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!P PRINCIPAL COMPONENT ANALYSIS (PCA)

» Principal Component Analysis (PCA), o analisi delle componenti principali: tecnica
di apprendimento non supervisionato per ridurre la dimensionalita dei dati.

» Obiettivo: rappresentare un set di dati di dimensione n x m (n osservazioni, m
variabili) in uno spazio a dimensionalitd ridotta con p<<m variabili.

Dataset originale Dataset trasformato

== —

PCA

n osservazioni = ‘ =— N osservazioni

“— —

Y Y
m variabili p<<m variabili
X1, X2, s X PCy, PC,, ..., PC,
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LE COMPONENTI PRINCIPALI

» Le p nuove variabili sono dette componenti principali (o principal components).

» Caratteristiche delle componenti principali:

" Le componenti principali sono nuove variabili, create artificialmente, nessuna di loro
coincide con alcuna delle m variabili di partenza.

= Ogni componente principale &€ una combinazione lineare delle m variabili originali.

" Le componenti principali sono tali da riassumere quanta piv informazione possibile
sulle m variabili originali.

" Le componenti principali sono ordinate in base a quanta informazione del dataset
originale racchiudono (PC; € la componente piu informativa, PC, la seconda piu
informativa ecc.)

" Le componenti principali per costruzione sono tra loro scorrelate.
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PERCHE’ PUQ’ ESSERE UTILE LA PCAZ?

1. Visualizzazione dei dati

2. Compressione dei dati

3. Eliminare la correlazione tra le variabili di ingresso in un modello di
regressione lineare multipla (o di altro tipo)
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1. VISUALIZZAZIONE DEI DATI

» Quando abbiamo dataset con tante variabili (m grande) diventa difficile
rappresentare graficamente i dati per analizzarli dal punto di vista visivo.

= Tipicamente si visualizzano le distribuzioni delle singole variabili o al piu gli
scatterplot di coppie di variabili.

= Problemi:
* Lo scatterplot di due variabili rappresenta solo una piccola quantita dell’informazione
contenuta nei dati.

* Con m variabili dovremmo fare m - (m — 1) /2 scatterplot. Se m = 10 2 10 x 9/2 = 45
scatterplot!
» Possiamo sfruttare la PCA per riassumere l'informazione contenuta nei dati
usando poche variabili, piv semplici da rappresentare.

" Potremmo realizzare lo scatterplot delle prime 2 componenti principali, PC; e PC,,
ovvero quelle piu informative!
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ESEMPIO

» Abbiamo un dataset con 50 variabili e

Projection of points (on PC1 and PC2)

realizziamo un clustering K-means per 1 . -
suddividere le osservazioni in 3 gruppi. 3 . 2
Vogliamo verificare dal punto di vista visivo 3 T
quanto sono separati i 3 cluster. _ 2

g o

-

» Impossibile rappresentare i dati nello spazio £
a 50 dimensioni del dataset originale! N

» Soluzione: applichiamo la PCA e
rappresentiamo i cluster nello spazio I N
o o . o R PCI1 {32.1%)
bidimensionale delle prime 2 componenti
principali, le piu informative.
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2. COMPRESSIONE DEI DATI

» Compressione: al posto di archiviare le m variabili di partenza, archivio le p
componenti principali, con un risparmio in memoria.

Trasformazione lineare per Selezione delle p —
Dataset . ‘ e e e e Dataset
" passare nello spazio delle componenti principali
originale . . . ) compresso
componenti principali piu informative

p<<m variabili

m variabili

» Decompressione: utilizzando le p componenti principali ricostruisco le m variabili di
partenza. La ricostruzione non sara perfettq, I'errore introdotto dalla compressione
dipende da quanto informative erano le p componenti principali selezionate.

Trasformazione lineare inversa

—
Dataset

compresso

Ricostruzione

‘ per tornare nello spazio delle

del dataset
m variabili originali originale

p<<m variabili
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W ESEMPIO

» Compressione di un'immagine di dimensione 256 x 256 (matrice di dati 256
x 256) mediante PCA.

INPUT IMAGE RESTORED IMAGE-50 COMPONENTS

RESTORED IMAGE-256 COMPONENTS

i
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3. ELIMINARE LA CORRELAZIONE TRA LE VARIABILI IN INGRES
@ IN UN MODELLO DI REGRESSIONE LINEARE MULTIPLA

» La multicollinearitd tra le variabili di ingresso & problematica per i modelli di regressione
lineare multipla = possiamo eliminare la multicollinearitd mediante PCA.

