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CLUSTER ANALYSIS O CLUSTERING

➢Obiettivo: determinare se il campione può essere suddiviso in sottogruppi 
relativamente distinti di osservazioni, detti cluster.   
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PRINCIPALI STEP DELLA CLUSTER ANALYSIS

Dataset
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tra loro si trovano nello stesso cluster

▪ Osservazioni sufficientemente diverse 
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PRINCIPALE DIFFICOLTA’ DELLA CLUSTER ANALYSIS

➢ I sottogruppi che stiamo cercando non sono noti a priori! Non sappiamo nemmeno se 
esistano…

➢ L’obiettivo della cluster analysis è proprio capire se le osservazioni si possono 
suddividere in sottogruppi sufficientemente omogenei e distinti tra loro. Dobbiamo 
mettere in conto che la risposta potrebbe essere no. 
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APPRENDIMENTO SUPERVISIONATO 
VS. NON SUPERVISIONATO

➢Gli algoritmi di clustering fanno parte delle tecniche di apprendimento non 
supervisionato (unsupervised learning).

▪ Non supervisionato perché nei dati che usiamo per la cluster analysis non abbiamo a 
disposizione un’etichetta (label) che ci indica il vero cluster di appartenenza di 
ciascuna osservazione. 

➢ Le regressioni lineare, logistica e di Cox fanno parte delle tecniche di 
apprendimento supervisionato (supervised learning).

▪ Supervisionato perché nei dati che usiamo per stimare i parametri del modello 
(training set) abbiamo una variabile che rappresenta l’outcome che vogliamo predire.
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PERCHE’ FARE CLUSTERING? 

➢ Ambito medico: identificare sottogruppi di pazienti affetti da una stessa patologia che 
presentano diverse caratteristiche e possono quindi necessitare di trattamenti personalizzati.
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Progetto BRAINTEASER (Horizon 2020)
▪ Stratificazione di pazienti affetti da SLA sulla base degli score funzionali misurati nel primo anno 

dopo la diagnosi → 4 diversi cluster di progressione

▪ Sviluppo di un modello predittivo che predice il cluster di progressione a cui appartiene un paziente 

usando le informazioni raccolte alla diagnosi
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PERCHE’ FARE CLUSTERING?

➢ Imaging in ambito biomedico: identificazione di parti di tessuto aventi 
proprietà alterate (es. tessuto danneggiato da una patologia).

➢Genomica: identificazione di sottogruppi di geni sulla base della loro 
funzione o livello di espressione. 

➢Rilevamento di anomalie: identificazione di osservazioni che presentano 
caratteristiche anomale rispetto al resto della popolazione (es. rilevamento 
delle misure di un sensore affette da un artefatto).

➢Marketing: identificazione di sottogruppi di clienti distinti per lo sviluppo di 
strategie di marketing mirate. 
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ALGORITMI DI CLUSTERING

➢K-means

➢Clustering gerarchico agglomerativo
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K-MEANS

➢ L’algoritmo K-means divide le osservazioni in K cluster, 𝐶𝑖 , 𝑖 = 1, … , 𝐾, dove 
K è un valore noto prestabilito: 

𝐶1, 𝐶2, … , 𝐶𝐾

➢Ogni osservazione viene assegnata ad uno e un solo cluster. 

➢ Idea: Si cerca la partizione che minimizza la variabilità intra-cluster.

➢Questa è calcolata sulla base di una misura di distanza tra le osservazioni 
(da scegliere). 

➢Normalmente si usa la distanza euclidea.
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DISTANZA EUCLIDEA

➢Osservazione i-esima: 𝒙𝒊 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚)

➢Distanza euclidea tra due osservazioni 𝒙𝒊 e 𝒙𝒋: 

𝑑 𝒙𝒊, 𝒙𝒋 = 𝒙𝒊 − 𝒙𝒋 = (𝑥𝑖1 − 𝑥𝑗1)2+(𝑥𝑖2 − 𝑥𝑗2)2+ ⋯ + (𝑥𝑖𝑚 − 𝑥𝑗𝑚)2
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Valori delle m variabili per 

l’osservazione i-esima
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FUNZIONE OBIETTIVO DEL K-MEANS

➢Variabilità intra-cluster per il cluster k: 

𝑊 𝐶𝑘 =
1

|𝐶𝑘|
෍

𝑖,𝑗∈𝐶𝑘

𝑑(𝒙𝒊, 𝒙𝒋)2

dove |𝐶𝑘| è la cardinalità del cluster 𝐶𝑘 . 

