
Stochastic Methods for Engineering

Answers to LN Exercises

2.5.1. i) We have

𝜌(𝑎𝑋 + 𝑏, 𝑐𝑌 + 𝑑) = Cov(𝑎𝑋 + 𝑏, 𝑐𝑌 + 𝑑)
V[𝑎𝑋 + 𝑏]1/2V[𝑐𝑌 + 𝑑]1/2 .

Now,
Cov(𝑎𝑋 + 𝑏, 𝑐𝑌 + 𝑑) = E[𝑎(𝑋 − E[𝑋])𝑐(𝑌 − E[𝑌 ])] = 𝑎𝑐Cov(𝑋,𝑌 ),

and
V[𝑎𝑋 + 𝑏] = Cov(𝑎𝑋 + 𝑏, 𝑎𝑋 + 𝑏) = 𝑎2V[𝑋],

so
𝜌(𝑎𝑋 + 𝑏, 𝑐𝑋 + 𝑑) = 𝑎𝑐Cov(𝑋,𝑌 )

|𝑎 | |𝑐 |V[𝑋]1/2V[𝑌 ]1/2 = sgn(𝑎𝑐)𝜌(𝑋,𝑌 ).

ii) If 𝑌 = 𝑎𝑋 + 𝑏 we have

𝜌(𝑋,𝑌 ) = 𝜌(𝑋, 𝑎𝑋 + 𝑏) = sgn(𝑎)𝜌(𝑋, 𝑋) = sgn(𝑎) = ±1,

being 𝜌(𝑋, 𝑋) = 1. Vice versa, assume 𝜌(𝑋,𝑌 ) = ±1, that is
Cov(𝑋,𝑌 )

V[𝑋]1/2V[𝑌 ]1/2 = ±1.

Since

| Cov(𝑋,𝑌 ) | = |E[(𝑋 −E[𝑋]) (𝑌 −E[𝑌 ])] |
𝐶𝑆

⩽ E[(𝑋 −E[𝑋])2]1/2E[(𝑌 −E[𝑌 ])2]1/2 = V[𝑋]1/2V[𝑌 ]1/2,

and equality holds iff one or both 𝑋 −E[𝑋], 𝑌 −E[𝑌 ] vanish or if they are linearly dependent. In the first
case, one or both 𝑋 and 𝑌 should be constant, but being 𝑋,𝑌 non costant by assumption, it must be they
are linearly inedependent, so for example

𝑌 − E[𝑋] = 𝜆(𝑋 − E[𝑋]).
From this 𝑌 = 𝑎𝑋 + 𝑏 for suitable 𝑎, 𝑏 ∈ R. □

2.5.2. On (Ω,ℱ, P) = ( [−1, 1],ℬR, 1
2𝜆1) take

𝑌 (𝜔) = 𝜔,
and 𝑋 = 𝑌2. In this way 𝜌(𝑋,𝑌2) = 𝜌(𝑌2, 𝑌2) = 1. Clearly E[𝑌 ] = 0 and

Cov(𝑋,𝑌 ) = E[𝑋𝑌 ] − E[𝑋]E[𝑌 ] = E[𝑋𝑌 ] = E[𝑌3] = 0,

from which 𝜌(𝑋,𝑌 ) = 0. □

2.5.3. i) ∅, 𝑋 ∈ S: indeed, 𝜇𝑋 (∅) = 0 = 𝜇𝑌 (∅) and 𝜇𝑋 (R) = 1 = 𝜇𝑌 (R). If 𝐸 ∈ S then
𝜇𝑋 (𝐸𝑐) = 1 − 𝜇𝑋 (𝐸) = 1 − 𝜇𝑌 (𝐸) = 𝜇𝑌 (𝐸𝑐), so als 𝐸𝑐 ∈ S. Finally, if (𝐸𝑛) ⊂ S. We can always
transform into a disjoint union ⋃

𝑛

𝐸𝑛 =
⊔
𝑛

𝐹𝑛,

1



2

setting 𝐹1 = 𝐸1 and, for 𝑛 ⩾ 2, 𝐹𝑛 = 𝐹𝑛−1 ∪ (𝐸𝑛\𝐹𝑛−1). Therefore

𝜇𝑋

(⋃
𝑛

𝐸𝑛

)
= 𝜇𝑋

(⊔
𝑛

𝐹𝑛

)
=

∑︁
𝑛

𝜇𝑋 (𝐹𝑛) =
∑︁
𝑛

𝜇𝑌 (𝐹𝑛) = 𝜇𝑌

(⊔
𝑛

𝐹𝑛

)
= 𝜇𝑌

(⋃
𝑛

𝐸𝑛

)
.

