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ANALISI DI SOPRAVVIVENZA
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➢ Analisi di sopravvivenza, o survival analysis: metodi statistici per analizzare se 
sussiste una relazione tra una o più variabili indipendenti ed un’outcome che rappresenta 
il tempo ad un evento di interesse. Si assume che l’evento sia irreversibile. 

▪ Esempi: 

• Tempo alla rottura di un dispositivo

• Tempo alla morte di un paziente

• Tempo all’insorgenza di una patologia

• Tempo alla necessità di sostituire un impianto protesico

Regressione 

lineare

Regressione 

logistica

Analisi di 

sopravvivenza

Tipo di outcome
Variabile 

quantitativa

Variabile 

qualitativa binaria

Tempo ad un 

evento



Martina Vettoretti – Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova

TEMPO DI SOPRAVVIVENZA

➢ Il tempo dell’evento di interesse, misurato rispetto ad un tempo 0 iniziale, viene chiamato 
tempo di sopravvivenza (survival time) oppure tempo all’evento (time to event).

➢ Il tempo 0 è normalmente l’inizio del periodo di osservazione o l’inizio dell’esperimento 
→ chiamato anche baseline

➢ Esempio. Vogliamo studiare i fattori che influenzano la recidiva di un certo tipo di 
linfoma. → Reclutiamo un insieme di soggetti affetti da linfoma per cui il trattamento ha 
portato ad una remissione completa della malattia e li monitoriamo nel tempo. 
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Baseline: Tempo 

corrispondente alla remissione 

completa del linfoma

Evento: ricomparsa 

del linfoma

Tempo di sopravvivenza T: tempo che 

trascorre tra la remissione completa e la 

ricomparsa del linfoma → T=te

0 te
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CENSORING

➢ L’evento di interesse potrebbe verificarsi durante il periodo di osservazione solo per alcuni 
elementi del campione analizzato.

▪ Esempio. Molti soggetti guariti dal linfoma fortunatamente non avranno una recidiva. Alcuni pazienti 
potrebbero avere una recidiva dopo la fine del periodo di osservazione.

➢ Quando l’evento non si verifica durante il periodo di osservazione considerato, il tempo 
all’evento è incognito (non sappiamo se e quando l’evento si verificherà). 

➢ Tuttavia sappiamo che fino ad un certo istante, tipicamente la fine del periodo di 
monitoraggio o dell’esperimento, l’evento non si è verificato. 

➢ Dati di questo tipo vengono detti censurati o censored. 
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Baseline: Tempo 

corrispondente alla remissione 

completa del linfoma
Fine del periodo di 

osservazione
Tempo di sopravvivenza T incognito, ma 

sappiamo che T> tend

tend0
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PERCHE’ NON UNA REGRESSIONE LINEARE?

➢ Il tempo ad un evento è di fatto una variabile quantitativa.

➢ Potremmo pensare di affrontare il problema mediante una regressione 
lineare avente come uscita il tempo all’evento: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑚𝑋𝑚 + 𝜀

➢ Problema: la regressione lineare non può gestire i dati censurati!
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Tempo all’evento Variabili esplicative
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PERCHE’ NON UNA REGRESSIONE LOGISTICA?

➢ Potremmo pensare di affrontare il problema utilizzando una regressione 
logistica per predire se l’evento si verificherà o meno in un certo intervallo 
temporale. 

log
𝑝

1 − 𝑝
= 𝜷𝑇𝑿 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑚𝑋𝑚

➢ Problema: la regressione logistica non considera i tempi degli eventi! Potrà 
predire se l’evento si verifica o no, ma non quando si verifica. 
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Probabilità che 

l’evento si verifichi

Variabili esplicative
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OBIETTIVI DELL’ANALISI DI SOPRAVVIVENZA

➢ Se vogliamo studiare il tempo ad un evento di interesse pertanto abbiamo 
bisogno di altri metodi statistici → metodi dell’analisi di sopravvivenza

➢ Tre principali obiettivi dell’analisi di sopravvivenza: 

1. Stimare il tempo ad un evento per un gruppo di individui

2. Confrontare il tempo ad un evento per due o più gruppi di individui

3. Studiare la relazione tra una o più variabili esplicative e il tempo 
all’evento
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CARATTERIZZAZIONE DEL TEMPO DI SOPRAVVIVENZA

➢𝑇: variabile aleatoria che rappresenta il tempo di sopravvivenza di un 
certo individuo/elemento del campione statistico. 

