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PRINCIPAL COMPONENT ANALYSIS (PCA)

➢ Principal Component Analysis (PCA), o analisi delle componenti principali: tecnica 
di apprendimento non supervisionato per ridurre la dimensionalità dei dati. 

➢ Obiettivo: rappresentare un set di dati di dimensione n x m (n osservazioni, m 
variabili) in uno spazio a dimensionalità ridotta con p<<m variabili. 
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Dataset originale Dataset trasformato

m variabili p<<m variabili

n osservazioni n osservazioni

PCA

𝑋1, 𝑋2, … , 𝑋𝑚 𝑃𝐶1, 𝑃𝐶2, … , 𝑃𝐶𝑝
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LE COMPONENTI PRINCIPALI

➢ Le p nuove variabili sono dette componenti principali (o principal components). 

➢ Caratteristiche delle componenti principali: 

▪ Le componenti principali sono nuove variabili, create artificialmente, nessuna di loro 
coincide con alcuna delle m variabili di partenza. 

▪ Ogni componente principale è una combinazione lineare delle m variabili originali.

▪ Le componenti principali sono tali da riassumere quanta più informazione possibile 
sulle m variabili originali. 

▪ Le componenti principali sono ordinate in base a quanta informazione del dataset 
originale racchiudono (𝑃𝐶1 è la componente più informativa, 𝑃𝐶2 la seconda più 
informativa ecc.) 

▪ Le componenti principali per costruzione sono tra loro scorrelate.
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PERCHE’ PUO’ ESSERE UTILE LA PCA?

1. Visualizzazione dei dati

2. Compressione dei dati

3. Eliminare la correlazione tra le variabili di ingresso in un modello di 
regressione lineare multipla (o di altro tipo)
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1. VISUALIZZAZIONE DEI DATI

➢Quando abbiamo dataset con tante variabili (m grande) diventa difficile 
rappresentare graficamente i dati per analizzarli dal punto di vista visivo.

▪ Tipicamente si visualizzano le distribuzioni delle singole variabili o al più gli 
scatterplot di coppie di variabili. 

▪ Problemi: 

• Lo scatterplot di due variabili rappresenta solo una piccola quantità dell’informazione 
contenuta nei dati.

• Con m variabili dovremmo fare 𝑚 ∙ (𝑚 − 1)/2 scatterplot. Se m = 10 → 10 x 9/2 = 45 
scatterplot!

➢ Possiamo sfruttare la PCA per riassumere l’informazione contenuta nei dati 
usando poche variabili, più semplici da rappresentare. 

▪ Potremmo realizzare lo scatterplot delle prime 2 componenti principali, 𝑃𝐶1 e 𝑃𝐶2, 
ovvero quelle più informative!
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ESEMPIO

➢Abbiamo un dataset con 50 variabili e 
realizziamo un clustering K-means per 
suddividere le osservazioni in 3 gruppi. 
Vogliamo verificare dal punto di vista visivo 
quanto sono separati i 3 cluster. 

➢ Impossibile rappresentare i dati nello spazio 
a 50 dimensioni del dataset originale!

➢ Soluzione: applichiamo la PCA e 
rappresentiamo i cluster nello spazio 
bidimensionale delle prime 2 componenti 
principali, le più informative.
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2. COMPRESSIONE DEI DATI
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Dataset 
originale

Dataset 
compresso

➢ Compressione: al posto di archiviare le m variabili di partenza, archivio le p 

componenti principali, con un risparmio in memoria. 

Trasformazione lineare per 

passare nello spazio delle 

componenti principali

Selezione delle p 

componenti principali 

più informative

Dataset 
compresso

Trasformazione lineare inversa 

per tornare nello spazio delle 

m variabili originali

Ricostruzione 
del dataset 

originale

➢ Decompressione: utilizzando le p componenti principali ricostruisco le m variabili di 

partenza. La ricostruzione non sarà perfetta, l’errore introdotto dalla compressione 

dipende da quanto informative erano le p componenti principali selezionate.  

m variabili

p<<m variabili

p<<m variabili

m variabili
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ESEMPIO

➢Compressione di un’immagine di dimensione 256 x 256 (matrice di dati 256 
x 256) mediante PCA. 
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3. ELIMINARE LA CORRELAZIONE TRA LE VARIABILI IN INGRESSO 
IN UN MODELLO DI REGRESSIONE LINEARE MULTIPLA

➢ La multicollinearità tra le variabili di ingresso è problematica per i modelli di regressione 
lineare multipla → possiamo eliminare la multicollinearità mediante PCA. 