This proves that S is a 𝜎−algebra.
ii) Since S ⊃ intervals, it contains the 𝜎−algebra generated by intervals, which is ℬR, that is S ⊃ ℬR.

Therefore, 𝜇𝑋 (𝐸) = 𝜇𝑌 (𝐸) for every 𝐸 ∈ ℬR. □

3.4.1. We have
P(𝑎 ⩽ 𝑋 ⩽ 𝑏) = P ({𝑋 ⩽ 𝑏}\{𝑋 < 𝑎}) ,

and since {𝑋 < 𝑎} ⊂ {𝑋 ⩽ 𝑏} (here 𝑎 < 𝑏) and P is a probability measure, subtractivity holds and

P ({𝑋 ⩽ 𝑏}\{𝑋 < 𝑎}) = P ({𝑋 ⩽ 𝑏}) − P ({𝑋 < 𝑎}) = 𝐹𝑋 (𝑏) − P ({𝑋 < 𝑎}) .
From the continuity from below of P,

P ({𝑋 < 𝑎}) = lim
𝑥→𝑎−

P(𝑋 ⩽ 𝑥) = lim
𝑥→𝑎−

𝐹(𝑥),

so
P(𝑎 ⩽ 𝑋 ⩽ 𝑏) = 𝐹𝑋 (𝑏) − lim

𝑥→𝑎−
𝐹𝑋 (𝑥).

Similarly,
P(𝑎 < 𝑋 < 𝑏) = P(𝑋 < 𝑏) − P(𝑋 ⩽ 𝑎) = lim

𝑥→𝑏−
𝐹𝑋 (𝑥) − 𝐹𝑋 (𝑎),

and
P(𝑋 ⩾ 𝑏) = 1 − P(𝑋 < 𝑏) = 1 − lim

𝑥→𝑏−
𝐹𝑋 (𝑥)

and
P(𝑋 = 𝑎) = P ({𝑋 ⩽ 𝑎}\{𝑋 < 𝑎}) = 𝐹𝑋 (𝑎) − lim

𝑥→𝑎−
𝐹𝑋 (𝑥). □

3.4.5. Let 𝑋 be a.c. with density 𝑓𝑋. We notice that 𝑋2 ⩾ 0 P−a.s., so 𝐹𝑋2 (𝑥) = P(𝑋2 ⩽ 𝑥) = 0 for
𝑥 < 0. For 𝑥 ⩾ 0 we have

𝐹𝑋2 (𝑥) = P(𝑋2 ⩽ 𝑥) = P(−
√
𝑥 ⩽ 𝑋 ⩽

√
𝑥) =

∫ √
𝑥

−
√
𝑥

𝑓𝑋 (𝑦) 𝑑𝑦,

so, for 𝑥 > 0,

𝜕𝑥𝐹𝑋2 (𝑥) = 𝜕𝑥

(∫ √
𝑥

−
√
𝑥

𝑓𝑋 (𝑦) 𝑑𝑦
)
= 𝑓𝑋 (

√
𝑥) 1

2
√
𝑥
− 𝑓 (−

√
𝑥)

(
− 1

2
√
𝑥

)
=

1
2
√
𝑥

(
𝑓𝑋 (

√
𝑥) + 𝑓𝑋 (−

√
𝑥)

)
.

Therefore,

∃𝜕𝑥𝐹𝑋2 (𝑥) =


0, 𝑥 < 0,

1
2
√
𝑥

(
𝑓𝑋 (

√
𝑥) + 𝑓𝑋 (−

√
𝑥)

)
, 𝑥 > 0

=: 𝑓𝑋2 (𝑥).

This says that 𝑋2 is a.c. and 𝑓𝑋2 is its density. □
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3.4.6. i) We have

𝐹𝑌 (𝑦) = P(𝑌 ⩽ 𝑦) = P(
√︁
|𝑋 | ⩽ 𝑦) =


0, 𝑦 < 0,

P( |𝑋 | ⩽ 𝑦2) =
∫ 𝑦2

−𝑦2 𝑒
− (𝑥−𝑚)2

2𝜎2 𝑑𝑥√
2𝜋𝜎2 , 𝑦 > 0,

By the fundamental thm of integral calculus,

∃𝜕𝑦𝐹𝑌 (𝑦) =


0, 𝑦 < 0,

2𝑦√
2𝜋𝜎2

(
𝑒
− (𝑦2−𝑚)2

2𝜎2 + 𝑒−
(𝑦2−𝑚)2

2𝜎2

)
𝑦 ⩾ 0,

=: 𝑓𝑌 (𝑦).