➢ 𝑡: valore osservato per 𝑇 (una realizzazione). 

➢ 5 funzioni per caratterizzare la distribuzione di 𝑇:

▪ La funzione di ripartizione di T, o failure function, F(t) 

▪ La funzione di sopravvivenza, S(t)

▪ La densità di probabilità di T, f(t)

▪ La hazard function, o funzione di rischio, h(t)

▪ La funzione cumulativa di rischio, H(t)
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FAILURE FUNCTION

➢ La funzione di ripartizione di T è detta anche failure function (funzione di 
ripartizione del tempo di vita o lifetime distribution function):

𝐹 𝑡 = 𝑃(𝑇 ≤ 𝑡)

9

𝐹 0 = 0

𝐹 ∞ = 1

𝑡

𝐹(𝑡)
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FUNZIONE DI SOPRAVVIVENZA

➢ Funzione di sopravvivenza (survival function, a volte reliability function): 

𝑆 𝑡 = 𝑃 𝑇 > 𝑡 = 1 − 𝐹(𝑡)
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𝑆 0 = 1

𝑆 ∞ = 0

𝑡

𝑆(𝑡)

Tanto più rapida è la discesa 

della funzione di sopravvivenza, 

tanto più breve sarà il tempo di 

sopravvivenza.
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LA DENSITA’ DI PROBABILITA’ DI T

➢Densità di probabilità del tempo di sopravvivenza T (lifetime density 
function): 

𝑓 𝑡 =
𝑑𝐹(𝑡)

𝑑𝑡
=

𝑑 1 − 𝑆(𝑡)

𝑑𝑡
= −

𝑑𝑆(𝑡)

𝑑𝑡

assumendo che F(t) sia differenziabile.
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HAZARD FUNCTION

➢ La hazard function, ℎ 𝑡 , detta anche funzione di rischio, è definita come:

ℎ 𝑡 = lim
∆𝑡→0

𝑃 𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡 𝑇 > 𝑡)

∆𝑡

➢ Essa rappresenta la probabilità istantanea per unità di tempo che l’evento 
occorra al tempo 𝑡, sapendo che l’evento non si è verificato fino al tempo 𝑡.
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LEGAME TRA h(t) E S(t)

➢ Ricordando la definizione di probabilità condizionata per cui 
P(E|F)=P(E∩F)/P(F): 

ℎ 𝑡 = lim
∆𝑡→0

𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡)

∆𝑡
∙

1

𝑆 𝑡

➢ Ricordando inoltre il significato di densità di probabilità per cui la 
probabilità che T sia in un intorno di ampiezza ∆𝑡 intorno a t è circa f t ∙ ∆𝑡:

ℎ 𝑡 =
𝑓 𝑡

𝑆 𝑡
= −

𝑆′(𝑡)

𝑆(𝑡)
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CUMULATIVE HAZARD FUNCTION

➢ La cumulative hazard function, 𝐻(𝑡), detta anche funzione cumulativa di 
rischio, è definita come l’integrale della hazard function, ℎ(𝑡), nell’intervallo 
0 𝑡 :

H 𝑡 = න

0

𝑡

ℎ 𝑢 𝑑𝑢 = − න

0

𝑡
𝑆′ 𝑢

𝑆 𝑢
𝑑𝑢 = − log(𝑆 𝑡 )

𝑆 𝑡 = 𝑒−𝐻(𝑡)

ℎ 𝑡 =
𝑑𝐻(𝑡)

𝑑𝑡
= −

𝑑

𝑑𝑡
(log(𝑆 𝑡 ))
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NOTE SULLA HAZARD FUNCTION

➢ La hazard function non è una probabilità, ma una probabilità istantanea 
normalizzata per l’intervallo temporale ∆𝑡 con ∆𝑡 → 0. 

➢ Essa quindi assume valori positivi, senza limiti superiori: ℎ 𝑡 ≥ 0. 

➢ L’andamento nel tempo di ℎ 𝑡  può essere di qualsiasi tipo (crescente, 
decrescente, crescente e poi decrescente…). 

15

▪ ℎ 𝑡  crescente → situazione tipica quando l’evento 
di interesse è legato all’usura/invecchiamento per cui 
più passa il tempo maggiore è il rischio che si 
verifichi l’evento (es. rottura di un dispositivo). 

