
Stochastic Methods for Engineering

Exam 1

Exercise 1. Let (𝑊𝑡 )𝑡⩾0 be the Brownian Motion. For every 𝑠, 𝑡 ⩾ 0 compute
i) E[𝑊𝑡𝑊𝑠]

ii) E[𝑊𝑠𝑊
2
𝑡 ]

iii) E[𝑊2
𝑠𝑊

2
𝑡 ]

iv) E[𝑊𝑠𝑒
𝑊𝑡 ].

Exercise 2. We recall that 𝑋 ∼ Γ(𝛼, 𝜆) for 𝛼, 𝜆 > 0 if

𝑓𝑋 (𝑥) :=
𝜆𝛼

Γ(𝛼) 𝑥
𝛼−1𝑒−𝜆𝑥1[0,+∞[ (𝑥).

(recall that Γ(𝛼) =
∫ +∞

0 𝑥𝛼−1𝑒−𝜆𝑥 𝑑𝑥 and Γ(𝑛) = (𝑛 − 1)! for 𝑛 ∈ N, 𝑛 ⩾ 1)
i) Let 𝜙𝑋 be the characteristic function of 𝑋 . Show that

𝜕𝜉𝜙𝑋 (𝜉) = − 𝛼

𝜉 + 𝑖𝜆 𝜙𝑋 (𝜉),

and deduce, from this 𝜙𝑋.
ii) Check that if 𝑋 𝑗 ∼ Γ(𝛼 𝑗 , 𝜆) for 𝑗 = 1, . . . , 𝑛 are independent, then 𝑋1 + · · · + 𝑋𝑛 ∼ Γ(𝛼, 𝜆) for a

suitable 𝛼.
iii) Let 𝑋 and 𝑌 be i.i.d. random variables ∼ Γ(1, 𝜆) and let 𝑍 = 𝑋 + 𝑌 . Show that the following

formula holds:
E[𝜓(𝑋) | 𝑍] = 1

𝑍

∫ 𝑍

0
𝜓(𝑥) 𝑑𝑥.

Exercise 3. What does it mean that 𝑋𝑛

𝑎.𝑠.−→ 𝑋 and 𝑋𝑛

P−→ 𝑋? What relationships exist between these
two types of convergence?

Let 𝑋0 ∼ 𝑈 ( [0, 1]) and (𝑌𝑛) are i.i.d. 𝒩(0, 1) random variables. For 𝑛 ⩾ 1 define

𝑋𝑛 :=
𝑋𝑛−1

2
+ 𝑌𝑛.

ii) Show that 𝑋𝑛

𝑑−→ 𝑋 where 𝑋 = . . ..
iii) Is 𝑋𝑛

P−→ 𝑋?

1
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Exam 2

Exercise 4. Let (𝑋𝑛) be i.i.d. random variables with exponential distribution, 𝑋𝑛 ∼ exp(𝜆). Let also
𝑁 be independent of (𝑋𝑛) with geometric distribution of parameter 0 < 𝑝 < 1 (namely, P(𝑁 = 𝑛) =

(1 − 𝑝)𝑛−1𝑝, 𝑛 ⩾ 1). Define
𝑌𝑛 := min{𝑋1, . . . , 𝑋𝑛}.

i) Determine the cdf of 𝑌𝑛.
ii) Determine the cdf of 𝑌𝑁 .

iii) Compute E[𝑌𝑁 ].

Exercise 5. Let𝑈,𝑉 be i.i.d. uniformly distributed on [0, 1]. Derive

𝑅 =
√︁
−2 log𝑈, Θ := 2𝜋𝑉.

i) Determine the joint distribution of (𝑅,Θ) and the marginal distributions of 𝑅 and Θ.
ii) Set

𝑋 := 𝑅 cosΘ, 𝑌 := 𝑅 sinΘ.
WHat is the joint distribution of (𝑋,𝑌 )? Are 𝑋 and 𝑌 independent? What are their univariate
distributions?

Exercise 6. Let (𝑋𝑛) be a sequence of random variables such that

𝑋0 ≡ 1, 𝑋𝑛+1 − 𝑋𝑛 =
1
2
𝑌𝑛𝑋𝑛,

where 𝑌𝑛 is a Bernoulli r.v. with P(𝑌𝑛 = ±1) = 1
2 , and 𝑌𝑛 is independent of 𝑌0, . . . , 𝑌𝑛−1. We may

interpret 𝑋𝑛 as the amount of money an investor will have after 𝑛 days if he wins or loses half of the
money daily, both with probability 1/2).

i) Prove that 𝑋𝑛

𝑎.𝑠.−→ 0 (hint: start estimating P( |𝑋𝑛 | ⩾ 1
2𝑚 ) for 𝑚 ∈ N fixed, then use Borel–

Cantelli’s Lemma).

ii) What about lim𝑛 E[𝑋𝑛]? Does 𝑋𝑛

𝐿1
−→ 0?
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Exercise 7. Let 𝑋 ∈ 𝐿1(Ω).
i) Prove the triangular inequality

|E[𝑋 | 𝒢] | ⩽ E[|𝑋 | | 𝒢] .
ii) Show that if 𝑋,𝑌 ∈ 𝐿1(Ω) are such that E[𝑋 | 𝑌 ] = 0, then ∥𝑋 + 𝑌 ∥1 ⩾ ∥𝑌 ∥1.

iii) Show that if 𝑋,𝑌 ∈ 𝐿1(Ω) are such that 𝜇𝑋𝑌 = 𝜇𝑌𝑋 then
E[𝑋 ± 𝑌 | 𝑋 ∓ 𝑌 ] = 0.

Use this to deduce ∥3𝑋 − 𝑌 ∥1 ⩾ ∥𝑋 + 𝑌 ∥1.

Exercise 8. Let (𝑋𝑛) be independent with 𝑋𝑛 uniformly distributed on [−1 − 1
𝑛
, 1 + 1

𝑛
]. Let

𝑌𝑛 :=
1
√
𝑛

𝑛∑︁
𝑘=1

𝑋𝑘 .

Discuss convergence in distribution of (𝑌𝑛) identifying also the limit (if any).
(hint: 𝑋𝑘 = 𝑘

𝑘+1𝑋𝑘 ∼ 𝑈 [−1, 1]).

Exercise 9. Let (𝑊𝑡 )𝑡⩾0 be the Brownian Motion and define

𝐵𝑡 :=

𝑡𝑊1/𝑡 , 𝑡 > 0,

0, 𝑡 = 0.
i) Check that (𝐵𝑡 ) are gaussian random variables (determining their distributions), and that the

increments of (𝐵𝑡 ), namely 𝐵𝑡1 , 𝐵𝑡2 −𝐵𝑡1 , . . . , 𝐵𝑡𝑛−𝐵𝑡𝑛−1 −𝐵𝑡𝑛 are independent random variables.
Check also that 𝐵𝑡 (𝜔) ∈ 𝒞(]0, +∞[).

ii) Check that
𝐵𝑡

P−→ 0, 𝑡 −→ 0 + .
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Exercise 10. Let 𝑋,𝑌 be independent random variables both with geometric distribution of parameter
𝑝 ∈]0, 1[ (that is, P(𝑋 = 𝑛) = P(𝑌 = 𝑛) = (1 − 𝑝)𝑛−1𝑝). Define

𝑍 := min(𝑋,𝑌 ), 𝑊 := |𝑋 − 𝑌 |.
i) Determine the distribution of (𝑍,𝑊).

ii) Are 𝑍 and𝑊 independent?

Exercise 11. What does Borel–Cantelli’s Lemma state?
Let now (𝑋𝑛) be i.i.d. random variables, 𝑋𝑛 ∼ exp(1). For 𝑛 ≥ 2 define

𝑌𝑛 :=
𝑋𝑛 − log 𝑛
log(log 𝑛) .

Prove that, for every 𝜀 > 0 fixed,
i) P (⋃𝑁

⋂
𝑛{𝑌𝑛 ⩽ 1 + 𝜀}) = 1

ii) P (⋂𝑁

⋃
𝑛{𝑌𝑛 ⩾ 1 − 𝜀}) = 1.

(it might be helpful to know that
∑∞

𝑛=2
1

𝑛(log 𝑛)𝛼 < +∞ iff 𝛼 > 1)

Exercise 12. Let𝑊 be a BM on (Ω,ℱ, P). For 𝑇 > 0 fixed, let ℱ𝑇 := 𝜎(𝑊𝑡 : 0 ⩽ 𝑡 ⩽ 𝑇) and define

Q(𝐸) := E
[
1𝐸𝑒

𝑎𝑊𝑇− 𝑎2
2 𝑇

]
, 𝐸 ∈ ℱ𝑇 .

i) Check that Q is a well defined probability measure on (Ω,ℱ𝑇 ).
ii) Check that

EQ [𝑋] = E
[
𝑋𝑒𝑎𝑊𝑇− 𝑎2

2 𝑇

]
.

ii) Let 𝐵𝑡 := 𝑊𝑡 − 𝑎𝑡. Check that (𝐵𝑡 )0⩽𝑡⩽𝑇 is a BM on (Ω,ℱ𝑇 ,Q).
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Exercise 13. Let 0 < 𝑎 < 𝑏 and set
𝐴 := {(𝑥, 𝑦) ∈ R2 : |𝑥 − 𝑦 | < 𝑎, |𝑥 + 𝑦 | < 𝑏}.

Let (𝑋,𝑌 ) have uniform distribution in 𝐴, that is

𝑓𝑋,𝑌 (𝑥, 𝑦) =
1

𝜆2(𝐴)
1𝐴(𝑥, 𝑦),

where 𝜆2(𝐴) stands for the Lebesgue measure of 𝐴.
i) Determine 𝑓𝑌 .

ii) Compute E[𝑋 | 𝑌 ].
iii) Compute the density of E[𝑋 | 𝑌 ].

Exercise 14. Let (𝑊𝑡 ) be a BM on (Ω,ℱ, P) and define

𝑋𝑛 := 𝑒𝑎𝑊𝑛− 𝑎2
2 𝑛, 𝑛 ∈ N.

i) Check that 𝑋𝑛 ∈ 𝐿1(Ω) for every 𝑎 ∈ R.
ii) Show that (𝑋𝑛) is a martingale w.r.t. ℱ𝑛 := 𝜎(𝑊𝑚 : 𝑚 ∈ N, 𝑚 ⩽ 𝑛).

iii) Show that lim𝑛 𝑋𝑛 = 0 a.s.

Exercise 15. Let (Ω,ℱ, P) be a probability space, 𝑋 ∈ 𝐿 (Ω) such that 𝑋 ⩾ 0 a.s.
i) Show that, if 𝑋 is N valued (that is P(𝑋 ∈ N) = 1) then

E[𝑋] =
∞∑︁
𝑛=0
P(𝑋 > 𝑛).

ii) Show that, in general,

E[𝑋] =
∫ +∞

0
P(𝑋 > 𝑡) 𝑑𝑡.

Hint for both cases: P(𝐸) = E[1𝐸] . . .
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Exercise 16. Let (𝑋,𝑌 ) ∼ 𝒩(0, 𝐶) where

𝐶 :=
[

1 𝜌

𝜌 1

]
.

i) For which values of 𝜌 matrix 𝐶 is a true covariance matrix for (𝑋,𝑌 )?
ii) Imagine (𝑋,𝑌 ) as the coordinates of a random point in the cartesian plane. Let (𝑅,Θ) its polar

coordinates (𝑅 ⩾ 0, Θ ∈ [0, 2𝜋[). Determine the joint distribution of (𝑅,Θ) and, in particular,
the distribution of Θ.

iii) Compute E[𝑅 | Θ] and E[𝑅2 | Θ].
iv) Under which conditions are 𝑅 and Θ independent? In this case, determine also the density of 𝑅.

Exercise 17. Let 𝑋𝑛 be i.i.d. random variables with common density

𝑓𝑋𝑛
(𝑥) = 1

2
𝑒−|𝑥 | .

Prove that, ∀𝜀 > 0,
i) P

(
|𝑋𝑛 |
log 𝑛 ⩽ 1 + 𝜀 for all but finitely many 𝑛

)
= 1.

ii) P
(
|𝑋𝑛 |
log 𝑛 ⩾ 1 − 𝜀 for infinitely many 𝑛

)
= 1.

Exercise 18. Let (𝑊𝑡 ) be a BM. Define

𝑋𝑡 :=
∫ 𝑡

0

𝑊𝑢

𝑢
𝑑𝑢.

i) Explain why, for 𝑡 > 0 fixed and for almost every 𝜔, 𝑋𝑡 is a well defined random variable.
ii) Compute E[𝑋𝑡 ] and E[𝑋2

𝑡 ] (hint: (
∫ 𝑡

0 𝑓𝑢 𝑑𝑢)
2 =

∫ 𝑡

0 𝑓𝑢 𝑑𝑢
∫ 𝑡

0 𝑓𝑠 𝑑𝑠. . . )
iii) Define 𝐵𝑡 := 𝑊𝑡 − 𝑋𝑡 . Compute E[𝐵𝑡 ] and V[𝐵𝑡 ].
iv) Let ℱ𝑠 := 𝜎(𝑊𝑟 : 0 ⩽ 𝑟 ⩽ 𝑠). Compute E[𝐵𝑡 | ℱ𝑠] for 0 ⩽ 𝑠 < 𝑡.

(if needed, you are allowed to switch E with
∫ 𝑡

0 )
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Exercise 19. Let (Ω,ℱ, P) be a probability space, 𝒢 ⊂ ℱ a sub 𝜎−algebra.
i) Let 𝑋 ∈ 𝐿2(Ω). What is the conditional expectation E[𝑋 |𝒢]? How is characterized? Prove that

∥E[𝑋 | 𝒢] ∥2 ⩽ ∥𝑋 ∥2.

ii) Let 𝑋,𝑌 ∈ 𝐿2(Ω) be such that
E[𝑋 | 𝑌 ] = 𝑌, E[𝑌 | 𝑋] = 𝑋.

Deduce that 𝑋 = 𝑌 a.s. (hint: check that ∥𝑋 − 𝑌 ∥2
2 = 0)

iii) Let 𝑋,𝑌, 𝑍 ∈ 𝐿2(Ω) be such that
E[𝑋 | 𝑌 ] = 𝑌, E[𝑌 | 𝑍] = 𝑍, E[𝑍 | 𝑋] = 𝑋.

Prove that 𝑋 = 𝑌 = 𝑍 a.s.