» ldea: allenare il modello sulle p componenti principali anziché sulle m variabili originali.

Training set p<<m
m variabili PCA — Costruzione di p

variabili Sviluppo del modello Modello finale

o

\ 4
\ 4

componenti principali . ) )
di regressione lineare

scorrelate tra loro

» Attenzione: le p componenti principali sono nuove variabili che non hanno un significato
fisico riconducibile alle m variabili di partenza. =2 Stimando i coefficienti del modello di
regressione lineare sulle componenti principali, perdiamo la possibilita di interpretare i
coefficienti del modello.
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ESEMPIO

» Modello di regressione logistica per la classificazione dei pazienti diabetici
vs non diabetici sulla base di indici di variabilita glicemica.

Matrice di correlazione delle
47 variabili di partenza . . .
BRI X S - I Matrice di correlazione delle 8

prime componenti principali
Modello di regressione logistica

‘ allenato sulle 8 componenti

principali anziché sulle 47

variabili originali
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!P PCA, COME S| REALIZZAZ?

» Dataset originale: m variabili, X1, X5, ..., X;;,, a media nulla.
= Nota: se le variabili non sono a media nulla, prima di realizzare la PCA, i
dati vanno centrati 2 ad ogni variabile va sottratta la sua media.

» Trasformazione lineare normalizzata delle m variabili 2 m nuove
variabili, PC,, PC,, ...,PC,,, dette componenti principali tra loro scorrelate

PC, = v X v, + o + 0,44,
PC, =v,X, + 00X, + .. + v ,X

PC,, =v,, X+, 0, + ... +v,.X

m mm - m

> | coefficienti v;;, consentono di trasformare le variabili di partenza nelle
nuove variabili, le componenti principali.
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| LOADINGS

> | coefficienti v;,, i = 1, ..., m relativi alla componente principale k-esima, PCy, si
dicono loadings relativi alla componente k-esima:

_ T
Vg = (vlk' VoK =y vmk)
essi rappresentano il contributo di ciascuna delle variabili originali alla
componente principale k-esima.

» | loadings di ciascuna componente principale hanno norma 1:
m

=1
Per questo la trasformazione lineare effettuata dalla PCA si dice normalizzata.

» | vettori di loadings delle diverse componenti principali sono tra loro ortogonali:

v? -vj=0 (# ] (prodotto scalare)
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! VARIANZA DELLE COMPONENTI PRINCIPALI

» | loadings devono essere tali che le prime componenti principali
riassumano quanta pivu varianza possibile delle variabili di partenza:

var(PC,) > var(PC,) > var(PCy) > +-- > var(PC,)

" P(C; da sola deve essere in grado di spiegare quanta piU varianza possibile dei dati
di partenza.

" PC, da sola deve essere in grado di spiegare quanta piU varianza possibile della
porzione di varianza non spiegata da P(j.

» Considerando solo le prime p componenti principali possiamo
efficacemente ridurre la dimensionalita dei dati =2 nuovo set di p<<m
variabili che riassume la maggior parte della varianza delle m variabili di
partenza.
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!7 INTERPRETAZIONE GEOMETRICA

La PCA effettua una proiezione ortogonale dei dati su uno spazio definito da nuove
dimensioni dette componenti principali. Queste sono tali per cui la varianza delle

coordinate dei dati proiettati sulle nuove dimensioni & massima per le prime dimensioni.

A
X2

------------------ 9 * Ogni osservazione & un punto.
* Le linee tratteggiate

rappresentano le coordinate
dei punti nello spazio definito

dalle variabili di partenza

Xle Xz.
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!7 INTERPRETAZIONE GEOMETRICA

La PCA effettua una proiezione ortogonale dei dati su uno spazio definito da nuove
dimensioni dette componenti principali. Queste sono tali per cui la varianza delle

coordinate dei dati proiettati sulle nuove dimensioni & massima per le prime dimensioni.

4
X5 PCy

* Ogni osservazione € un punto.