▪ ℎ 𝑡  decrescente → situazione tipica quando più 
passa il tempo più il rischio che si verifichi l’evento 
diminuisce (es. l’evento è una complicanza post 
intervento chirurgico). 

t

h
(t

)
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FORMULARIO DELL’ANALISI DI SOPRAVVIVENZA
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➢ Funzione sopravvivenza: 𝑆 𝑡 = 1 − 𝐹 𝑡 = 𝑡׬

+∞
𝑓(𝑢)𝑑𝑢

➢ Densità del tempo di sopravvivenza: 𝑓 𝑡 = −
𝑑𝑆(𝑡)

𝑑𝑡

➢ Hazard function: ℎ 𝑡 =
𝑓(𝑡)

𝑆(𝑡)

➢ Cumulative hazard function: H 𝑡 = 0׬

𝑡
ℎ 𝑢 𝑑𝑢

➢ 𝐻 𝑡 = − log(𝑆 𝑡 )

➢ ℎ 𝑡 = −
𝑑

𝑑𝑡
(log(𝑆 𝑡 ))

➢ 𝑆 𝑡 = 𝑒−𝐻(𝑡)

➢ 𝑓(𝑡) = ℎ(𝑡) 𝑒−𝐻(𝑡)
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OBIETTIVI DELL’ANALISI DI SOPRAVVIVENZA

➢ Se vogliamo studiare il tempo ad un evento di interesse pertanto abbiamo 
bisogno di altri metodi statistici → metodi dell’analisi di sopravvivenza

➢ Tre principali obiettivi dell’analisi di sopravvivenza: 

1. Stimare il tempo ad un evento per un gruppo di individui

2. Confrontare il tempo ad un evento per due o più gruppi di individui

3. Studiare la relazione tra una o più variabili esplicative e il tempo 
all’evento
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CURVA DI SOPRAVVIVENZA 

➢Vogliamo analizzare il tempo ad un evento di interesse per una 
popolazione di individui.

▪ Raccogliamo un set di dati su un campione della popolazione (tempi degli 
eventi + informazioni sul censoring).  

▪ Analizziamo i dati del campione mediante tecniche di analisi di 
sopravvivenza che consentono di stimare la funzione di sopravvivenza, 
𝑆(𝑡), della popolazione di appartenenza. 

▪ Indichiamo con መ𝑆(𝑡) la stima di 𝑆(𝑡) ottenuta analizzando i dati del 
campione → curva di sopravvivenza
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DATI PER L’ANALISI DI SOPRAVVIVENZA (1/2) 

➢Campione statistico raccolto su n individui appartenenti alla popolazione. 

➢Osserviamo gli n individui nel tempo. Ciascun individuo viene osservato fino 
a quando si verifica l’evento oppure il monitoraggio si interrompe senza che 
si sia verificato l’evento (censoring). 

➢ Indichiamo con δi la funzione che indica se l’evento è avvenuto o meno per 

l’individuo i-esimo durante il periodo di monitoraggio: 

δi= ቊ
1 se si è verificato l′evento

0 se non si è verificato l′evento

➢ Indichiamo con ti il tempo dell’evento o di censoring per l’individuo i-esimo. 

19
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DATI PER L’ANALISI DI SOPRAVVIVENZA (2/2) 

n coppie (ti, δi), una per ciascun individuo del campione

➢ Se δi = 1 → ti = tempo dell’evento per l’individuo i-esimo

➢ Se δi = 0 → ti = tempo di censoring per l’individuo i-esimo

▪ L’individuo i-esimo è stato osservato fino al tempo ti e l’evento non si è 

verificato. Non sappiamo per questo individuo se e quando si verificherà 
l’evento. 
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METODI PER LA STIMA DELLA CURVA DI SOPRAVVIVENZA

➢Metodi non parametrici → si calcola una stima di S(t) senza fare assunzioni 
sulla densità di probabilità di T

▪ Il metodo di Kaplan-Meier

➢Modelli parametrici → si assume che T sia una variabile aleatoria avente 
una certa densità di probabilità (tipicamente esponenziale, di Weibull o 
lognormale) e si stima S(t) di conseguenza

21
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IL METODO DI KAPLAN-MEIER (KM) (1/2)

➢ Supponiamo ci siano K tempi di sopravvivenza distinti. 
𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾

➢Ad ogni tempo 𝑡𝑗, ci sono: 

▪ 𝑛𝑗 individui a rischio → individui che non hanno avuto l’evento per tempi t < 𝑡𝑗 e che 

sono ancora all’interno del periodo di monitoraggio (non censurati per tempi t < 𝑡𝑗). 