Exercise 20. Let
𝐹 (𝑥) := 𝑒−𝑒

−𝑥
, 𝑥 ∈ R.

i) Check that 𝐹 is a cumulative distribution function.
Let now (𝑋𝑛) be i.i.d. random variables with 𝐹𝑋𝑛

(𝑥) ≡ (1 − 𝑒−𝑥)1[0,+∞[ (𝑥).
ii) Determine the cdf of 𝑌𝑛 := max{𝑋1, . . . , 𝑋𝑛}.

iii) Use ii) to prove that 𝑌𝑛 − log 𝑛 converges in distribution, determining also the limit distribution.

Exercise 21. Show that, if 𝑋 and𝑌 are absolutely continuous independent random variables with densities
𝑓𝑋 and 𝑓𝑌 respectively, then 𝑋 + 𝑌 is also absolutely continuous and

𝑓𝑋+𝑌 (𝑥) = 𝑓𝑋 ∗ 𝑓𝑌 (𝑥), 𝑎.𝑒. 𝑥 ∈ R. (3)
Let now 𝑋𝑛, 𝑛 ∈ N, 𝑛 ⩾ 1 be i.i.d. exponential random variables, 𝑓𝑋𝑛

(𝑥) = 𝜆𝑒−𝜆𝑥1[0,+∞[ (𝑥).
i) Determine the distribution of 𝑋1 + · · · + 𝑋𝑛 (hint: use FT)

ii) Let 𝑁 be independent of (𝑋𝑛)𝑛∈N, with P(𝑁 = 𝑛) = (1 − 𝑝)𝑛−1𝑝, with 0 < 𝑝 < 1. Determine
the distribution of

𝑋1 + · · · + 𝑋𝑁 .
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Exercise 22.
i) What is the characteristic function of a random variable 𝑋?

ii) Justifying carefully the calculations, show that if E[𝑋2] < +∞ then the characteristic function
𝜙𝑋 of 𝑋 is twice differentiable, and compute 𝜕2

𝜉
𝜙𝑋 (0).

iii) Justifying your answer, say if there exists a r.v. 𝑋 such that 𝜙𝑋 (𝜉) = 𝑒−𝑐𝜉
4 .

Exercise 23. Let (𝑊𝑡 ) be a BM.
i) What are the characteristic properties of any Brownian Motion (BM)? And what are the charac-

teristic properties of a martingale? Is the BM a martingale?
ii) Prove that𝑊3

𝑡 − 3𝑡𝑊𝑡 is a martingale.
iii) Determine what terms you should add to𝑊4

𝑡 in order to get a martingale.

Exercise 24. Suppose that (𝑋𝑛) are i.i.d. random variables taking strictly positive values and such that
E[| log 𝑋𝑛 |] < +∞. Discuss the limit of

𝑌𝑛 :=

(
𝑛∏

𝑘=1
𝑋𝑘

)1/𝑘

.
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Exercise 25. Let 𝑋,𝑌 be absolutely continuous random variables with densities, resp., 𝑓𝑋 and 𝑓𝑌 .
i) By using the injectivity of the 𝐿1 FT, prove that 𝑋 and 𝑌 are independent iff 𝜙𝑋,𝑌 (𝜉, 𝜂) (charac-

teristic function of random vector (𝑋,𝑌 )) coincides with 𝜙𝑋 (𝜉)𝜙𝑌 (𝜂).
Let now 𝑋,𝑌 be independent and both standard Gaussian 𝒩(0, 1).

ii) Show that 𝑋 + 𝑌 and 𝑋 − 𝑌 are also independent and gaussian.
iii) Compute the conditional expectation E[𝑋𝑌 | 𝑋 − 𝑌 ] (hint: (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2 = . . .)

Exercise 26. Let 𝑁𝑘 be i.i.d. random variables with E[𝑁𝑘] = 0 and V[𝑁2
𝑘
] ≡ E[(𝑁𝑘 − E[𝑁𝑘])2] = 𝜎2,

∀𝑘 ∈ N. We define (𝑋𝑘) as
𝑋0 := 𝑥0 ∈ R, 𝑋𝑘 = 𝛼𝑋𝑘−1 + 𝑁𝑘−1, 𝑘 ⩾ 1.

with |𝛼 | < 1 and 𝑥0 ∈ R fixed.
i) Calculate means E[𝑋𝑘] and variance V[𝑋𝑘].

ii) Let ℱ𝑘 := 𝜎(𝑋1, . . . , 𝑋𝑘). Is (𝑋𝑘) a martingale w.r.t. ℱ𝑘? Justyify your answer.
iii) Compute E[(𝑋𝑘+1 − 𝑋𝑘)2]. What can you conclude about convergence in 𝐿2 of (𝑋𝑘)?
iv) Assume also that 𝑁𝑘 ∼ 𝒩(0, 𝜎2), ∀𝑘 ∈ N. Prove that 𝑋𝑘 converges in distribution and determine

the limit distribution.

Exercise 27. Let (𝑊𝑡 ) be a Brownian Motion (BM).
i) What are the characteristic properties of𝑊𝑡?

ii) Let

𝑋𝑡 := 𝑊3
𝑡 − 3

∫ 𝑡

0
𝑊𝑟 𝑑𝑟, 𝑡 ⩾ 0.

Check that 𝑋𝑡 is a martingale w.r.t. ℱ𝑡 := 𝜎(𝑊𝑠 : 𝑠 ⩽ 𝑡). (if needed, you are allowed to
exchange the conditional expectation with the Riemann integral

∫ 𝑡

0 . . . 𝑑𝑟)
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Exercise 28. Let (𝑋,𝑌 ) ∼ 𝒩(0, 𝐶) where

𝐶 =

[
1 1/2

1/2 1

]
.

i) Is 𝐶 a well defined covariance matrix?
ii) Check that 𝑌 and 2𝑋 − 𝑌 are independent.
ii) Compute E[𝑋2𝑌 | 2𝑋 − 𝑌 ] (hint: 𝑋 = 1

2 (2𝑋 − 𝑌 ) + 1
2𝑌 . . . ).

Exercise 29. i) What does the Borel-Cantelli Lemma says? Provide a precise statement (no proof is
required).

Let now 𝑋𝑛 be independent Bernoulli random variables with

P(𝑋𝑛 = 1) = 1
√
𝑛
, P(𝑋𝑛 = 0) = 1 − 1

√
𝑛
.

i) Let 𝐸 := {𝑋𝑛 = 𝑋𝑛+1 = 𝑋𝑛+2 = 1, for infinitely many 𝑛}. Check that 𝐸 is an event and prove that
P(𝐸) = 0.

ii) Let 𝐹 := {𝑋𝑛 = 𝑋𝑛+1 = 1, for infinitely many 𝑛}. Check that 𝐹 is an event. What about P(𝐹)?

Exercise 30. Let 𝑋𝑘 ∼ 𝑈 ( [0, 1]) i.i.d. random variables, and let 𝑆𝑛 :=
∑𝑛

𝑘=1 𝑋𝑘 . Define
𝑁 := min{𝑛 ⩾ 2 : 𝑆𝑛 > 1}

i) Compute P(𝑁 > 𝑛) and P(𝑁 = 𝑛) for 𝑛 ∈ N.
ii) Compute E[𝑁] and V[𝑁].

iii) Compute E[𝑆𝑁 ].
It may be helpful to know that

𝐼
𝑗
𝑛 :=

∫
0⩽𝑥1,...,𝑥𝑛⩽1, 𝑥1+···+𝑥𝑛⩽1

(𝑥1 + · · · + 𝑥𝑛) 𝑗 𝑑𝑥1 · · · 𝑑𝑥𝑛 =
1

(𝑛 − 1)!(𝑛 + 𝑗) .
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Solutions.

Exercise 2. i) We have

𝜙𝑋 (𝜉) = 𝑓̂𝑋 (−𝜉) =
∫
R
𝑓𝑋 (𝑥)𝑒𝑖 𝜉 𝑥 𝑑𝑥 =

𝜆𝛼

Γ(𝛼)

∫ +∞

0
𝑥𝛼𝑒−𝜆𝑥𝑒𝑖 𝜉 𝑥 𝑑𝑥 =

𝜆𝛼

Γ(𝛼)

∫ +∞

0
𝑥𝛼−1𝑒−(𝜆−𝑖 𝜉 )𝑥 𝑑𝑥.

Now, being 𝑥𝛼−1 = 𝜕𝑥
𝑥𝛼

𝛼
, by integrating by parts we have∫ +∞

0
𝜕𝑥

(
𝑥𝛼

𝛼

)
𝑒−(𝜆−𝑖 𝜉 )𝑥 𝑑𝑥 =

1
𝛼

( [
𝑥𝛼𝑒−(𝜆−𝑖 𝜉 )𝑥

] 𝑥=+∞
𝑥=0

+ (𝜆 − 𝑖𝜉)
∫ +∞

0
𝑥𝛼𝑒−(𝜆−𝑖 𝜉 )𝑥 𝑑𝑥

)
and since

[
𝑥𝛼𝑒−(𝜆−𝑖 𝜉 )𝑥 ] 𝑥=+∞

𝑥=0 = 0 we get

𝜙𝑋 (𝜉) =
𝜆 − 𝑖𝜉
𝛼

𝜆𝛼

Γ(𝛼)

∫ +∞

0
𝑥𝛼𝑒−𝜆𝑥𝑒𝑖 𝜉 𝑥 𝑑𝑥.

On the other hand

𝜕𝜉𝜙𝑋 (𝜉) = 𝑖
𝜆𝛼

Γ(𝛼)

∫ +∞

0
𝑥𝛼𝑒−𝜆𝑥𝑒𝑖 𝜉 𝑥 𝑑𝑥 = 𝑖

𝛼

𝜆 − 𝑖𝜉 𝜙𝑋 (𝜉) = −𝛼 1
𝜉 + 𝑖𝜆 𝜙𝑋 (𝜉)

So,
log 𝜙𝑋 (𝜉) = −𝛼 log(𝜉 + 𝑖𝜆) + 𝑘,

from which
𝜙𝑋 (𝜉) = 𝐾 (𝜉 + 𝑖𝜆)−𝛼.

Now, since 𝜙𝑋 (0) = 1, we have 1 = 𝐾 (𝑖𝜆)−𝛼, that is 𝐾 = (𝑖𝜆)𝛼, from which we obtain

𝜙𝑋 (𝜉) = (𝑖𝜆)𝛼 (𝜉 + 𝑖𝜆)−𝛼 =

(
1 + 𝜉

𝑖𝜆

)−𝛼

=

(
1 − 𝑖 𝜉

𝜆

)−𝛼

.

ii) If 𝑋 𝑗 ∼ Γ(𝛼 𝑗 , 𝜆) are independent, then

𝜙𝑋1+···+𝑋𝑛
(𝜉) =

𝑛∏
𝑗=1

𝜙𝑋 𝑗
(𝜉) =

𝑛∏
𝑗=1

(
1 − 𝑖 𝜉

𝜆

)−𝛼𝑗

=

(
1 − 𝑖 𝜉

𝜆

)−(𝛼1+···+𝛼𝑛 )
.

From this, and from the uniqueness of the FT, 𝑋1 + · · · + 𝑋𝑛 ∼ Γ(𝛼1 + · · · + 𝛼𝑛, 𝜆).
iii) We have

E[𝜓(𝑋) | 𝑍] = 𝜑(𝑍),
where

𝜑(𝑧) =
∫
R
𝜓(𝑥) 𝑓𝑋 |𝑍 (𝑥 |𝑧) 𝑑𝑥,

with
𝑓𝑋 |𝑍 (𝑥 |𝑧) =

𝑓𝑋𝑍 (𝑥, 𝑧)
𝑓𝑍 (𝑧)

,

(provided 𝑋𝑍 is abs. cont.). Now, (𝑋, 𝑍) = (𝑋, 𝑋 +𝑌 ) = 𝑇 (𝑋,𝑌 ) where 𝑇 (𝑥, 𝑦) = (𝑥, 𝑥 + 𝑦) is clearly a
bijection on R2, so

𝑓𝑋𝑍 (𝑥, 𝑧) = 𝑓𝑋𝑌 (𝑇−1(𝑥, 𝑧)) | det(𝑇−1)′(𝑥, 𝑧) |.
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Now (𝑥, 𝑧) = (𝑥, 𝑥 + 𝑦) iff (𝑥, 𝑦) = (𝑥, 𝑧 − 𝑥), det(𝑇−1)′ = (det𝑇 ′)−1 = 1, so

𝑓𝑋𝑍 (𝑥, 𝑧) = 𝑓𝑋𝑌 (𝑥, 𝑧 − 𝑥)
𝑖𝑛𝑑𝑒𝑝
= 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑧 − 𝑥).

Since 𝑋,𝑌 ∼ Γ(1, 𝜆) we have
𝑓𝑋 (𝑥) = 𝜆𝑒−𝜆𝑥1[0,+∞[ ,

and, by ii), about 𝑓𝑍 we have

𝑓𝑍 (𝑧) =
𝜆2

Γ(2) 𝑧𝑒
−𝜆𝑧1[0,+∞[ (𝑧) = 𝜆2𝑧𝑒−𝜆𝑧1[0,+∞[ (𝑧).

Therefore

𝑓𝑋 |𝑍 (𝑥 |𝑧) =
𝜆2𝑒−𝜆𝑥𝑒−𝜆(𝑧−𝑥 )1[0,+∞[ (𝑥)1[0,+∞[ (𝑧 − 𝑥)

𝜆2𝑧𝑒−𝜆𝑧1[0,+∞[ (𝑧)
=

1
𝑧

1[0,+∞[ (𝑧)1[0,𝑧 ] (𝑥),

from which we obtain

𝜑(𝑧) =
∫
R
𝜓(𝑥) 1

𝑧
1[0,+∞[ (𝑧)1[0,𝑧 ] (𝑥) 𝑑𝑥 =

(
1
𝑧

∫ 𝑧

0
𝜓(𝑥) 𝑑𝑥

)
1[0,+∞[ (𝑧).