Tanto più le osservazioni che appartengono al cluster 𝐶𝑘 sono simili tra loro, 
tanto più piccola sarà 𝑊 𝐶𝑘 .

➢ L’algoritmo K-means cerca la partizione, 𝐶1, 𝐶2, … , 𝐶𝐾 , che minimizza la 
somma delle variabilità intra-cluster: 

argmin
𝐶1,𝐶2,…,𝐶𝐾

෍

𝑘=1

𝐾

𝑊(𝐶𝑘)
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SOLUZIONE DEL PROBLEMA

➢ In pratica, la partizione ottima che minimizza la somma delle variabilità 
intra-cluster viene stimata mediante un algoritmo iterativo. 

1. Ogni osservazione viene assegnata ad uno dei K cluster in modo casuale. 

2. Si calcola il centroide 𝝁𝒌 per ciascun cluster mediando le variabili delle osservazioni 
che appartengono al cluster: 

𝝁𝒌 = (𝜇𝑘1, 𝜇𝑘2, … , 𝜇𝑘𝑚)

𝜇𝑘𝑗 =
1

|𝐶𝑘|
෍

𝑖∈𝐶𝑘

𝑥𝑖𝑗

3. Per ogni osservazione si calcola la distanza dai K centroidi. Ogni osservazione 
viene assegnata al cluster corrispondente al centroide più vicino. 

4. Si iterano i passi 2 e 3 finché i centroidi non cambiano più. 
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ESEMPIO
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IL PROBLEMA DEI MINIMI LOCALI

➢ L’algoritmo che ricerca la 
partizione ottima potrebbe 
fermarsi ad una suddivisione che 
rappresenta un minimo locale. 

➢ Raccomandazione: eseguire 
l’algoritmo K-means più volte 
con diverse inizializzazioni dei 
cluster. Scegliere come 
partizione ottima quella avente 
somma delle variabilità intra-
cluster minima.  
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SCELTA DEL NUMERO DI CLUSTER

➢Come scegliamo il numero di cluster K? 

➢Generalmente si testano più valori di K e si sceglie quello per cui i risultati ci 
convincono di più.

15

Nota: non c’è un 

ordine tra i cluster. 

I colori dei cluster 

sono assegnati in 

modo casuale. 
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VALUTARE LA BONTA’ DI UNA PARTIZIONE

➢ Esistono diverse metriche per valutare la bontà di una certa partizione. 

➢Queste in genere valutano due aspetti: 
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▪ Coesione dei cluster: quanto sono vicine 
tra loro le osservazioni appartenenti allo 
stesso cluster. 

▪ Separazione dei cluster: quanto cluster 
diversi sono ben separati tra loro. 
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INDICE DI SILHOUETTE (1/2)

➢ L’indice di silhouette misura quanto ciascuna osservazione risulta simile alle 
osservazioni appartenenti allo stesso cluster (coesione), rispetto alle 
osservazioni degli altri cluster (separazione). 

➢Consideriamo l’i-esima osservazione, 𝒙𝒊. 

➢Distanza media di 𝒙𝒊 dalle osservazioni appartenenti allo stesso cluster, 𝐶𝐼 : 

𝑎 𝑖 =
1

𝐶𝐼 − 1
෍

𝑗∈𝐶𝐼,𝑖≠𝑗

𝑑(𝒙𝒊, 𝒙𝒋)

➢Distanza media di 𝒙𝒊 dalle osservazioni del cluster 𝐶𝐽 , 𝐽 ≠ 𝐼:

𝑏𝐽 𝑖 =
1

𝐶𝐽

෍

𝑗∈𝐶𝐽

𝑑(𝒙𝒊, 𝒙𝒋)
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INDICE DI SILHOUETTE (2/2)

