

Def. HILBERT SPACE

H is a vectorial space on \mathbb{R} (or on \mathbb{C})

$$\|\cdot\|_H \text{ norm} \quad d_H(x, y) = \|x - y\|_H$$

H is Banach with respect to the convergence associated with d_H

On H is defined a SCALAR PRODUCT

$$\langle \cdot, \cdot \rangle : H \times H \longrightarrow \mathbb{R}$$

1) $\langle x, y \rangle = \langle y, x \rangle$ SYMMETRIC

2) LINEAR $\langle \lambda x + \mu z, y \rangle =$
 $= \lambda \langle x, y \rangle + \mu \langle z, y \rangle$

$$\begin{aligned} \lambda, \mu &\in \mathbb{R} \\ x, z, y &\in H \end{aligned}$$

3) CONTINUOUS

If $x_n \rightarrow x$ in H

$$(d_H(x_n, x) = \|x_n - x\|_H \rightarrow 0 \text{ as } n \rightarrow \infty)$$

$$\forall y \in H \quad \langle x_n, y \rangle \xrightarrow{n \rightarrow \infty} \langle x, y \rangle$$

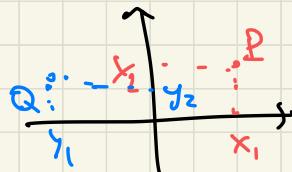
4) CAUCHY-SCHWARTZ $|\langle x, y \rangle| \leq \|x\|_H \|y\|_H$

5) it is associated with the norm $\langle x, x \rangle = \|x\|_H^2$

$\sim \cdot \sim$

$$\mathbb{E}_X \mathbb{R}^2 = \{ (x_1, x_2) \mid x_i \in \mathbb{R} \}$$

$$\langle \underbrace{(x_1, x_2)}_P, \underbrace{(y_1, y_2)}_Q \rangle = x_1 y_1 + x_2 y_2$$



$$\mathbb{R}^n \quad \langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

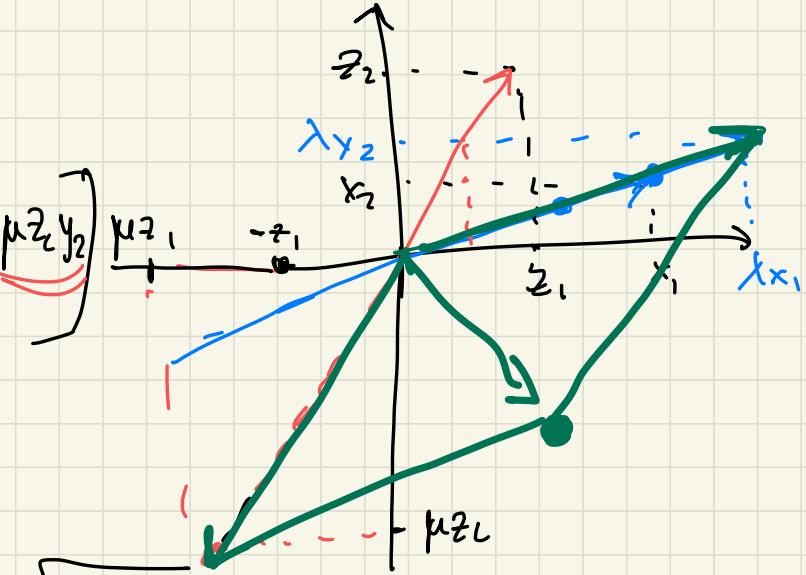
$$\underline{\lambda} \underline{(x_1, x_2)} + \underline{\mu} \underline{(z_1, z_2)} = (\lambda x_1 + \mu z_1, \lambda x_2 + \mu z_2) \quad \text{uco}$$

$$\langle \underline{\lambda} \underline{(x_1, x_2)} + \underline{\mu} \underline{(z_1, z_2)}, \underline{(y_1, y_2)} \rangle =$$