➢ Idea: allenare il modello sulle p componenti principali anziché sulle m variabili originali. 
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PCA – Costruzione di p 

componenti principali 

scorrelate tra loro

Sviluppo del modello 

di regressione lineare

Training set

m variabili
p<<m 

variabili Modello finale

➢ Attenzione: le p componenti principali sono nuove variabili che non hanno un significato 
fisico riconducibile alle m variabili di partenza. → Stimando i coefficienti del modello di 
regressione lineare sulle componenti principali, perdiamo la possibilità di interpretare i 
coefficienti del modello.  
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ESEMPIO

➢Modello di regressione logistica per la classificazione dei pazienti diabetici 
vs non diabetici sulla base di indici di variabilità glicemica. 
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Matrice di correlazione delle 

47 variabili di partenza
Matrice di correlazione delle 8 

prime componenti principali

Modello di regressione logistica 

allenato sulle 8 componenti 

principali anziché sulle 47 

variabili originali 
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PCA, COME SI REALIZZA?

➢Dataset originale: m variabili, 𝑋1, 𝑋2, … , 𝑋𝑚, a media nulla. 

▪Nota: se le variabili non sono a media nulla, prima di realizzare la PCA, i 
dati vanno centrati → ad ogni variabile va sottratta la sua media. 

➢ Trasformazione lineare normalizzata delle m variabili → m nuove 
variabili, 𝑃𝐶1, 𝑃𝐶2, …,𝑃𝐶𝑚, dette componenti principali tra loro scorrelate

𝑃𝐶1 = 𝑣11𝑋1 + 𝑣21𝑋2 +  … + 𝑣𝑚1𝑋𝑚
𝑃𝐶2 = 𝑣12𝑋1 + 𝑣22𝑋2 +  … + 𝑣𝑚2𝑋𝑚

…
𝑃𝐶𝑚 = 𝑣1𝑚𝑋1 + 𝑣2𝑚𝑋2 +  … + 𝑣𝑚𝑚𝑋𝑚

➢ I coefficienti 𝑣𝑖𝑘 consentono di trasformare le variabili di partenza nelle 
nuove variabili, le componenti principali. 
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I LOADINGS

➢ I coefficienti 𝑣𝑖𝑘 , 𝑖 = 1, … , 𝑚 relativi alla componente principale k-esima, 𝑃𝐶𝑘, si 
dicono loadings relativi alla componente k-esima:

𝒗𝒌 = (𝑣1𝑘 , 𝑣2𝑘 , … , 𝑣𝑚𝑘)𝑇

essi rappresentano il contributo di ciascuna delle variabili originali alla 
componente principale k-esima. 

➢ I loadings di ciascuna componente principale hanno norma 1:

෍

𝑖=1

𝑚

𝑣𝑖𝑘
2 = 1 ∀ 𝑘

Per questo la trasformazione lineare effettuata dalla PCA si dice normalizzata.

➢ I vettori di loadings delle diverse componenti principali sono tra loro ortogonali: 

𝒗𝒊
𝑻 ⋅ 𝒗𝒋 = 0 𝑖 ≠ 𝑗  (prodotto scalare)
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VARIANZA DELLE COMPONENTI PRINCIPALI

➢ I loadings devono essere tali che le prime componenti principali 
riassumano quanta più varianza possibile delle variabili di partenza:

𝑣𝑎𝑟 𝑃𝐶1 > 𝑣𝑎𝑟 𝑃𝐶2  > 𝑣𝑎𝑟 𝑃𝐶3 > ⋯ > 𝑣𝑎𝑟 𝑃𝐶𝑚

▪ 𝑃𝐶1 da sola deve essere in grado di spiegare quanta più varianza possibile dei dati 
di partenza. 

▪ 𝑃𝐶2 da sola deve essere in grado di spiegare quanta più varianza possibile della 
porzione di varianza non spiegata da 𝑃𝐶1.