* Le linee tratteggiate
rappresentano le coordinate
dei punti nello spazio definito
dalle variabili di partenza

Xle Xz.
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PASSARE DALLO SPAZIO ORIGINALE ALLO SPAZIO DELL

COMPONENTI PRINCIPALI

» Per passare dalle coordinate dei punti nello spazio originale a quelle nello
spazio definito dalle componenti principali, basta applicare la
trasformazione lineare definita dai loadings.

» Dataset originale: n osservazioni x m variabili (a media nulla).
= X; =2 vettore colonna contenente le n osservazioni per la variabile X;
"= X matrice dei dati originali (n righe, m colonne).

X112 X12 - X1m

x21 x22 nan me
X = [x1 X2 ... xm] = . o .

Xn1  An2 Xnm_

= La media campionaria di ciascuna colonna di X deve essere O.
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@OORDM\IATE DEI DATI NEL SISTEMA DELLE COMPONEN

i PRINCIPALI (1/2)

» Calcoliamo le nuove coordinate dei dati riferite al sistema di riferimento
delle componenti principali, PC,, PC,, ..., PCy,:

Y11 Y12 - Y1im X11  X12 X1m V11 V12 Uim
Y21 Y22 - Yom| _|X21 X22 - Xom Va1 V22 - Vonm
Yn1 Yn2 Ynm_ Xn1 Xn2 - Xnml | Vm1 Vmz2 - Umm

\ ] | ) | l
| | |

Y (n x m) X (n x m) V(m x m)

Matrice dei dati trasformati, detti scores. Matrice dei dati originali. Matrice def loadings, i coefficienti
La riga i-esima contiene le coordinate La riga i-esima contiene le che definiscono la combinazione
dell’osservazione i-esima nello spazio  coordinate dell’osservazione i-esima lineare. La colonna k-esima

delle componenti principali. nello spazio delle variabili originali. rappresenta i loadings della
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PRINCIPALI (2/2)

OORDINATE DEI DATI NEL SISTEMA DELLE COMPONENTY

/Yz’{'"\

Dati trasformati Coefficienti o loadings

o scores L
Dati originali

» La matrice V & di fatto una matrice di rotazione che consente di passare
dalle coordinate nel sistema di riferimento originale, alle coordinate nel
sistema di riferimento delle componenti principali.
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ME TORNARE NELLO SPAZIO DELLE VARIABILI ORIGIN

» Poiché le colonne di V sono tra loro ortogonali e hanno norma 1, si ha che:

V-vIi=vlr.v=1

» Calcolo delle coordinate nello spazio delle variabili originali partendo
dalle coordinate nello spazio delle componenti principali:

Y=X-V
Y VI=X-V-VT

!

X=Y- VT
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RIDUZIONE DELLA DIMENSIONALITA’ (1/2)

» La PCA ci fornisce dunque una nuova rappresentazione dei dati nello spazio
delle componenti principali, PC,, PC,, ..., PC,,, che ha 2 caratteristiche
fondamentaili:

= Le componenti principali sono scorrelate.

" La varianza dei dati proiettati lungo le componenti principali decresce
all’aumentare delle componenti 2 la maggior parte della varianza
complessiva & concentrata nelle prime componenti principali.

var(PC,) > var(PC,) > var(PCy) > -+ > var(PC,)

» Per ridurre la dimensionalitd possiamo considerare solo le prime p
componenti principali.
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RIDUZIONE DELLA DIMENSIONALITA (2/2)

» Invece che memorizzare Y, memorizziamo solo le prime p colonne di Y =2 Y,

» p viene scelto in modo da garantire che le prime p colonne di Y contengano
la maggior parte della varianza dei dati originali.

» Se la PCA viene utilizzata per realizzare una compressione dei dati,
utilizzando la matrice V! possiamo ricostruire, con un certo errore dovuto alla
compressione, i dati originali X.

v — T
X=X,V
Ricostruzione
dei dati in X Prime p

colonne di Y
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ESEMPIO (m=5, n=1000)
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ESEMPIO (m=5, n=1000)
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!? COME S| CALCOLANO | LOADINGS?

» Come possiamo calcolare i valori dei loadings, ovvero la matrice V, che mi

consente di realizzare la PCA?