So, since 𝑍 ≥ 0 with probability 1,

𝜑(𝑍) = 1
𝑍

∫ 𝑍

0
𝜓(𝑥) 𝑑𝑥. □

Exercise 3. See notes for definitions and relations between convergence in distribution and in proba-
bility.

i) We use characteristic functions. We notice that

𝑋𝑛 =
1
2
𝑋𝑛−1 + 𝑌𝑛 =

1
2

(
1
2
𝑋𝑛−2 + 𝑌𝑛−1

)
+ 𝑌𝑛 =

1
22 𝑋𝑛−2 +

1∑︁
𝑘=0

1
2𝑘
𝑌𝑛−𝑘

Iterating, after 𝑛 steps we arrive at formula

𝑋𝑛 =
1
2𝑛
𝑋0 +

𝑛−1∑︁
𝑘=0

1
2𝑘
𝑌𝑛−𝑘

Because of the assumptions on independence

𝜙𝑋𝑛
(𝜉) = 𝜙 1

2𝑛 𝑋0
(𝜉)

𝑛−1∏
𝑘=0

𝜙 1
2𝑘

𝑌𝑛−𝑘
(𝜉) = 𝜙𝑋0

(
𝜉

2𝑛

) 𝑛−1∏
𝑘=0

𝑒
− 1

2

(
𝜉

2𝑘

)2

= 𝜙𝑋0

(
𝜉

2𝑛

)
𝑒
− 1

2

(∑𝑛−1
𝑘=0

1
4𝑘

)
𝜉 2

Letting 𝑛→ +∞ we have

𝜙𝑋𝑛
(𝜉) −→ 𝜙𝑋0 (0)𝑒

− 1
2

(∑∞
𝑘=0

1
4𝑘

)
𝜉 2

= 1 · 𝑒− 1
2 ·

4
3 𝜉

2
= 𝜙

𝒩 (0, 4
3 )
(𝜉).

We conclude that 𝑋𝑛

𝑑−→ 𝑋 ∼ 𝒩(0, 4
3 ).
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ii) Since convergence in probability is stronger than convergence in distribution, if (𝑋𝑛) converges
in probability then it converges also in distribution to the same limit. Thus, the unique possibility is
𝑋𝑛

P−→ 𝑋 . But then also 𝑋𝑛−1
P−→ P, whence, being

𝑋𝑛 =
𝑋𝑛−1

2
+ 𝑌𝑛, =⇒ 𝑌𝑛 = 𝑋𝑛 −

𝑋𝑛−1
2

P−→ 𝑋

2
, =⇒ 𝑌𝑛

𝑑−→ 𝑋

2
≠ 𝑋. □

Exercise 4. i) Let
𝑌𝑛 := min{𝑋1, . . . , 𝑋𝑛}.

We have

{𝑌𝑛 ⩽ 𝑦} = {min(𝑋1, . . . , 𝑋𝑛) ⩽ 𝑦} =
𝑛⊔

𝑘=1
{𝑋1 > 𝑦, . . . , 𝑋𝑘−1 > 𝑦, 𝑋𝑘 ⩽ 𝑦}

so

P(𝑌𝑛 ⩽ 𝑦) =
𝑛∑︁

𝑘=1
P(𝑋1 > 𝑦, . . . , 𝑋𝑘−1 > 𝑦, 𝑋𝑘 ⩽ 𝑦) =

𝑛∑︁
𝑘=1

𝑘−1∏
𝑗=1
P(𝑋 𝑗 > 𝑦) · P(𝑋𝑘 ⩽ 𝑦),

with the agreement that
∏0

𝑗=1 = 1. Since 𝑋 𝑗 ∼ exp(𝜆), we have

𝐹𝑋 𝑗
(𝑥) = P(𝑋 𝑗 ⩽ 𝑥) = (1 − 𝑒−𝜆𝑥)1[0,+∞[ (𝑥),

for 𝑦 ⩾ 0 we have

𝐹𝑌𝑛 (𝑦) = P(𝑌𝑛 ⩽ 𝑦) =

𝑛∑︁
𝑘=1

(𝑒−𝜆𝑦)𝑘−1(1 − 𝑒−𝜆𝑦) =
𝑛−1∑︁
𝑘=0

(𝑒−𝜆𝑦)𝑘 (1 − 𝑒−𝜆𝑦)

= (1 − 𝑒−𝜆𝑦) 1 − (𝑒−𝜆𝑦)𝑛
1 − 𝑒−𝜆𝑦 = 1 − 𝑒−𝑛𝜆𝑦 .

Clearly, 𝐹𝑌𝑛 (𝑦) = 0 for 𝑦 ⩽ 0.
ii) We notice that

{𝑌𝑁 ⩽ 𝑦} =
∞⊔
𝑛=1

{𝑌𝑁 ⩽ 𝑦, 𝑁 = 𝑛} =
∞⊔
𝑛=1

{𝑌𝑛 ⩽ 𝑦, 𝑁 = 𝑛}.

Thus,

𝐹𝑌𝑁
(𝑦) = P(𝑌𝑁 ⩽ 𝑦) =

∞∑︁
𝑛=1
P(𝑌𝑛 ⩽ 𝑦, 𝑁 = 𝑛).

Since 𝑁 is independent of the (𝑋𝑛), 𝑁 is independent of 𝑌𝑛 for every 𝑛, so we have

P(𝑌𝑛 ⩽ 𝑦, 𝑁 = 𝑛) = P(𝑌𝑛 ⩽ 𝑦, 𝑁 = 𝑛) = P(𝑌𝑛 ⩽ 𝑦)P(𝑁 = 𝑛) = (1 − 𝑝)𝑛−1𝑝P(𝑌𝑛 ⩽ 𝑦)

= 𝑝(1 − 𝑝)𝑛−1(1 − 𝑒−𝑛𝜆𝑦).
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Therefore,

𝐹𝑌 (𝑦) =

∞∑︁
𝑛=1

𝑝(1 − 𝑝)𝑛−1(1 − 𝑒−𝑛𝜆𝑦) =
∞∑︁
𝑛=1

𝑝(1 − 𝑝)𝑛−1

︸              ︷︷              ︸
=1

−𝑝𝑒−𝜆𝑦
∞∑︁
𝑛=1

(
(1 − 𝑝)𝑒−𝜆𝑦

)𝑛−1

= 1 − 𝑝𝑒−𝜆𝑦 1
1 − (1 − 𝑝)𝑒−𝜆𝑦 =

1 − 𝑒−𝜆𝑦
1 − (1 − 𝑝)𝑒−𝜆𝑦 .

For 𝑦 < 0 clearly 𝐹𝑌 (𝑦) = 0.
iii) We have

E[𝑌𝑁 ] =
∫ +∞

0
𝑦 𝑓𝑌𝑁

(𝑦) 𝑑𝑦,

where
𝑓𝑌𝑁

(𝑦) = 𝜕𝑦𝐹𝑌𝑁
(𝑦) = −𝜕𝑦 (1 − 𝐹𝑌𝑁

(𝑦)).
Integrating by parts,

E[𝑌𝑁 ] =
[
−𝑦(1 − 𝐹𝑌𝑁

(𝑦)
] 𝑦=+∞
𝑦=0︸                       ︷︷                       ︸

=0

+
∫ +∞

0
1 − 𝐹𝑌𝑁

(𝑦) 𝑑𝑦 =
∫ +∞

0

𝑝𝑒−𝜆𝑦

1 − (1 − 𝑝)𝑒−𝜆𝑦 𝑑𝑦.

Setting 𝑢 = 𝑒−𝜆𝑦 (that is 𝑦 = − 1
𝜆

log 𝑢) we obtain

E[𝑌𝑁 ] =
1
𝜆

∫ 1

0

𝑝𝑢

1 − (1 − 𝑝)𝑢
𝑑𝑢

𝑢
= − 𝑝

𝜆(1 − 𝑝) [log(1 − (1 − 𝑝)𝑢)]𝑢=1
𝑢=0 = − 𝑝 log 𝑝

𝜆(1 − 𝑝) . □

Exercise 5. i) Notice that (𝑅,Θ) = Ψ(𝑈,𝑉) where Ψ(𝑢, 𝑣) = (
√︁
−2 log 𝑢, 2𝜋𝑣). Since (𝑈,𝑉) ∈

[0, 1]2, and since P(𝑈 = 0) = 0 and same for 𝑉 , actually (𝑈,𝑉) ∈]0, 1]2 with probability 1, we consider
Ψ :]0, 1]2 −→ Ψ(]0, 1]2) ⊂ [0, +∞[×]0, 2𝜋]. Ψ is invertible and (𝑟, 𝜃) = Ψ(𝑢, 𝑣) iff 𝑟 =

√︁
−2 log 𝑢,

𝜃 = 2𝜋𝑣, that is 𝑢 = 𝑒−
𝑟2
2 and 𝑣 = 𝜃

2𝜋 , so Ψ−1(𝑟, 𝜃) = (𝑒− 𝑟2
2 , 𝜃/2𝜋). According to the change of variable

formula, we have

𝑓𝑅Θ(𝑟, 𝜃) = 𝑓𝑈𝑉 (Ψ−1(𝑟, 𝜃)) | det(Ψ−1)′(𝑟, 𝜃) | = 1[0,1] (𝑒−
𝑟2
2 )1[0,1] ( 𝜃

2𝜋 )

�������det


−𝑟𝑒− 𝑟2

2 0

0 1
2𝜋


�������

= |𝑟 |𝑒− 𝑟2
2 · 1

2𝜋 1[0,2𝜋 ] (𝜃)
In particular,

𝑓𝑅 (𝑟) = |𝑟 |𝑒− 𝑟2
2 , 𝑓Θ(𝜃) =

1
2𝜋

1[0,2𝜋 ] (𝜃).

ii) (𝑋,𝑌 ) = Ψ(𝑅,Θ) where Ψ(𝑟, 𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃) is the usual polar coordinate map. We have

𝑓𝑋𝑌 (𝑥, 𝑦) = 𝑓𝑅Θ(Ψ−1(𝑥, 𝑦)) | det(Ψ−1)′(𝑥, 𝑦) |.
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Since detΨ′(𝜌, 𝜃) = 𝜌 and

Ψ−1(𝑥, 𝑦) =
(√︃
𝑥2 + 𝑦2, 𝜃 (𝑥, 𝑦)

)
, where 𝜃 (𝑥, 𝑦) =


arccos 𝑥√

𝑥2+𝑦2
, 𝑦 > 0,

arccos 𝑥√
𝑥2+𝑦2

+ 𝜋, 𝑦 < 0

we deduce

𝑓𝑋𝑌 (𝑥, 𝑦) = |
√︃
𝑥2 + 𝑦2 |𝑒−

𝑥2+𝑦2
2

1
2𝜋

1
|
√︁
𝑥2 + 𝑦2 |

=
1

2𝜋
𝑒−

𝑥2+𝑦2
2

from which (𝑋,𝑌 ) ∼ 𝒩(0, I) (where I is the identity matrix). Clearly 𝑋,𝑌 are independent, each
distributed as a standard Gaussian. □

Exercise 6. i) We recall that 𝑋𝑛

𝑎.𝑠.−→ 0 iff

∀𝜀 > 0, P

(⋂
𝑁

⋃
𝑛⩾𝑁

|𝑋𝑛 | ⩾ 𝜀
)
= 0.

According to Borel–Cantelli’s Lemma, a sufficient condition for this happens is∑︁
𝑛

P( |𝑋𝑛 | ⩾ 𝜀) < +∞.

We notice that,

𝑋𝑛 =

(
1 + 𝑌𝑛

2

)
𝑋𝑛−1 =

(
1 + 𝑌𝑛

2

) (
1 + 𝑌𝑛−1

2

)
𝑋𝑛−2 = . . . =

𝑛∏
𝑘=0

(
1 + 𝑌𝑘

2

)
𝑋0 =

𝑛∏
𝑘=0

(
1 + 𝑌𝑘

2

)
⩾ 0.

For convenience, let 𝜀 = 1
2𝑚 . So

{|𝑋𝑛 | ⩾ 𝜀} = {𝑋𝑛 ⩾ 𝜀} =
{

𝑛∏
𝑘=0

(
1 + 𝑌𝑘

2

)
⩾

1
2𝑚

}
Notice that, for 𝑛 > 𝑚,

𝑋𝑛 =
1
2𝑛

𝑛∏
𝑘=0

(2 + 𝑌𝑘) ⩾
1

2𝑚
, ⇐⇒

𝑛∏
𝑘=0

(2 + 𝑌𝑘) ⩾ 2𝑛−𝑚,

and this happens iff at least 𝑛 − 𝑚 of the 𝑌𝑘 = 1. Because of independence

P(𝑌𝑘1 = 1, . . . , 𝑌𝑘𝑛−𝑚 = 1) = 1
2𝑛−𝑚

,

so

P

(
𝑋𝑛 ⩾

1
2𝑚

)
⩽

(
𝑛

𝑛 − 𝑚

)
1

2𝑛−𝑚
=

𝑛!
(𝑛 − 𝑚)!𝑚!

1
2𝑛

2𝑚

and ∑︁
𝑛

P

(
𝑋𝑛 ⩾

1
2𝑚

)
⩽

2𝑚

𝑚!

∑︁
𝑛⩾𝑚

𝑛!
2𝑛 (𝑛 − 𝑚)! .
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Now the last series converges by root test because, if 𝑎𝑛 := 𝑛!
2𝑛 (𝑛−𝑚)! , then

𝑎𝑛+1
𝑎𝑛

=
(𝑛 + 1)!

2𝑛+1(𝑛 + 1 − 𝑚)!
2𝑛 (𝑛 − 𝑚)!

𝑛!
=

1
2

𝑛 + 1
𝑛 + 1 − 𝑚 −→ 1

2
< 1.

Thus, we conclude that ∑︁
𝑛

P

(
𝑋𝑛 ⩾

1
2𝑚

)
< +∞,

and Borel-Cantelli’s Lemma applies.
ii) Since

𝑋𝑛 =

𝑛∏
𝑘=0

(
1 + 𝑌𝑘

2

)
,

by the independence of 𝑌𝑘 we have

E[𝑋𝑛] =
𝑛∏

𝑘=0
E

[
1 + 𝑌𝑘

2

]
=

𝑛∏
𝑘=0

(
1
2
· 1

2
+ 3

2
· 1

2

)
=

𝑛∏
𝑘=0

1 = 1,

so lim𝑛 E[𝑋𝑛] = 1. We conclude that 𝑋𝑛 ̸−→ 0 in 𝐿1. Indeed, if this would happen,
1 = |E[𝑋𝑛] | ⩽ E[|𝑋𝑛 |] = ∥𝑋𝑛∥1 −→ 0,

which is impossible. □

Exercise 7. i) Recalling of the monotonicity property of the conditional expectation, we have
−|𝑋 | ⩽ 𝑋 ⩽ |𝑋 |, 𝑎.𝑠. =⇒ −E[|𝑋 | | 𝒢] ⩽ E[𝑋 | 𝒢] ⩽ E[|𝑋 | | 𝒢],

from which
|E[𝑋 | 𝒢] | ⩽ E[|𝑋 | | 𝒢] .

ii) We notice that
E[𝑋 + 𝑌 |𝑌 ] = E[𝑋 | 𝑌 ] + E[𝑌 | 𝑌 ] = 𝑌 .