▪ …

➢Considerando solo le prime p componenti principali possiamo 
efficacemente ridurre la dimensionalità dei dati → nuovo set di p<<m 
variabili che riassume la maggior parte della varianza delle m variabili di 
partenza. 
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INTERPRETAZIONE GEOMETRICA

La PCA effettua una proiezione ortogonale dei dati su uno spazio definito da nuove 
dimensioni dette componenti principali. Queste sono tali per cui la varianza delle 
coordinate dei dati proiettati sulle nuove dimensioni è massima per le prime dimensioni.
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𝑋1

𝑋2

• Ogni osservazione è un punto. 

• Le linee tratteggiate 

rappresentano le coordinate 

dei punti nello spazio definito 

dalle variabili di partenza 

𝑋1e 𝑋2.  
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INTERPRETAZIONE GEOMETRICA

La PCA effettua una proiezione ortogonale dei dati su uno spazio definito da nuove 
dimensioni dette componenti principali. Queste sono tali per cui la varianza delle 
coordinate dei dati proiettati sulle nuove dimensioni è massima per le prime dimensioni.
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𝑋1

𝑋2
𝑃𝐶1

𝑃𝐶2

• Ogni osservazione è un punto. 

• Le linee tratteggiate 

rappresentano le coordinate 

dei punti nello spazio definito 

dalle variabili di partenza 

𝑋1e 𝑋2.  
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PASSARE DALLO SPAZIO ORIGINALE ALLO SPAZIO DELLE 
COMPONENTI PRINCIPALI

➢ Per passare dalle coordinate dei punti nello spazio originale a quelle nello 
spazio definito dalle componenti principali, basta applicare la 
trasformazione lineare definita dai loadings.

➢Dataset originale: n osservazioni x m variabili (a media nulla). 
▪ 𝒙𝒊 → vettore colonna contenente le n osservazioni per la variabile 𝑋𝑖 

▪ 𝑿 matrice dei dati originali (n righe, m colonne). 

𝑿 = 𝒙𝟏 𝒙𝟐  … 𝒙𝒎 =

𝑥11

𝑥21

𝑥12 …
𝑥22 …

𝑥1𝑚

𝑥2𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑚

▪ La media campionaria di ciascuna colonna di X deve essere 0. 
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COORDINATE DEI DATI NEL SISTEMA DELLE COMPONENTI 
PRINCIPALI (1/2)

➢Calcoliamo le nuove coordinate dei dati riferite al sistema di riferimento 
delle componenti principali, 𝑃𝐶1, 𝑃𝐶2, …, 𝑃𝐶𝑚: 

𝑦11

𝑦21

𝑦12 …
𝑦22 …

𝑦1𝑚

𝑦2𝑚

⋮ ⋮ ⋱ ⋮
𝑦𝑛1 𝑦𝑛2 … 𝑦𝑛𝑚

=

𝑥11

𝑥21

𝑥12 …
𝑥22 …

𝑥1𝑚

𝑥2𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑚

∙

𝑣11

𝑣21

𝑣12 …
𝑣22 …

𝑣1𝑚

𝑣2𝑚

⋮ ⋮ ⋱ ⋮
𝑣𝑚1 𝑣𝑚2 … 𝑣𝑚𝑚
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Y (n x m)
Matrice dei dati trasformati, detti scores. 

La riga i-esima contiene le coordinate 

dell’osservazione i-esima nello spazio 

delle componenti principali.

X (n x m)
Matrice dei dati originali. 

La riga i-esima contiene le 

coordinate dell’osservazione i-esima 

nello spazio delle variabili originali.

V (m x m)
Matrice dei loadings, i coefficienti 

che definiscono la combinazione 

lineare. La colonna k-esima 

rappresenta i loadings della 

componente principale k-esima.
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COORDINATE DEI DATI NEL SISTEMA DELLE COMPONENTI 
PRINCIPALI (2/2)

𝒀 = 𝑿 ∙ 𝑽

➢ La matrice V è di fatto una matrice di rotazione che consente di passare 
dalle coordinate nel sistema di riferimento originale, alle coordinate nel 
sistema di riferimento delle componenti principali.
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Dati originali

Dati trasformati 

o scores

Coefficienti o loadings
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COME TORNARE NELLO SPAZIO DELLE VARIABILI ORIGINALI

➢ Poiché le colonne di V sono tra loro ortogonali e hanno norma 1, si ha che: 

𝑽 ∙ 𝑽𝑻 = 𝑽𝑻 ∙ 𝑽 = 𝑰

➢Calcolo delle coordinate nello spazio delle variabili originali partendo 
dalle coordinate nello spazio delle componenti principali: 

𝒀 = 𝑿 ∙ 𝑽

𝒀 ∙ 𝑽𝑻 = 𝑿 ∙ 𝑽 ∙ 𝑽𝑻

𝑿 = 𝒀 ∙ 𝑽𝑻
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RIDUZIONE DELLA DIMENSIONALITA’ (1/2)

➢ La PCA ci fornisce dunque una nuova rappresentazione dei dati nello spazio 
delle componenti principali, 𝑃𝐶1, 𝑃𝐶2, …, 𝑃𝐶𝑚, che ha 2 caratteristiche 
fondamentali:

▪ Le componenti principali sono scorrelate.