▪ 𝑑𝑗 → individui per cui l’evento si verifica al tempo 𝑡𝑗

➢ Probabilità dell’evento al tempo 𝑡𝑗 dato che l’individuo è sopravvissuto fino 

a 𝑡𝑗:

𝑃 𝑇 = 𝑡𝑗 𝑇 ≥ 𝑡𝑗 =
𝑑𝑗

𝑛𝑗
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IL METODO DI KAPLAN-MEIER (KM) (2/2)

➢ Probabilità di sopravvivere al tempo 𝑡𝑗 dato che l’individuo è sopravvissuto 

fino a 𝑡𝑗:

𝑃 𝑇 > 𝑡𝑗 𝑇 ≥ 𝑡𝑗 = 1 −
𝑑𝑗

𝑛𝑗

➢ La stima KM del valore di S(t) al tempo 𝑡 è il prodotto delle probabilità di 

essere sopravvissuti ai tempi 𝑡𝑗 ≤ 𝑡:

መ𝑆 𝑡 = P( ሩ

𝑗: 𝑡𝑗≤𝑡

{𝑇 > 𝑡𝑗|𝑇 ≥ 𝑡𝑗}) = ෑ

𝑗: 𝑡𝑗≤𝑡

𝑃 𝑇 > 𝑡𝑗 𝑇 ≥ 𝑡𝑗 = ෑ

𝑗: 𝑡𝑗≤𝑡

[1 −
𝑑𝑗

𝑛𝑗
]
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CARATTERISTICHE DI መ𝑆 𝑡   

መ𝑆 𝑡 = ෑ

𝑗: 𝑡𝑗≤𝑡

[1 −
𝑑𝑗

𝑛𝑗
]

24

Si aggiunge un nuovo fattore alla 

produttoria in corrispondenza di 

ogni nuovo tempo in cui si verifica 

almeno un evento. 

መ𝑆 𝑡  è una funzione decrescente a gradini 

che cambia valore in corrispondenza dei 

tempi distinti degli eventi 𝑡𝑗 , 𝑗 = 1, … , 𝐾.

Tempo (mesi)

መ 𝑆
𝑡

In questo esempio si sono verificati eventi dopo 3, 4, 

6, 7, 8, 10, 11 mesi dalla baseline. 

La probabilità stimata che 

il tempo di sopravvivenza 

sia di almeno 4 mesi dalla 

baseline è 0.7
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CALCOLO RICORSIVO DEI CAMPIONI DI መ𝑆 𝑡   

መ𝑆 𝑡 = ෑ

𝑗: 𝑡𝑗≤𝑡

[1 −
𝑑𝑗

𝑛𝑗
]

መ𝑆 0 = 1

መ𝑆 𝑡𝑗 = መ𝑆 𝑡𝑗−1 ∙ (1 −
𝑑𝑗

𝑛𝑗
)

መ𝑆 𝑡 = መ𝑆 𝑡𝑗  𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1)
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INCERTEZZA SULLE STIME DEI CAMPIONI DI መ𝑆 𝑡  

Formula di Greenwood:

La deviazione standard dello stimatore መ𝑆 𝑡𝑗  è: 

𝜎 መ𝑆 𝑡𝑗
= መ𝑆 𝑡𝑗 ∙ ෍

𝑗: 𝑡𝑗≤𝑡

𝑑𝑗

𝑛𝑗 ∙ (𝑛𝑗 − 𝑑𝑗)

Questa può essere utilizzata per disegnare un intervallo di confidenza attorno 

alla curva di sopravvivenza stimata (es. መ𝑆 𝑡 ± 2𝜎 መ𝑆 𝑡 ). 
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ESEMPIO

27

Inizio del 

monitoraggio
Tempo

Individuo B

Individuo A

Individuo C

Individuo D

Individuo E

𝑡1

Evento al 

tempo 𝑡1
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ESEMPIO

28

Tempo 𝒕

S(t)