So,
|𝑌 | = |E[𝑋 + 𝑌 |𝑌 ] | ⩽ E[|𝑋 + 𝑌 | | 𝑌 ], 𝑎.𝑠.,

and, by taking expectations,
E[|𝑌 |] ⩽ E [E[|𝑋 + 𝑌 | | 𝑌 ]] = E[|𝑋 + 𝑌 |],

which is the conclusion.
iii) We notice that if 𝐴 := E[𝑋 − 𝑌 | 𝑋 + 𝑌 ] then 𝐴 is characterized by

E[𝐴𝜑(𝑋 + 𝑌 )] = E[(𝑋 − 𝑌 )𝜑(𝑋 + 𝑌 )] =
∫
R2 (𝑥 − 𝑦)𝜑(𝑥 + 𝑦) 𝑑𝜇𝑋𝑌 (𝑥, 𝑦)

=
∫
R2 (𝑥 − 𝑦)𝜑(𝑥 + 𝑦) 𝑑𝜇𝑌𝑋 (𝑥, 𝑦) = E[(𝑌 − 𝑋)𝜑(𝑌 + 𝑋)]

= −E[𝐴𝜑(𝑋 + 𝑌 )],
from which

2E[𝐴𝜑(𝑋 + 𝑌 )] = 0, ∀𝜑(𝑋 + 𝑌 ) ∈ 𝐿∞𝑋+𝑌 .
In particular, since 𝐴 ∈ 𝐿1

𝑋+𝑌 we conclude that 𝐴 = 0 a.s., as desired.
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Now, setting 𝑍 = 𝑋+𝑌 and𝑊 in such a way that 3𝑋−𝑌 = 𝑍+𝑊 , thus𝑊 = (3𝑋−𝑌 )−(𝑋+𝑌 ) = 2(𝑋−𝑌 ),
being E[𝑍 | 𝑊] = E[𝑋 + 𝑌 | 𝑋 − 𝑌 ] = 0, by ii) we get

∥𝑊 ∥1 ⩽ ∥𝑍 +𝑊 ∥1, ⇐⇒ 2∥𝑋 − 𝑌 ∥1 ⩽ ∥3𝑋 − 𝑌 ∥1,

from which the conclusion follows. □

Exercise 8. Let 𝑋𝑘 := 𝑘
𝑘+1𝑋𝑘 ∼ 𝑈 [−1, 1]. Then

𝑌𝑛 =
1
√
𝑛

𝑛∑︁
𝑘=1

(
1 + 1

𝑘

)
𝑋𝑘 .

So

𝜙𝑌𝑛 (𝜉) = E
[
𝑒
𝑖

𝜉√
𝑛

∑
𝑘 (1+ 1

𝑘 )𝑋𝑘

]
𝑖𝑛𝑑𝑒𝑝
=

𝑛∏
𝑘=1

𝜙

(
𝜉
√
𝑛

(
1 + 1

𝑘

))
,

where
𝜙(𝜂) = 𝜙

𝑋
(𝜂) = sin 𝜂

𝜂
.

Now, since for 𝜉 fixed 𝜉√
𝑛

(
1 + 1

𝑘

)
−→ 0, recalling that

𝜙(𝜂) = 𝜙(0) + 𝜙′(0)𝜂 + 1
2
𝜙′′(0)𝜂2 + 𝑜(𝜂2),

and being,

𝜙(𝜂) = sin 𝜂

𝜂
, 𝜙(0) = 1,

𝜙′(𝜂) = 𝜂 cos 𝜂−sin 𝜂

𝜂2 , 𝜙′(0) = lim𝜂→0 𝜙
′(𝜂) 𝐻

= lim𝜂→0
cos 𝜂−𝜂 sin 𝜂−cos 𝜂

2𝜂 = 0,

𝜙′′(𝜂) = −𝜂2 sin 𝜂−2(𝜂 cos 𝜂−sin 𝜂)
𝜂3 𝜙′′(0) = lim𝜂→0

−𝜂2 (𝜂+𝑜 (𝜂) )−2
(
𝜂

(
1− 𝜂2

2 +𝑜 (𝜂2 )
)
−
(
𝜂− 𝜂3

6 +𝑜 (𝜂3 )
))

𝜂3 = −1
3

we have

𝜙(𝜂) = 1 − 𝜂2

6
+ 𝑜(𝜂2).

Therefore,

𝜙𝑌𝑛 (𝜉) =
𝑛∏

𝑘=1

(
1 − 1

6
𝜉2

𝑛

(
1 + 1

𝑘

)2
+ 𝑜

(
1
𝑛

))
∼

(
1 − 1

6
𝜉2

𝑛

)𝑛
−→ 𝑒−

1
6 𝜉

2

Therefore
𝑌𝑛

𝑑−→ 𝒩(0, 1/3).
Alternative solution. We may notice that

𝑌𝑛 =
1
√
𝑛

𝑛∑︁
𝑘=1

(
1 + 1

𝑘

)
𝑋𝑘 =

1
√
𝑛

𝑛∑︁
𝑘=1

𝑋𝑘 +
1
√
𝑛

𝑛∑︁
𝑘=1

1
𝑘
𝑋𝑘 .
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Now, by the CLT

𝑊𝑛 :=
1
√
𝑛

𝑛∑︁
𝑘=1

𝑋𝑘

𝑑−→ 𝒩(0, 1/3).

We claim that

𝑍𝑛 :=
1
√
𝑛

𝑛∑︁
𝑘=1

1
𝑘
𝑋𝑘

𝑎.𝑠.−→ 0.

If this is true we have 𝑌𝑛 = 𝑊𝑛 + 𝑍𝑛
𝑑−→ 𝒩(0, 1/3). Indeed

𝜙𝑌𝑛 (𝜉) = E[𝑒𝑖 𝜉𝑊𝑛𝑒𝑖 𝜉 𝑍𝑛] = E
[(
𝑒𝑖 𝜉 𝑍𝑛 − 1

)
𝑒𝑖 𝜉𝑊𝑛

]
+ E[𝑒𝑖 𝜉𝑊𝑛] .

By dominated convergence the first expectation goes to 0 while the second goes to 𝑒− 1
6 𝜉

2 .
To prove that 𝑍𝑛

𝑎.𝑠.−→ 0 we notice that, being |𝑋𝑛 | ⩽ 1 with probability 1,

|𝑍𝑛 | ⩽
1
√
𝑛

𝑛∑︁
𝑘=1

1
𝑛
⩽

1
√
𝑛

(
1 +

𝑛−1∑︁
𝑘=1

∫ 𝑘+1

𝑘

1
𝑥
𝑑𝑥

)
=

1
√
𝑛
(1 + log 𝑛) −→ 0. □

Exercise 9. i) We have

𝜙𝐵𝑡
(𝜉) = E[𝑒𝑖 𝜉 𝑡𝑊1/𝑡 ] = 𝑒− 1

2
1
𝑡
(𝑡 𝜉 )2

= 𝑒−
1
2 𝑡 𝜉

2
=⇒ 𝐵𝑡 ∼ 𝒩(0, 𝑡).

If 0 < 𝑠 < 𝑡, then 0 < 1
𝑡
< 1

𝑠
and

(𝐵𝑠, 𝐵𝑡 − 𝐵𝑠) =
(
𝑠𝑊1/𝑠, 𝑡𝑊1/𝑡 − 𝑠𝑊1/𝑠

)
=

(
𝑠
(
𝑊1/𝑠 −𝑊1/𝑡

)
+ 𝑠𝑊1/𝑡 , (𝑡 − 𝑠)𝑊1/𝑡 − 𝑠(𝑊1/𝑠 −𝑊1/𝑡 )

)
= 𝑠(1,−1) (𝑊1/𝑠 −𝑊1/𝑡 ) + (𝑠, 𝑡 − 𝑠)𝑊1/𝑡 .

Being𝑊1/𝑡 independent of𝑊1/𝑠 −𝑊1/𝑡 we have that

E
[
𝑒𝑖 ( 𝜉 ,𝜂) (𝐵𝑠 ,𝐵𝑡−𝐵𝑠 )

]
= E

[
𝑒𝑖𝑠 ( 𝜉−𝜂) (𝑊1/𝑠−𝑊1/𝑡 )𝑒𝑖 (𝑠 𝜉+(𝑡−𝑠)𝜂)𝑊1/𝑡

]
= E

[
𝑒𝑖𝑠 ( 𝜉−𝜂) (𝑊1/𝑠−𝑊1/𝑡 )

]
E

[
𝑒𝑖 (𝑠 𝜉+(𝑡−𝑠)𝜂)𝑊1/𝑡

]
= 𝑒−

1
2 ( 1

𝑠
− 1

𝑡 )𝑠2 ( 𝜉−𝜂)2
𝑒−

1
2

1
𝑡
(𝑡 𝜂+𝑠 ( 𝜉−𝜂) )2

= 𝑒−
1
2
𝑡−𝑠
𝑡
𝑠 ( 𝜉 2+𝜂2−2𝜉 𝜂)𝑒−

1
2

1
𝑡
(𝑡2𝜂2+𝑠2 ( 𝜉 2+𝜂2−2𝜉 𝜂)+2𝑠𝑡 𝜂 ( 𝜉−𝜂)

= 𝑒−
1
2 [𝑠 ( 𝜉 2+𝜂2−2𝜉 𝜂)+𝑡 𝜂2+2𝑠𝜂 ( 𝜉−𝜂)]

= 𝑒−
1
2 (𝑠 𝜉 2+(𝑡−𝑠)𝜂2) = 𝑒− 1

2 𝑠 𝜉
2
𝑒−

1
2 (𝑡−𝑠)𝜂

2
,

that, at once, says 𝐵𝑠 ∼ 𝒩(0, 𝑠) and 𝐵𝑡 − 𝐵𝑠 ∼ 𝒩(0, 𝑡 − 𝑠) and they are independent. Finally,
𝐵𝑡 ∈ 𝒞(]0, +∞[) being𝑊𝑡 ∈ 𝒞( [0, +∞[).
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ii) We have

P ( |𝐵𝑡 | ⩾ 𝜀) = P
(��𝑡𝑊1/𝑡

�� ⩾ 𝜀) = P (
|𝑊1/𝑡 | ⩾ 𝜀

𝑡

)
= 2 ·

∫ +∞
𝜀/𝑡 𝑒

− 𝑥2
2(1/𝑡 ) 𝑑𝑥√︃

2𝜋 1
𝑡

𝑦=
√
𝑡 𝑥

= 2
∫ +∞
𝜀/

√
𝑡
𝑒−

𝑦2
2

𝑑𝑦√
2𝜋

−→ 0, 𝑡 → 0 + . □

Exercise 10. i) Notice that 𝑍,𝑊 ∈ N. So, let 𝑧, 𝑤 ∈ N and let’s compute

P(𝑍 = 𝑧, 𝑊 = 𝑤) = P (min(𝑋,𝑌 ) = 𝑧, |𝑋 − 𝑌 | = 𝑤) .

We distinguish 𝑤 = 0 from 𝑤 ⩾ 1. If 𝑤 = 0,

P(𝑍 = 𝑧, 𝑊 = 0) = P (min(𝑋,𝑌 ) = 𝑧, |𝑋 − 𝑌 | = 0) = P(𝑋 = 𝑌, 𝑋 = 𝑧) = P(𝑋 = 𝑧, 𝑌 = 𝑧)

𝑖𝑛𝑑𝑒𝑝
= P(𝑋 = 𝑧)P(𝑌 = 𝑧) =

(
(1 − 𝑝)𝑧−1𝑝

)2
= (1 − 𝑝)2𝑧−2𝑝2.

If 𝑤 ⩾ 1, noticed that |𝑋 − 𝑌 | = 𝑤 iff 𝑋 = 𝑌 ± 𝑤 we have

P(𝑍 = 𝑧, 𝑊 = 𝑤) = P (min(𝑋,𝑌 ) = 𝑧, 𝑋 = 𝑌 ± 𝑤)

= P(𝑋 = 𝑌 − 𝑤, 𝑋 = 𝑧) + P(𝑋 = 𝑌 + 𝑤, 𝑌 = 𝑧)

= P(𝑋 = 𝑧, 𝑌 = 𝑧 + 𝑤) + P(𝑌 = 𝑧, 𝑋 = 𝑧 + 𝑤)

𝑖𝑛𝑑𝑒𝑝
= P(𝑋 = 𝑧)P(𝑌 = 𝑧 + 𝑤) + P(𝑌 = 𝑧)P(𝑋 = 𝑧 + 𝑤)

= 2(1 − 𝑝)𝑧−1𝑝(1 − 𝑝)𝑧+𝑤−1𝑝

= 2(1 − 𝑝)2𝑧+𝑤−2𝑝2.

ii) 𝑍 and𝑊 are independent iff

P(𝑍 = 𝑧, 𝑊 = 𝑤) = P(𝑍 = 𝑧)P(𝑊 = 𝑤).
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From previous calculation we have

P(𝑍 = 𝑧) = P

(⊔
𝑤

𝑍 = 𝑧,𝑊 = 𝑤

)
=

∞∑︁
𝑤=0
P(𝑍 = 𝑧,𝑊 = 𝑤)

= (1 − 𝑝)2𝑧−2𝑝2 +
∞∑︁

𝑤=1
2(1 − 𝑝)2𝑧+𝑤−2𝑝2 = 𝑝2(1 − 𝑝)2𝑧−2

(
1 + 2

∞∑︁
𝑤=1

(1 − 𝑝)𝑤
)

= 𝑝2(1 − 𝑝)2𝑧−2
(
1 + 2

(
1

1 − (1 − 𝑝) − 1
))

= 𝑝2(1 − 𝑝)2𝑧−2 𝑝 + 2(1 − 𝑝)
𝑝

= 𝑝(1 − 𝑝)2𝑧−2(2 − 𝑝).