➢Minima distanza media di 𝒙𝒊 dalle osservazioni degli altri cluster: 

𝑏 𝑖 = min
𝐽≠𝐼

( 𝑏𝐽 𝑖 )

➢ Indice di silhouette per l’osservazione 𝒙𝒊:

𝑠 𝑖 = ൞

𝑏 𝑖 − 𝑎(𝑖)

max(𝑎 𝑖 , 𝑏(𝑖))
 𝑠𝑒 𝐶𝐼 > 1

0 𝑠𝑒 𝐶𝐼 = 1
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INTERPRETAZIONE DELL’INDICE DI SILHOUETTE 

𝑠 𝑖 = ൞

𝑏 𝑖 − 𝑎(𝑖)

max(𝑎 𝑖 , 𝑏(𝑖))
 𝑠𝑒 𝐶𝐼 > 1

0 𝑠𝑒 𝐶𝐼 = 1

➢−1 ≤ 𝑠(𝑖) ≤ 1

➢ 𝑠 𝑖 = 1 se 𝑎 𝑖 ≪ 𝑏(𝑖) → 𝒙𝒊 è mediamente molto meno distante dalle 
osservazioni del proprio cluster, 𝐶𝐼 , rispetto a quelle degli altri cluster.

➢ 𝑠 𝑖 = −1 se 𝑏 𝑖 ≪ 𝑎(𝑖) → esiste un cluster 𝐶𝐽 diverso da 𝐶𝐼 per cui 𝑥𝑖 

risulta mediamente molto più vicina alle osservazioni di 𝐶𝐽 piuttosto che a 

quelle di 𝐶𝐼 .

➢ 𝑠 𝑖 = 0 → l’osservazione i-esima è al confine tra due cluster.
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INDICE DI SILHOUETTE MEDIO

➢ Indice di silhouette medio sulle n osservazioni:

ҧ𝑠 =
1

𝑛
෍

𝑖=1

𝑛

𝑠(𝑖)

➢ Rappresenta una misura di quanto la partizione ottenuta sia buona. 
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SCELTA DEL NUMERO DI CLUSTER

➢ Possiamo provare diversi valori di K e scegliere quello che mi porta al 
massimo valore dell’indice di silhouette medio.
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In questo caso che 

numero di cluster 

sceglieresti?
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ALTRE POSSIBILI MISURE DI DISTANZA (1/3)

Per variabili quantitative:

➢Distanza di Manhattan o distanza «City Block»

𝑑 𝒙𝒊, 𝒙𝒋 = ෍

𝑘=1

𝑚

|𝑥𝑖𝑘 − 𝑥𝑗𝑘|

➢Distanza di Minkowski

𝑑𝑝 𝒙𝒊, 𝒙𝒋 =
𝑝

෍

𝑘=1

𝑚

|𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑝 ,  𝑝 ≥ 1
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ALTRE POSSIBILI MISURE DI DISTANZA (2/3)

Per variabili quantitative:

➢Distanza di Mahalanobis: per calcolare la distanza di un’osservazione 

𝒙𝒋 dal centroide 𝝁𝒌 = (𝜇𝑘1, 𝜇𝑘2, … , 𝜇𝑘𝑚) di un insieme di osservazioni 

avente matrice di covarianza S. 

𝑑 𝒙𝒋, 𝝁𝒌 = (𝒙𝒋 − 𝝁𝒌)𝑇𝑺−1(𝒙𝒋 − 𝝁𝒌)

▪ Tiene conto della correlazione presente tra le variabili delle osservazioni che 
compongono il cluster.

Per variabili qualitative: 

➢Distanza di Hamming: quantifica il numero di variabili che presentano 

valori diversi nelle due osservazioni a confronto (𝒙𝒊 e 𝒙𝒋). 
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ALTRE POSSIBILI MISURE DI DISTANZA (3/3)

Per dati vettoriali: 

➢Distanza coseno: 

cos 𝜃 =
𝒙𝒊 ∙ 𝒙𝒋

𝒙𝑖 ∙ 𝒙𝒋

=
σ𝑘=1

𝑚 𝑥𝑖𝑘 ∙ 𝑥𝑗𝑘

σ𝑘=1
𝑚 𝑥𝑖𝑘

2 ∙ σ𝑘=1
𝑚 𝑥𝑗𝑘

2

▪Misura la distanza tra le direzioni di due vettori, non 
importa quanto lunghi essi siano.