▪ La varianza dei dati proiettati lungo le componenti principali decresce 
all’aumentare delle componenti → la maggior parte della varianza 
complessiva è concentrata nelle prime componenti principali.

𝑣𝑎𝑟 𝑃𝐶1 > 𝑣𝑎𝑟 𝑃𝐶2  > 𝑣𝑎𝑟 𝑃𝐶3 > ⋯ > 𝑣𝑎𝑟 𝑃𝐶𝑚  

➢ Per ridurre la dimensionalità possiamo considerare solo le prime p 
componenti principali.
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RIDUZIONE DELLA DIMENSIONALITA’ (2/2)

➢ Invece che memorizzare 𝒀, memorizziamo solo le prime p colonne di 𝒀 → 𝒀𝒑 

➢ p viene scelto in modo da garantire che le prime p colonne di 𝒀 contengano 
la maggior parte della varianza dei dati originali. 

➢ Se la PCA viene utilizzata per realizzare una compressione dei dati, 

utilizzando la matrice 𝑽𝑻possiamo ricostruire, con un certo errore dovuto alla 
compressione, i dati originali 𝑿.

෩𝑿 = 𝒀𝒑𝑽𝑻
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Prime p 

colonne di Y

Ricostruzione 

dei dati in X
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ESEMPIO (m=5, n=1000)

22Esempio tratto dal corso di Analisi di Dati Biologici del prof. G. Sparacino.

PCA
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ESEMPIO (m=5, n=1000)
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Segnali originali Segnali ricostruiti usando solo le prime 2 componenti principali
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COME SI CALCOLANO I LOADINGS?

➢Come possiamo calcolare i valori dei loadings, ovvero la matrice V, che mi 
consente di realizzare la PCA? 

➢ Le colonne della matrice V sono gli autovettori della matrice di covarianza 
di X ordinati secondo l’ordine decrescente dei rispettivi autovalori. 
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CALCOLO DEI LOADINGS

➢Calcolo della matrice di covarianza di X: S

➢ S è una matrice m x m, reale, e simmetrica, avente sulla diagonale le 
varianze delle colonne di X (le variabili), fuori dalla diagonale le 
covarianze campionarie tra coppie di colonne di X. 

▪ Elemento in posizione i,j: covarianza tra la colonna i-esima e la colonna j-esima di X

➢Calcoliamo autovalori e autovettori di S. 
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AUTOVALORI E AUTOVETTORI

Sia 𝑨 ∈ ℝ𝑁×𝑁 una matrice quadrata di 𝑁 righe e 𝑁 colonne.

Se esistono un vettore 𝒗 ∈ ℝ𝑁e uno scalare 𝜆 (anche complesso) tali che:

𝑨𝒗 = 𝜆𝒗

si dice che 𝒗 è autovettore di 𝑨 e 𝜆 il suo autovalore corrispondente.

Proprietà: 

➢Una matrice di dimensione N x N ha al massimo N autovalori distinti (reali o 
complessi). 

➢Gli autovalori sono gli zeri del polinomio caratteristico: 

det 𝑨 − 𝜆𝑰 = 0
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AUTOVALORI E AUTOVETTORI

➢ Se la matrice A è simmetrica (𝑨 = 𝑨𝑻) e reale, come la matrice S:

▪Gli autovalori sono tutti reali

▪Gli autovettori corrispondenti agli autovalori distinti sono tra loro 
ortogonali: 

𝒗𝒊
𝑻 ⋅ 𝒗𝒋 = 0,  𝑖 ≠ 𝑗    (prodotto scalare)
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CALCOLO DEI LOADINGS

➢ La matrice di covarianza S, di dimensione m x m, è reale e simmetrica.

