

# UNIVERSITÀ DEGLI STUDI DI PADOVA

#### **Network Science**

A.Y. 23/24

ICT for Internet & multimedia, Data science, Physics of data

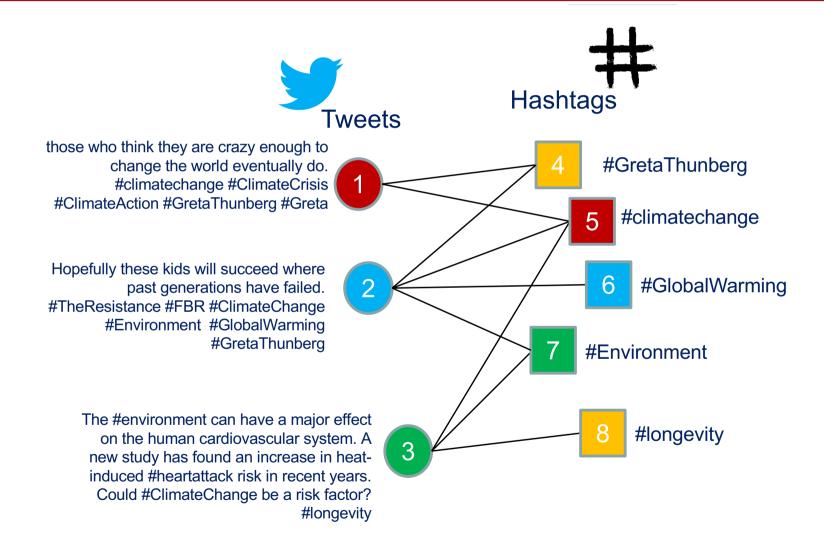
## Semantic networks

recap



#### Conceptual picture

of a semantic network on Twitter





## Probability matrices linking words to documents

## number of occurrences of words in documents

$$N_{wd} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

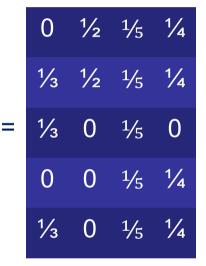
#climatechange

#climateaction

#gretathunberg

#environment

## probability of words given a documents



we identify a 
$$p_d = \begin{cases} \frac{1}{D} & \text{equally likely} \\ \frac{n_d}{\sum_d n_d} & \text{custom} \\ \end{cases}$$

we capture the statistical properties by normalizing by columns



## Probability matrices projecting to words or documents

bipartite network

joint probability of words and documents

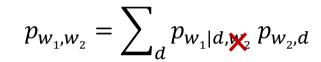
$$P_{wd} = P_{w|d} \operatorname{diag}(p_d)$$

| 0    | 1/8 | 1/20 1/16      |
|------|-----|----------------|
| 1/12 | 1/8 | 1/20 1/16      |
| 1/12 | 0   | $^{1}/_{20}$ 0 |
| 0    | 0   | 1/20 1/16      |
| 1/12 | 0   | 1/20 1/16      |



marginal probabilities

$$\boldsymbol{p}_{w} = \boldsymbol{P}_{wd} \boldsymbol{1} \qquad \boldsymbol{p}_{d} = \boldsymbol{P}_{wd}^{\mathsf{T}} \boldsymbol{1}$$



$$P_{ww} = P_{wd} \operatorname{diag}(p_d)^{-1} P_{wd}^{\mathsf{T}}$$

$$p_w = P_{ww} 1$$

projection on words

projection on documents

$$p_{d_1,d_2} = \sum_{w} p_{d_1|w,d_{\sum}} p_{d_2,w}$$

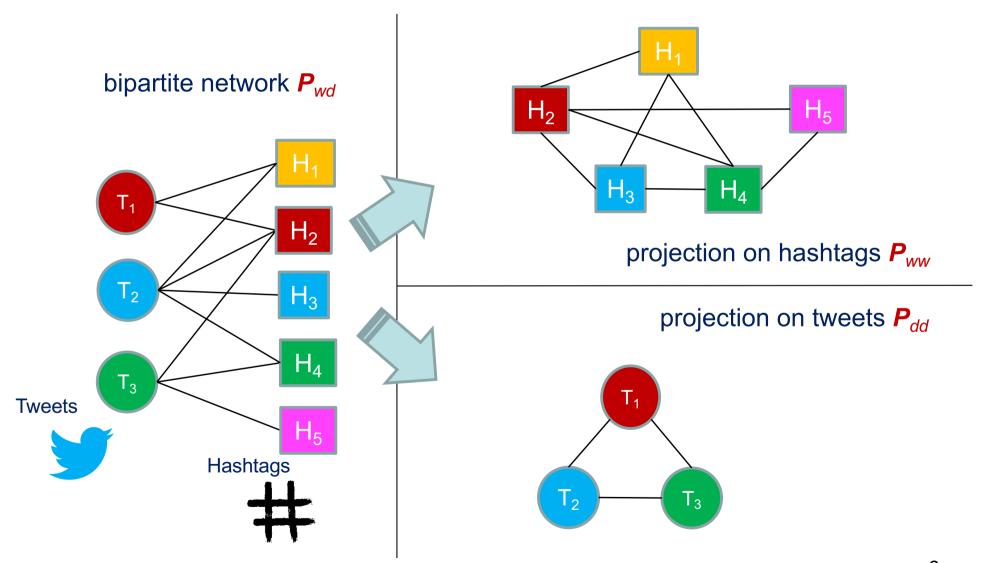
$$\mathbf{P}_{dd} = \mathbf{P}_{wd}^{\mathsf{T}} \operatorname{diag}(\mathbf{p}_{w})^{-1} \mathbf{P}_{wd}$$

$$p_d = P_{dd} 1$$



#### Bipartite and projected networks

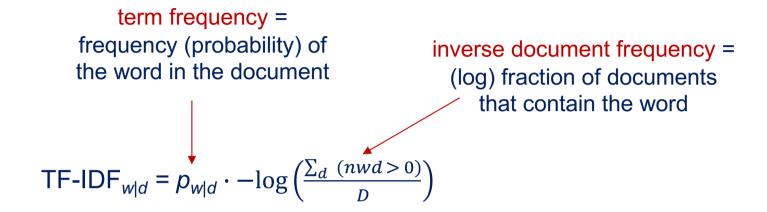
a comparison



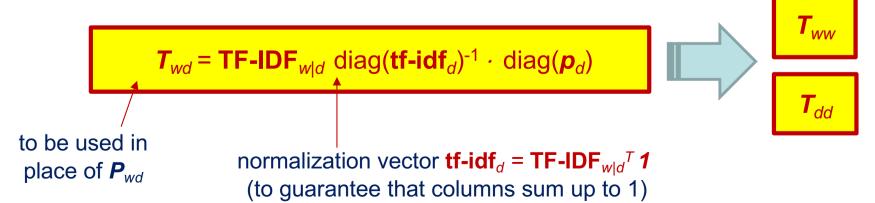


#### The role of TF-IDF

term frequency – inverse document frequency



- ☐ An heuristic
- Punishes words that appear in many documents
- ☐ Enhances words that are document specific



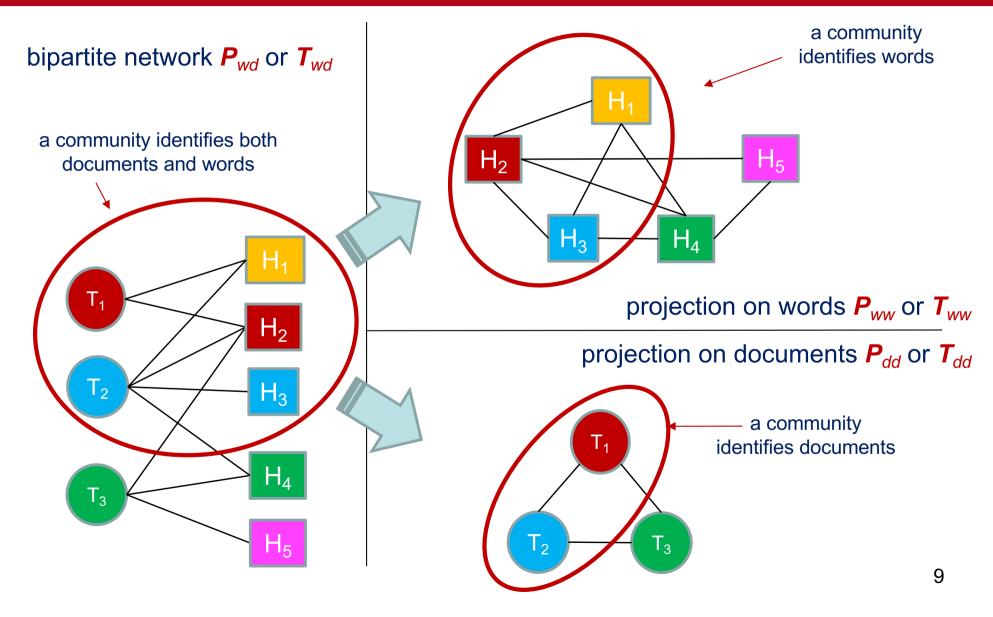
## Topic detection

i.e., community detection in semantic networks



#### Topic detection

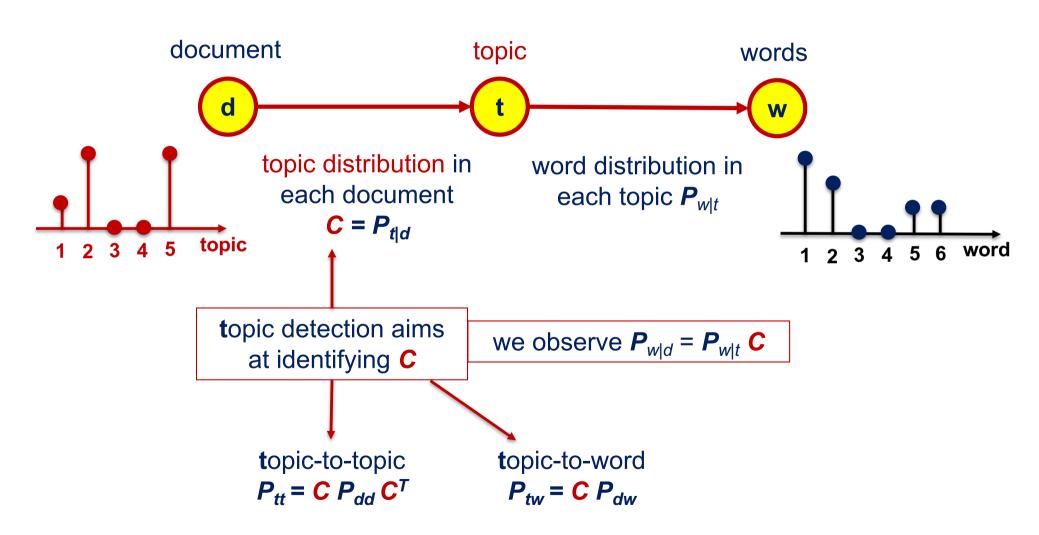
in bipartite and projection networks





#### The reference model

Under the presence of topics





#### Modularity and normalized cut

a wrap-up in topic detection

#### C topic assignment to be assessed for quality

$$P_{tt} = C P_{dd} C^T$$

can be interpreted as a probability matrix linking topics, its entries are the sum of the links of **A** from topic i to topic j