$$= \lambda x_1 y_1 + \mu z_1 y_1 + \lambda x_2 y_2 + \mu z_2 y_2$$

$$|\langle (x_1, x_2), (y_1, y_2) \rangle| =$$

$$= |x_1 y_2 + x_2 y_1| \leq \underbrace{\sqrt{x_1^2 + x_2^2}}_{|(x_1, x_2)|} \underbrace{\sqrt{y_1^2 + y_2^2}}_{|(y_1, y_2)|}$$



$$(x_1^m, x_2^m) \rightarrow (x_1, x_2)$$

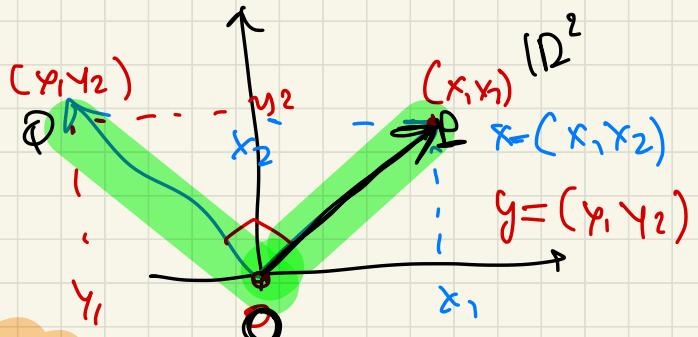
$$x_1^m \rightarrow x_1$$

$$x_2^m \rightarrow x_2$$

The notion of scalar product permits to introduce the DEFINITION of ORTHOGONALITY

Def: $x \perp y$ ($x, y \in H$) x is orthogonal to y

if $\langle x, y \rangle = 0$



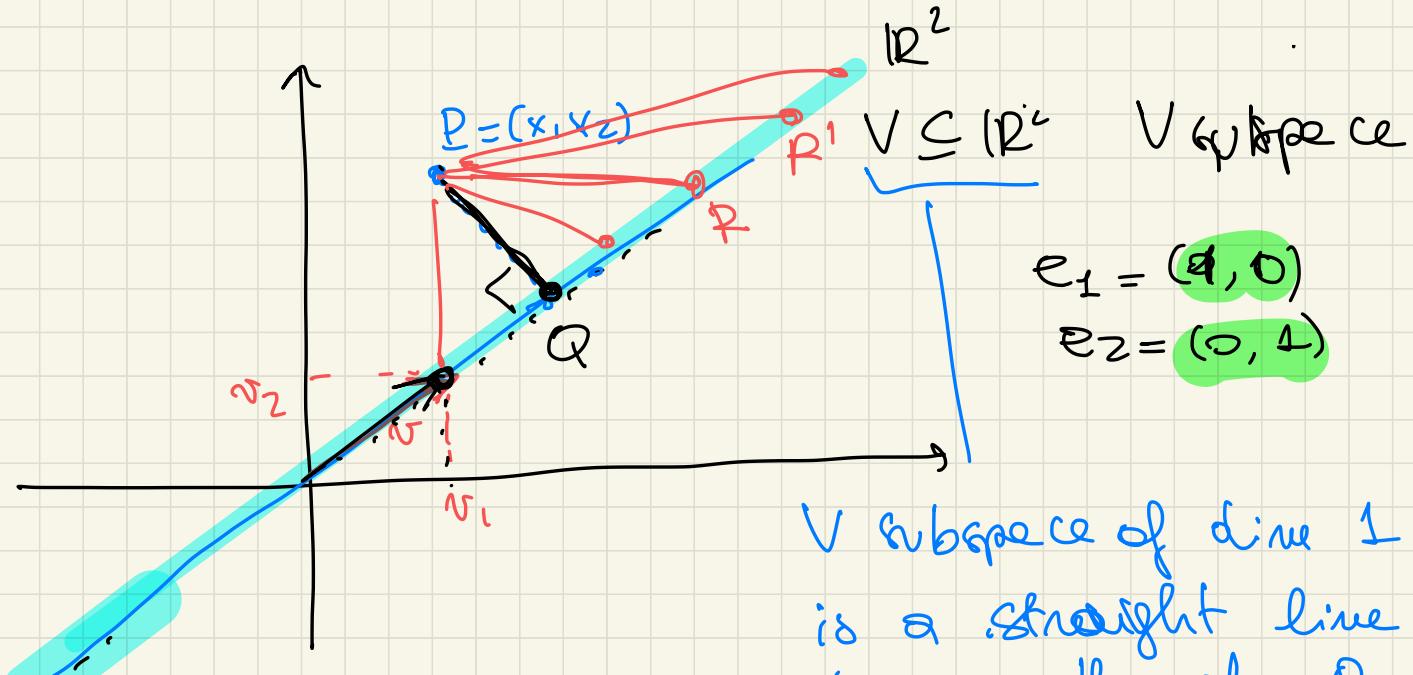
$$\langle (x, x_2), (y_1, y_2) \rangle = 0 = x_1 y_1 + x_2 y_2$$

