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FORMULARIO DELL’ANALISI DI SOPRAVVIVENZA

2

➢ Funzione sopravvivenza: 𝑆 𝑡 = 1 − 𝐹 𝑡 = 𝑡׬

+∞
𝑓(𝑢)𝑑𝑢

➢ Densità del tempo di sopravvivenza: 𝑓 𝑡 = −
𝑑𝑆(𝑡)

𝑑𝑡

➢ Hazard function: ℎ 𝑡 =
𝑓(𝑡)

𝑆(𝑡)

➢ Cumulative hazard function: H 𝑡 = 0׬

𝑡
ℎ 𝑢 𝑑𝑢

➢ 𝐻 𝑡 = − log(𝑆 𝑡 )

➢ ℎ 𝑡 = −
𝑑

𝑑𝑡
(log(𝑆 𝑡 ))

➢ 𝑆 𝑡 = 𝑒−𝐻(𝑡)

➢ 𝑓(𝑡) = ℎ(𝑡) 𝑒−𝐻(𝑡)
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OBIETTIVI DELL’ANALISI DI SOPRAVVIVENZA

➢ Se vogliamo studiare il tempo ad un evento di interesse pertanto abbiamo 
bisogno di altri metodi statistici → metodi dell’analisi di sopravvivenza

➢ Tre principali obiettivi dell’analisi di sopravvivenza: 

1. Stimare il tempo ad un evento per un gruppo di individui

2. Confrontare il tempo ad un evento per due o più gruppi di individui

3. Studiare la relazione tra una o più variabili esplicative e il tempo 
all’evento
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PROPORTIONAL HAZARDS MODELS

Proportional hazards models (modelli di rischio proporzionale): descrivono la 
relazione tra un set di variabili indipendenti e la hazard function che 
caratterizza il tempo ad un evento di interesse.

ℎ 𝑡 =  ℎ0 𝑡 ∙ 𝑒𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑚𝑋𝑚 = ℎ0 𝑡 ∙ 𝑒𝜷𝑇𝑿

➢XT=[X1 X2 … Xm] → vettore contenente i valori delle variabili indipendenti

➢𝛽T=[𝛽1 𝛽2 … 𝛽m] → vettore dei coefficienti

➢ h0(t) → baseline hazard function → la hazard function per gli individui per
cui le variabili indipendenti sono tutte nulle.
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PROPORTIONAL HAZARDS MODELS

➢ Formulazione logaritmica: 

l𝑜𝑔 ℎ 𝑡 = l𝑜𝑔 ℎ0 𝑡 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑚𝑋𝑚

➢ Il modello può essere visto come una regressione lineare multipla avente 
come outcome il logaritmo della hazard function, come variabili indipendenti 
X1, X2, …, Xm, e come intercetta il logaritmo della baseline hazard function. 
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ASSUNZIONE DI PROPORZIONALITA’ DEI RISCHI

➢Assunzione: la hazard function di un qualsiasi individuo è data dalla 

baseline hazard function (ℎ0 𝑡 ) moltiplicata per una costante (𝑒𝜷𝑇𝑿).

➢ Il rapporto tra i valori di h(t) per due individui, A e B, aventi variabili 

indipendenti XA e XB è costante e pari a 𝑒𝜷𝑇(𝑿𝑨−𝑿𝑩).

ℎ𝐴 𝑡

ℎ𝐵 𝑡
=

ℎ0 𝑡 ∙ 𝑒𝜷𝑇𝑿𝑨

ℎ0 𝑡 ∙ 𝑒𝜷𝑇𝑿𝑩
= 𝑒𝜷𝑇(𝑿𝑨−𝑿𝑩)
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costante

XA

XB

Le funzioni di hazard per qualsiasi diverso valore 

di X non possono mai intersecarsi tra loro. 
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RISK SCORE

➢ Il valore 𝑦 = 𝜷𝑇𝑿 viene chiamato risk score, o score di rischio → quantità
che consente di ordinare diversi individui in base al loro rischio di 
sperimentare l’evento di interesse. 