ii) In this case 𝑌 = Φ(𝑋) where Φ(𝑥) = 1
1+𝑒−𝑥 is bijective. Indeed,

𝑦 = Φ(𝑥),
0<𝑦<1
⇐⇒ 1 + 𝑒−𝑥 = 1

𝑦
, ⇐⇒ 𝑒−𝑥 =

1
𝑦
− 1 =

1 − 𝑦
𝑦

, ⇐⇒ 𝑥 = − log
1 − 𝑦
𝑦

= Φ−1(𝑦).

Therefore

𝑓𝑌 (𝑦) = 𝑓𝑋 (Φ−1(𝑦)) | (Φ−1)′(𝑦) | = 1
√

2𝜋𝜎2
𝑒
−

(log 1−𝑦
𝑦 +𝑚)2

2𝜎2

����− 𝑦

1 − 𝑦

(
− 1
𝑦2

)����
=

1
√

2𝜋𝜎2

1
𝑦(1 − 𝑦) 𝑒

−
(log 1−𝑦

𝑦 +𝑚)2

2𝜎2 1]0,1[ (𝑦). □

3.4.7. Let 𝑌 = [𝑋] with 𝑋 ∼ exp(𝜆). We remind that 𝐹𝑋 (𝑥) := (1 − 𝑒−𝜆𝑥)1[0,+∞[ (𝑥). Being 𝑌 = [𝑋]
we have that P(𝑌 < 0) = 0, so 𝐹𝑌 (𝑦) = 0 for every 𝑦 < 0. Let 𝑦 ⩾ 0. We notice that

𝐹𝑌 (𝑦) = P(𝑌 ⩽ 𝑦) = P( [𝑋] ⩽ 𝑦) = P( [𝑋] ⩽ [𝑦]) = P(𝑋 ⩽ [𝑦]) = 𝐹𝑋 ( [𝑦]) = 1 − 𝑒−𝜆[𝑦 ] .
Therefore,

𝐹𝑌 (𝑦) =
(
1 − 𝑒−𝜆[𝑦 ]

)
1𝑦⩾0. □

3.4.8. Without loss of generality we may assume 𝑥0 = 0, so 𝑃0 = (0, 𝑦0). If 𝜃 ∈] − 𝜋/2, 𝜋/2[ is
the angle made by 𝑟𝜃 and the 𝑦−axis, the abscissa of the intersection with the 𝑥−axis is 𝑥 = −𝑦0 tan 𝜃.
Assuming Θ ∼ 𝑈 (] − 𝜋/2, 𝜋/2[) we have that 𝑋 = −𝑦0 tanΘ = Φ(Θ) and since Φ is invertible on
] − 𝜋/2, 𝜋/2[ with inverse

Φ−1(𝑥) = arctan
𝑥

𝑦0
,

we get

𝑓𝑋 (𝑥) = 𝑓Θ(Φ−1(𝑥)) | (Φ−1)′(𝑥) | = 1
𝜋

1]−𝜋/2, 𝜋/2[

(
arctan

𝑥

𝑦0

)
1

1 +
(
𝑥
𝑦0

)2
1
𝑦0

=
1
𝜋

𝑦0

𝑦2
0 + 𝑥2

. □

3.4.9. i) If 𝑥∗ ≠ 𝑦∗ say 𝑥∗ < 𝑦∗ then, being 𝐹𝑋 ↑, we have that 𝐹𝑋 (𝑥∗) ⩽ 𝐹𝑋 (𝑦∗−). Therefore
]𝐹𝑋 (𝑥∗−), 𝐹𝑋 (𝑥∗) [∩]𝐹𝑋 (𝑦∗−), 𝐹𝑋 (𝑦∗) [= ∅.
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ii) For every 𝐼𝑥∗ there is at least a rational 𝑞𝑥∗ ∈ 𝐼𝑥∗ . Since the (𝐼𝑥∗) are disjoint, the correspondence
𝑥∗ ↦−→ 𝐼𝑥∗ ↦−→ 𝑞∗