$$\Leftrightarrow \overline{OP} \perp \overline{OQ}$$

$$\begin{aligned} P &= (x_1, x_2) & Q &= (y_1, y_2) \\ O &= (0, 0) \end{aligned}$$

The main theorem in Hilbert spaces is the

ORTHOGONAL PROJECTION THEOREM



Q: $\exists Q \in V$ such that
 $|Q-P| = \min_{R \in V} |R-P|$

$$V = \{ \lambda (v, v_2) \mid \lambda \in \mathbb{R} \}$$

ORTHOGONAL PROJECTION THEOREM

H Hilbert

$V \subseteq H$ SUBSPACE, CLOSED

(V is a vectorial space CONTAINED in H)

$$v_1, v_2 \in V \quad \lambda v_1 + \mu v_2 \in V \quad \forall \lambda, \mu \in \mathbb{R}$$

CLOSED
 $[v_n \in V \quad v_n \rightarrow x \text{ in } H \quad v_n \text{ is a converging sequence in } H \Rightarrow x \in V]$

(V contains all the limits of its converging sequences)

then the following holds:

1) $\forall h \in H$ there exists a UNIQUE $v \in V$

such that

$$\|v - h\| = \min_{w \in V} \|w - h\|$$

(there exists a UNIQUE $\pi \in V$ which has
MINIMAL DISTANCE from b , AMONG ALL
ELEMENTS IN V)

$$(2) \quad h - \sigma \in V^+ \quad (\text{so} \quad \langle v - h, w \rangle = 0) \quad \forall w \in V$$

Therefore $h = (h - v) + v$

Every element of H can be written in a UNIQUE WAY as the sum of an element of V and an element of V^\perp .

No proof.

Just prove of the fact that (1) \Rightarrow (2)

if $v \in V$ is the element at minimal distance

from h $\|h-v\| = \min_{w \in V} \|h-w\|$

$$\Rightarrow h-v \perp V \quad (h-v) \in V^\perp,$$

$$r \in \mathbb{R}$$

$$w \in V$$

$$\underline{\underline{h}} + rw \in V$$

$$\|h-v\|^2 \leq \|h - (v + rw)\|^2 \quad \forall r$$

$$\langle h-v, h-v \rangle \leq \langle h - (v + rw), h - (v + rw) \rangle$$

$$\forall r \in \mathbb{R}$$

$$\phi(z) = \langle h - \overbrace{(v + rw)}^{\text{blue underline}}, h - (v + rw) \rangle$$

$$\phi(0) \leq \phi(z) \quad \forall z$$

$\phi'(0) = 0$ (since $z=0$ is a MINIMUM POINT)

$$\phi(z) = \langle h - v - rw, h - v - rw \rangle =$$

$$= \langle h - v, h - v \rangle + \langle -rw, h - v \rangle +$$

$$+ \langle h - v, -rw \rangle + \langle -rw, -rw \rangle =$$

$$= \|h - v\|^2 - 2r \langle h - v, w \rangle + r^2 \|w\|^2$$

$$\phi'(z) = -2 \langle h - v, w \rangle + 2z \|w\|^2$$

$$\phi'(0) = -2 \langle h - v, w \rangle = 0 \quad w \in V \Rightarrow h - v \perp V$$