Similarly,

P(𝑊 = 𝑤) = P

(⊔
𝑧⩾1

𝑍 = 𝑧,𝑊 = 𝑤

)
=

∞∑︁
𝑤=1
P(𝑍 = 𝑧,𝑊 = 𝑤)

=


𝑤 = 0,

∑∞
𝑧=1(1 − 𝑝)2𝑧−2𝑝2 = 𝑝2 1

1−(1−𝑝)2 =
𝑝

2−𝑝
,

𝑤 ⩾ 1 2𝑝2(1 − 𝑝)𝑤 ∑∞
𝑧=1(1 − 𝑝)2𝑧−2 = 2(1 − 𝑝)𝑤 𝑝

2−𝑝

So

P(𝑍 = 𝑧)P(𝑊 = 𝑤) =


𝑤 = 0, 𝑝(1 − 𝑝)2𝑧−2(2 − 𝑝) · 𝑝

2−𝑝
= 𝑝2(1 − 𝑝)2𝑧−2,

𝑤 ⩾ 1, 𝑝(1 − 𝑝)2𝑧−2(2 − 𝑝) · 2(1 − 𝑝)𝑤 𝑝

2−𝑝
= 2𝑝2(1 − 𝑝)2𝑧+𝑤−2

= P(𝑍 = 𝑧,𝑊 = 𝑤).
We conclude that 𝑍 and𝑊 are independent. □

Exercise 11. See notes for Borel–Cantelli’s Lemma.
i) We prove that

P

(⋂
𝑁

⋃
𝑛

{𝑌𝑛 ⩾ 1 + 𝜀}
)
= 0.

To this aim we apply first Borel–Cantelli’s Lemma proving that∑︁
𝑛

P (𝑌𝑛 ⩾ 1 + 𝜀) < +∞.

We have
P (𝑌𝑛 ⩾ 1 + 𝜀) = P

(
𝑋𝑛 ⩾ log 𝑛 + (1 + 𝜀) log(log 𝑛) = log

(
𝑛(log 𝑛)1+𝜀

))
.
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Being 𝑋𝑛 ∼ exp(1), we have
P(𝑋𝑛 ⩾ 𝛼) = 𝑒−𝛼,

so

P (𝑌𝑛 ⩾ 1 + 𝜀) = 𝑒− log(𝑛(log 𝑛)1+𝜀) = 1
𝑛(log 𝑛)1+𝜀 ,

from which ∑︁
𝑛

P (𝑌𝑛 ⩾ 1 + 𝜀) =
∑︁
𝑛

1
𝑛(log 𝑛)1+𝜀 < +∞.

ii) According to second Borel–Cantelli’s Lemma, if the events 𝐸𝑛 are independent and∑︁
𝑛

P(𝐸𝑛) = +∞, =⇒ P

(⋂
𝑁

⋃
𝑛

𝐸𝑛

)
= 1.

So, since the 𝑌𝑛 are independent, to prove that

P

(⋂
𝑁

⋃
𝑛

{𝑌𝑛 ⩾ 1 − 𝜀}
)
= 1

we just need to verify that ∑︁
𝑛

P ({𝑌𝑛 ⩾ 1 − 𝜀}) = +∞.

By a calculation similar to that of i),

P(𝑌𝑛 ⩾ 1 − 𝜀) = 1
𝑛(log 𝑛)1−𝜀

, =⇒
∑︁
𝑛

P(𝑌𝑛 ⩾ 1 − 𝜀) =
∑︁
𝑛

1
𝑛(log 𝑛)1−𝜀

= +∞,

and the conclusion follows. □

Exercise 13. i) We have

𝜆2(𝐴) =
∫
|𝑥−𝑦 |<𝑎, |𝑥+𝑦 |<𝑏

𝑑𝑥𝑑𝑦
𝑢=𝑥−𝑦,𝑣=𝑥+𝑦

=
1
2

∫
|𝑢 |<𝑎, |𝑣 |<𝑏

𝑑𝑢𝑑𝑣 = 2𝑎𝑏,

so

𝑓𝑌 (𝑦) =

∫
R
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥 =

1
2𝑎𝑏

∫
R

1𝑦−𝑎⩽𝑥⩽𝑦+𝑎, −𝑦−𝑏⩽𝑥⩽−𝑦+𝑏 (𝑥) 𝑑𝑥

=
1

2𝑎𝑏

∫
R

1max(𝑦−𝑎,−𝑦−𝑏)⩽𝑥⩽min(𝑦+𝑎,−𝑦+𝑏) 𝑑𝑥 =
𝑀 (𝑦) − 𝑚(𝑦)

2𝑎𝑏
1𝑚(𝑦)⩽𝑀 (𝑦)

where

𝑚(𝑦) = max(𝑦−𝑎,−𝑦−𝑏) =


−𝑦 − 𝑏, 𝑦 < −𝑏−𝑎
2 ,

𝑦 − 𝑎, 𝑦 > −𝑏−𝑎
2 .

𝑀 (𝑦) = min(𝑦+𝑎,−𝑦+𝑏) =

𝑦 + 𝑎, 𝑦 < 𝑏−𝑎

2 ,

−𝑦 + 𝑏 𝑦 > 𝑏−𝑎
2 .
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Returning to 𝑓𝑌 (𝑦) we have

𝑓𝑌 (𝑦) =


𝑦 < −𝑏−𝑎

2 , = 1
2𝑎𝑏

∫
R

1[−𝑦−𝑏,𝑦+𝑎] (𝑥) 𝑑𝑥,

−𝑏−𝑎
2 ⩽ 𝑦 < 𝑏−𝑎

2 , = 1
2𝑎𝑏

∫
R

1[𝑦−𝑎,𝑦+𝑎] (𝑥) 𝑑𝑥 = 1
𝑏
,

𝑦 ⩾ 𝑏−𝑎
2 , = 1

2𝑎𝑏

∫
R

1[𝑦−𝑎,−𝑦+𝑏] (𝑥) 𝑑𝑥.

Now, −𝑦 − 𝑏 < 𝑦 + 𝑎 iff 𝑦 > − 𝑎+𝑏
2 , and since − 𝑎+𝑏

2 < −𝑏−𝑎
2 we have

𝑓𝑌 (𝑦) =


0, 𝑦 < − 𝑎+𝑏

2 ,

1
2𝑎𝑏 (2𝑦 + 𝑎 + 𝑏) =

1
𝑎𝑏

(
𝑦 + 𝑎+𝑏

2

)
, − 𝑎+𝑏

2 ⩽ 𝑦 < −𝑏−𝑎
2 .

Similarly,

𝑓𝑌 (𝑦) =


0, 𝑦 > 𝑎+𝑏

2 ,

1
𝑎𝑏

(
𝑎+𝑏

2 − 𝑦
)
, 𝑏−𝑎

2 ⩽ 𝑦 < 𝑏+𝑎
2 .

We conclude that

𝑓𝑌 (𝑦) =



0, 𝑦 < − 𝑎+𝑏
2 ,

1
2𝑎𝑏 (2𝑦 + 𝑎 + 𝑏) =

1
𝑎𝑏

(
𝑦 + 𝑎+𝑏

2

)
, − 𝑎+𝑏

2 ⩽ 𝑦 < −𝑏−𝑎
2 ,

1
𝑏
, −𝑏−𝑎

2 ⩽ 𝑦 < 𝑏−𝑎
2 ,

1
𝑎𝑏

(
𝑎+𝑏

2 − 𝑦
)
, 𝑏−𝑎

2 ⩽ 𝑦 < 𝑏+𝑎
2 ,

0, 𝑦 > 𝑎+𝑏
2 .

ii) We have

E[𝑋 | 𝑌 = 𝑦] = 0, |𝑦 | > 𝑎 + 𝑏
2

,

while, for |𝑦 | ⩽ 𝑎+𝑏
2 ,

E[𝑋 | 𝑌 = 𝑦] =
∫
R
𝑥 𝑓𝑋 |𝑌 (𝑥 | 𝑦) 𝑑𝑥 = 1

𝑓𝑌 (𝑦)
1

2𝑎𝑏

∫
R
𝑥1max(𝑦−𝑎,−𝑦−𝑏)⩽𝑥⩽min(𝑦+𝑎,−𝑦+𝑏) 𝑑𝑥.

Denoting by 𝑚(𝑦) := max(𝑦 − 𝑎,−𝑦 − 𝑏) and 𝑀 (𝑦) := min(𝑦 + 𝑎,−𝑦 + 𝑏), we have
1

𝑀 (𝑦) − 𝑚(𝑦)

∫
R
𝑥1max(𝑦−𝑎,−𝑦−𝑏)⩽𝑥⩽min(𝑦+𝑎,−𝑦+𝑏) 𝑑𝑥 =

𝑚(𝑦) + 𝑀 (𝑦)
2

,

and since 𝑓𝑌 (𝑦) = 1
2𝑎𝑏 (𝑀 (𝑦) − 𝑚(𝑦)), we have

E[𝑋 | 𝑌 = 𝑦] = 𝑚(𝑦) + 𝑀 (𝑦)
2

.
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Here we have the following cases:
• case 𝑎 = 𝑏. Then 𝑚(𝑦) = max(𝑦 − 𝑎,−𝑦 − 𝑎) = |𝑦 | − 𝑎, 𝑀 (𝑦) = min(𝑦 + 𝑎,−𝑦 + 𝑎) = −|𝑦 | + 𝑎 so

E[𝑋 | 𝑌 = 𝑦] = 0, |𝑦 | ⩽ 𝑎, =⇒ E[𝑋 | 𝑌 = 𝑦] ≡ 0.

• case 0 ⩽ 𝑎 < 𝑏: if we have

E[𝑋 | 𝑌 = 𝑦] =


−𝑦−𝑏+𝑦+𝑎
2 = −𝑏−𝑎

2 , − 𝑎+𝑏
2 ⩽ 𝑦 ⩽ −𝑏−𝑎

2 ,
𝑦−𝑎+𝑦+𝑎

2 = 𝑦 −𝑏−𝑎
2 ⩽ 𝑦 ⩽ 𝑏−𝑎

2 ,
𝑦−𝑎+(−𝑦+𝑏)

2 = 𝑏−𝑎
2 , 𝑏−𝑎

2 ⩽ 𝑦 ⩽ 𝑏+𝑎
2

• case 0 ⩽ 𝑏 < 𝑎: if we have

E[𝑋 | 𝑌 = 𝑦] =


𝑦−𝑎+(−𝑦+𝑏)

2 = 𝑏−𝑎
2 , − 𝑎+𝑏

2 ⩽ 𝑦 ⩽ −𝑏−𝑎
2 ,

−𝑦−𝑏+(−𝑦+𝑏)
2 = −𝑦 −𝑏−𝑎

2 ⩽ 𝑦 ⩽ 𝑏−𝑎
2 ,

−𝑦−𝑏+(𝑦+𝑎)
2 = −𝑏−𝑎

2 , 𝑏−𝑎
2 ⩽ 𝑦 ⩽ 𝑏+𝑎

2

iii) Since in all cases take constant values with positive probability, E[𝑋 | 𝑌 ] is not absolutely
continuous, so there is no density for it. □

Exercise 15. i) Let 𝑋 ⩾ 0 natural valued. By monotone convergence,
∞∑︁
𝑘=0
P(𝑋 > 𝑘) =

∞∑︁
𝑘=0
E[1𝑋>𝑘] = E

[ ∞∑︁
𝑘=0

1𝑋>𝑘

]
.

Now, assume 𝑋 (Ω) = 𝑛. Then
∞∑︁
𝑘=0

1𝑋 (𝜔)>𝑘 =

𝑛−1∑︁
𝑘=0

1 = 𝑛 = 𝑋 (𝜔),

From this the conclusion follows.
ii) We have∫ +∞

0
P(𝑋 > 𝑡) 𝑑𝑡 =

∫ +∞

0
E[1𝑋>𝑡 ] 𝑑𝑡 = E


∫ +∞

0
1𝑋>𝑡︸︷︷︸

=1[0,𝑋 [ (𝑡 )

𝑑𝑡

 = E

[∫ 𝑋

0
𝑑𝑡

]
= E[𝑋] . □

Exercise 16. i) To be a true covariance matrix 𝐶 must be symmetric and positive definite. Clearly, 𝐶
is symmetric. To be positive definite we need that

𝐶

(
𝑥

𝑦

)
·
(
𝑥

𝑦

)
> 0, ∀

(
𝑥

𝑦

)
≠ 0.

A quick condition for positivity, if you remind, is that all the 𝑘 × 𝑘 sub-determinants on the diagonal are
positive. These are 1 and 1 − 𝜌2, so the condition is 1 − 𝜌2 > 0, that is −1 < 𝜌 < 1.

Equivalently,

𝐶

(
𝑥

𝑦

)
·
(
𝑥

𝑦

)
=

(
𝑥 + 𝜌𝑦
𝜌𝑥 + 𝑦

) (
𝑥

𝑦

)
= (𝑥 + 𝜌𝑦)𝑥 + (𝜌𝑥 + 𝑦)𝑦 = 𝑥2 + 𝑦2 + 2𝜌𝑥𝑦
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If 𝑥 = ±𝑦 we have 𝑥2 + 𝑥2 ± 2𝜌𝑥2 = 2𝑥2(1 ± 𝜌) > 0 iff 1 ± 𝜌 > 0, that is −1 < 𝜌 < 1. For such 𝜌,

𝑥2 + 𝑦2 + 2𝜌𝑥𝑦 > 𝑥2 + 𝑦2 − 2|𝑥 | |𝑦 | = ( |𝑥 | + |𝑦 |)2 > 0, ∀
(
𝑥

𝑦

)
≠ 0.

ii) We know that (𝑋,𝑌 ) = (𝑅 cosΘ, 𝑅 sinΘ) = Φ(𝑅,Θ), so

𝑓𝑅,Θ(𝑟, 𝜃) = 𝑓𝑋,𝑌 (Φ(𝑟, 𝜃)) | detΦ′(𝑟, 𝜃) |
where

𝑓𝑋,𝑌 (𝑥, 𝑦) =
1√︁

(2𝜋)2 det𝐶
𝑒
− 1

2𝐶
−1(𝑥𝑦) (𝑥𝑦) = 1√︁

(2𝜋)2(1 − 𝜌2)
𝑒

− 1
2

1
1−𝜌2

[
1 −𝜌
−𝜌 1

]
(𝑥𝑦) ·(𝑥𝑦)

= 1√
(2𝜋 )2 (1−𝜌2 )

𝑒
− 1

2(1−𝜌2 ) (𝑥2+𝑦2−2𝜌𝑥𝑦)
.

Thus,

𝑓𝑅,Θ(𝑟, 𝜃) =
1√︁

(2𝜋)2(1 − 𝜌2)
𝑒
− 𝑟2

2(1−𝜌2 )
(1−2𝜌 cos 𝜃 sin 𝜃 ) · 𝑟1[0,+∞[ (𝑟)1[0,2𝜋 ] (𝜃).