| P <sub>11</sub> | P <sub>12</sub> | P <sub>13</sub> |
|-----------------|-----------------|-----------------|
| P <sub>21</sub> | P <sub>22</sub> | P <sub>23</sub> |
| P <sub>31</sub> | P <sub>32</sub> | P <sub>33</sub> |

$$p_t = P_{tt} 1$$

can be interpreted as the probability vector of topics

modularity

$$Q = \sum_{t} (P_{tt} - p_t^2) < 1$$

to be maximized

normalized cut

normalized version

Ncut = 
$$1 - \frac{\sum_{t} P_{tt} / p_{t}}{\sum_{t} 1} > 0$$

to be minimized



#### InfoMap

a wrap-up in topic detection

PageRank vector (ranking of documents)

$$r = (1-c) P_{old} r + c 1/N$$

Here  $c_i$ is the ith row of C

$$P_{d|d} = P_{dd} \operatorname{diag}^{-1}(\boldsymbol{p}_d)$$

$$\mathbf{P}_{d|d} = \mathbf{P}_{dd} \operatorname{diag}^{-1}(\mathbf{p}_d) \qquad \mathbf{q}_i = \left(1 - (1 - c)\frac{\mathbf{c}_i \mathbf{1}}{N}\right) \mathbf{z}_i \mathbf{1} - c \mathbf{c}_i \mathbf{P}_{d|d} \mathbf{z}_i^T$$

$$\mathbf{z}_i = \mathbf{c}_i \operatorname{diag}(\mathbf{r})$$

InfoMap = 
$$f(\mathbf{q}) + \sum_{i} f([q_i, \mathbf{z}_i])$$

entropy function

normalized version

$$\frac{\text{InfoMap}}{f(\boldsymbol{r})} - 1$$

$$f(\mathbf{x}) = -\sum_{i} x_{i} \log \left( \frac{x_{i}}{\sum_{j} x_{j}} \right)$$

to be minimized



#### Normalized mutual information

a wrap-up in topic detection

statistical dependencies about words and topics

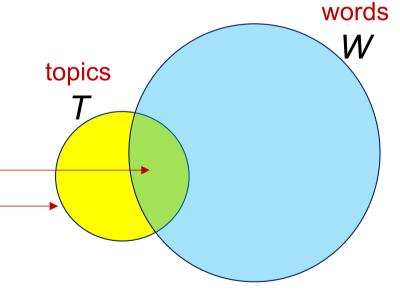
$$P_{\text{wt}} = P_{wd} C^{\mathsf{T}}$$

probability of a topic

$$\rightarrow p_t = P_{wt}^T 1$$

fraction of knowledge related to the topic that is explained by words (equal to 1 if topics use different words)

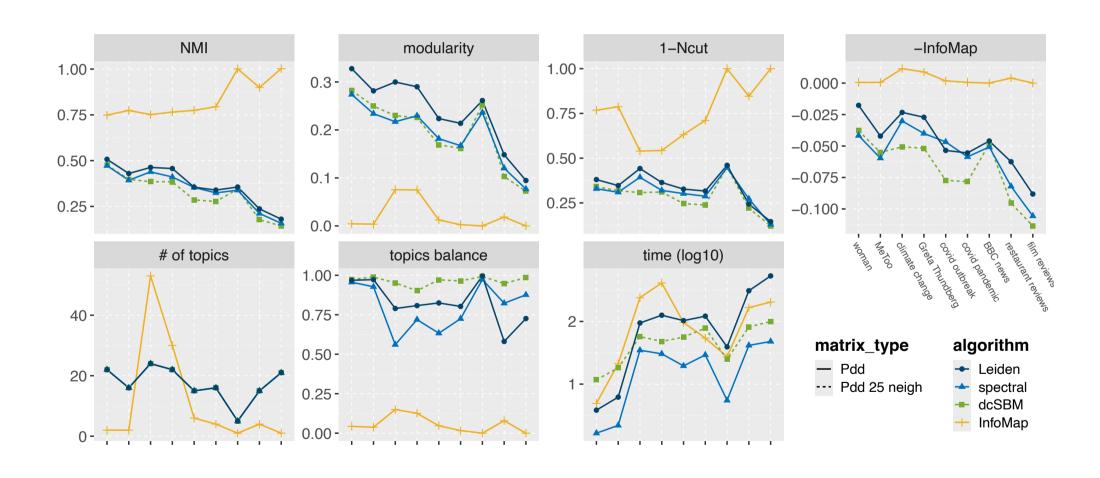
different words)
$$NMI = \frac{I(W;T)}{H(T)}$$





#### Louvain, InfoMap and Spectral clust.

On a semantic network

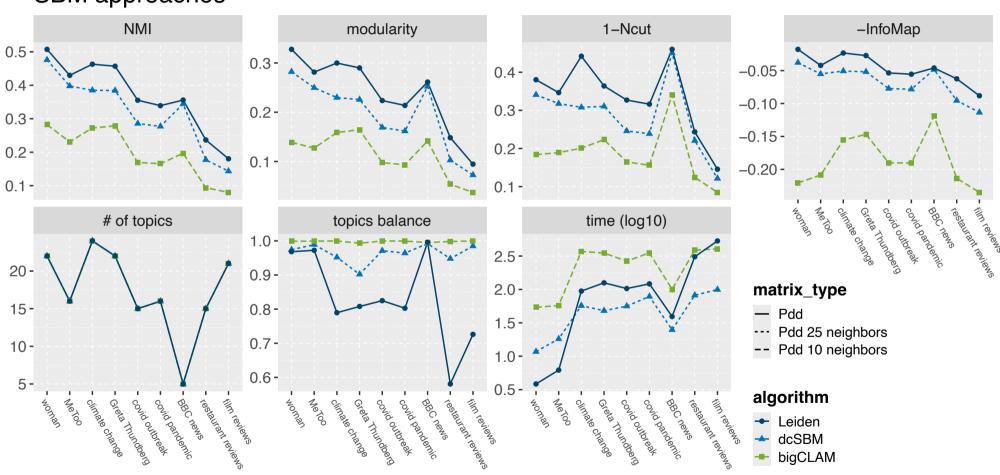




#### BigClam and SBMs at work

On a semantic network

#### SBM approaches



#### Other approaches

about topic detection

- Non-negative matrix factorization (NMF)
- Latent Dirichlet allocation (LDA)
- Variational auto-encoders (VAE)
- Embeddings and BERTopic

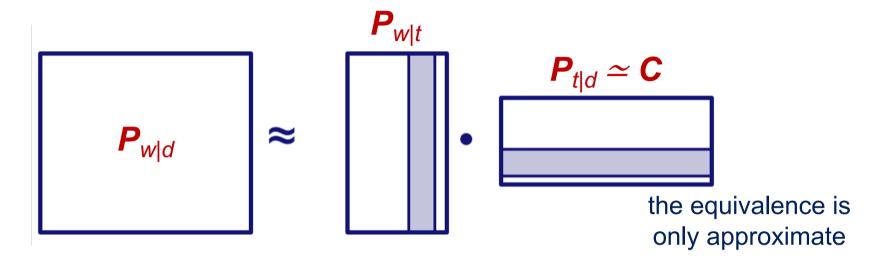
## Non-negative Matrix Factorization

and its application to topic detection



## NMF = nonnegative matrix factorization

rationale



underlying model

each document is

associated to a topic

each document is

associated to a topic distribution (one of the colums of **C**)

each topic is associated to a word distribution (one of the columns of  $P_{w|t}$ )



#### NMF optimization

Frobenius norm and generalized Kullbak-Leibler divergence

 $\mathbf{A} = \mathbf{P}_{w|d}$  is column stochastic

$$\operatorname{argmin}_{W \geq 0, H \geq 0} \sum_{ij} |A_{ij} - [WH]_{ij}|^2$$

minimizing the
Frobenius norm
does not ensure a
column stochastic
product *W H* 

$$\operatorname{argmin}_{W \geq \mathbf{0}, H \geq \mathbf{0}} \sum_{ij} A_{ij} \log \left( \frac{A_{ij}}{[WH]_{ij}} \right) - A_{ij} + [WH]_{ij}$$

$$f(y) = x \log\left(\frac{x}{y}\right) - x + y$$
$$f'(y) = -\frac{x}{y} + 1 = 0 \Rightarrow y = x$$

minimizing the generalized Kullback-Leibler divergence ensures a column stochastic product **W H** 

Ho & Van Dooren. "Non-negative matrix factorization with fixed row and column sums." (2008)