» Le colonne della matrice V sono gli autovettori della matrice di covarianza
di X ordinati secondo l'ordine decrescente dei rispettivi autovalori.
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!? CALCOLO DEI LOADINGS

» Calcolo della matrice di covarianza di X: S

> $ & una matrice m x m, reale, e simmetrica, avente sulla diagonale le
varianze delle colonne di X (le variabili), fuori dalla diagonale le
covarianze campionarie tra coppie di colonne di X.

" Elemento in posizione i,: covarianza tra la colonna i-esima e la colonna j-esima di X

» Calcoliamo autovalori e autovettori di S.
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AUTOVALORI E AUTOVETTORI

Sia A € RY*N yna matrice quadrata di N righe e N colonne.

Se esistono un vettore ¥ € R e uno scalare A (anche complesso) tali che:

Av = v

si dice che v & autovettore di A e A il suo autovalore corrispondente.
Proprieta:

» Una matrice di dimensione N x N ha al massimo N autovalori distinti (reali o
complessi).

» Gli autovalori sono gli zeri del polinomio caratteristico:

det(A—AI) =0
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AUTOVALORI E AUTOVETTORI

> Se la matrice A & simmetrica (A = AT) e reale, come la matrice S:

=" Gli autovalori sono tutti reali

= Gli autovettori corrispondenti agli autovalori distinti sono tra loro
ortogonaili:

v{ -v; =0, [ #] (prodotto scalare)
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!7 CALCOLO DEI LOADINGS

» La matrice di covarianza S, di dimensione m x m, & reale e simmetrica.

L > Gli autovalori sono reali

» Gli autovettori distinti sono tra loro sono ortogonali

» Gli autovettori di S rappresentano i loadings che definiscono le componenti
principali.

» Le componenti principali sono ortogonali tra loro =2 quindi scorrelate.

> In che ordine vengono considerati gli autovettori per definire le componenti
principali?2 = In base agli autovalori corrispondenti.
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DEFINIZIONE DELLA MATRICE V

» Ordiniamo gli autovalori dal pit grande al piv piccolo:

Autovalori: 1, > A, > - > A,

AN

Autovettori: V1 Vo ... Vm

» L'autovettore V1 corrispondente all’autovalore massimo, A4, rappresenta il
vettore dei loadings della prima componente principale, ovvero la prima
colonna di V.

» Gli autovettori, V1, V3, ..., V,y,, in questo ordine definiscono le colonne di V:

V=[v1 vy .. v,,]
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RIANZA SPIEGATA DALLE COMPONENTI PRINCIPAL

» Gli autovalori rappresentano la varianza dei dati proiettati lungo le
componenti principali.
" A, rappresenta la varianza campionaria degli score relativi a PCy, ovvero la
varianza della prima colonna di Y

= 1, rappresenta la varianza campionaria degli score relativi a PC,, ovvero la
varianza della seconda colonna di Y

Y=[y1Y2 - Yml]

— o2
Ak = Syk’

T

Varianza campionaria
di Yk
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FRAZIONE DI VARIANZA SPIEGATA DALLE COMPONENT

PRINCIPALI

» Varianza complessiva dei dq’r;noriginqli:m
2 _
2, 5= QM
k=1 Y k=1

Varianza campionaria della
colonna k-esima di X

» Frazione della varianza complessiva spiegata dalla componente k-esima:
Ay

Xic=1
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! CELTA DEL NUMERO DI COMPONENTI PRINCIPALI (1/2)

» Rappresentiamo graficamente gli autovalori (scree plot) e scegliamo il
numero di componenti che corrisponde al punto di gomito.

Grafico scree

Scegliamo 5 componenti, perché
dalla sesta componente in poi la
varianza spiegata dalle singole
4 componenti & parecchio limitata
rispetto a quella spiegata dalle
prime 5 componenti.

Autovalore

I I 1 I I | I | I 1 I 1 I I | I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Numero componente
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CELTA DEL NUMERO DI COMPONENTI PRINCIPALI (2/2}

> In alternativa possiamo rappresentare la frazione di varianza spiegata
dalle prime p componenti principali, al variare di p.

» Scegliamo il valore di p che consente di spiegare almeno una certa
percentuale (es. 20%) della varianza totale.