▪ Si usa nell’ambito dell’analisi di documenti di testo, per 
quantificare quanto due documenti siano distanti in 
termini di contenuto (orientamento dei vettori). 
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CLUSTERING K-MEANS: PRO E CONTRO

➢ Pro: 

▪ Semplice e veloce

➢Contro: 

▪ Il numero di cluster va prespecificato

▪ Può convergere ad un minimo locale

▪ Il risultato può essere influenzato in modo importante da outlier

▪ Può creare solo cluster di forma globulare
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CLUSTER NON GLOBULARI
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Dati non suddivisi Possibile partizione in 

due cluster

Suddivisione in due cluster 

ottenuta con K-means
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ALGORITMI DI CLUSTERING

➢K-means

➢Clustering gerarchico agglomerativo
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CLUSTERING GERARCHICO AGGLOMERATIVO

➢Clustering gerarchico agglomerativo: algoritmo di clustering che 
raggruppa le osservazioni sfruttando un approccio gerarchico bottom-down. 

1. Assegna ogni osservazione ad un cluster diverso → n cluster

2. Calcola le distanze tra tutte le coppie di cluster

3. Fondi nello stesso cluster i due cluster più vicini tra loro

4. Ripeti gli step 2 e 3 finché tutte le osservazioni sono raggruppate in un 
unico cluster.
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ESEMPIO

➢ 5 cluster: a, b, c, d, e
▪ Distanze tra tutte le coppie di cluster: (a,b), (a,c), 

(a,d), (a,e), (b,c), (b,d), (b,e), (c,d), (c,e), (d,e). 

▪ Coppia a distanza minima: (a,b) → nuovo cluster ab

➢ 4 cluster: ab, c, d, e 
▪ Distanze tra tutte le coppie di cluster: (ab,c), (ab,d), 

(ab,e), (c,d), (c,e), (d,e).

▪ Coppia a distanza minima: (d,e) → nuovo cluster de

➢ 3 cluster: ab, c, de
▪ Distanze tra tutte le coppie di cluster: (ab,c), (ab,de), 

(c,de). 

▪ Coppia a distanza minima: (c,de) → nuovo cluster 
cde

➢ 2 cluster: ab, cde 
▪ Nuovo cluster abcde.
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IL DENDROGRAMMA

➢Dendrogramma: grafico ad albero che rappresenta i raggruppamenti 
realizzati dall’algoritmo di clustering gerarchico agglomerativo. 
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Osservazioni

Distanza tra i 

cluster

a         b         c         d          e 

Distanza tra i 

cluster a e b

Distanza tra i 

cluster c e de

▪ Le foglie rappresentano le osservazioni. 

▪ I nodi rappresentano le fusioni tra i cluster.

▪ L’altezza di ciascun nodo rappresenta la 

distanza tra i due cluster fusi in 

corrispondenza di quel nodo. 

▪ L’ordine delle osservazioni sull’asse delle 

ascisse è «di comodo» per la 

rappresentazione. Due osservazioni vicine 

nell’asse delle ascisse non sono 

necessariamente simili tra loro. 

▪ Gli stessi raggruppamenti si possono 

rappresentare con diversi dendrogrammi 

equivalenti.
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ESEMPIO

Dendrogramma

31

Rappresentazione delle osservazioni 
nello spazio delle variabili 𝑋1, 𝑋2

Note: 

➢ Le osservazioni 9 e 2, seppur in posizioni vicine nel dendrogramma, sono distanti tra loro nel 
piano 𝑋1, 𝑋2.

➢ Le osservazioni vicine tra loro vengono unite in punti a bassa altezza nel dendrogramma (come 
ad esempio le osservazioni 5 e 7). 
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UN DENDROGRAMMA PIU’ COMPLESSO

➢Con maggiore numero di osservazioni il dendrogramma si fa più complesso.