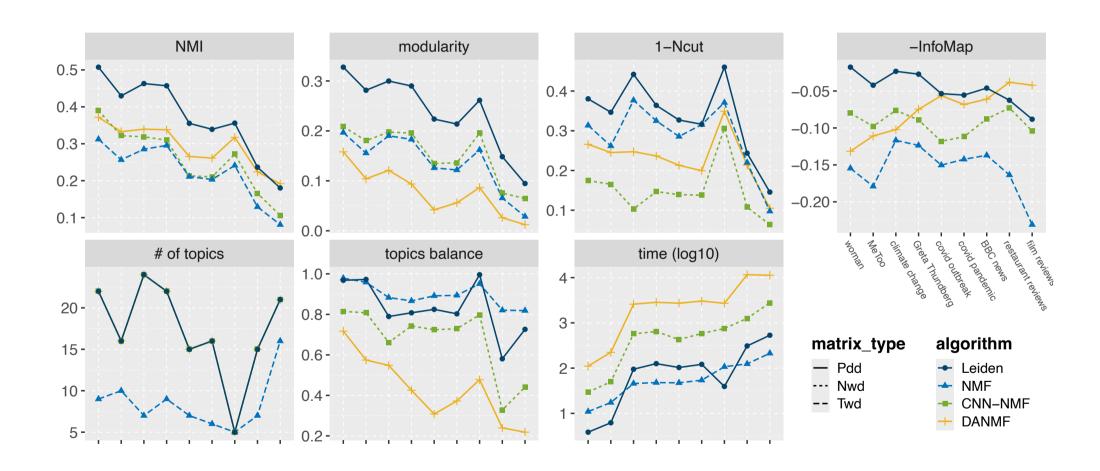


## NMF in Python sklearn package

```
wisely initialize
from sklearn.decomposition import NMF
                                                         for best
Pwgd = Pwd/Pwd.sum(axis=0).flatten()
                                                       performance
    run on different number of topics, then choose
                                                            choose generalized
       the best fit, e.g., according to modularity
                                                              Kullback-Leibler
                                                            divergence, and the
 # fit nmf model X = W*H
                                                               related solver
model = NMF(n_components=i, init='nndsvd',
              solver='mu', beta loss='kullback-leibler')
 W = model.fit transform(Pwgd)
 H = sps.csr matrix(model.components)
                                                            need to make W
 # column normalized versions
                                                           column stochastic,
H = sps.diags(W.sum(axis=0).flatten())*H # Ptgd
                                                           to have H column
 W = W/W.sum(axis=0).flatten() # Pwgt
                                                             stochastic too
 # community assignment C
 C = sps.csr matrix(np.transpose(H/H.sum(axis=0).flatten()))
                 force column stochasticity in H (not needed though)
```



## NMF at work On a semantic network





- Naturally provides a soft topic assignment
- NMF not strikingly good probably due to the fact that we want to express a sparse matrix through an eigenvector-like product with few eigenvectors (the fit is far from ideal)
- Comparison with Louvain much weaker
- □ Complexity generally slow need to test it for different numbers of topics ⊗ fast for fixed topic number

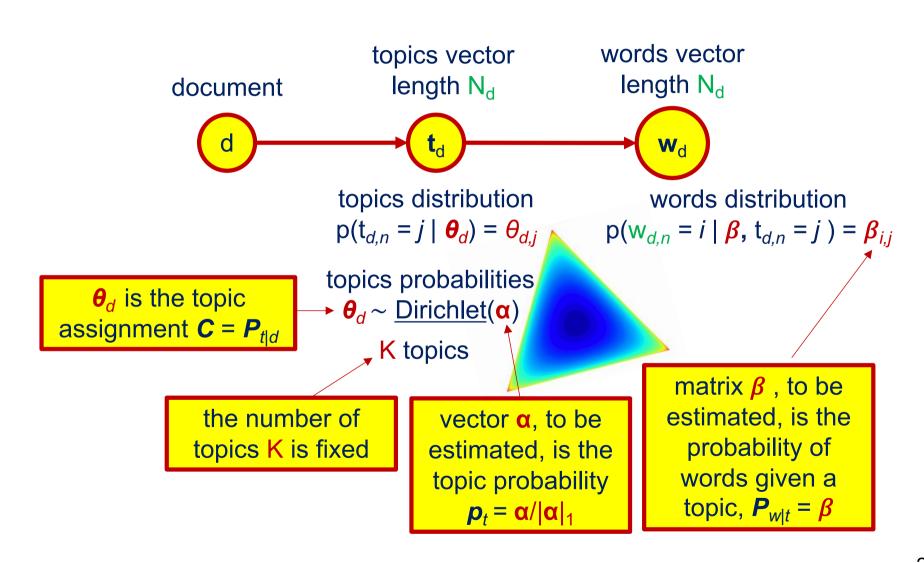
### Latent Dirichlet allocation

LDA = a stochastic model for topic detection



#### LDA model

Blei,, Ng, Jordan. "Latent dirichlet allocation." (2003) <a href="https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf?ref=https://githubhelp.com">https://githubhelp.com</a>





#### LDA optimization

can be solved using variational inference = suboptimum approach

topics assignment probability (Dirichlet)

$$p(\boldsymbol{\theta}_d | \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{k=1}^K \alpha_k)}{\sum_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K [\theta_{d,k}]^{\alpha_k - 1}$$

words probability

$$p(\mathbf{w}_d | \boldsymbol{\beta}, \boldsymbol{\theta}_d) = \prod_{n=1}^{N_d} [\boldsymbol{\beta} \; \boldsymbol{\theta}_d]_{w_{d,n}}$$

this dependence between  $\beta$  and  $\theta$ is the trickiest part

overall probability

$$p(\text{corpus} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \prod_{d} \int p(\boldsymbol{w}_{d} \mid \boldsymbol{\beta}, \boldsymbol{\theta}_{d}) p(\boldsymbol{\theta}_{d} \mid \boldsymbol{\alpha}) d\boldsymbol{\theta}_{d}$$

target optimization

$$\operatorname{argmax}_{\alpha,\beta} p(\operatorname{corpus} \mid \alpha,\beta)$$