𝑡1

1 1 −
1

5
=

4

5

0.8
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ESEMPIO

29

Inizio del 

monitoraggio
Tempo

Individuo B

Individuo A

Individuo C

Individuo D

Individuo E

𝑡1 𝑡2

Censurato tra il 

tempo 𝑡1 e 𝑡2

Evento al 

tempo 𝑡2
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ESEMPIO

30

Tempo 𝒕

S(t)

𝑡1

1

4

5
 ∙ (1 −

1

3
) = 0.5333

0.8

𝑡2

0.5333
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ESEMPIO

31

Inizio del 

monitoraggio
Tempo

Individuo B

Individuo A

Individuo C

Individuo D

Individuo E

𝑡1 𝑡2

Evento al 

tempo 𝑡3

𝑡3
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ESEMPIO

32

Tempo 𝒕

S(t)

𝑡1

1

4

5
 ∙ (1 −

1

3
) ∙ (1 −

1

2
)

= 0.2666

0.8

𝑡2

0.5333

0.2666

𝑡3
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ESEMPIO

33

Inizio del 

monitoraggio
Tempo

Individuo B

Individuo A

Individuo C

Individuo D

Individuo E

𝑡1 𝑡2

Censurato alla fine 

dell’esperimento

𝑡3
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ESEMPIO

34

Tempo 𝒕

S(t)

𝑡1

1

0.8

𝑡2

0.5333

0.2666
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ESERCIZIO DA ESAME

Siamo interessati a studiare l’occorrenza dell’evento “morte” in una 
popolazione di soggetti affetti da sclerosi laterale amiotrofica. Un gruppo di 
20 soggetti viene monitorato per un periodo di 4 anni (0-48 mesi) e si 
osservano i seguenti eventi: 

Si applichi il metodo di Kaplan-Meier per stimare la funzione di 

sopravvivenza መ𝑆(𝑡).
35

Tempo [mesi] Numero eventi Censure

T1= 12 N1= 1 0

T2= 24 N2= 2 1 censura a 20 mesi

T3= 36 N3= 3 0

T4= 48 N4= 1 2 censure a 40 mesi
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SOLUZIONE

➢ መ𝑆 0 = 1

➢ መ𝑆(𝑡) è una funzione a gradini che cambia valore in corrispondenza dei tempi degli 

eventi. Chiamiamo S1, S2, S3, S4 i valori di መ𝑆(𝑡) stimati ai tempi T1, T2, T3, T4.

36

Tempo 

[mesi]

Numero eventi Numero soggetti a 

rischio

Funzione di sopravvivenza 

- መ𝑆(𝑡)

T1= 12 N1= 1 R1= ___ S1= _____________

T2= 24 N2= 2 R2= ___ S2= _____________

T3= 36 N3= 3 R3= ___ S3= _____________

T4= 48 N4= 1 R4= ___ S4= _____________



Martina Vettoretti – Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova

OBIETTIVI DELL’ANALISI DI SOPRAVVIVENZA

➢ Se vogliamo studiare il tempo ad un evento di interesse pertanto abbiamo 
bisogno di altri metodi statistici → metodi dell’analisi di sopravvivenza

➢ Tre principali obiettivi dell’analisi di sopravvivenza: 

1. Stimare il tempo ad un evento per un gruppo di individui

2. Confrontare il tempo ad un evento per due o più gruppi di individui

3. Studiare la relazione tra una o più variabili esplicative e il tempo 
all’evento
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CONFRONTO TRA CURVE DI SOPRAVVIVENZA (1/2)

38

➢ Evento di interesse: insorgenza di diabete di tipo 2 nella popolazione over 50. 

➢ Confronto delle curve di sopravvivenza stimate per diversi sottogruppi di individui. 

L’indice di massa corporea alla baseline 

(BMI) ha un impatto importante sulla 

probabilità di sopravvivenza.

Individui con BMI≥30 hanno un rischio di 

insorgenza di diabete di tipo 2 

significativamente maggiore. 
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CONFRONTO TRA CURVE DI SOPRAVVIVENZA (2/2)

39

➢ Evento di interesse: insorgenza di diabete di tipo 2. 

➢ Confronto delle curve di sopravvivenza stimate per diversi sottogruppi di individui. 

Il livello di istruzione ha un impatto 

significativo sul tempo di sopravvivenza, 

ovvero sulla probabilità di insorgenza di 

diabete di tipo 2 nel tempo? 
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IL TEST DEI RANGHI LOGARITMICI

➢ Test dei ranghi logaritmici (log-rank test): test statistico non parametrico che 
ci consente di testare un’ipotesi statistica sulla differenza tra le funzioni di 
sopravvivenza di due popolazioni, analizzandone due campioni. 