For the distribution of Θ we have

𝑓Θ(𝜃) =

∫
R
𝑓𝑅,Θ(𝑟, 𝜃) 𝑑𝑟 =

1
2𝜋

√︁
1 − 𝜌2

∫ +∞

0
𝑟𝑒

− 1−𝜌 sin(2𝜃 )
2(1−𝜌2 )

𝑟2
𝑑𝑟 · 1[0,2𝜋 ] (𝜃)

= − 1
2𝜋

√︁
1 − 𝜌2

2(1 − 𝜌2)
1 − 𝜌 sin(2𝜃)

[
𝑒
− 1−𝜌 sin(2𝜃 )

2(1−𝜌2 )
𝑟2

]𝑟=+∞
𝑟=0

1[0,2𝜋 ] (𝜃)

=
1

2𝜋

√︁
1 − 𝜌2

1 − 𝜌 sin(2𝜃) 1[0,2𝜋 ] (𝜃)

iii) 𝑅 and Θ are independent iff 𝑓𝑅,Θ = 𝑓𝑅 𝑓Θ. It is evident that this can happen iff 𝜌 = 0, that is iff 𝑋 and
𝑌 are independent. In this case we have

𝑓Θ(𝜃) =
1

2𝜋
1[0,2𝜋 ] (𝜃),

and
𝑓𝑅 (𝑟) =

𝑓𝑅,Θ(𝑟, 𝜃)
𝑓Θ(𝜃)

= 𝑟𝑒−
𝑟2
2 1[0,+∞[ (𝑟).

iv) We have

E[𝑅 | Θ = 𝜃] =

∫
R
𝑟 𝑓𝑅 |Θ(𝑟 |𝜃) 𝑑𝑟 =

2𝜋(1 − 𝜌 sin(2𝜃))√︁
1 − 𝜌2

1
2𝜋

√︁
1 − 𝜌2

∫ +∞

0
𝑟2𝑒

− 1−𝜌 sin(2𝜃 )
2(1−𝜌2 )

𝑟2
𝑑𝑟

=

√︄
1 − 𝜌2

1 − 𝜌 sin(2𝜃)

∫ +∞

0
𝑢2𝑒−

𝑢2
2 𝑑𝑢 =

√︄
𝜋(1 − 𝜌2)

2(1 − 𝜌 sin(2𝜃)) .
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Similarly,

E[𝑅2 | Θ = 𝜃] =

∫
R
𝑟2 𝑓𝑅 |Θ(𝑟 |𝜃) 𝑑𝑟 =

1 − 𝜌 sin(2𝜃)
1 − 𝜌2

∫ +∞

0
𝑟3𝑒

− 1−𝜌 sin(2𝜃 )
2(1−𝜌2 )

𝑟2
𝑑𝑟

=
1 − 𝜌2

1 − 𝜌 sin(2𝜃)

∫ +∞

0
𝑢3𝑒−

𝑢2
2 𝑑𝑢.

Noticed that ∫ +∞

0
𝑢3𝑒−

𝑢2
2 𝑑𝑢 =

[
𝑢2(−𝑒− 𝑢2

2 )
]𝑟=+∞
𝑟=0

+
∫ +∞

0
2𝑢𝑒−

𝑢2
2 𝑑𝑢 = 2

we deduce

R[𝑅2 | Θ = 𝜃] = 2
1 − 𝜌2

1 − 𝜌 sin(2𝜃) . □

Exercise 17. i) We have to show that

P

(
|𝑋𝑛 |
log 𝑛

⩽ 1 + 𝜀 for all but finitely many 𝑛
)
= P

(⋃
𝑁

⋂
𝑛⩾𝑁

|𝑋𝑛 |
log 𝑛

⩽ 1 + 𝜀
)
= 1,

that is, taking the complementaries,

P

(⋂
𝑁

⋃
𝑛⩾𝑁

{
|𝑋𝑛 |
log 𝑛

⩾ 1 + 𝜀
})

= 0.

We apply first Borel-Cantelli’s Lemma. Notice first that

P

(
|𝑋𝑛 |
log 𝑛

⩾ 1 + 𝜀
)
= P ( |𝑋𝑛 | ⩾ (1 + 𝜀) log 𝑛) .

Now, for 𝛼 > 0,

P( |𝑋𝑛 | ⩾ 𝛼) =
∫
]−∞,−𝛼]∪[𝛼,+∞[

1
2
𝑒−|𝑥 | 𝑑𝑥 =

∫ +∞

𝛼

𝑒−𝑥 𝑑𝑥 = 𝑒−𝛼,

so

P( |𝑋𝑛 | ⩾ (1 + 𝜀) log 𝑛) = 𝑒−(1+𝜀) log 𝑛 =
1
𝑛1+𝜀 .

Therefore ∑︁
𝑛

P

(
|𝑋𝑛 |
log 𝑛

⩾ 1 + 𝜀
)
=

∑︁
𝑛

1
𝑛1+𝜀 < +∞, ∀𝜀 > 0,

so the conclusion follows.
ii) We now have to prove that

P

(
|𝑋𝑛 |
log 𝑛

⩾ 1 − 𝜀 for infinitely many 𝑛
)
= P

(⋂
𝑁

⋃
𝑛⩾𝑁

{
|𝑋𝑛 |
log 𝑛

⩾ 1 − 𝜀
})

= 1.
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Here we can apply the second Borel-Cantelli Lemma: since the 𝑋𝑛 are independent, the conclusion will
follow once we prove ∑︁

𝑛

P

({
|𝑋𝑛 |
log 𝑛

⩾ 1 − 𝜀
})

= +∞.

As above,

P

({
|𝑋𝑛 |
log 𝑛

⩾ 1 − 𝜀
})

= P ( |𝑋𝑛 | ⩾ (1 − 𝜀) log 𝑛) = 𝑒−(1−𝜀) log 𝑛 =
1

𝑛1−𝜀
,

so ∑︁
𝑛

P

({
|𝑋𝑛 |
log 𝑛

⩾ 1 − 𝜀
})

=
∑︁
𝑛

1
𝑛1−𝜀

= +∞. □

Exercise 19. In 𝐿2, conditional expectation is the orthogonal projection Π𝑋 . In particular 𝑋 −Π𝑋 ⊥
Π𝑋 so, by Pythagorean’s theorem,

∥𝑋 ∥2
2 = ∥Π𝑋 ∥2

2 + ∥𝑋 − Π𝑋 ∥2
2 ⩾ ∥Π𝑋 ∥2

2,

that is
∥E[𝑋 | 𝒢] ∥2

2 ⩽ ∥𝑋 ∥2
2,

from which the conclusion follows.
i) By the Pythagorean theorem,

∥𝑋 ∥2
2 = ∥E[𝑋 | 𝑌 ] ∥2

2 + ∥𝑋 − E[𝑋 | 𝑌 ] ∥2
2 = ∥𝑌 ∥2

2 + ∥𝑋 − 𝑌 ∥2
2, =⇒ ∥𝑋 − 𝑌 ∥2

2 = ∥𝑋 ∥2
2 − ∥𝑌 ∥2

2.

For the same argument, from E[𝑌 | 𝑋] = 𝑋 we have

∥𝑌 − 𝑋 ∥2
2 = ∥𝑌 ∥2

2 − ∥𝑋 ∥2
2,

and summing these identities we get

2∥𝑋 − 𝑌 ∥2
2 = 0, =⇒ 𝑋 = 𝑌 a.s.

ii) Arguing as in i) we get
∥𝑋 − 𝑌 ∥2

2 = ∥𝑋 ∥2
2 − ∥𝑌 ∥2

2,

∥𝑌 − 𝑍 ∥2
2 = ∥𝑌 ∥2

2 − ∥𝑍 ∥2
2,

∥𝑍 − 𝑋 ∥2
2 = ∥𝑍 ∥2

2 − ∥𝑋 ∥2
2,

=⇒ ∥𝑋 − 𝑌 ∥2
2 + ∥𝑌 − 𝑍 ∥2

2 + ∥𝑍 − 𝑋 ∥2
2 = 0, =⇒ 𝑋 = 𝑌 = 𝑍 a.s. □

Exercise 20. i) Clearly 𝐹 is well defined, increasing, 𝐹 (−∞) = 𝑒−(+∞) = 0 and 𝐹 (+∞) = 𝑒−0 = 1.
Moreover 𝐹 ∈ 𝒞(R), so 𝐹 is a cdf.
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ii) We have
𝐹𝑌𝑛 (𝑦) = P(𝑌𝑛 ⩽ 𝑦) = P (max{𝑋1, . . . , 𝑋𝑛} ⩽ 𝑦)

= P (𝑋1 ⩽ 𝑦, . . . , 𝑋𝑛 ⩽ 𝑦) =
𝑛∏

𝑘=1
P(𝑋𝑘 ⩽ 𝑦)

=


0, 𝑦 < 0,

(1 − 𝑒−𝑦)𝑛 , 𝑦 > 0.
iii) Let 𝑍𝑛 := 𝑌𝑛 − log 𝑛. Then

𝐹𝑍𝑛
(𝑧) = P(𝑍𝑛 ⩽ 𝑧) = P(𝑌𝑛 ⩽ 𝑧 + log 𝑛) = 𝐹𝑌𝑛 (𝑧 + log 𝑛).

For 𝑧 ∈ R fixed and 𝑛 large enough, 𝑧 + log 𝑛 > 0 so

𝐹𝑍𝑛
(𝑧) =

(
1 − 𝑒−(𝑧+log 𝑛)

)𝑛
=

(
1 − 𝑒−𝑧

𝑛

)𝑛
−→ 𝑒−𝑒

−𝑧
= 𝐹 (𝑧), ∀𝑧 ∈ R.

Since 𝐹 is a continuous cdf, we conclude that 𝑍𝑛
𝑑−→ 𝑍 where 𝐹𝑍 = 𝐹. □

Exercise 21. We notice that

P(𝑋 + 𝑌 ∈ 𝐸) =

∫
R2

1𝐸 (𝑥 + 𝑦) 𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =
∫
R2

1𝐸 (𝑥 + 𝑦) 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) 𝑑𝑥𝑑𝑦

𝑢=𝑥+𝑦, 𝑣=𝑥
=

∫
R2

1𝐸 (𝑢) 𝑓𝑋 (𝑣) 𝑓𝑌 (𝑢 − 𝑣) 𝑑𝑢𝑑𝑣

=

∫
𝐸

(∫
R
𝑓𝑋 (𝑣) 𝑓𝑌 (𝑢 − 𝑣) 𝑑𝑣

)
𝑑𝑢

=

∫
𝐸

𝑓𝑋 ∗ 𝑓𝑌 (𝑢) 𝑑𝑢.

This says that 𝑓𝑋+𝑌 (𝑢) = 𝑓𝑋 ∗ 𝑓𝑌 (𝑢).
i) By induction,

𝑓𝑋1+···+𝑋𝑛
= 𝑓𝑋1 ∗ · · · ∗ 𝑓𝑋𝑛

.

Applying the FT, �𝑓𝑋1+···+𝑋𝑛
(𝜉) = 𝑓𝑋1 (𝜉) · · · 𝑓̂𝑋𝑛

(𝜉).
Notice that

𝑓𝑋𝑘
(𝜉) =

∫
R
𝑓𝑋𝑘

(𝑥)𝑒−𝑖 𝜉 𝑥 𝑑𝑥 =
∫ +∞

0
𝜆𝑒−𝜆𝑥𝑒−𝑖 𝜉 𝑥 𝑑𝑥 = 𝜆

∫ +∞

0
𝑒−(𝜆+𝑖 𝜉 )𝑥 𝑑𝑥

= 𝜆

[
𝑒−(𝜆+𝑖 𝜉 )𝑥

−(𝜆 + 𝑖𝜉)

] 𝑥=+∞
𝑥=0

= 𝜆

(
0 − 1

−(𝜆 + 𝑖𝜉)

)
=

𝜆

𝜆 + 𝑖𝜉 .
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So, �𝑓𝑋1+···+𝑋𝑛
(𝜉) =

(
𝜆

𝜆 + 𝑖𝜉

)𝑛
=

𝜆𝑛

(−𝑖)𝑛−1(𝑛 − 1)!
𝜕𝑛−1
𝜉 (𝜆 + 𝑖𝜉)−1.

Applying the FT,

2𝜋 𝑓𝑋1+···+𝑋𝑛
(−𝑥) =

��𝑓𝑋1+···+𝑋𝑛
(𝑥) = 𝜆𝑛

(−𝑖)𝑛−1(𝑛 − 1)!
�𝜕𝑛−1

𝜉
(𝜆 + 𝑖♯)−1(𝑥)

= (−1)𝑛−1 𝜆𝑛

(𝑛 − 1)!𝑥
𝑛−1 �(𝜆 + 𝑖♯)−1(𝑥).

Now, since
𝜆(𝜆 + 𝑖𝜉)−1 = �𝜆𝑒−𝜆♯1[0,+∞[ (𝜉),

we have �𝜆(𝜆 + 𝑖♯)−1(𝑥) = ��𝜆𝑒−𝜆♯1[0,+∞[ (𝑥) = 2𝜋𝜆𝑒𝜆𝑥1[0,+∞[ (−𝑥),
from which, finally,

𝑓𝑋1+···+𝑋𝑛
(𝑥) = 𝜆 (−𝜆𝑥)

𝑛−1

(𝑛 − 1)! 𝑒
−𝜆𝑥1[0,+∞[ (𝑥).

ii) Let 𝑆𝑛 := 𝑋1 + · · · + 𝑋𝑛. We compute the cdf of 𝑆𝑁 : for 𝑥 ⩾ 0,

P(𝑆𝑁 ⩽ 𝑥) =

∞∑︁
𝑛=1
P(𝑆𝑛 ⩽ 𝑥, 𝑁 = 𝑛) =

∞∑︁
𝑛=1
P(𝑆𝑛 ⩽ 𝑥) (1 − 𝑝)𝑛−1𝑝

= 𝜆𝑝

∞∑︁
𝑛=1

∫ 𝑥

0

(−𝜆𝑦)𝑛−1

(𝑛 − 1)! 𝑒
−𝜆𝑦 (1 − 𝑝)𝑛−1 𝑑𝑦

𝑚𝑜𝑛.𝑐𝑜𝑛𝑣,
= 𝜆𝑝

∫ 𝑥

0

∞∑︁
𝑛=1

(−(1 − 𝑝)𝜆𝑦)𝑛−1

(𝑛 − 1)! 𝑒−𝜆𝑦 𝑑𝑦 = 𝜆𝑝

∫ 𝑥

0
𝑒−(1−𝑝)𝜆𝑦𝑒−𝜆𝑦 𝑑𝑦

that is
𝐹𝑆𝑁

(𝑥) = 𝜆𝑝
∫ 𝑥

0
𝑒−𝜆𝑝𝑦 𝑑𝑦, =⇒ 𝑓𝑆𝑁

(𝑥) = 𝜆𝑝𝑒−𝜆𝑝𝑥1[0,+∞[ (𝑥). □

Exercise 22. i) See notes.
ii) Let 𝜙𝑋 (𝜉) := E[𝑒𝑖 𝜉𝑋]. To show that 𝜙𝑋 is differentiable we apply the differentiability under integral

theorem. Formally
𝜕𝜉𝜙𝑋 (𝜉) = E[𝑖𝑋𝑒𝑖 𝜉𝑋] .