➢Gli autovettori di S rappresentano i loadings che definiscono le componenti 
principali. 

➢ Le componenti principali sono ortogonali tra loro → quindi scorrelate.  

➢ In che ordine vengono considerati gli autovettori per definire le componenti 
principali? → In base agli autovalori corrispondenti.
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➢Gli autovalori sono reali

➢Gli autovettori distinti sono tra loro sono ortogonali  
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DEFINIZIONE DELLA MATRICE V

➢Ordiniamo gli autovalori dal più grande al più piccolo:

𝜆1 > 𝜆2 > ⋯ > 𝜆𝑚

𝒗𝟏 𝒗𝟐  … 𝒗𝒎

➢ L’autovettore 𝒗𝟏 corrispondente all’autovalore massimo, 𝜆1, rappresenta il 
vettore dei loadings della prima componente principale, ovvero la prima 
colonna di 𝑽. 

➢Gli autovettori, 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒎, in questo ordine definiscono le colonne di 𝑽:

𝑽=[𝒗𝟏 𝒗𝟐  … 𝒗𝒎]

29

Autovalori:

Autovettori:
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VARIANZA SPIEGATA DALLE COMPONENTI PRINCIPALI

➢Gli autovalori rappresentano la varianza dei dati proiettati lungo le 
componenti principali. 

▪ 𝜆1 rappresenta la varianza campionaria degli score relativi a 𝑃𝐶1, ovvero la 
varianza della prima colonna di 𝒀 

▪ 𝜆2 rappresenta la varianza campionaria degli score relativi a 𝑃𝐶2, ovvero la 
varianza della seconda colonna di 𝒀 

▪ …
𝒀 = [𝒚𝟏 𝒚𝟐  … 𝒚𝒎]

 𝜆𝑘 = 𝑠𝒚𝒌
2 , 𝑘 = 1, … , 𝑚
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Varianza campionaria 

di 𝒚𝒌 
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FRAZIONE DI VARIANZA SPIEGATA DALLE COMPONENTI 
PRINCIPALI

➢Varianza complessiva dei dati originali: 

෍

𝑘=1

𝑚

𝑠𝒙𝒌
2 = ෍

𝑘=1

𝑚

𝜆𝑘

➢ Frazione della varianza complessiva spiegata dalla componente k-esima:
𝜆𝑘

σ𝑘=1
𝑚 𝜆𝑘

31

Varianza campionaria della 

colonna k-esima di X
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SCELTA DEL NUMERO DI COMPONENTI PRINCIPALI (1/2)

➢ Rappresentiamo graficamente gli autovalori (scree plot) e scegliamo il 
numero di componenti che corrisponde al punto di gomito. 
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Scegliamo 5 componenti, perché 

dalla sesta componente in poi la 

varianza spiegata dalle singole 

componenti è parecchio limitata 

rispetto a quella spiegata dalle 

prime 5 componenti.
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SCELTA DEL NUMERO DI COMPONENTI PRINCIPALI (2/2)

➢ In alternativa possiamo rappresentare la frazione di varianza spiegata 
dalle prime p componenti principali, al variare di p. 

➢ Scegliamo il valore di p che consente di spiegare almeno una certa 
percentuale (es. 90%) della varianza totale. 
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Per spiegare almeno il 90% 

della varianza totale 

servono 5 componenti.
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PCA - RIASSUNTO

1. Centramento dei dati: ad ogni colonna di X si sottrae la sua media.

2. Calcolo della matrice di covarianza di X → S (m x m)

3. Calcolo di autovettori e autovalori di S.
▪ Gli autovettori rappresentano i coefficienti per definire le componenti principali. 

▪ L’ordine delle componenti principali è stabilito dall’ordine degli autovalori. 

▪ L’autovettore corrispondente all’autovalore massimo rappresenta i coefficienti (loadings) 
della prima componente principale. 

4. Trasformazione dei dati passando alle coordinate nello spazio delle componenti 
principali: Y=X·V

5. Scelta delle prime p componenti principali che rappresentano gran parte della 
varianza delle variabili originali (scree plot o plot della frazione di varianza 
spiegata dalle prime p componenti). 

6. Le coordinate delle n osservazioni lungo le p componenti principali 
rappresentano il dataset trasformato e ridotto. 
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STANDARDIZZAZIONE DELLE VARIABILI

➢ Se le variabili originali 𝑋1, 𝑋2, … , 𝑋𝑚 presentano scale diverse, ovvero 
varianze diverse, il risultato della PCA potrebbe risultare polarizzato dalle 
variabili a varianza maggiore. 