➢ Per ogni istante temporale 𝑡∗ si ha che:

     y1<y2<y3<y4<y5 

     

     h(t*,y1)<h(t*,y2)< h(t*,y3)<h(t*,y4)<h(t*,y5)
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EQUAZIONE ALTERNATIVA DEL MODELLO

➢ Sfruttando la relazione tra S(t) e h(t) si può derivare anche questa 
formulazione alternativa del modello: 

𝑆(𝑡) = 𝑆0(𝑡)𝑒𝜷𝑇𝑿

➢Dimostrazione (bonus):
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ℎ 𝑡 = −
𝑑 log 𝑆 𝑡

𝑑𝑡

         = −
𝑑

𝑑𝑡
𝑒𝜷𝑇𝑿 log 𝑆0 𝑡

         = −
𝑑

𝑑𝑡
log 𝑆0 𝑡 𝑒𝜷𝑇𝑿

        = ℎ0(𝑡)𝑒𝜷𝑇𝑿
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MODELLO DI COX

➢ Il modello di Cox (Cox 1972) è un modello di tipo proportional hazard 
semi-parametrico:

ℎ 𝑡 =  ℎ0 𝑡 ∙ 𝑒𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑚𝑋𝑚

➢ Incognite del modello: ℎ0 𝑡 , 𝛽1, … , 𝛽𝑚 → come le stimiamo a partire dai dati?
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Parte non parametrica

Non si fanno assunzioni sulla forma 

della baseline hazard function

Parte parametrica

Funzione parametrica delle

variabili indipendenti
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STIMA DEGLI ELEMENTI INCOGNITI DEL MODELLO

➢Metodo della massima verosimiglianza parziale (partial maximum 

likelihood) → consente di stimare i coefficienti 𝛽𝑗 , 𝑗 = 1, … , 𝑚 senza 

conoscere ℎ0 𝑡
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Dataset

Metodo della massima 

verosimiglianza parziale

(ℎ0 𝑡  incognito)

Stima a posteriori di 𝑆0 𝑡  

note le stime መ𝛽𝑗 , mediante 

massima verosimiglianza

መ𝛽𝑗, 𝑆𝐸𝑗  

መ𝑆0 𝑡

n individui, per ogni

individuo: (ti, δi, Xi) 

Tempi di 

eventi/censoring 1 se evento

0 se censoring

Variabili 

indipendenti
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INTERPRETAZIONE DEI COEFFICIENTI

➢Hazard ratio: 𝑒
෡𝛽𝑗 → indica di quanto un aumento di una unità della 

variabile 𝑋𝑗 , tenendo costanti tutte le altre variabili indipendenti, amplifica 

o attenua ℎ0(𝑡).

➢ Se መ𝛽𝑗 > 0 o 𝑒  ෡𝛽𝑗 > 1 → se 𝑋𝑗 aumenta, anche ℎ(𝑡) aumenta

➢ Se መ𝛽𝑗 < 0 o 𝑒  ෡𝛽𝑗 < 1 → se 𝑋𝑗 aumenta, ℎ 𝑡  diminuisce

➢ Se መ𝛽𝑗 = 0 → la variabile 𝑋𝑗  non ha un impatto su ℎ 𝑡  

➢Wald test per determinare se i coefficienti 𝛽𝑗 sono significativamente diversi 

da 0 (analogamente alla regressione logistica). 
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ESEMPIO

➢Modello di Cox per la predizione del tempo all’insorgenza di diabete di 
tipo 2 negli adulti.
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Variabile
Stime dei 

coefficienti
Hazard ratio

Standard error 

delle stime dei 

coefficienti

P-value

(Wald test)

Sesso maschile -0.3453 0.71 0.0646 <0.0001

BMI 0.0971 1.10 0.0051 <0.0001

Ipertensione 0.3232 1.38 0.0665 <0.0001

Malattia cardiaca 0.1968 1.22 0.0969 0.0422

Fumatore 0.0101 1.11 0.0789 0.2001

Non caucasico 0.2207 1.27 0.0739 0.0011

Livello di istruzione medio -0.2323 0.79 0.0795 0.0035

Livello di istruzione alto -0.3344 0.72 0.0803 <0.0001
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DOMANDE SUI RISULTATI DELL’ESEMPIO

1. Quali variabili hanno un impatto significativo sul rischio di insorgenza di 
diabete considerando un livello di significatività al 5%?

2. Quali variabili influenzano positivamente il rischio di insorgenza di 
diabete?

3. Quali variabili influenzano negativamente il rischio di insorgenza di 
diabete?
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RISPOSTE

1. Quali variabili hanno un impatto significativo sul rischio di insorgenza di 
diabete considerando un livello di significatività al 5%?

▪ Tutte tranne fumatore. 

2. Quali variabili influenzano positivamente il rischio di insorgenza di 
diabete?

▪ BMI, ipertensione, malattia cardiaca, non caucasico

3. Quali variabili influenzano negativamente il rischio di insorgenza di 
diabete?

▪ Sesso maschile, livello di istruzione medio, livello di istruzione alto. 
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CURVE DI SOPRAVVIVENZA PREDETTE

➢Una volta ottenute le stime መ𝛽𝑗 e መ𝑆0 𝑡 , è possibile predire la curva di 

sopravvivenza di un individuo noti i suoi valori delle variabili indipendenti.