Notice that |𝑖𝑋𝑒𝑖 𝜉𝑋 | = |𝑋 | ∈ 𝐿1(Ω) being, by Cauchy-Schwarz inequality, E[|𝑋 |] ⩽ E[𝑋2]1/2 < +∞.
Thus differentiability theorem applies. Then,

𝜕2
𝜉𝜙𝑋 (𝜉) = E[(𝑖𝑋)2𝑒𝑖 𝜉𝑋] .

Again, being | (𝑖𝑋)2𝑒𝑖 𝜉𝑋 | = 𝑋2 ∈ 𝐿1(Ω), because E[𝑋2] < +∞. In particular,

𝜕2
𝜉𝜙𝑋 (0) = E[(𝑖𝑋)2] = −E[𝑋2] .
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iii) Notice that 𝜕𝜉𝜙𝑋 (𝜉) = −𝑐4𝜉3𝑒−𝑐𝜉
4 and 𝜕2

𝜉
𝜙𝑋 (𝜉) = 𝑒−𝑐𝜉

4 (16𝑐2𝜉6 − 12𝑐𝜉2), so, in particular,
𝜕2
𝜉
𝜙𝑋 (0) = 0. By ii), E[𝑋2] = 0, thus 𝑋 = 0 a.s., from which 𝜙𝑋 (𝜉) = E[1] = 1 = 𝑒−𝑐𝜉

4 iff 𝑐 = 0. □

Exercise 23. i) See notes.
ii) Let ℱ𝑡 := 𝜎(𝑊𝑠 : 𝑠 ⩽ 𝑡). We have to verify

E
[
𝑊3

𝑡 − 3𝑡𝑊𝑡 | ℱ𝑠

]
= 𝑊3

𝑠 − 3𝑠𝑊𝑠, ∀𝑡 ⩾ 𝑠 ⩾ 0.

We have

𝑊3
𝑡 = (𝑊𝑡 −𝑊𝑠 +𝑊𝑠)3 = (𝑊𝑡 −𝑊𝑠)3 + 3(𝑊𝑡 −𝑊𝑠)2𝑊𝑠 + 3(𝑊𝑡 −𝑊𝑠)𝑊2

𝑠 +𝑊3
𝑠 ,

so, recalling that𝑊𝑡 −𝑊𝑠 independent of ℱ𝑠 and𝑊𝑠 is ℱ𝑠, by the properties of the conditional expectation
we have

E[𝑊3
𝑡 | ℱ𝑠] = E[(𝑊𝑡 −𝑊𝑠)3] + 3𝑊𝑠E

[
(𝑊𝑡 −𝑊𝑠)2 | ℱ𝑠

]
+ 3𝑊2

𝑠E[𝑊𝑡 −𝑊𝑠 | ℱ𝑠] +𝑊3
𝑠

= 0 + 3𝑊𝑠E[(𝑊𝑡 −𝑊𝑠)2] + 3𝑊2
𝑠E[𝑊𝑡 −𝑊𝑠] +𝑊3

𝑠

= 3𝑊𝑠 (𝑡 − 𝑠) +𝑊3
𝑠

so
E

[
𝑊3

𝑡 − 3𝑡𝑊𝑡 | ℱ𝑠

]
= 3𝑊𝑠 (𝑡 − 𝑠) +𝑊3

𝑠 − 3𝑡E[𝑊𝑡 | ℱ𝑠] = 3𝑊𝑠 (𝑡 − 𝑠) +𝑊3
𝑠 − 3𝑡𝑊𝑠

= 𝑊3
𝑠 − 3𝑠𝑊𝑠,

which is the conclusion.
iii) We start noticing that

𝑊4
𝑡 = (𝑊𝑡 −𝑊𝑠 +𝑊𝑠)4 = (𝑊𝑡 −𝑊𝑠)4 + 4(𝑊𝑡 −𝑊𝑠)3𝑊𝑠 + 6(𝑊𝑡 −𝑊𝑠)2𝑊2

𝑠 + 4(𝑊𝑡 −𝑊𝑠)𝑊3
𝑠 +𝑊4

𝑠 ,

so
E[𝑊4

𝑡 | ℱ𝑠] = 3(𝑡 − 𝑠)2 + 6(𝑡 − 𝑠)𝑊2
𝑠 +𝑊4

𝑠

Now, notice also that

E[𝑊2
𝑡 | ℱ𝑠] = 𝑡 − 𝑠 +𝑊2

𝑠 , ⇐⇒ E[𝑊2
𝑡 − 𝑡 | ℱ𝑠] = 𝑊2

𝑠 − 𝑠,

so
6𝑡𝑊2

𝑠 = 6𝑡
(
E[𝑊2

𝑡 − 𝑡 | ℱ𝑠] + 𝑠
)
= E[6𝑡𝑊2

𝑡 | ℱ𝑠] − 6𝑡 (𝑡 − 𝑠),

from which
E[𝑊4

𝑡 − 6𝑡𝑊2
𝑡 | ℱ𝑠] = 𝑊4

𝑠 − 6𝑠𝑊2
𝑠 + 3(𝑡 − 𝑠)2 − 6𝑡 (𝑡 − 𝑠) =

= 𝑊4
𝑠 − 6𝑠𝑊2

𝑠 − 3(𝑡2 − 𝑠2),
so, finally,

E[𝑊4
𝑡 − 6𝑡𝑊2

𝑡 + 3𝑡2 | ℱ𝑠] = 𝑊4
𝑠 − 6𝑠𝑊2

𝑠 + 3𝑠2,

that is,𝑊4
𝑡 − 6𝑡𝑊2

𝑡 + 3𝑡2 is a martingale. □



30

Exercise 25 i) Assume (𝑋,𝑌 ) are independent, so 𝑓𝑋,𝑌 = 𝑓𝑋 𝑓𝑌 . Then

𝜙𝑋,𝑌 (𝜉, 𝜂) = E[𝑒𝑖 ( 𝜉 ,𝜂) · (𝑋,𝑌 ) ] =
∫
R2
𝑒𝑖 ( 𝜉 ,𝜂) · (𝑥,𝑦) 𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =

∫
R2
𝑒𝑖 ( 𝜉 ,𝜂) · (𝑥,𝑦) 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) 𝑑𝑥𝑑𝑦

=

∫
R
𝑒𝑖 𝜉 𝑥 𝑓𝑋 (𝑥) 𝑑𝑥

∫
R
𝑒𝑖𝜂𝑦 𝑓𝑌 (𝑦) 𝑑𝑦 = E[𝑒𝑖 𝜉𝑋]E[𝑒𝑖𝜂𝑌 ] = 𝜙𝑋 (𝜉)𝜙𝑌 (𝜂)

this for every (𝜉, 𝜂) ∈ R2.
Vice versa: assume 𝜙𝑋,𝑌 ≡ 𝜙𝑋𝜙𝑌 . The previous calculation shows that

𝑓𝑋,𝑌 = �𝑓𝑋 𝑓𝑌 ,
and since both 𝑓𝑋,𝑌 , 𝑓𝑋 𝑓𝑌 ∈ 𝐿1(R2) because they are probability densities, by the injectivity of 𝐿1 FT
we conclude that 𝑓𝑋,𝑌

𝑎.𝑠.
= 𝑓𝑋 𝑓𝑌 as claimed.

ii) We can use the characteristic functions:

𝜙𝑋+𝑌,𝑋−𝑌 (𝜉, 𝜂) = E
[
𝑒𝑖 (𝑋+𝑌,𝑋−𝑌 ) · ( 𝜉 ,𝜂)

]
= E

[
𝑒 ( 𝜉+𝜂)𝑋+( 𝜉−𝜂)𝑌

]
= E

[
𝑒𝑖 ( 𝜉+𝜂)𝑋

]
E

[
𝑒𝑖 ( 𝜉−𝜂)𝑌

]
= 𝑒−

1
2 ( 𝜉+𝜂)

2
𝑒−

1
2 ( 𝜉−𝜂)2

= 𝑒−
1
2 (2𝜉

2+2𝜂2 ) = 𝑒−𝜉 2
𝑒−𝜂2

.

On the other hand

𝜙𝑋±𝑌 (𝑡) = E
[
𝑒𝑖 (𝑋±𝑌 )𝑡

]
= E

[
𝑒𝑖𝑡𝑋

]
E

[
𝑒±𝑖𝑡𝑌

]
= 𝑒−

𝑡2
2 𝑒

−𝑡2
2 = 𝑒−𝑡

2
.

We can conclude that 𝜙𝑋+𝑌,𝑋−𝑌 = 𝜙𝑋+𝑌𝜙𝑋−𝑌 , thus 𝑋 + 𝑌, 𝑋 − 𝑌 are independent and that they are both
Gaussian 𝒩(0, 2).

iii) As suggested, (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2 = 4𝑥𝑦, so

E[𝑋𝑌 | 𝑋 − 𝑌 ] = 1
4
E

[
(𝑋 + 𝑌 )2 − (𝑋 − 𝑌 )2 | 𝑋 − 𝑌

]
By independence,

E
[
(𝑋 + 𝑌 )2 | 𝑋 − 𝑌

]
= E

[
(𝑋 + 𝑌 )2] = 2,

while
E

[
(𝑋 − 𝑌 )2 | 𝑋 − 𝑌

]
= (𝑋 − 𝑌 )2.

Therefore
E[𝑋𝑌 | 𝑋 − 𝑌 ] = 1

4

(
2 − (𝑋 − 𝑌 )2

)
. □

Exercise 26 i) We start noticing that

𝑋𝑘 = 𝛼𝑋𝑘−1 + 𝑁𝑘−1 = 𝛼(𝛼𝑋𝑘−2 + 𝑁𝑘−2) + 𝑁𝑘=1 = 𝛼2𝑋𝑘−2 + 𝑁𝑘−1 + 𝛼𝑁𝑘−2.

Iterating this we get

𝑋𝑘 = 𝛼𝑘𝑋0 +
𝑘−1∑︁
𝑗=0
𝛼 𝑗𝑁𝑘−1− 𝑗 = 𝛼

𝑘𝑥0 +
𝑘−1∑︁
𝑗=0
𝛼 𝑗𝑁𝑘−1− 𝑗 .
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Clearly,

E[𝑋𝑘] = 𝛼𝑘𝑥0 +
𝑘−1∑︁
𝑗=0
𝛼 𝑗E[𝑁𝑘−1− 𝑗] = 𝛼𝑘𝑥0.

About the variance we have

V[𝑋𝑘] = E[𝑋2
𝑘] − E[𝑋𝑘]2 = E

©­«𝛼𝑘𝑥0 +
𝑘−1∑︁
𝑗=0
𝛼 𝑗𝑁𝑘−1− 𝑗

ª®¬
2 − 𝛼2𝑘𝑥2

0 .

Noticed that E[𝛼𝑘𝑥0𝛼
𝑗𝑁𝑘−1− 𝑗] = 0, and being the 𝑁𝑘 independent, we have

V[𝑋𝑘] = 𝛼2𝑘𝑥2
0 +

𝑘−1∑︁
𝑗=0
𝛼2 𝑗E[𝑁2

𝑘−1− 𝑗] − 𝛼
2𝑘𝑥0 = 𝜎2

𝑘−1∑︁
𝑗=0

(𝛼2) 𝑗 = 𝜎2 1 − 𝛼2𝑘

1 − 𝛼2 ,

because of the formula
∑𝑘−1

𝑗=0 𝑞
𝑗 =

1−𝑞𝑘

1−𝑞 .
ii) We have

E[𝑋𝑘+1 | ℱ𝑘] = E[𝛼𝑋𝑘 + 𝑁𝑘 | ℱ𝑘] = 𝛼𝑋𝑘 + E[𝑁𝑘 | ℱ𝑘] .
Since ℱ𝑘 = 𝜎(𝑋1, . . . , 𝑋𝑘) = 𝜎(𝑁0, . . . , 𝑁𝑘−1) and 𝑁𝑘 being idependent of 𝑁 𝑗 for 𝑗 < 𝑘 , we have

E[𝑁𝑘 | ℱ𝑘] = E[𝑁𝑘] = 0.
Therefore, E[𝑋𝑘+1 | ℱ𝑘] = 𝑋𝑘 , so (𝑋𝑘) is a martingale w.r.t. ℱ𝑘 iff 𝛼 = 1.

iii) We have 𝑋𝑘+1 − 𝑋𝑘 = (1 − 𝛼)𝑋𝑘 + 𝑁𝑘 . If 𝛼 = 1,
∥𝑋𝑘+1 − 𝑋𝑘 ∥2

2 = E[(𝑋𝑘+1 − 𝑋𝑘)2] = E[𝑁2
𝑘] = 𝜎

2,

whereas, if 𝛼 ≠ 1,
∥𝑋𝑘+1 − 𝑋𝑘 ∥2

2 = E[(𝑋𝑘+1 − 𝑋𝑘)2] = E[(1 − 𝛼)2𝑋2
𝑘
+ 𝑁2

𝑘
+ 2(1 − 𝛼)𝑋𝑘𝑁𝑘]

= (1 − 𝛼)2 1 − 𝛼2𝑘

1 − 𝛼 𝜎2 + 𝜎2 =

(
(1 − 𝛼) (1 − 𝛼2𝑘) + 1

)
𝜎2.

In each case, ∥𝑋𝑘+1 − 𝑋𝑘 ∥2 ̸−→ 0 when 𝑘 → +∞, and this must happens to have 𝐿2 convergence. Thus,
𝑋𝑘 is not convergent in 𝐿2.

iv) We have

𝜙𝑋𝑘
(𝜉) = E

[
𝑒𝑖 𝜉𝑋𝑘

]
= E

[
𝑒
𝑖 𝜉

(
𝛼𝑘 𝑥0+

∑𝑘−1
𝑗=0 𝛼 𝑗𝑁𝑘−1− 𝑗

) ]
= 𝑒𝑖 𝜉 𝛼

𝑘 𝑥0

𝑘−1∏
𝑗=0
E

[
𝑒𝑖 𝜉 𝛼

𝑗𝑁𝑘−1− 𝑗

]
.