Let us fix a PROBABILITY SPACE

Ω set

\mathcal{F} σ -algebra on Ω (filtration)

\mathbb{P} probability measure

$M^2 = \{ X : \Omega \rightarrow \mathbb{R} \text{ random variable such}$

that $\mathbb{E}(|X|^2) < +\infty$

$$\mathbb{E}(|X|^2) = \int_{\mathbb{R}} x^2 d\mathcal{L}_X(x)$$

$$\mathcal{L}_X = X \# \mathbb{P} \equiv$$

$$\mathcal{L}_X(A) = \mathbb{P}(\{ \omega \mid X(\omega) \in A \})$$
$$A \in \mathcal{B}(\mathbb{R})$$

$$Y \in M^2 \quad \|X\|_2 = \text{norme} = \sqrt{\mathbb{E}(|X|^2)} = \sqrt{\int_{\mathbb{R}} z^2 d\mathcal{L}_X(z)}$$

↓
distance X, Y

$$\|X - Y\|_2 = \sqrt{\mathbb{E}(|X - Y|^2)} = \sqrt{\int_{\mathbb{R} \times \mathbb{R}} (x - y)^2 d\mathcal{L}_{(X, Y)}(x, y)}$$

$$X, Y \in M^2$$

$$X: \mathcal{S} \rightarrow \mathbb{R}$$

$$Y: \mathcal{S} \rightarrow \mathbb{R}$$

↓ I define the joint law

$$(X, Y): \mathcal{S} \rightarrow \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$

$\mathcal{L}_{(X, Y)}$ a measure in \mathbb{R}^2

$$\mathcal{L}_{(X, Y)} = (X, Y) \# \mathbb{P} \quad , \quad A, B \in \mathcal{B}(\mathbb{R}) \quad A \times B \in \mathcal{B}(\mathbb{R}^2)$$

$$\mathcal{L}_{(X, Y)}(A \times B) = \mathbb{P} \{ \omega \in \mathcal{S} \mid X(\omega) \in A, Y(\omega) \in B \}$$

if X and Y are independent

$$L_{(X,Y)}(x,y) = L_X(x) L_Y(y).$$

~.~

In M^2 I define the scalar product

$$\langle X, Y \rangle = E(XY) = \int_{\mathbb{R} \times \mathbb{R}} xy \, dL_{(X,Y)}(x,y)$$

Note that it satisfies all the properties listed at the beginning

$$E\{X X\} = E(X)^2 = \|X\|^2$$

Recall $X \perp Y \iff \mathbb{E}(XY) = 0$

$V \subseteq M^2 \implies V^\perp = \{Y \in M^2 \text{ such that } \mathbb{E}(XY) = 0 \} \quad \forall X \in V$

Ex $V = \{Y \in M^2 \mid \mathbb{E}(Y) = 0\}$ $V^\perp = \{\text{constant random variables}\}$

Fix $X \in M^2$

What is the orthogonal projection of X in V ?