መ𝑆(𝑡) = መ𝑆0(𝑡)𝑒𝜷𝑇𝑿
 

15

Curve di sopravvivenza 

stimate per diversi 

individui caratterizzati 

da diversi valori delle 

variabili indipendenti. 
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VALUTAZIONE DELLE PERFORMANCE DEL MODELLO DI COX

➢Concordance index o C-index: principale metrica per valutare la capacità 
predittiva del modello di Cox.  

➢Definito come la probabilità che il modello assegni risk score maggiori agli 
individui aventi tempi di sopravvivenza minori: 

𝐶 ≔ 𝑃 𝑌𝑗 > 𝑌𝑖 𝑇𝑗 < 𝑇𝑖)

▪ 𝑌𝑖 , 𝑌𝑗 : variabili aleatorie rappresentanti gli score di rischio degli individui 𝑖 e 𝑗

▪ 𝑇𝑖 , 𝑇𝑗: variabili aleatorie rappresentanti i tempi di sopravvivenza degli individui 𝑖 e 𝑗
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STIMATORE DI HARRELL DEL C-INDEX (1/2)

➢ 1982: Harrell propose uno stimatore di C che tiene conto della presenza
di dati censurati.

➢ n individui con score di rischio predetto dal modello y1, y2, …, yn, tempi
all’evento o di censoring t1, t2, …, tn, indicatori di evento o censoring d δ1,
δ2, …, δn (se evento δi=1, se censoring δi=0).

➢ La coppia di valori (𝑦𝑖, 𝑦𝑗) si dice:

• non confrontabile se vale una delle seguenti condizioni:

− 𝑡𝑖 = 𝑡𝑗 e 𝛿𝑖 = 𝛿𝑗 = 1→ parità nei tempi di sopravvivenza

− 𝛿𝑖 = 0 e 𝛿𝑗 = 0 → entrambi censurati

− 𝛿𝑖 = 1, 𝛿𝑗 = 0 e 𝑡𝑗 < 𝑡𝑖 → individuo 𝑗 censurato prima dell’evento
dell’individuo 𝑖

• viceversa si dice confrontabile.
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STIMATORE DI HARRELL DEL C-INDEX
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መ𝐶 =
nconcordi + 0. 5 ∙ npari

nconfrontabili

▪ nconcordi = numero di coppie concordi

▪ npari = numero di coppie pari

▪ nconfrontabili = numero di coppie confrontabili

➢Una coppia di valori confrontabili (𝑦𝑖, 𝑦𝑗) si dice:

• concorde se 𝑦𝑖 < 𝑦𝑗 e 𝑡𝑗 < 𝑡𝑖

• discorde se 𝑦𝑖 > 𝑦𝑗 e 𝑡𝑗 < 𝑡𝑖

• pari (tie) se 𝑦𝑖 = 𝑦𝑗
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INTERPRETAZIONE DEL C-INDEX (1/2)
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Concordanza perfetta tra risk score e 

tempi degli eventi→ C=1 

Perfetta discordanza tra risk score e 

tempi degli eventi→ C=0 

Modello che assegna i risk score in 

modo casuale→ C=0.5 
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INTERPRETAZIONE DEL C-INDEX (2/2)

➢ Il C-index varia tra 0 e 1. 

➢ Tanto più è vicino a 1 tanto più il modello tenderà ad assegnare risk score 
elevati ai soggetti per cui l’evento si verifica prima nel tempo. 

➢Un modello che assegna i risk score in maniera random ha C-index pari a 
0.5. 

➢C-index < 0.5 → il modello fa il contrario di quello che dovrebbe: assegna 
risk score più alti ai soggetti per cui l’evento si verifica più in là nel tempo.

➢Nota: quando tutti i tempi degli eventi sono uguali, il C-index diventa 
equivalente all’area sotto la curva ROC (spesso chiamata C-statistic). 
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ESEMPIO

➢Modello di Cox per la predizione del tempo all’insorgenza di diabete di 
tipo 2 negli adulti.
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MODELLO C-INDEX

Modello 1 – modello completo (slide 12) 0.7235

Modello 2 – senza fumatore 0.7207

Modello 3 – senza malattia cardiaca 0.7225

Modello 4 – senza fumatore e malattia cardiaca 0.7201

Le performance dei modelli in termini di C-index sono confrontabili. Tra 

questi sceglieremmo il modello con meno variabili (modello 4). 
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