$$C = P_{t|d} = \theta$$

$$P_{wt} = \beta \text{ diag}(\alpha/|\alpha|_1)$$

this is what we get

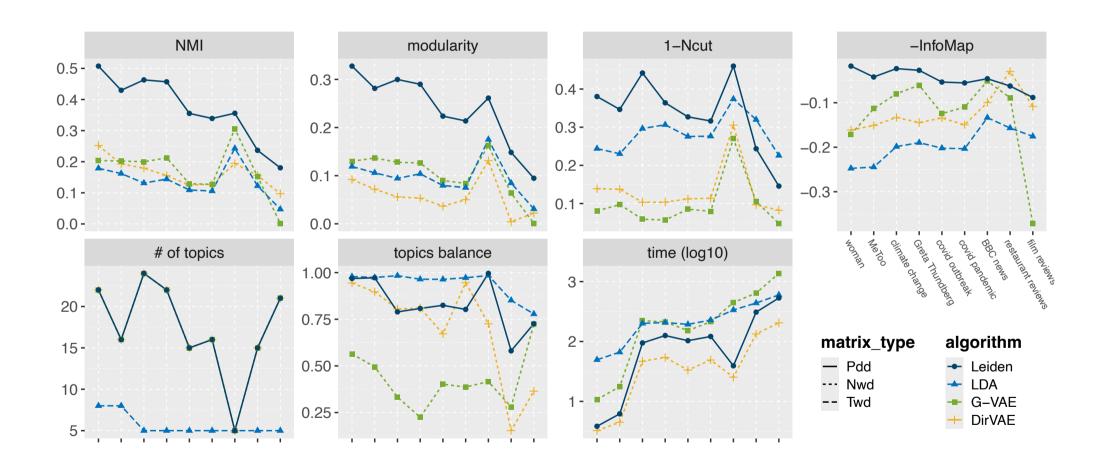


## LDA in Python sklearn package

from sklearn.decomposition import LatentDirichletAllocation



## LDA at work On a semantic network





0

0.02 0.04

0.06

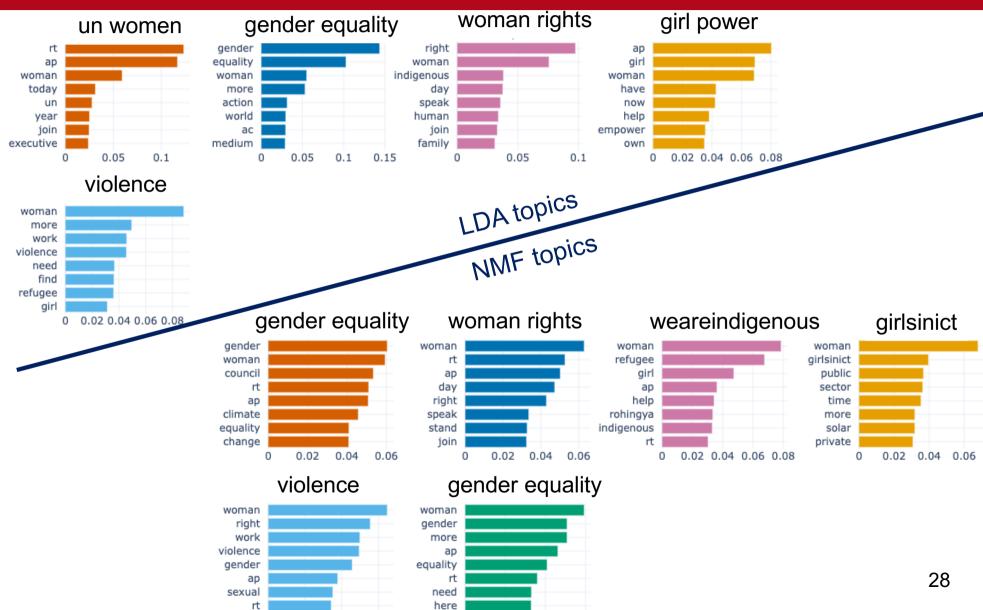
0

0.02

0.04

0.06

## A comparison NMF versus LDA topics





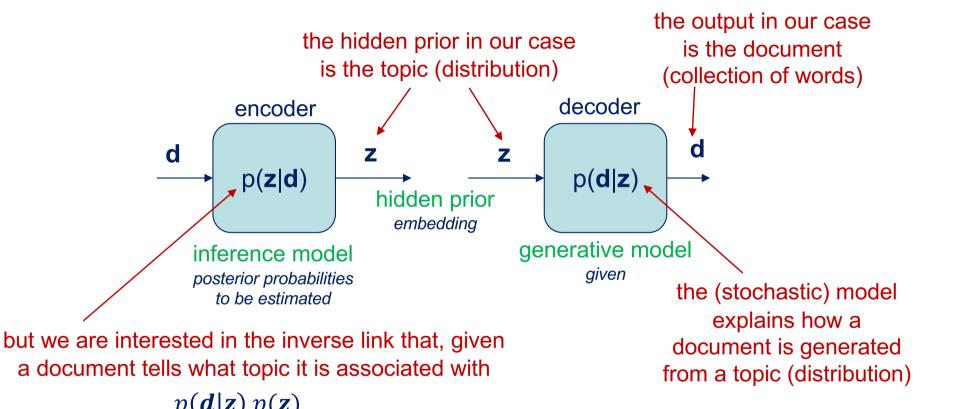
- Naturally provides a soft topic assignment
- LDA not strikingly good
  same eigenvector-like product as NMF
  worse than NMF ... known issue ⑤
  probably due to the Dirichlet assumption (questionable)
  and the variational inference (suboptimum approach)
- □ Comparison with Louvain much weaker
- □ Complexity generally slow need to test it for different numbers of topics ⊗ fast for fixed topic number

## Variational Auto Encoders

an application to topic analysis

#### Variational Auto-Encoders

Kingma, Welling, "Auto-encoding variational Bayes," (2013)

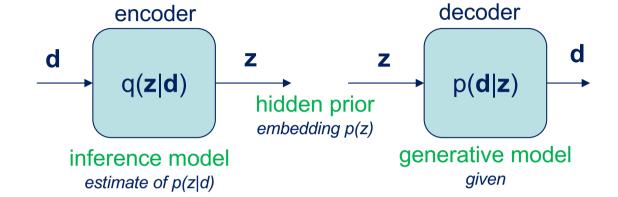


impossible to know in the closed form

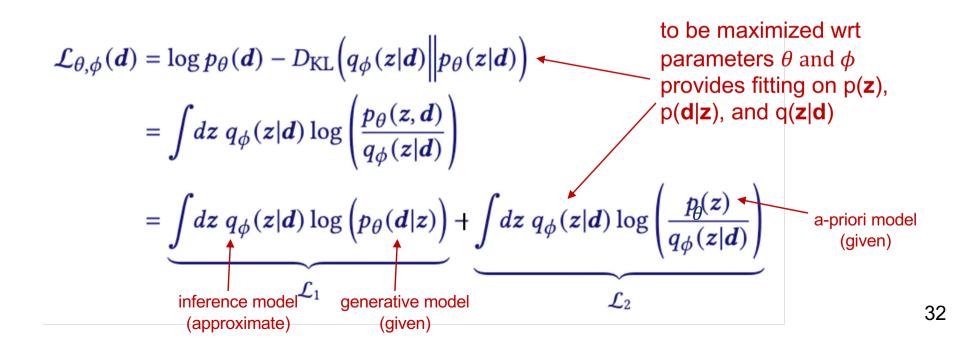
needs an a-priori model for the embedding is approximated by a simple alternative model

#### VAE optimization rationale

ELBO = evidence lower bound



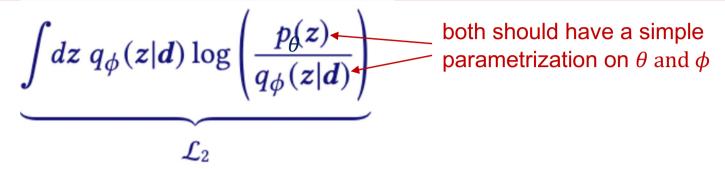
## ELBO $\mathcal{L}_{\theta,\phi}(\boldsymbol{d}) \leq \log p_{\theta}(\boldsymbol{d})$





#### L2 ELBO function

usually has a compact expression



#### e.g., the Gaussian case

$$p_{\theta}(\mathbf{z}) = \frac{1}{\sqrt{\det\left(2\pi\operatorname{diag}(\boldsymbol{\sigma}_{\theta}^{2})\right)}} \exp\left(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu}_{\theta})^{T}\operatorname{diag}^{-1}(\boldsymbol{\sigma}_{\theta}^{2})(\mathbf{z} - \boldsymbol{\mu}_{\theta})\right)}$$

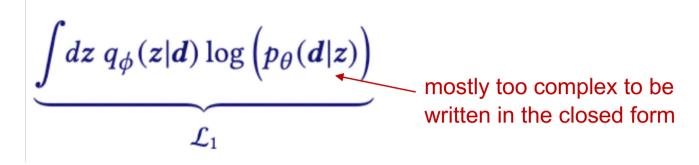
$$q_{\phi}(\mathbf{z}|\mathbf{d}) = \frac{1}{\sqrt{\det\left(2\pi\operatorname{diag}(\boldsymbol{\sigma}_{\theta}^{2}(\mathbf{d}))\right)}} \exp\left(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu}_{\phi}(\mathbf{d}))^{T}\operatorname{diag}^{-1}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{d}))(\mathbf{z} - \boldsymbol{\mu}_{\phi}(\mathbf{d}))\right)}$$

$$\mathcal{L}_{2}(\theta,\phi) = \frac{1}{2} \sum_{i} 1 + \log \left( \frac{\sigma_{\phi,i}^{2}(\boldsymbol{d})}{\sigma_{\theta,i}^{2}} \right) - \frac{\sigma_{\phi,i}^{2}(\boldsymbol{d})}{\sigma_{\theta,i}^{2}} - \frac{\left( \mu_{\phi,i}(\boldsymbol{d}) - \mu_{\theta,i} \right)^{2}}{\sigma_{\theta,i}^{2}}$$



#### L1 ELBO function

approximated through Monte Carlo estimation



#### solution: Monte Carlo approximation

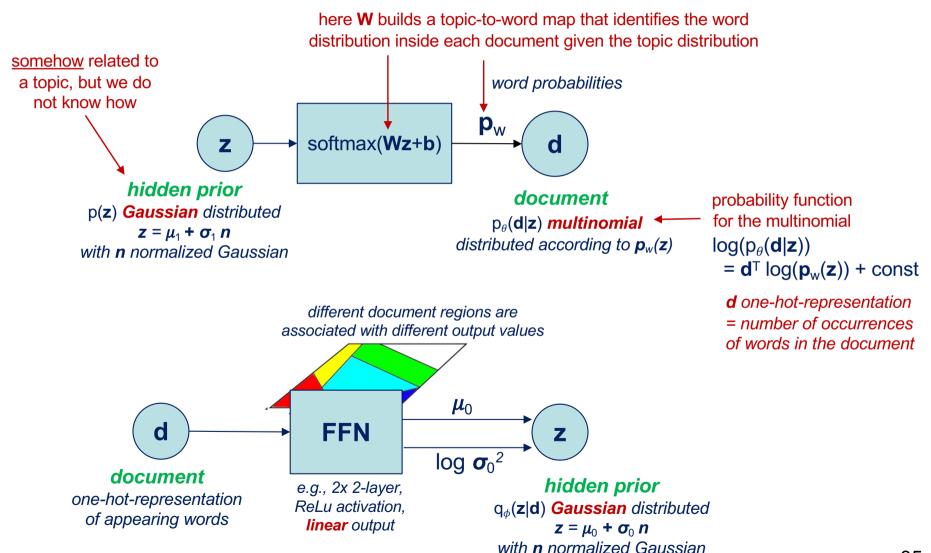
throughout the process

$$\mathcal{L}_1(\theta,\phi) = \frac{1}{L} \sum_{\ell=1}^L \log \bigl( p_\theta(\boldsymbol{d}|\boldsymbol{z}_\ell) \bigr)$$
 samples generated according to the correct distribution 
$$\boldsymbol{z}_\ell \sim q_\phi(\boldsymbol{z}|\boldsymbol{d})$$
 e.g., the Gaussian case 
$$\boldsymbol{z}_\ell = \boldsymbol{\mu}_\phi(\boldsymbol{d}) + \boldsymbol{\sigma}_\phi(\boldsymbol{d}) \, \boldsymbol{n}_\ell$$
 need to generate these once, then use them 
$$\boldsymbol{n}_\ell \sim \mathcal{N}(\mathbf{0},\boldsymbol{I})$$



#### Take 1 - NVDM

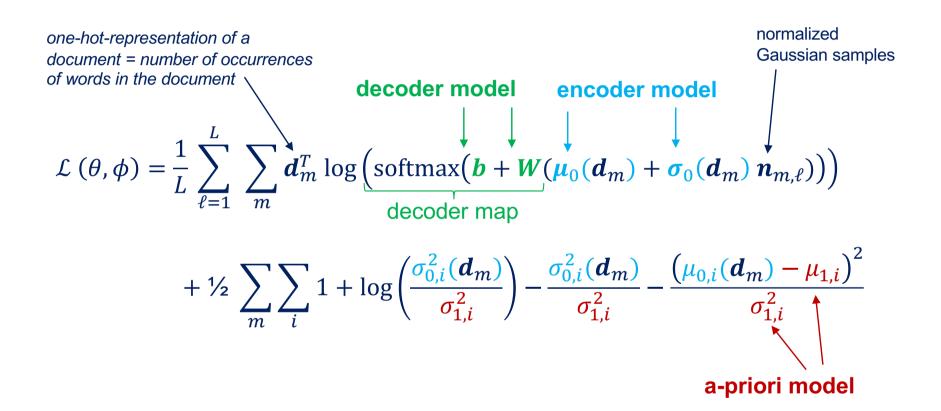
Miao, Yu, Blunsom, "Neural variational inference for text processing," (2016) http://proceedings.mlr.press/v48/miao16.pdf