What is the orthogonal projection of X in V^\perp ?

$$X = X - \mathbb{E}(X) + \mathbb{E}(X)$$

Note that $\mathbb{E}(X)$ is a constant $\Rightarrow \mathbb{E}(X) \in V^\perp$

$$X - \mathbb{E}(X) \in V \text{ since } \mathbb{E}(X - \mathbb{E}(X)) = \mathbb{E}(X) - \mathbb{E}(X) = 0$$

By the orthogonal projection theorem

$X - E(X)$ is the orthogonal projection of X in V

(it is the random variable with 0 mean

that is at minimal distance from X ,

that is: it is the best possible approximation of X

by a random variable with 0 mean

$E(X)$ is the orthogonal projection of X in V^\perp

($E(X)$ is the constant which is at minimal distance from X among all other constants

$$\min_{c \in \mathbb{R}} E(X-c)^2 = E(X-E(X))^2.$$

Es $M^2 = \{ X : (\Omega, \mathcal{G}, \mathbb{P}) \rightarrow \mathbb{R} \text{ random variable}$

$$\mathbb{E}(X^2) < +\infty$$

Let $\mathcal{G} \subseteq \mathcal{Y}$ a σ -algebra contained in \mathcal{Y}

$M^2_{\mathcal{G}} = \{ X : (\Omega, \mathcal{G}, \mathbb{P}) \rightarrow \mathbb{R} \text{, random variable}$

$$\mathbb{E}(X^2) < +\infty$$

$M^2_{\mathcal{G}}$ are random variables \mathcal{G} -measurable

$X \in M^2_{\mathcal{G}} \iff \forall x \in \mathbb{R} \quad \{ \omega \in \Omega \mid X(\omega) \leq x \} \in \mathcal{G} \subseteq \mathcal{Y} \Rightarrow$
 $X \in M^2 \quad (M^2_{\mathcal{G}} \subseteq M^2)$

$M^2_{\mathcal{G}} \subseteq M^2$; let $A \in \mathcal{Y} \setminus \mathcal{G}$ (then also $\mathbb{P} \setminus A \in \mathcal{Y} \setminus \mathcal{G}$)

$$1_A : \Omega \rightarrow \mathbb{R} \quad 1_A(\omega) = \begin{cases} 0 & \omega \notin A \\ 1 & \omega \in A \end{cases}$$

then $1_A \in M^2$ $1_A \notin M^2_{\mathcal{G}}$

$X \in M^2$ $X: (\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}$

↓
orthogonal projection of X in $M^2_{\mathcal{G}}$ is a

RANDOM VARIABLE in $M^2_{\mathcal{G}}$ (measurable w.r.t. \mathcal{G})

(It is at MINIMAL DISTANCE)

which is the best approximation of X

among \mathcal{G} -measurable random variables

$\mathbb{E}(X | \mathcal{G})$ conditional expectation of X
on \mathcal{G} .

(The "least square" estimator of X among
 \mathcal{G} -measurable random variables).

$\mathbb{E}(X|Y) \in M^2 Y$ and

$$\mathbb{E}(|X - \mathbb{E}(X|Y)|^2) = \min_{Y \in M^2 Y} \mathbb{E}(|X - Y|^2)$$

so if $X \in M^2 Y \Rightarrow \mathbb{E}(X|Y) = X$

$X - \mathbb{E}(X|Y)$ is orthogonal to $M^2 Y$

$$\Rightarrow \forall Z \in M^2 Y \quad \mathbb{E}((X - \mathbb{E}(X|Y))Z) = 0 = \mathbb{E}(XZ) - \mathbb{E}(\mathbb{E}(X|Y)Z)$$

$$\Rightarrow \mathbb{E}(XZ) = \mathbb{E}(\mathbb{E}(X|Y)Z) \quad \forall Z \in M^2 Y$$

$Z = c$ constant $\in M^2 Y$ since $\{w \mid R(w) \leq x\} = \begin{cases} \{w \mid x \geq c\} \\ \emptyset \quad x < c \end{cases}$

take $c = 1$

$$\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|Y))$$

Ex Let us fix $Y \in M^2$.

$\sigma(Y) = \sigma$ -algebra contained in \mathcal{F} generated
by $\{\omega, Y(\omega) \leq x\} \quad \forall x \in \mathbb{R}$
= minimal σ -algebra which makes Y measurable.

