol q’ = 11_qq .

ii) We have
E[Xkt1 | Fx] = E[aXy + Ni | Fi] = aXi + E[Ny | Fi].
Since F = o (X1,...,Xx) =0 (No, ..., Nr_1) and N being idependent of N; for j < k, we have
E[Nk | ] = E[Nk] = 0.

Therefore, E[ Xg+1 | Fr] = Xk, so (Xi) is a martingale w.r.t. F iff @ = 1.
iii) ‘We have Xiy1 — Xi = (1 - a)Xk + Np. Ifa=1,

| Xes1 = Xicll3 = B[ (Xe1 — Xi)?] = E[NF] = 02,
whereas, if @ # 1,

1 Xke1 = Xell3 = E[(Xi1 — Xx)*] = E[(1 — @)?X} + N +2(1 — @) Xg Ni ]

1_a,2k
7 0'2+0'2=((1—a)(1—02k)+1) o2
-«

In each case, || Xx+1 — Xi|l2 #— 0 when k — +o0, and this must happens to have L? convergence. Thus,
Xy is not convergent in L.
iv) We have

. k-1
¢X (f) =E I:eika] —E [eif(akx(ﬁZf_ol (ZJNklj):| — eif(zkx() l_l E I:eigllek_l_j:l
k .
j=0

=(1-a)?

Let ¢ be the common characteristic function of the N;. We have ¢(¢) = e 20¢ 2, SO

k-1 2k
ek _L 20 2 ek 122 yk-1 2j ce ko 1 21-a?k .2
¢Xk(f)=€l§a XOl |e ;07 (al &) Zelfd X, 0 87N @ :elffl X0—30 1_(,25'
Jj=0

k

Letting k — +o0, @ —> 0 being |a| < 1, so

_leé:Z
¢Xk(é:) — e 21-a?" )
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that is
2
x-S rlo L) o
1-a?

Exercise 27. i) See notes for the definitions.
ii) We start noticing that

t N t
X, =W§—3J Wrdrz(Wt—Wg+WY)3—3J Wrdr—3j W, dr
0 0 s

= (Wi = W,) 4 3(Wy = Wy 2 W, + 3(W; — W) W2+ W3 =3 J W, dr
0

=X

-3 JI(Wr - Wy) dr = 3W,(t —s).

We now apply the conditional expectation w.r.t F;. Notice first that X; € ;. Then
E[(W; = Wy)® +3(W; = Wy)? Wy +3(W, = W) WS | %] =
= E[(W, = Wy)’ 1 +3W E[(W; — W)*] +3W] E[W, — W]

— ~— —
=0 t—s =0

=3W,(t - s).
Finally,

E Ut(Wr - Ws) dr | P/TS] = JtE[Wr - Wy | F] dr =0.
' S =E[W,-W;]=0
Therefore, in conclusion,
E[X, | Fs] = X5 +3Ws(t —5) = 3W,(t - 5) = X,
that is, X; is an &; martingale. O
Exercise 28. i) To be a well defined covariance matrix, C must be symmetric (evident) and strictly

positive definite. This last follows from positivity of k X k (k = 1,2) sub-determinants that are 1 and

1-1-3
-.4 — 4 ’ . . .
ii) We use the characteristic function:

by ax_y(&m) =E [ei(f,n)-(Y,ZX—Y)] -E [ei<§Y+rl(2X—Y))] -E [ei(Zn,§—n)-(X,Y)

— e 2CQnE-m2né-n) _ o3 (4P42520(E-mH(E-m)?) _ ,~5(307+€7)

=dx0,1)(E)dr0,3) (M)



and since Y ~ #7(0,1) and 2X — Y ~ 4 (0,3) we have that
by 2x-y (€.1) = oy (E)dax—y (), V(&,71) € R,

from which we deduce the independence.
iii) Since X = %(2X —Y)+7Y, we have

2
1 1 1
X2y = (5(2)( —Y)+ 5Y) Y=y ((2X Y)Y +202X -Y)Y? 4 Y3)
and since Y and 2X — Y are independent

E[X?Y [2X -Y] = % (E [2X -Y)’Y | 2X - Y] +2E [(2X - Y)Y? | 2X - Y| +E[Y? | 2X—Y])
= % ((2X ~Y)’E[Y | 2X - Y] +2(2X - Y)E[V? | 2X - Y] +E[Y3])