Let 𝜙 be the common characteristic function of the 𝑁 𝑗 . We have 𝜙(𝜉) = 𝑒− 1
2 𝜎

2 𝜉 2 , so

𝜙𝑋𝑘
(𝜉) = 𝑒𝑖 𝜉 𝛼𝑘 𝑥0

𝑘−1∏
𝑗=0

𝑒−
1
2 𝜎

2 (𝛼 𝑗 𝜉 )2
= 𝑒

𝑖 𝜉 𝛼𝑘 𝑥0− 1
2 𝜎

2 𝜉 2 ∑𝑘−1
𝑗=0 𝛼2 𝑗

= 𝑒
𝑖 𝜉 𝛼𝑘 𝑥0− 1

2 𝜎
2 1−𝛼2𝑘

1−𝛼2 𝜉 2
.

Letting 𝑘 → +∞, 𝛼𝑘 −→ 0 being |𝛼 | < 1, so

𝜙𝑋𝑘
(𝜉) −→ 𝑒

− 1
2

𝜎2
1−𝛼2 𝜉 2

,
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that is

𝑋𝑘

𝑑−→ 𝒩

(
0,

𝜎2

1 − 𝛼2

)
. □

Exercise 27. i) See notes for the definitions.
ii) We start noticing that

𝑋𝑡 = 𝑊3
𝑡 − 3

∫ 𝑡

0
𝑊𝑟 𝑑𝑟 = (𝑊𝑡 −𝑊𝑠 +𝑊𝑠)3 − 3

∫ 𝑠

0
𝑊𝑟 𝑑𝑟 − 3

∫ 𝑡

𝑠

𝑊𝑟 𝑑𝑟

= (𝑊𝑡 −𝑊𝑠)3 + 3(𝑊𝑡 −𝑊𝑠)2𝑊𝑠 + 3(𝑊𝑡 −𝑊𝑠)𝑊2
𝑠 +𝑊3

𝑠 − 3
∫ 𝑠

0
𝑊𝑟 𝑑𝑟︸                ︷︷                ︸

=𝑋𝑠

−3
∫ 𝑡

𝑠

(𝑊𝑟 −𝑊𝑠) 𝑑𝑟 − 3𝑊𝑠 (𝑡 − 𝑠).

We now apply the conditional expectation w.r.t ℱ𝑠. Notice first that 𝑋𝑠 ∈ ℱ𝑠. Then

E[(𝑊𝑡 −𝑊𝑠)3 + 3(𝑊𝑡 −𝑊𝑠)2𝑊𝑠 + 3(𝑊𝑡 −𝑊𝑠)𝑊2
𝑠 | ℱ𝑠] =

= E[(𝑊𝑡 −𝑊𝑠)3]︸             ︷︷             ︸
=0

+3𝑊𝑠 E[(𝑊𝑡 −𝑊𝑠)2]︸             ︷︷             ︸
𝑡−𝑠

+3𝑊2
𝑠 E[𝑊𝑡 −𝑊𝑠]︸         ︷︷         ︸

=0

= 3𝑊𝑠 (𝑡 − 𝑠).
Finally,

E

[∫ 𝑡

𝑠

(𝑊𝑟 −𝑊𝑠) 𝑑𝑟 | ℱ𝑠

]
=

∫ 𝑡

𝑠

E[𝑊𝑟 −𝑊𝑠 | ℱ𝑠]︸                ︷︷                ︸
=E[𝑊𝑟−𝑊𝑠 ]=0

𝑑𝑟 = 0.

Therefore, in conclusion,

E[𝑋𝑡 | ℱ𝑠] = 𝑋𝑠 + 3𝑊𝑠 (𝑡 − 𝑠) − 3𝑊𝑠 (𝑡 − 𝑠) = 𝑋𝑠,

that is, 𝑋𝑡 is an ℱ𝑡 martingale. □

Exercise 28. i) To be a well defined covariance matrix, 𝐶 must be symmetric (evident) and strictly
positive definite. This last follows from positivity of 𝑘 × 𝑘 (𝑘 = 1, 2) sub-determinants that are 1 and
1 − 1

4 = 3
4 .

ii) We use the characteristic function:

𝜙𝑌,2𝑋−𝑌 (𝜉, 𝜂) = E
[
𝑒𝑖 ( 𝜉 ,𝜂) · (𝑌,2𝑋−𝑌 )

]
= E

[
𝑒𝑖 ( 𝜉𝑌+𝜂 (2𝑋−𝑌 ) )

]
= E

[
𝑒𝑖 (2𝜂, 𝜉−𝜂) · (𝑋,𝑌 )

]
= 𝑒−

1
2𝐶 (2𝜂, 𝜉−𝜂) (2𝜂, 𝜉−𝜂) = 𝑒−

1
2 (4𝜂2+2 1

2 2𝜂 ( 𝜉−𝜂)+( 𝜉−𝜂)2) = 𝑒− 1
2 (3𝜂2+𝜉 2)

= 𝜙𝒩 (0,1) (𝜉)𝜙𝒩 (0,3) (𝜂)



33

and since 𝑌 ∼ 𝒩(0, 1) and 2𝑋 − 𝑌 ∼ 𝒩(0, 3) we have that

𝜙𝑌,2𝑋−𝑌 (𝜉, 𝜂) ≡ 𝜙𝑌 (𝜉)𝜙2𝑋−𝑌 (𝜂), ∀(𝜉, 𝜂) ∈ R2,

from which we deduce the independence.
iii) Since 𝑋 = 1

2 (2𝑋 − 𝑌 ) + 𝑌 , we have

𝑋2𝑌 =

(
1
2
(2𝑋 − 𝑌 ) + 1

2
𝑌

)2
𝑌 =

1
4

(
(2𝑋 − 𝑌 )2𝑌 + 2(2𝑋 − 𝑌 )𝑌2 + 𝑌3

)
and since 𝑌 and 2𝑋 − 𝑌 are independent

E[𝑋2𝑌 | 2𝑋 − 𝑌 ] =
1
4

(
E

[
(2𝑋 − 𝑌 )2𝑌 | 2𝑋 − 𝑌

]
+ 2E

[
(2𝑋 − 𝑌 )𝑌2 | 2𝑋 − 𝑌

]
+ E[𝑌3 | 2𝑋 − 𝑌 ]

)
=

1
4

(
(2𝑋 − 𝑌 )2E[𝑌 | 2𝑋 − 𝑌 ] + 2(2𝑋 − 𝑌 )E[𝑌2 | 2𝑋 − 𝑌 ] + E[𝑌3]

)
=

1
4

(
(2𝑋 − 𝑌 )2E[𝑌 ] + 2(2𝑋 − 𝑌 )E[𝑌2] + E[𝑌3]

)
=

2𝑋 − 𝑌
2

. □

Exercise 29. i) See LN.
ii) Let 𝐸𝑘 := {𝑋𝑘 = 𝑋𝑘+1 = 𝑋𝑘+2 = 1} ∈ ℱ (𝑋𝑘 are random variables). Then,

𝐸 =
⋂
𝑛

⋃
𝑘⩾𝑛

𝐸𝑘 = lim sup 𝐸𝑘 ∈ ℱ.

Moreover, since

P(𝐸𝑘)
𝑖𝑛𝑑𝑒𝑝
= P(𝑋𝑘 = 1)P(𝑋𝑘+1 = 1)P(𝑋𝑘+2 = 1) = 1√︁

𝑘 (𝑘 + 1) (𝑘 + 2)
,

and ∑︁
𝑘

P(𝐸𝑘) =
∑︁
𝑘

1√︁
𝑘 (𝑘 + 1) (𝑘 + 2)

∼
∑︁
𝑘

1
𝑘3/2 < ∞,

by the first Borel-Cantelli lemma we deduce that

P(𝐸) = P(lim sup
𝑘

𝐸𝑘) = 0.

iii) As in ii), let 𝐹𝑘 := {𝑋𝑘 = 𝑋𝑘+1 = 1} ∈ ℱ and

𝐹 =
⋂
𝑛

⋃
𝑘⩾𝑛

𝐹𝑘 = lim sup 𝐹𝑘 ∈ ℱ.

Notice that the events 𝐹𝑘 are not independent, while 𝐹2𝑘 are independent. Since,

𝐹 ⊃
⋂
𝑛

⋃
𝑘⩾𝑛

𝐹2𝑘 = lim sup 𝐹2𝑘 ,
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we are led to assess P(lim sup𝑘 𝐹2𝑘). As in ii),

P(𝐹𝑘)
𝑖𝑛𝑑𝑒𝑝
= P(𝑋𝑘 = 1)P(𝑋𝑘+1 = 1) = 1√︁

𝑘 (𝑘 + 1)
, =⇒ P(𝐸2𝑘) =

1√︁
2𝑘 (2𝑘 + 1)

⩾
1

√
4𝑘2

=
1

2𝑘
,

so ∑︁
𝑘

P(𝐹2𝑘) ⩾
∑︁
𝑘

1
2𝑘

= +∞.

By the second Borel-Cantelli lemma we conclude that P(lim sup𝑘 𝐹2𝑘) = 1, so P(𝐹) ⩾ 1 from which
P(𝐹) = 1. □

Exercise 30. i) Since 0 ⩽ 𝑋𝑘 ⩽ 1 with P = 1, we have that 𝑆𝑛+1 ⩾ 𝑆𝑛, so 𝑁 > 𝑛 iff 𝑆1 ⩽ 1, . . . , 𝑆𝑛 ⩽ 1,
that is 𝑆𝑛 ⩽ 1. In other words

{𝑁 > 𝑛} = {𝑆𝑛 ⩽ 1}.
Therefore,

P(𝑁 > 𝑛) = P(𝑆𝑛 ⩽ 1) = P(𝑋1 + · · · + 𝑋𝑛 ⩽ 1) =
∫
𝑥1+···+𝑥𝑛⩽1

𝑛∏
𝑘=1

1[0,1] (𝑥𝑘) 𝑑𝑥1 · · · 𝑑𝑥𝑛 =
1
𝑛!
.

From this we have

P(𝑁 = 𝑛) = P({𝑁 > 𝑛 − 1}\{𝑁 > 𝑛}) = P(𝑁 𝑛 − 1) − P(𝑁 > 𝑛) = 1
(𝑛 − 1)! −

1
𝑛!

=
𝑛 − 1
𝑛!

.

ii) We have

E[𝑁] =
∞∑︁
𝑛=1

𝑛P(𝑁 = 𝑛) =
∞∑︁
𝑛=1

𝑛
𝑛 − 1
𝑛!

=

∞∑︁
𝑛=2

1
(𝑛 − 2)! =

∞∑︁
𝑛=0

1
𝑛!
.

Recalling of the exponential series
∑∞

𝑘=0
𝑥𝑘

𝑘! = 𝑒𝑥 we have

E[𝑁] = 𝑒.

iii) We have

E[𝑆𝑁 ] =
∞∑︁
𝑛=2
E[𝑆𝑛1𝑁=𝑛] .

We notice that
{𝑁 = 𝑛} = {𝑆𝑛−1 ⩽ 1, 𝑆𝑛 > 1}

so
E[𝑆𝑛1𝑁=𝑛] = E[𝑆𝑛1𝑆𝑛−1⩽11𝑆𝑛>1] = E

[
E[𝑆𝑛1𝑆𝑛−1⩽11𝑆𝑛>1 | 𝑆𝑛−1]

]
= E[1𝑆𝑛−1⩽1E[(𝑆𝑛−1 + 𝑋𝑛)1𝑋𝑛>1−𝑆𝑛−1 | 𝑆𝑛−1]]

Now, if 𝑠 = 𝑆𝑛−1 < 1,

E[(𝑆𝑛−1 + 𝑋𝑛)1𝑋𝑛>1−𝑆𝑛−1 | 𝑆𝑛−1 = 𝑠] = 𝑠E[1𝑋𝑛>1−𝑠 | 𝑆𝑛−1 = 𝑠] + E[𝑋𝑛1𝑋𝑛>1−𝑠 | 𝑆𝑛−1],
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and by the independence of 𝑋𝑛 from 𝑆𝑛−1 = 𝑋1 + · · · + 𝑋𝑛−1, we have
E[(𝑆𝑛−1 + 𝑋𝑛)1𝑋𝑛>1−𝑆𝑛−1 | 𝑆𝑛−1 = 𝑠] = 𝑠E[1𝑋𝑛>1−𝑠] + E[𝑋𝑛1𝑋𝑛>1−𝑠]

= 𝑠(1 − (1 − 𝑠)) +
∫ 1

1−𝑠 𝑥 𝑑𝑥

= 𝑠2 +
[
𝑥2

2

]1

𝑥=1−𝑠
= 𝑠2 + 1

2 (1 − (1 − 𝑠)2)

= 𝑠2

2 + 𝑠.
Therefore

E[𝑆𝑛1𝑁=𝑛] = E
[(

1
2
𝑆2
𝑛−1 + 𝑆𝑛−1

)
1𝑆𝑛−1⩽1

]
=

1
2
𝐼2
𝑛−1 + 𝐼

1
𝑛−1 =

1
2

1
(𝑛 − 2)!(𝑛 + 1) +

1
(𝑛 − 2)!𝑛 .

From this

E[𝑆𝑁 ] =
1
2

∞∑︁
𝑛=2

1
(𝑛 − 2)!(𝑛 + 1) +

∞∑︁
𝑛=2

1
(𝑛 − 2)!𝑛

To compute the exact value of the sum we notice that
∞∑︁
𝑛=2

1
(𝑛 − 2)!𝑛 =

∞∑︁
𝑛=2

𝑛 − 1
𝑛!

=

∞∑︁
𝑛=2

(
1

(𝑛 − 1)! −
1
𝑛!

)
= 𝑒 − 1 − (𝑒 − 2) = 1,

while ∑∞
𝑛=2

1
(𝑛−2)!(𝑛+1) =

∑∞
𝑛=2

𝑛(𝑛−1)
(𝑛+1)! =

∑∞
𝑛=2

(
(𝑛+1) (𝑛−1)

(𝑛+1)! − 𝑛+1
(𝑛+1)! +

2
(𝑛+1)!

)
=

∑∞
𝑛=2

(
𝑛−1
𝑛! − 1

𝑛! +
2

(𝑛+1)!

)
=

∑∞
𝑛=2

(
1

(𝑛−1)! −
2
𝑛! +

2
(𝑛+1)!

)
= 𝑒 − 1 − 2

∑∞
𝑛=2

1
𝑛! + 2

∑∞
𝑛=3

1
𝑛! = 𝑒 − 1 − 2 1

2 = 𝑒 − 2.
Thus,

E[𝑆𝑁 ] =
1
2
(𝑒 − 2) + 1 =

𝑒

2
. □