➢ In questi casi conviene standardizzare le variabili prima di applicare la 
PCA → a ciascuna colonna di X sottraiamo la sua media e dividiamo il 
risultato per la sua deviazione standard campionaria: 

𝒛𝒌 =
𝒙𝒌 − ҧ𝑥𝑘

𝑠𝑘

➢Matrice dei dati standardizzati: 
𝒁 = [𝒛𝟏 𝒛𝟐  … 𝒛𝒎]
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𝒙𝒌: colonna k-esima di X

ҧ𝑥𝑘: media campionaria di 𝒙𝒌

𝑠𝑘: deviazione standard campionaria di 𝒙𝒌
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PCA SULLE VARIABILI STANDARDIZZATE

➢ Realizziamo quindi la PCA sulle variabili standardizzate → Matrice V 
costruita a partire dagli autovettori e autovalori della matrice di 
covarianza di Z. 

➢ Si può dimostrare che la matrice di covarianza di Z è equivalente alla 
matrice di correlazione di X (dati originali, non standardizzati). 

➢ Possiamo quindi realizzare la PCA costruendo la matrice V a partire dagli 
autovalori e autovettori della matrice di correlazione di X. 
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SINGULAR VALUE DECOMPOSITION (SVD)

➢X matrice qualsiasi di dimensione n x m.

➢ La matrice X può essere scomposta nel prodotto di 3 matrici: 

𝑿 = 𝑼 ∙ 𝑫 ∙ 𝑽𝑻

➢U: matrice n x n le cui colonne sono ortogonali e a norma 1.
▪ Le colonne di U sono gli autovettori di 𝑿 ∙ 𝑿𝑻.

➢D: matrice n x m diagonale, con valori non negativi decrescenti sulla 
diagonale, detti valori singolari di X.
▪ Gli elementi sulla diagonale sono la radice quadrata degli autovalori di 𝑿𝑻 ∙ 𝑿 

ordinati dal più grande al più piccolo.

➢V: matrice m x m le cui colonne sono ortogonali e a norma 1. 
▪ Le colonne di V sono gli autovettori di 𝑿𝑻 ∙ 𝑿 corrispondenti agli autovalori sulla 

diagonale di D.
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CORRISPONDENZA TRA AUTOVETTORI DI 𝑿𝑻𝑿 E S 

➢ La matrice di covarianza campionaria di X, S, si può scrivere come: 

𝑺 =
1

𝑛 − 1
𝑿𝑻𝑿

➢ Gli autovettori di 𝑿𝑻𝑿 sono anche autovettori di S.

➢ Chiamiamo 𝝀𝑿𝑻𝑿 il vettore degli autovalori di 𝑿𝑻𝑿, ordinato in ordine decrescente 

(elementi sulla diagonale di D elevati al quadrato). 

➢ Chiamiamo 𝝀𝑺 il vettore degli autovalori di 𝑺, ordinato in ordine decrescente. 

➢ Tra i due abbiamo la relazione: 

𝝀𝑺 =
𝝀𝑿𝑻𝑿

𝑛 − 1
➢ L’autovettore relativo al più grande autovalore di 𝑿𝑻𝑿 è uguale all’autovettore 

corrispondente al più grande autovalore di S. 
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SVD PER REALIZZARE LA PCA

➢X: matrice dei dati centrati o standardizzati.

➢ Fattorizziamo X tramite SVD:

𝑿 = 𝑼 ∙ 𝑫 ∙ 𝑽𝑻

➢ La matrice di rotazione che mi consente di passare alle coordinate nello 
spazio delle componenti principali è V.

➢Dati trasformati: 𝐘 = 𝑿 ∙ 𝑽

➢Autovalori della matrice di covarianza di X: 

𝜆𝑘 =
𝑑𝑘𝑘

2

𝑛 − 1
, 𝑘 = 1, … , 𝑚

   dove 𝑑𝑘𝑘 è l’elemento in posizione k,k della matrice D.
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PERCHE’ PCA CON LA SVD?

➢Quando la dimensionalità dei dati è elevata la SVD mi consente di risolvere 
il problema in maniera più efficiente rispetto al calcolo di autovettori e 
autovalori di S. 
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