$M^2_{\sigma(Y)} = \{ \text{random variables in } M^2 \text{ which are}$
measurable with respect to $\sigma(Y) \}$
(IT IS POSSIBLE TO PROVE)

$= \{ h(Y) \quad h: \mathbb{R} \rightarrow \mathbb{R} \text{ measurable}$
such that $h(Y): \Omega \rightarrow \mathbb{R}$
is a random variable
and $E(h(Y))^2 < +\infty \}$

$\Omega \xrightarrow{Y} \mathbb{R} \xrightarrow{h} \mathbb{R} \xrightarrow{a} \mathbb{R}$

Example take Y : tossing a coin

$$Y(\omega) = \begin{cases} 1 & \text{if } \omega \text{ is head} \\ 0 & \text{if } \omega \text{ is tail} \end{cases}$$

$$\mathcal{G}(Y) = \{ \Omega, \emptyset, \{\omega \mid Y(\omega) = 1\}, \{\omega \mid Y(\omega) = 0\} \}$$

$\sim \sim$

For $Y \in \mathbb{M}^2$ we define

$E(X|Y)$ = conditional expectation of X
given Y =

$$= E(X|\mathcal{G}(Y)) \quad \text{orthogonal projection of } X \text{ in } \mathbb{M}_{\mathcal{G}(Y)}^2$$

$E(X|Y)$ is the random variable $h(Y)$ which best approximate X .

$$\mathbb{E}(X|Y) \in M_{\mathcal{G}(Y)}^2 \quad \text{so} \quad \mathbb{E}(X|Y) = h(Y)$$

↓

$$h(Y) = \mathbb{E}(X|Y=Y)$$

how to compute $\mathbb{E}(X|Y)$?

$$\min_{\substack{Z \in M_{\mathcal{G}(Y)}^2}} \mathbb{E}(X-Z)^2 = \min_{\substack{f: \mathbb{R} \rightarrow \mathbb{R}^Y \\ \text{meas.}}} \mathbb{E}(X-f(Y))^2$$

$\xrightarrow{\text{since}} \quad Z = f(Y) \quad f: \mathbb{R} \rightarrow \mathbb{R}$

$$h: \mathbb{R} \rightarrow \mathbb{R} \text{ such that} \quad \mathbb{E}(X-h(Y))^2 = \min_{f: \mathbb{R} \rightarrow \mathbb{R}} \mathbb{E}(X-f(Y))^2$$

Then $h(Y) = \mathbb{E}(X|Y)$ LEAST SQUARE ESTIMATOR of X
 Solving the minimization problem given Y is quite difficult!

By some case it is easy:

take X independent of $Y \Rightarrow$ so $E(X \cdot f(Y)) = E(X) E(f(Y))$
 $\forall f: \mathbb{R} \rightarrow \mathbb{R}$

Observe that $X - E(X) \perp M_{\sigma(Y)}^2$ since

$\forall z \in M_{\sigma(Y)}^2$ $z = f(Y)$ $f: \mathbb{R} \rightarrow \mathbb{R}$

$$\begin{aligned} E((X - E(X))f(Y)) &= E(Xf(Y) - E(X)f(Y)) = \underset{\text{independ.}}{\underset{\text{by}}{}} \\ &= E(X) E(f(Y)) - E(X) E(f(Y)) = 0 \end{aligned}$$

Moreover $E(X) \in M_{\sigma(Y)}^2$ since it is a constant

$$X = \underbrace{E(X)}_{M_{\sigma(Y)}^2} + X - \underbrace{E(X)}_{M_{\sigma(Y)}^2 \perp} \Rightarrow E(X|Y) = E(X) \text{ constant!}$$

You general though computing $E(X|Y)$ is difficult

$$\min_{f: \mathbb{R} \rightarrow \mathbb{R}} E((X - f(Y))^2) = E((X - E(X|Y))^2)$$