T //,.—. °

o
©

Per spiegare almeno il 20%
della varianza totale

o
)

o
~

servono 5 componenti.

o
o

o
3

Cumlative explained variance
o

"

f

o
w

1 2 3 4 5 6 7 8
Number of components
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PCA - RIASSUNTO

1. Centramento dei dati: ad ogni colonna di X si sottrae la sua media.
2. Calcolo della matrice di covarianza di X =2 S (m x m)

3. Calcolo di autovettori e autovalori di S.
=  Gli autovettori rappresentano i coefficienti per definire le componenti principali.
= Lordine delle componenti principali & stabilito dall’ordine degli autovalori.

= |'autovettore corrispondente all’autovalore massimo rappresenta i coefficienti (loadings)
della prima componente principale.

4. Trasformazione dei dati passando alle coordinate nello spazio delle componenti
principali: Y=X-V

5. Scelta delle prime p componenti principali che rappresentano gran parte della
varianza delle variabili originali (scree plot o plot della frazione di varianza
spiegata dalle prime p componenti).

6. Le coordinate delle n osservazioni lungo le p componenti principali
rappresentano il dataset trasformato e ridotto.
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!P STANDARDIZZAZIONE DELLE VARIABILI

» Se le variabili originali X1, X5, ..., X,,, presentano scale diverse, ovvero
varianze diverse, il risultato della PCA potrebbe risultare polarizzato dalle
variabili a varianza maggiore.

» In questi casi conviene standardizzare le variabili prima di applicare la
PCA = a ciascuna colonna di X sottraiamo la sua media e dividiamo il
risultato per la sua deviazione standard campionaria:

Xk — fk X colonna k-esima di X

Zy = X).: media campionaria di Xy
Sk

Sk : deviazione standard campionaria di X},

» Matrice dei dati standardizzati:
Z =212y .. z,,]
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! PCA SULLE VARIABILI STANDARDIZZATE

» Realizziamo quindi la PCA sulle variabili standardizzate =2 Matrice V
costruita a partire dagli autovettori e autovalori della matrice di
covarianza di Z.

» Si pud dimostrare che la matrice di covarianza di Z é equivalente alla
matrice di correlazione di X (dati originali, non standardizzati).

» Possiamo quindi realizzare la PCA costruendo la matrice V a partire dagli
auvtovalori e autovettori della matrice di correlazione di X.
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!P SINGULAR VALUE DECOMPOSITION (SVD)

» X matrice qualsiasi di dimensione n x m.

» La matrice X pud essere scomposta nel prodotto di 3 matrici:
X=U-D-VI
» U: matrice n x n le cui colonne sono ortogonali e a norma 1.
= Le colonne di U sono gli autovettori di X - XT.

» D: matrice n x m diagonale, con valori non negativi decrescenti sulla
diagonale, detti valori singolari di X.

= Gli elementi sulla diagonale sono la radice quadrata degli autovalori di xT.x
ordinati dal pit grande al piv piccolo.

» V: matrice m x m le cui colonne sono ortogonali e a norma 1.

= Le colonne di V sono gli autovettori di xT.x corrispondenti agli autovalori sulla
diagonale di D.
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CORRISPONDENZA TRA AUTOVETTORI DI X"XE S/

» La matrice di covarianza campionaria di X, S, si pud scrivere come:

S = X'x

n—1
> Gli autovettori di X7 X sono anche autovettori di S.

» Chiamiamo Aty il vettore degli autovalori di XTX, ordinato in ordine decrescente
(elementi sulla diagonale di D elevati al quadrato).

» Chiamiamo Ag il vettore degli autovalori di S, ordinato in ordine decrescente.

> Tra i due abbiamo la relazione:
AXTX

Ao =
ST n-1

> L'autovettore relativo al pib grande autovalore di XT X & uguale all’autovettore
corrispondente al piv grande autovalore di S.
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SVD PER REALIZZARE LA PCA

> X: matrice dei dati centrati o standardizzati.

» Fattorizziamo X tramite SVD:
X=U-D VT

» La matrice di rotazione che mi consente di passare alle coordinate nello
spazio delle componenti principali e V.

» Dati trasformati: Y=X -V

> Autovalori della matrice di covarianza di X:

2
Ay = —K k=1 ..
f n—1 m

dove dj; & I'elemento in posizione k,k della matrice D.
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!? PERCHE’ PCA CON LA SVD¢

» Quando la dimensionalita dei dati & elevata la SYD mi consente di risolvere
il problema in maniera piu efficiente rispetto al calcolo di autovettori e
autovalori di S.
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