#### **NVDM ELBO**

optimization target, to be maximized

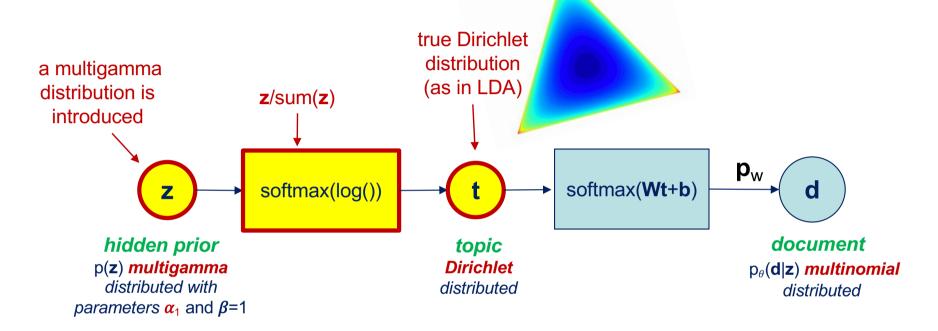


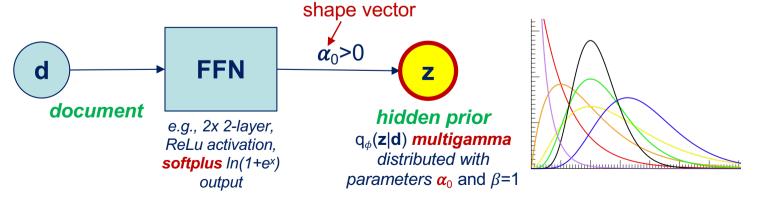
Not very clear where the topic is, though!



## Take 2 - DirVAE

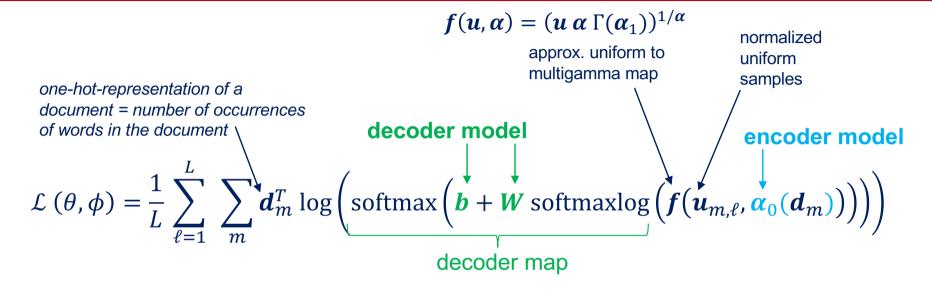
Joo, Li, Park, Moon, "Dirichlet variational autoencoder," (2020) <a href="https://www.sciencedirect.com/science/article/pii/S003132032030317">https://www.sciencedirect.com/science/article/pii/S003132032030317</a>





### DirVAE ELBO

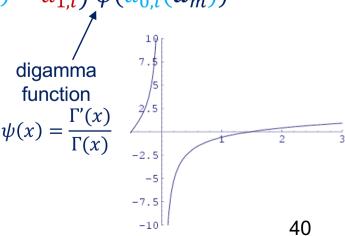
optimization target, to be maximized



$$+ \sum_{m} \sum_{i} \log \left( \frac{\Gamma(\alpha_{0,i}(\boldsymbol{d}_{m}))}{\Gamma(\alpha_{1,i})} \right) - \left( \alpha_{0,i}(\boldsymbol{d}_{m}) - \alpha_{1,i} \right) \psi(\alpha_{0,i}(\boldsymbol{d}_{m}))$$
**a-priori model**

$$\text{digamma function}$$

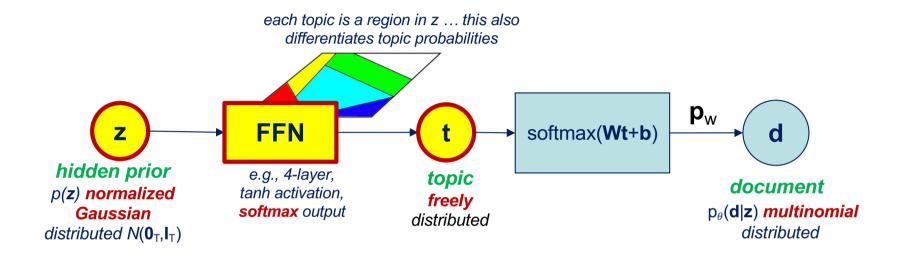
Now we know where the topic is!

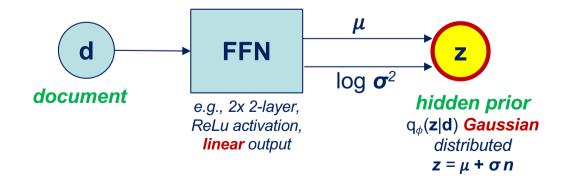




## Take 3 – NFTM

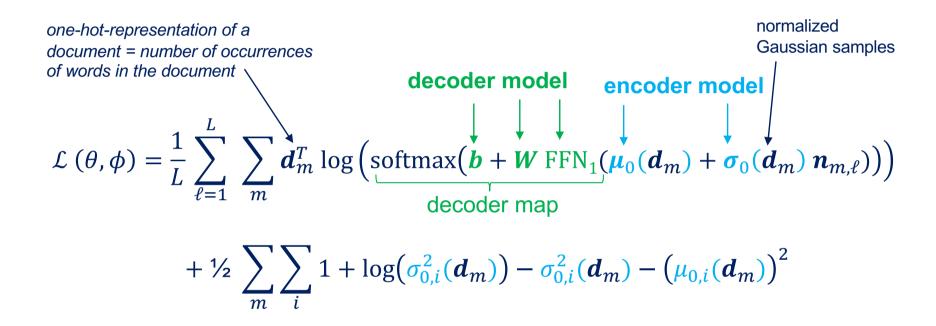
Gui, Lin, et al. "Multi task mutual learning for joint sentiment classification and topic detection," (2020) https://ieeexplore.ieee.org/document/9112648





#### NFTM ELBO

optimization target, to be maximized

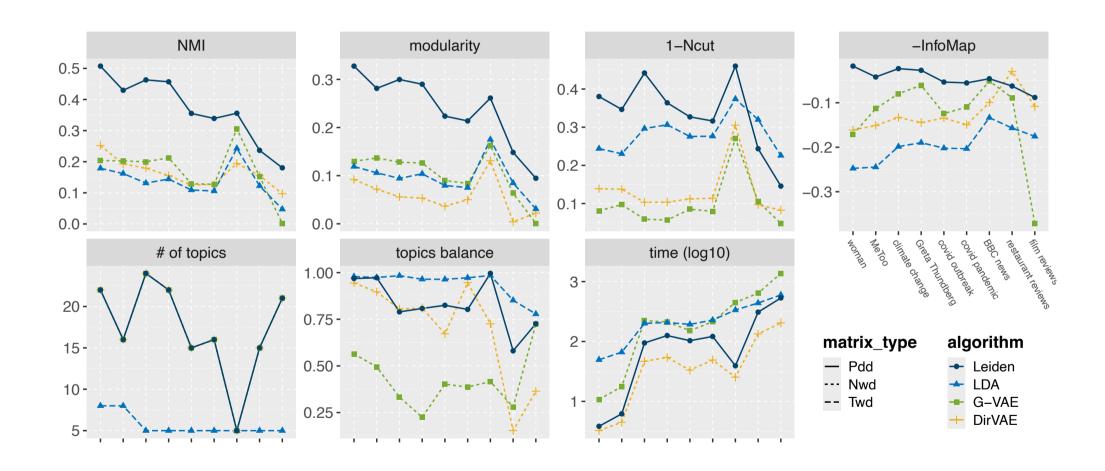


Our estimate of the topic distribution for the *m*th document!

$$\boldsymbol{c}_{m} = \frac{1}{L} \sum_{\ell=1}^{L} \text{FFN}_{1}(\boldsymbol{\mu}_{0}(\boldsymbol{d}_{m}) + \boldsymbol{\sigma}_{0}(\boldsymbol{d}_{m}) \boldsymbol{n}_{m,\ell})$$