➢ Sistema di ipotesi: 

▪ H0: le due popolazioni hanno la stessa funzione di sopravvivenza

▪ H1: la funzione di sopravvivenza delle due popolazioni è diversa

➢Assunzioni: 

▪ I due campioni sono indipendenti

▪ Il censoring è random, non dipende dal campione né dai tempi degli eventi

▪ Le hazard function dei due campioni sono tra loro proporzionali: 
ℎ1(𝑡)

ℎ2(𝑡)
= 𝑐   ovvero   𝑆1 𝑡 = [𝑆2(𝑡)]𝑐

40

𝑐 = costante
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LA STATISTICA DEL TEST (1/2)

➢ La statistica del test confronta le stime delle funzioni di rischio dei due gruppi a confronto 
(gruppo 1 e gruppo 2) in ciascuno dei tempi distinti degli eventi. 

➢ Supponiamo di avere K distinti tempi degli eventi (considerando sia gli eventi del gruppo 
1, sia gli eventi del gruppo 2). 

𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾

➢ Per ogni tempo 𝑡𝑗 , 𝑗 = 1, … , 𝐾, calcoliamo: 

▪ 𝑛1𝑗: numero di individui a rischio per il gruppo 1 al tempo 𝑡𝑗

▪ 𝑛2𝑗: numero di individui a rischio per il gruppo 2 al tempo 𝑡𝑗

▪ 𝑛𝑗 = 𝑛1𝑗 + 𝑛2𝑗

▪ 𝑑1𝑗: numero di eventi osservati per il gruppo 1 al tempo 𝑡𝑗

▪ 𝑑2𝑗: numero di eventi osservati per il gruppo 2 al tempo 𝑡𝑗

▪ 𝑑𝑗 = 𝑑1𝑗 + 𝑑2𝑗
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BONUS



Martina Vettoretti – Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova

LA STATISTICA DEL TEST (2/2)

➢ Se vale H0, 𝑑1𝑗 ha distribuzione ipergeometrica di parametri 𝑛𝑗 , 𝑛1𝑗 , 𝑑𝑗 e:

➢ Statistica del test: quantifica la differenza tra i valori osservati per 𝑑1𝑘 e 
quelli attesi sotto l’ipotesi nulla. 

𝑍 =
σ𝑗=1

𝐾 (𝑑1𝑘 − 𝐸 𝑑1𝑘 )

σ𝑗=1
𝐾 𝑉𝑎𝑟 𝑑1𝑘

➢ Se vale H0, Z ha distribuzione normale standard.

42

𝐸 𝑑1𝑘 =
𝑑𝑘

𝑛𝑘
𝑛1𝑘 𝑉𝑎𝑟 𝑑1𝑘 =

𝑑𝑘( Τ𝑛1𝑘 𝑛𝑘)(1 − Τ𝑛1𝑘 𝑛𝑘)(𝑛𝑘 − 𝑑𝑘)

𝑛𝑘 − 1

BONUS
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REGOLA DECISIONALE DEL TEST

➢Calcoliamo il valore di Z a partire dai dati a disposizione. 

➢ Livello di significatività 𝛼.

➢Valore critico: 𝑧𝛼

2
 (per 𝛼=0.05, 𝑧𝛼

2
= 1.96)

➢ Regola decisionale: 

▪  Se |Z| > 𝑧𝛼

2
→ rifiuto H0 → le due popolazioni hanno funzioni di sopravvivenza 

significativamente diverse

▪  Se |Z| ≤ 𝑧𝛼

2
→ non posso rifiutare H0 → non possiamo dire nulla
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ESEMPIO

➢ Evento di interesse: insorgenza di diabete di tipo 2. 

➢ Confronto delle curve di sopravvivenza stimate per diversi sottogruppi di individui. 

44

▪ 𝛼=0.05 → 𝑧𝛼

2
= 1.96

▪ z=-2.2329

▪ 𝑧 > 𝑧𝛼

2
 → rifiutiamo H0

Concludiamo che le due popolazioni hanno 

funzioni di sopravvivenza diverse → il livello 

di istruzione ha un impatto significativo sul 

rischio di insorgenza di diabete di tipo 2 nel 

tempo.
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