32

Osservazioni

D
is

ta
nz

a
 t
ra

 i
 c

lu
st

e
r



Martina Vettoretti – Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova

TAGLIO DEL DENDROGRAMMA

➢ Il numero di cluster non è stabilito 
a priori come nel K-means. 

➢ Il clustering gerarchico 
agglomerativo realizza diversi 
raggruppamenti con un numero di 
cluster che varia tra n e 1. 

➢ Per definire il numero di cluster 
finale dobbiamo tagliare il 
dendrogramma orizzontalmente 
ad una certa altezza. 
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Tagliando il dendrogramma ad 

altezza 5 quanti cluster otteniamo? 
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L’ALTEZZA DI TAGLIO

➢ L’altezza a cui tagliamo il dendrogramma definisce il numero di cluster.
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Nessun taglio Taglio ad altezza 9 Taglio ad altezza 5

1 cluster 2 cluster 3 cluster
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ESERCIZIO

1. Quali sono le due osservazioni 
più vicine tra loro?

2. Quanto misura la distanza tra 
le osservazioni F e G?

3. Se tagliamo il dendrogramma 
ad altezza 4 quanti cluster 
otteniamo? 
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SCELTA DELL’ALTEZZA DI TAGLIO

➢ Scelta sulla base dell’ispezione visiva del dendrogramma.

➢ Scelta sulla base del numero desiderato di cluster.

➢ Scelta sulla base di un indice quantitativo.

▪ Altezza di taglio che mi consente di massimizzare il valore dell’indice di 
silhouette medio. 

▪ Indice di inconsistenza.
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INDICE DI INCONSISTENZA

➢ Indice di inconsistenza: valuta quanto una fusione (nodo) in un 
dendrogramma sia coerente con le fusioni vicine.

➢ Indice di inconsistenza della fusione (nodo) k-esima:

𝐼𝑘 =
ℎ𝑘 − 𝑚𝑒𝑎𝑛( ℎ )

𝑠𝑑({ℎ})
▪ ℎ𝑘 : altezza della fusione (nodo) k-esima

▪ ℎ : altezze delle fusioni (nodi) vicini al nodo k-esimo

➢ Serve a individuare punti di fusione "anomali", dove due cluster vengono 
uniti a una distanza significativamente maggiore rispetto alle precedenti o a 
quelle di pari livello → informazione utile per decidere a che altezza 
tagliare il dendrogramma
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SOGLIA SULL’INDICE DI INCONSISTENZA

➢Valori comuni per l’indice di inconsistenza sono tra 0.5 e 2. 

➢ Possiamo decidere di tagliare il dendrogramma quando la fusione di due 
cluster risulta in un indice di inconsistenza superiore a una certa soglia. 

▪ Soglia pari a 1 → buon punto di partenza che generalmente porta a 
cluster ben separati

▪ Soglia >1.5 → pochi cluster, più grandi e meno dettagliati

▪ Soglia < 1.0 → tanti cluster, più piccoli e dettagliati → potrebbero 
essere difficili da interpretare per il rumore nei dati
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DISTANZA TRA I CLUSTER

Quando si implementa l’algoritmo di clustering gerarchico bisogna scegliere 2 
misure di distanza:

➢Misura di distanza tra due osservazioni → tipicamente distanza euclidea, 
ma si possono usare anche altre distanze (Manhattan, Hamming ecc.)

➢Criterio per stabilire la distanza tra due cluster (criterio di linkage): 

▪ Single linkage

▪ Complete linkage

▪ Average linkage

▪ Centroid linkage

▪Ward’s linkage
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CRITERI DI LINKAGE (1/3)

➢ Single linkage: la distanza tra i cluster A e B è la 
distanza minima tra un’osservazione appartenente al 
cluster A e un’osservazione appartenente al cluster B. 

➢Complete linkage: la distanza tra i cluster A e B è la 
distanza massima tra un’osservazione appartenente al 
cluster A e un’osservazione appartenente al cluster B. 
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CRITERI DI LINKAGE (2/3)

➢Average linkage: la distanza tra i cluster A e B è la 
distanza media tra un’osservazione appartenente al 
cluster A e un’osservazione appartenente al cluster B. 