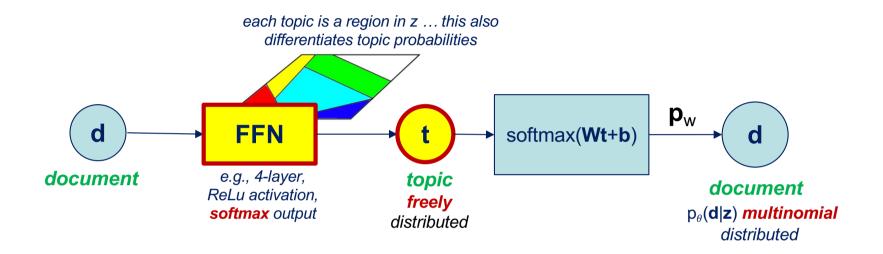


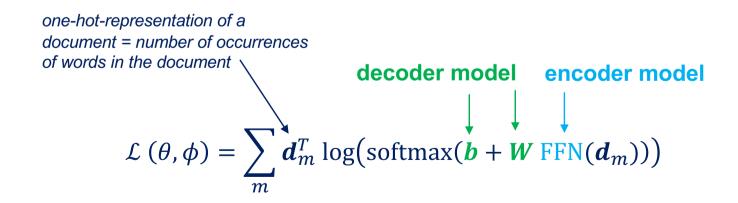
## VAE at work On a semantic network





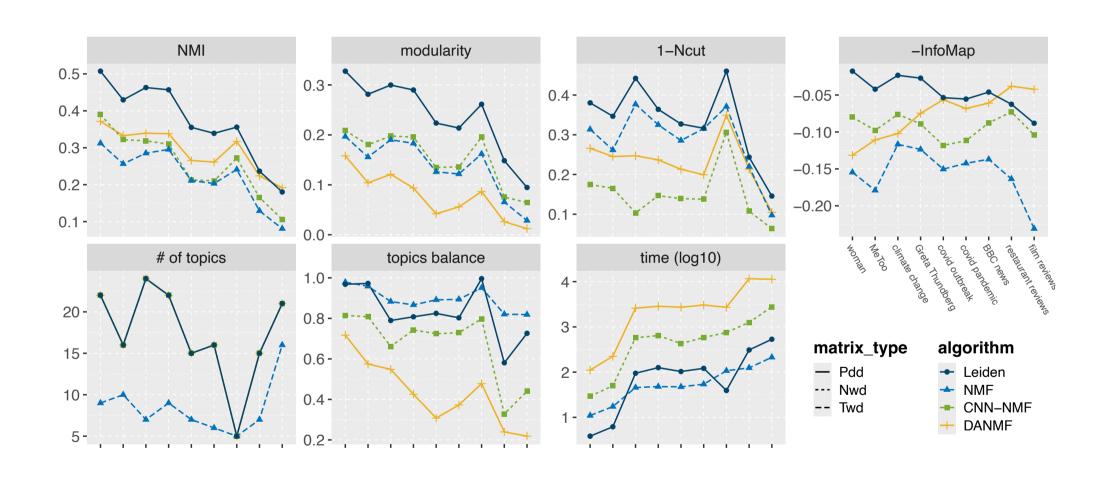
## NFTM relaxation mimics NMF





## **CNN-NMF** at work

On a semantic network



## Takeaways on VAE applied to topic detection

- Naturally provides a soft topic assignment
- □ Comparison with Louvain
  still far away
  would be nice to see other Deep Learning approaches
  ... your task! ⓒ

## Transformer Architecture

with application to BERT, RoBERTa, OpenAl GPT



## **≡** Attention (machine learning)

Article Talk

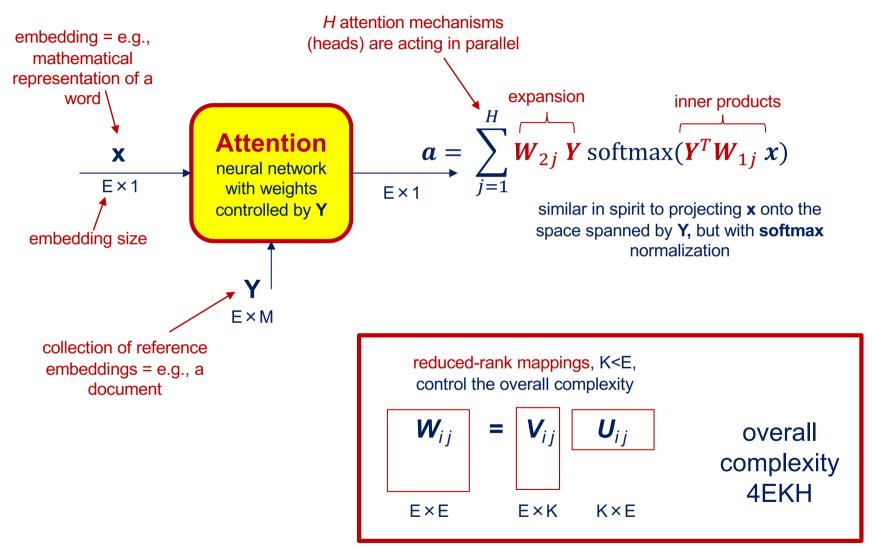
From Wikipedia, the free encyclopedia

In artificial neural networks, **attention** is a technique that is meant to mimic cognitive attention. This effect enhances some parts of the input data while diminishing other parts — the motivation being that the network should devote more focus to the important parts of the data, even though they may be small portion of an image or sentence. Learning which part of the data is more important than another depends on the context, and this is trained by gradient descent.



## The Attention Module

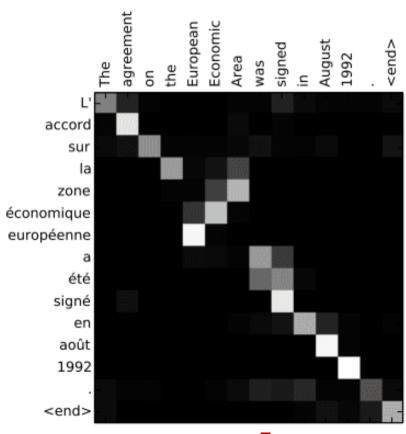
Vaswani, Ashish, et al. "Attention is all you need" (2017)



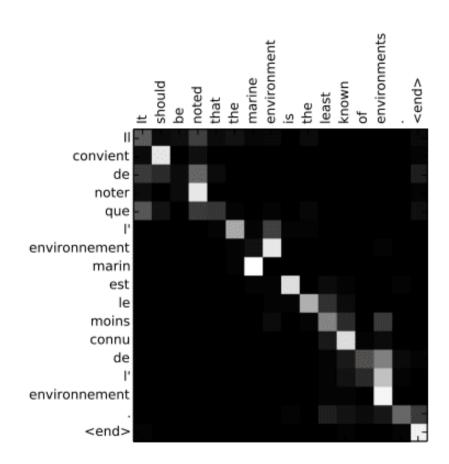


## **Visualizing Attention**

in a translation experiment (X English, Y French)



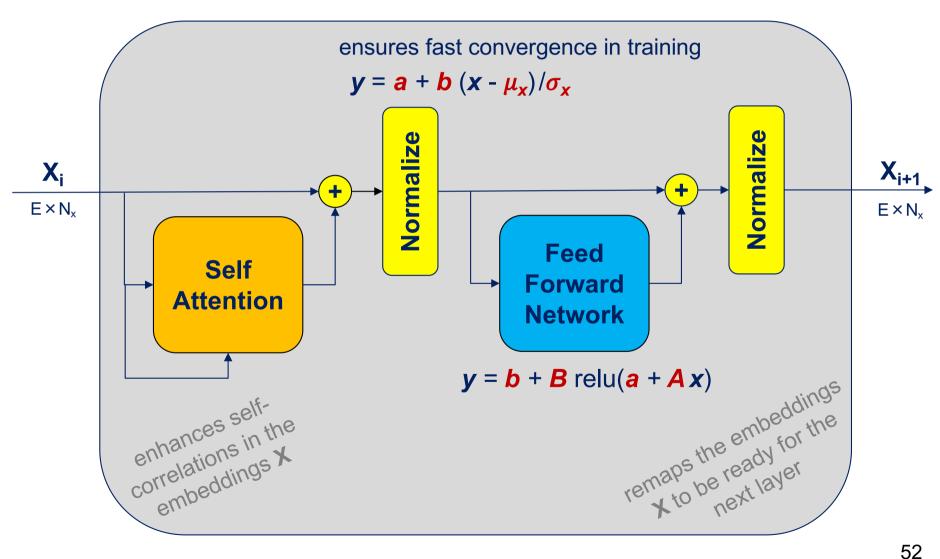






## Encoder

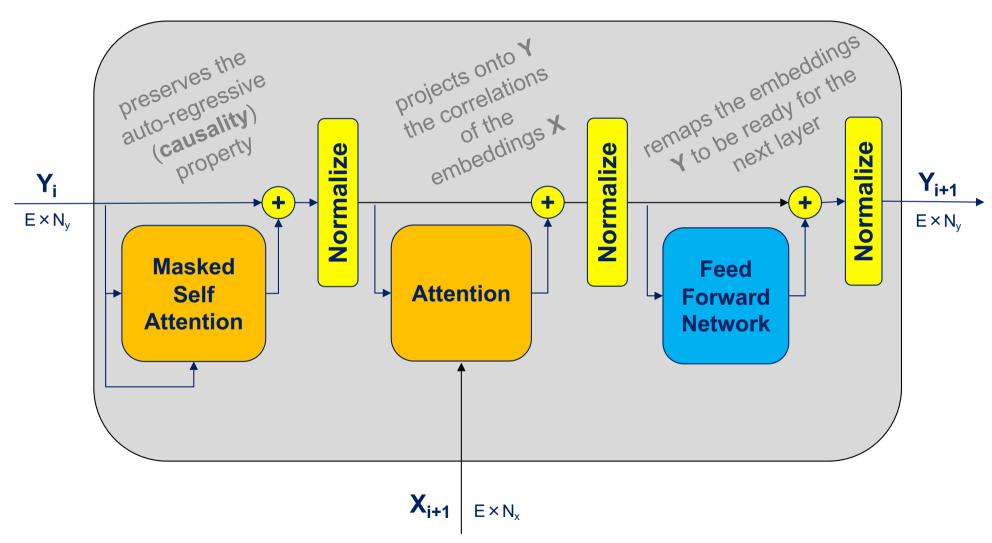
a serie of multi-head self-attention modules





### Decoder

a serie of attention modules preserving causality





## **Transformer Architecture**

Vaswani, Ashish, et al. "Attention is all you need" (2017) Google's patent https://patents.google.com/patent/US10452978B2/en

estimate Ŷ. given the alternative representation X, and the past information Ys word-to-embedding (i.e., **Y** shifted right by one position) Decoder map V output embeddings E x N<sub>v</sub> VT E×D \_inear -inear  $Y_1$  $Y_{L-1}$ Y<sub>0</sub>  $D \times N_y$  $D \times N_v$ embedding-to-word (probability) map Linear  $X_1$  $X_{L-1}$  $X_L$  $X_0$  $D \times N_x$ positional input embeddings  $E \times N_x$ encoding 54