\downarrow

$$E(X - a(Y))^2 \quad a(Y) = E(X|Y)$$

I restrict the set where I compute the minimum

I consider just $f: \mathbb{R} \rightarrow \mathbb{R}$ $f(r) = ar + b$

$$f(r) = ar + b$$

f LINEAR.

$$V = \{aY + b \mid a, b \in \mathbb{R}\} \subset M^2_{\mathcal{S}(Y)}$$

the orthogonal projection of X in V

is not $E(X|Y)$ but it is just the

best LINEAR APPROXIMATION of X given Y
(the LINEAR FUNCTION of Y which is at MINIMAL
distance from X)

$$E[(X - \bar{a}Y - \bar{b})^2] = \min_{(a, b) \in \mathbb{R}^2} E[(X - aY - b)^2]$$

Ex : let us find \bar{a}, \bar{b}

$$\begin{aligned} \min_{a, b} E((X - aY - b)^2) &= \min_{a, b} (E(X^2) + a^2 E(Y^2) + b^2 + \\ &\quad * -2a E(XY) - 2b E(X) + 2ab E(Y)) . \end{aligned}$$

$$\phi(a, b) := \mathbb{E}(X^2) + a^2 \mathbb{E}(Y^2) + b^2 - 2a \mathbb{E}(XY) - 2b \mathbb{E}(X) + 2ab \mathbb{E}(Y)$$

↓
Compute $\min_{a, b} \phi(a, b)$

$$\begin{cases} \frac{\partial \phi}{\partial a}(a, b) = 2a \mathbb{E}(Y^2) - 2 \mathbb{E}(XY) + 2b \mathbb{E}(Y) = 0 \\ \frac{\partial \phi}{\partial b}(a, b) = 2b - 2 \mathbb{E}(X) + 2a \mathbb{E}(Y) = 0 \end{cases}$$

$$\begin{cases} a = \frac{\mathbb{E}(XY) - b \mathbb{E}(Y)}{\mathbb{E}(Y^2)} = \frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)} - \frac{\mathbb{E}(X)\mathbb{E}(Y)}{\mathbb{E}(Y^2)} + a \left(\frac{\mathbb{E}(Y)}{\mathbb{E}(Y^2)} \right)^2 \\ b = \mathbb{E}(X) - a \mathbb{E}(Y) \end{cases}$$

$$\Rightarrow \begin{cases} a \left(1 - \frac{(\mathbb{E}(Y))^2}{\mathbb{E}(Y^2)} \right) = \frac{\text{Cov}(X, Y)}{\mathbb{E}(Y^2)} \\ b = \mathbb{E}(X) - a \mathbb{E}(Y) \end{cases}$$

$$\text{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

$$\text{Var}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2$$

$$\Rightarrow a \left(\frac{\mathbb{E}(Y^2) - (\mathbb{E}(Y))^2}{\mathbb{E}(Y^2)} \right) = \frac{\text{Cov}(X, Y)}{\mathbb{E}(Y^2)} \rightarrow a = \frac{\text{Cov}(X, Y)}{\text{Var } Y}$$

$$b = \mathbb{E}(X) - \frac{\text{Cov}(X, Y)}{\text{Var } Y} \cdot \mathbb{E}(Y)$$

$L(X|Y)$ = the linear least square estimator
of X given Y

$$= \frac{\text{Cov}(X, Y)}{\text{Var } Y} Y + \mathbb{E}(X) - \frac{\text{Cov}(X, Y)}{\text{Var } Y} \mathbb{E}(Y).$$

$$a = \frac{E(Y^2) [E(XY) - E(X)E(Y)]}{E(Y^2) [E(Y^2) - E(Y)^2]} = \frac{\text{Cov}(X, Y)}{\text{Var}(Y)}$$

$$b = E(X)E(Y^2) - E(XY)E(Y)$$

$$\text{Cov}(X, Y) = E(XY) - E(X)E(Y)$$

$$\text{Var} Y = E(Y^2) - E(Y)^2$$