➢Centroid linkage: la distanza tra i cluster A e B è la 
distanza tra i centroidi del cluster A e B. 
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CRITERI DI LINKAGE (3/3)

➢Ward’s linkage: criterio che cerca di minimizzare la varianza intra-cluster → 
tende a produrre cluster più omogenei. 

Dati due cluster A e B, di dimensioni 𝑛𝐴 e 𝑛𝐵, aventi centroidi 𝝁𝑨 e 𝝁𝑩, la 
distanza tra i due cluster è definita come: 

𝑑 𝐴, 𝐵 =
𝑛𝐴𝑛𝐵

𝑛𝐴 + 𝑛𝐵
∙ 𝝁𝑨 − 𝝁𝑩

2

Il valore di questa distanza rappresenta di quanto aumenta la somma delle 
varianze intra-cluster facendo il merge dei cluster A e B. 
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INFLUENZA DEL CRITERIO DI LINKAGE SULLE PARTIZIONI
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SCELTA DEL METODO DI LINKAGE

➢ Per scegliere il metodo di linkage più appropriato per descrivere i dati 
possiamo utilizzare l’indice cophenetico.

➢ Indice cophenetico, 𝒄: quantifica quanto fedelmente il dendrogramma 
preserva l’informazione sulle distanze tra coppie di osservazioni nel 
dataset.

▪−1 ≤ 𝑐 ≤ 1

▪ 𝑐 vicino a 1 se osservazioni vicine (distanza bassa) vengono unite ad 
altezze basse nel dendrogramma. 

➢ Possiamo provare diversi metodi di linkage e scegliere quello che 
massimizza l’indice cophenetico. 
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DEFINIZIONE DELL’INDICE COPHENETICO

𝑐 =
σ𝑖<𝑗(𝑑𝑖𝑗 − ҧ𝑑)(𝑡𝑖𝑗 − ҧ𝑡)

σ𝑖<𝑗(𝑑𝑖𝑗 − ҧ𝑑)2 σ𝑖<𝑗(𝑡𝑖𝑗 − ҧ𝑡)2

➢𝑑𝑖𝑗: distanza tra le osservazioni 𝒙𝒊 e 𝒙𝒋 (es. distanza euclidea)

➢ 𝑡𝑖𝑗: distanza cophenetica tra le osservazioni 𝒙𝒊 e 𝒙𝒋 → altezza del punto 

nel dendrogramma in cui le due osservazioni vengono messe per la prima 
volta nello stesso cluster

➢ ҧ𝑑: media delle distanze 𝑑𝑖𝑗

➢ ҧ𝑡: media delle distanze 𝑡𝑖𝑗
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NOTE SULL’INDICE COPHENETICO

➢ Limiti dell’indice cophenetico: 

▪ Non valuta la qualità dei cluster finali (ma solo la fedeltà del dendrogramma alle 
distanze tra le osservazioni nel dataset).

▪ E’ sensibile alla misura di distanza tra le osservazioni scelta.

➢ L’indice cophenetico tende ad assumere valori elevati

▪ Solo valori molto alti (>0.9) possono essere considerati indice di un dendrogramma 
che effettivamente rappresenta fedelmente le distanze tra le osservazioni originali. 

▪ Valori inferiori a 0.70 indicano che il dendrogramma ottenuto con clustering 
gerarchico non rappresenta bene la matrice delle distanze (forse i dati non sono 
adatti ad essere raggruppati con approccio gerarchico).

46



Martina Vettoretti – Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova

CLUSTERING GERARCHICO: PRO E CONTRO

➢ Pro: 

▪Non richiede di definire a priori il numero di cluster

▪Genera una rappresentazione grafica dei raggruppamenti

➢Contro: 

▪ Richiede maggiore tempo computazionale

▪Non tutti i problemi si prestano ad dei raggruppamenti di tipo gerarchico

▪ Il criterio di linkage scelto può influire in maniera drastica sui risultati
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