Encoder



## The Annotated Transformer

http://nlp.seas.harvard.edu/2018/04/03/attention.html tensor2tensor library https://github.com/tensorflow/tensor2tensor



Members PI Code Publications

#### The Annotated Transformer

Apr 3, 2018

There is now a new version of this blog post updated for modern PyTorch.

from IPython.display import Image
Image(filename='images/aiayn.png')

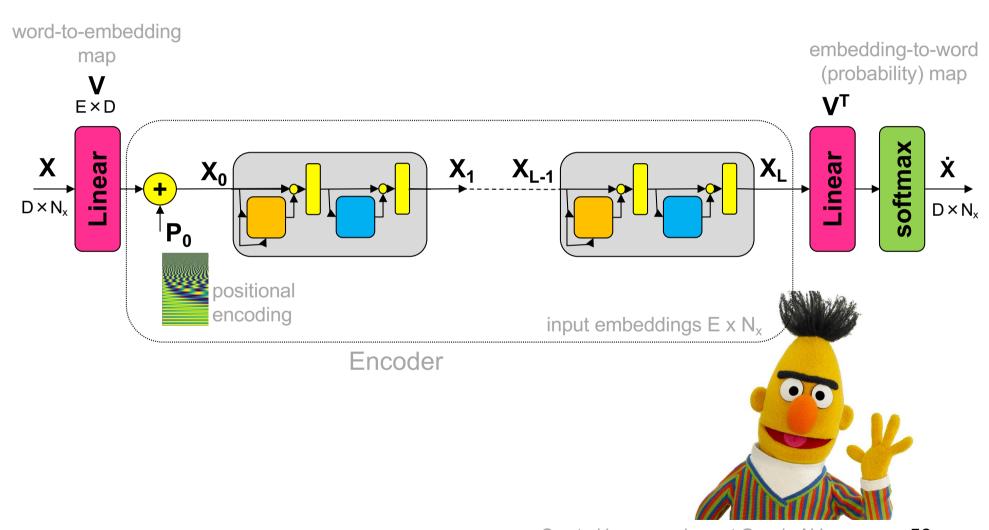
#### Attention Is All You Need



### BERT

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding" (2018)

https://github.com/google-research/bert



## BERT parameters

|               | Embeddings<br>size E | Self-attention<br>heads H | Head dimension<br>K = E/H | FFN inner size<br>I = 4E | Parameters per<br>layer 12E²+9E | Layers L | Dictionary size<br>D | Total parameters |
|---------------|----------------------|---------------------------|---------------------------|--------------------------|---------------------------------|----------|----------------------|------------------|
| BERT<br>base  | 768                  | 12                        | 64                        | 3072                     | 7.1M                            | 12       | 30.5K                | 110M             |
| BERT<br>large | 1024                 | 16                        | 64                        | 4096                     | 12.6M                           | 24       | 30.5K                | 340M             |

max tokens  $N_x = 512$ 

Created by researchers at Google Al Language



## BERT pre-training procedure

BooksCorpus (800M words) + English Wikipedia (2,500M words)

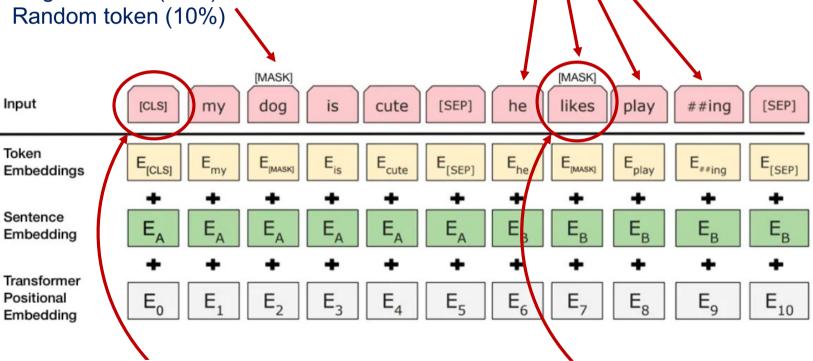
#### **Masked Language Model**

15% masked tokens replaced with:

- [MASK] token (80% of the times)
- Original token (10%)

#### **Next Sequence Prediction**

- Next sequence (50% of the times)
- Random sequence (50%)



Output [CLS] fed into an additional output layer for softmax classification (of correct/wrong next sequence)

Output masked tokens fed into the output layer V<sup>T</sup> and evaluated for probability of correct estimate

# UNIVERSITÀ DEGLI STUDI DI PADOVA

### RoBERTa

Liu, Yinhan, et al. "Roberta: A robustly optimized BERT pretraining approach" (2019)

#### **Larger training corpora** (10x larger)

training on BookCorpus + Wikipedia and also CC-News, OpenWebText, Stories

#### **Dynamic masking**

training data was duplicated 10 times so that each sequence is masked in 10 different ways over the 40 epochs of training

#### **Full-sentences without NSP loss**

full sentences sampled contiguously from one or more documents, such that the total length is at most 512 tokens

#### Large mini-batches

A larger byte-level BPE (byte pair encoding) of 50K subword units a hybrid between character- and word-level representations that allows handling the large vocabularies common in natural language corpora

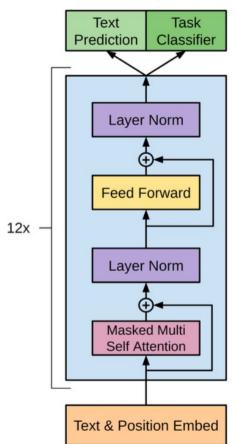


## Generative Pre-Training (GPT)

Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018)

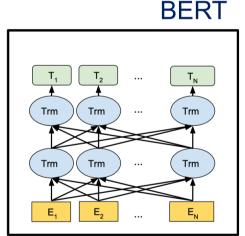
(unsupervised) pre-training on Language Modelling (no mask)

$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$



T<sub>1</sub> T<sub>2</sub> ... T<sub>N</sub>
Trm Trm ... Trm

E<sub>1</sub> E<sub>2</sub> ... E<sub>N</sub>



same parameters of BERT-base, but with Masked Attention trained on BookCorpus only

Radford, Alec, et al. "Language models are unsupervised multitask learners" (2019)

#### McCann et al. (2018)

language provides a flexible way to specify tasks, inputs, and outputs all as a sequence of symbols... it is therfore possible to <u>train a single model</u> with <u>sufficient capacity</u> to infer and perform many <u>different tasks</u>

model gets complex!

| Parameters | Layers | $\overline{d_{model}}$ |
|------------|--------|------------------------|
| 117M       | 12     | 768 GPT, BERT-base     |
| 345M       | 24     | 1024 BERT-large        |
| 762M       | 36     | 1280                   |
| 1542M      | 48     | 1600 GPT-2             |



#### WebText

scraping all outbound links (45M links) from Reddit, a social media platform, which received at least 3 karma – exclude WikiPedia



Brown, Tom, et al. "Language models are few-shot learners" (2020)

#### increasingly larger data and model!

| Model Name            | $n_{ m params}$ | $n_{ m layers}$ | $d_{ m model}$ | $n_{ m heads}$ | $d_{ m head}$ | Batch Size | Learning Rate        |
|-----------------------|-----------------|-----------------|----------------|----------------|---------------|------------|----------------------|
| GPT-3 Small           | 125M            | 12              | 768            | 12             | 64            | 0.5M       | $6.0 \times 10^{-4}$ |
| GPT-3 Medium          | 350M            | 24              | 1024           | 16             | 64            | 0.5M       | $3.0 \times 10^{-4}$ |
| GPT-3 Large           | 760M            | 24              | 1536           | 16             | 96            | 0.5M       | $2.5 \times 10^{-4}$ |
| GPT-3 XL              | 1.3B            | 24              | 2048           | 24             | 128           | 1 <b>M</b> | $2.0 \times 10^{-4}$ |
| GPT-3 2.7B            | 2.7B            | 32              | 2560           | 32             | 80            | 1 <b>M</b> | $1.6 \times 10^{-4}$ |
| GPT-3 6.7B            | 6.7B            | 32              | 4096           | 32             | 128           | 2 <b>M</b> | $1.2 \times 10^{-4}$ |
| GPT-3 13B             | 13.0B           | 40              | 5140           | 40             | 128           | 2 <b>M</b> | $1.0 \times 10^{-4}$ |
| GPT-3 175B or "GPT-3" | 175.0B          | 96              | 12288          | 96             | 128           | 3.2M       | $0.6\times10^{-4}$   |

Layer normalization at the input (plus one at the output)

#### **Sparse** attention patterns

alternating dense and locally banded sparse attention patterns in the layers

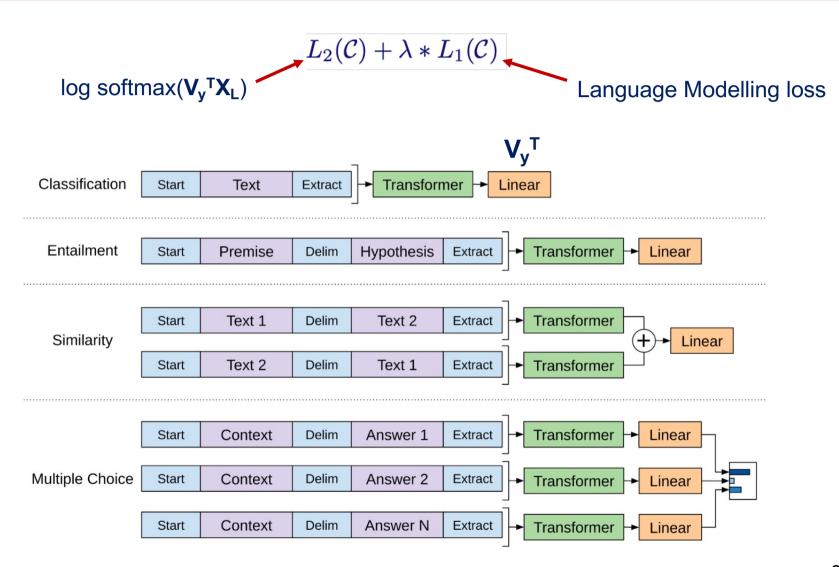
Byte-level BPE (byte pair encoding) of 50K subword units also prevent BPE from merging across character categories (to avoid dog, dog!, dog?)