- % ((2x —Y)2E[Y] +2(2X - Y)E[V?] + E[Y3])

2X-Y
R

Exercise 29. i) See LN.
ii) Let Ey := { Xy = Xp41 = Xpyp = 1} € F (X are random variables). Then,

E = m U Eyr =limsupEy € F.
n k>n
Moreover, since

indep 1

P(Ep) "EP P(Xy = DP(Xess = DP(Xpyp = 1) = :
(Ex) (Xk = DP(Xis1 = DP(Xps2 = 1) ACESICES)

and

1 1
P(Ey) = ~ — < 00,
Zk: (Ex) Zk: Vik(k+ 1D (k +2) ; Ken s

by the first Borel-Cantelli lemma we deduce that
P(E) = P(limsup Ex) = 0.
k

iii) As in ii), let Fy := {Xx = X1 = 1} € F and

Notice that the events F} are not independent, while F;; are independent. Since,

Fo ﬂ U F>p = limsup Fyy,

n kxn

33
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we are led to assess P(lim sup; Fox). As in ii),

indep 1 1 1 1
P(Fr) = PXip=1)PXpy1=1)= ———, = P(Ex) = = = —,
’ Jk(k+ 1) V2k(2k+ 1) Vak2 2k
ZP(ng) > Z L = 4o0.
T - 2k

By the second Borel-Cantelli lemma we conclude that P(lim sup, F2x) = 1, so P(F) > 1 from which
P(F) =1. ]

SO

Exercise 30. i) Since 0 < X < 1 withP =1, wehavethatS,,; > S,,,soN >niff §1 < 1,...,5, <1,
that is §; < 1. In other words

(N >n}={S, < 1}.

Therefore,
. 1
P(N>n)=P(Sy < 1) =P(X;+ -+ X, < 1) = J ]_[ 1jo.1) (xx) dxi -+ - dxp = —.
Xi+txn <l g n!
From this we have

]P(N:n):P({N>n—1}\{N>n})=P(Nn—1)—P(N>n)=ﬁ—%zn’;l.

i1) We have

(o)

S -1 -« 1 1
BN = 3 Ev = = S = S =

n=1

. . . o 1k
Recalling of the exponential series 3, 37 = ¢ we have

E[N] =e.
iii) We have
E[Sn] = D E[Suln=n].
n=2
We notice that
{N=n}={S,-1 <18, >1}
o)

E[Spln=n] =E[Snls, <ils,>1] =E[E[Suls, <ils,>1 | Su-1]]

=E[ls, <iE[(Sn-1 + Xu)1x,>1-5,, | Sn-1]]
Now, if s =8,,_1 <1,

E[(Sn—l +Xn)1Xn>1—Sn,1 | Sp-1 = S] = SE[IXn>1—s | Sn—1 = S] +E[Xn1Xn>1—s | Sn—l],
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and by the independence of X,, from S,,_; = X; +--- + X,_1, we have
E[(Sn-1+Xu)1x,51-5, | Sn-1 =] =sE[lx,>1-s] + E[Xplx,>1-s]

=s(1-(1-s))+ Jll_sx dx

1
=§+[%] =52+ 1(1-(1-5)?)
x=1-s

=5+
Therefore
1 1 1 1 1
Iyen] =E||=S? a1 == +1' == .
ElSnln=n] K2&*+S"J &1@} 21 Tt T G ) e D) | (n-2)in
From this

1 © 1 = 1
EBN]:EZ;M—ZMM+1)+Z;M—2ﬂn

To compute the exact value of the sum we notice that

- 1 n—-1 1 1
= = ——|=e-1-(e-2)=1
> mmm e 2 () ,
“~ (n-2)!n i n! “~ (n—=1! n!
while
0o 1 _yo nm=-1) _ gy [(ntl)(n-1) 1 2
2= o) D) _Zn:Zm—l)!_zn:Z( )T _(::l)!+(n+l)!)
_vyoo (n-1_ 1 2 ) _ v 1 2 2
= 2ine (nn! —at (n+1)!) = 2ne ((n—l)! —at (n+l)!)
=e—-1-2y>,L4+2y> L=¢-1-21=¢-2.
Thus,

|
EWM:EQ—D+1:§ O