#### **Modified initialization**



## Supervised fine-tuning

training on specific tasks





## **NLP** tasks

#### some fine-tuning possibilities in NLP

| Task                                         | Description                                      | Possible approach                                                                                                                                                                                                                                    |
|----------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Masked language prediction                   | predict masked<br>words in a text                | This is what BERT model is pre-trained for                                                                                                                                                                                                           |
| Text classification or<br>Sentiment analysis | assign a label to a<br>given sequence of<br>text | Apply linear transform+softmax on K classes, and train the model for the specific classification task                                                                                                                                                |
| Text translation                             | translate a text                                 | Need to pre-train a full Transfomer Architecture for this task                                                                                                                                                                                       |
| Summarization                                | generate a<br>summary of a<br>document           | GPT example: context given by a document; then generate 100 tokens by top-2 random sampling (Fan et al., 2018), i.e., take at each step the most likely next word at random among the top-2 candidates; finally select first 3 sentences as abstract |
| Question answering                           | answer a question                                | GPT example: the context of the language model is seeded with example question answer pairs which helps the model infer the short answer style of the dataset                                                                                        |
| Document question answering                  | answer a question<br>on a given text             | GPT example: context seeded by a text; then as for question answering                                                                                                                                                                                |
| Conversational                               | ChatBot                                          | InstructGPT/ChatGPT: Fine-tuned models using reinforcement learning from human feedback                                                                                                                                                              |



### Software Tools

for Transformer Architecture use or fine tuning



## **Hugging Face**

https://huggingface.co/docs/transformers/v4.29.1/en/index

State-of-the-art Machine Learning for PyTorch, TensorFlow, and JAX





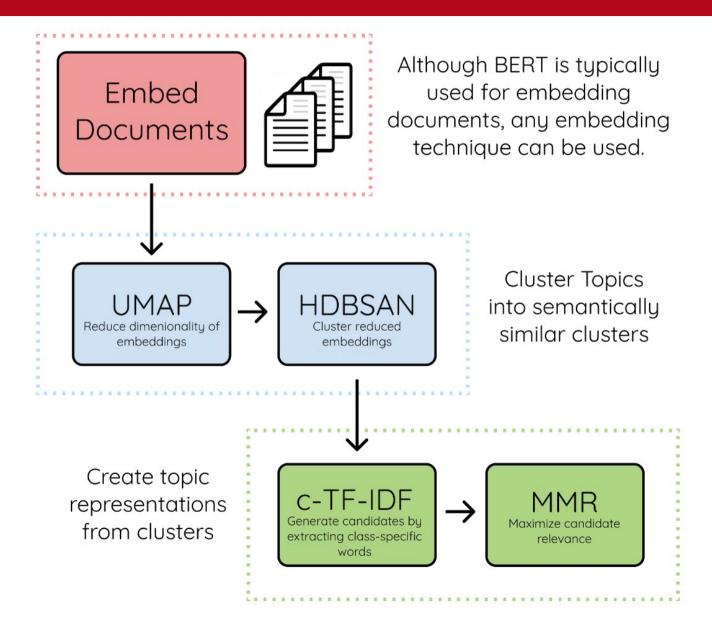
## BERT Topic

exploiting embeddings for topic detection



## **BERTopic**

Grootendorst, «BERTopic: Neural topic modeling with a class-based TF-IDF procedure» (2022) <a href="https://arxiv.org/abs/2203.05794">https://arxiv.org/abs/2203.05794</a>





## 1. Embed documents Using BERT

array([-0.5968882 , -0.33086956, -0.32643065, -0.3670732 , 0.628059 , -0.3692328 , -0.37902787, -0.12308089, -0.38124698, -0.03940517, 0.2260839 , 0.10852845, -0.2873811 , -0.42781743, 0.06604357, -0.07114276, -0.29775023, -0.99628943, -0.54497653, -0.11718027, -0.15935768, 0.09587188, -0.2503798, 0.06768776, 0.3311586, 0.43098116, 0.06936899, 0.24311952, 0.14515282, 0.19245838, 0.10462623, -0.45676082, 0.5662387, 0.69908774, 0.48064467, 0.27378514, -0.45430255, 0.17282294, -0.40275463, -0.38083532, word-to-embedding self-attention map Fight for Linear your rights! output sentence embedding (words) positional walked encoding input embeddings E x N<sub>x</sub> Encoder walking swimming



## 2. Reinterpret embeddings

**Using UMAP** 

bert\_model.visualize\_documents(docs)

```
16 indigenous weareindigenous forum
                                            10_health_quality_care
                                                         6_climate_ocean_woman
                              13 africa african africaday
                                peacebuilding peacekeepe
                                                  11 gender equality council
             0_violence_sexual_zendice_platform_right_
                                                                3 digital girlsinict education
                                   9_equality_gender_feminist
                                      12 gender equality gender
14_disability_cosp11_crid
```

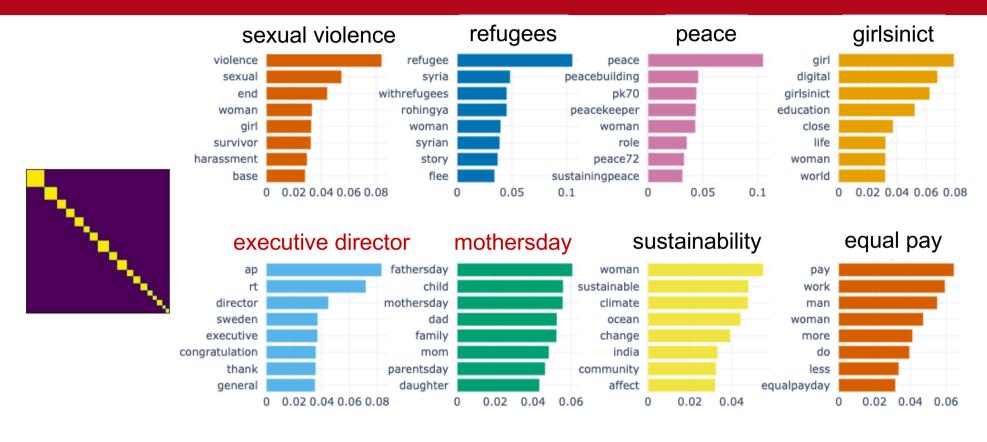
## BERTopic in Python

bertopic package https://maartengr.github.io/BERTopic/

```
!pip install bertopic
from bertopic import BERTopic
from sentence_transformers import SentenceTransformer
                                                          initialise model
sentence_model = SentenceTransformer("all-MiniLM-L6-v2"
bert_model = BERTopic(embedding_model=sentence_model,
                      min topic size=20,nr topics='auto')
                                                             fit model
docs = list(df2["text sup clean"])
topics, probabilities = bert_model.fit_transform(docs)
topics = bert_model.reduce_outliers(docs, topics) 
                                                        reduce outliers
# extract community assignments
C = sps.csr_matrix((len(topics),max(topics)+2))
for i in range(C.shape[1]):
  C[np.array(topics) == (i-1), i] = 1
                                                extract C from topic
# remove zero assignments
                                                   assignment
C = C[:,np.unique(scipy.sparse.find(C)[1])]
```

## bert\_model.visualize\_barchart()

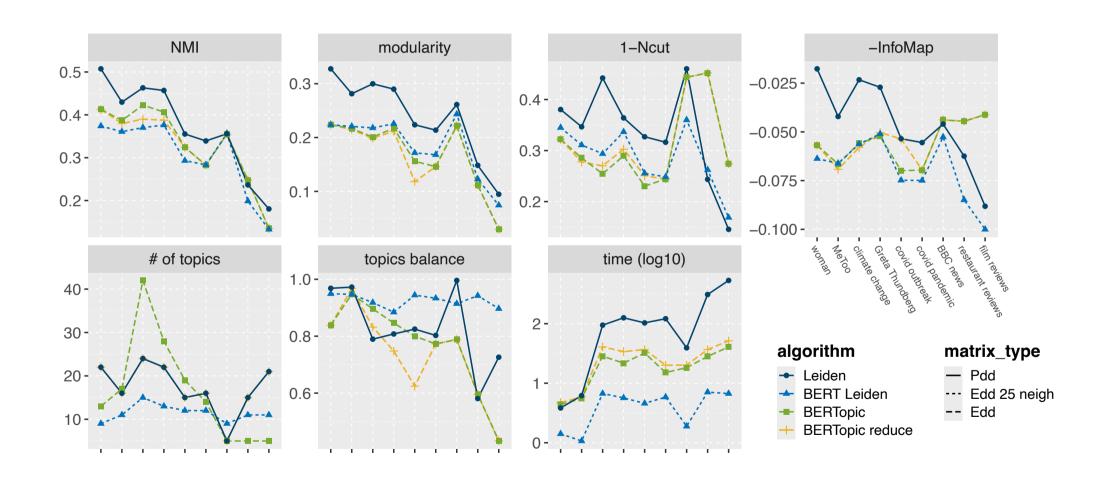
#metoo2018





## BERTopic at work

On a semantic network





- Naturally provides a hard topic assignment
- Useful tool
- More readable output with deep cleaned text but same performance
- □ Comparison with Louvain

  weaker in general, especially in modularity
  equivalent NMI = relevant topics
  lower modularity = the documents that identify the
  topics are less distinguishable
  higher complexity involved
  less balanced topics, but generally meaningful
  topics correlated with Louvain

# Wrap-up on topic detection



- What available tools should be used Louvain & BERTopic compare their performance through NMI, modularity, etc.
- What available tools should NOT be used InfoMap, NMF & LDA they show poor performance
- What would be nice to see implemented soft Louvain made fast advanced SMBs deep learning models