𝑥∗ is injective, so theset of discontinuity points {𝑥∗} is at most countable. □

4.3.1. See slides.
4.3.2. i) To be a probability density, 𝑓𝑋,𝑌 must be ⩾ 0 a.e. (𝑥, 𝑦) ∈ R2 (this needs 𝑐 ⩾ 0) and such that∫
R2 𝑓𝑋,𝑌 = 1. Since∫
R2
𝑓𝑋,𝑌 =

∫ 1

0

∫ 2

0
𝑐

(
𝑥2 + 𝑥𝑦

2

)
𝑑𝑦 𝑑𝑥 = 𝑐

∫ 1

0
2𝑥2 + 𝑥

2

[
𝑦2

2

] 𝑦=2

𝑦=0
𝑑𝑥 = 𝑐

(
2
[
𝑥3

3

] 𝑥=1

𝑥=0
+ [𝑥2]𝑥=1

𝑥=0

)
= 𝑐

5
3
,

from which 𝑐 = 3
5 .

ii) The marginal density 𝑓𝑋 is obteined by the formula

𝑓𝑋 (𝑥) =
∫
R
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦 =

3
5

1[0,1] (𝑥)
∫ 2

0
𝑥2+𝑥𝑦

2
𝑑𝑦 =

3
5

1[0,1] (𝑥)
(
2𝑥2 + 𝑥

2

[
𝑦2

2

] 𝑦=2

𝑦=0

)
=

6
5
(𝑥2+𝑥)1[0,1] (𝑥).

iii) We have

P(𝑋 > 𝑌 ) =
∫
𝑥⩾𝑦

𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =
∫ 1

0

∫ 𝑥

0

3
5
(𝑥2 + 𝑥𝑦

2
) 𝑑𝑦 𝑑𝑥 = 3

5

∫ 1

0

5
4
𝑥3 𝑑𝑥 =

3
4

[
𝑥4

4

] 𝑥=1

𝑥=0
=

3
16
. □

4.3.3. Let 𝑓𝑋,𝑌 (𝑥, 𝑦) := 𝑒−(𝑥+𝑦)1[0,+∞[2 (𝑥, 𝑦). Since 𝑓𝑋,𝑌 ≡ 0 on R2\[0, +∞[2, we have that
P((𝑋,𝑌 ) ∈ R2

+) = 1. We also notice that

P(𝑌 = 0) =
∫
𝑥∈R,𝑦=0

𝑓𝑋,𝑌 (𝑥, 0) 𝑑𝑥𝑑𝑦 = 0,

and, similarly P(𝑋 = 0) = 0. Therefore P(𝑌 ⩽ 0) = P(𝑋 ⩽ 0) = 0, so
𝐹𝑋/𝑌 (𝑢) = P(𝑋/𝑌 ⩽ 𝑢) = 0, ∀𝑢 ⩽ 0.

For 𝑢 > 0, being P(𝑌 > 0) = 1 we have

𝐹𝑋/𝑌 (𝑢) = P(𝑋/𝑌 ⩽ 𝑢) = P(𝑋 ⩽ 𝑢𝑌 ) =
∫
𝑥⩽𝑢𝑦

𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =
∫
𝑥⩽𝑢𝑦

𝑒−(𝑥+𝑦)1[0,+∞[2 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦

=

∫ +∞

0

∫ +∞

𝑥/𝑢
𝑒−(𝑥+𝑦)𝑑𝑦 𝑑𝑥 =

∫ +∞

0
𝑒−𝑥

∫ +∞

𝑥/𝑢
𝑒−𝑦𝑑𝑦 𝑑𝑥 =

∫ +∞

0
𝑒−𝑥 [−𝑒−𝑦]+∞𝑥/𝑢 𝑑𝑥

=

∫ +∞

0
𝑒−𝑥𝑒−𝑥/𝑢 𝑑𝑥 =

∫ +∞

0
𝑒−(1+ 1

𝑢 )𝑥 𝑑𝑥 =
[
−𝑒

−(1+ 1
𝑢 )𝑥

1 + 1
𝑢

] 𝑥=+∞
𝑥=0

=
𝑢

𝑢 + 1
.

Therefore,
𝐹𝑋/𝑌 (𝑢) =

𝑢

𝑢 + 1
1[0,+∞[ (𝑢).

From this we see that 𝐹𝑋/𝑌 is a.e. differentiable with

𝜕𝑢𝐹𝑋/𝑌 (𝑢) = 𝑓𝑋/𝑌 (𝑢) =
1

(𝑢 + 1)2 1𝑢⩾0. □



5

4.3.4. Clearly, 𝑓 ⩾ 0. To be a probability density it must verify

1 =

∫
R3
𝑓 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =

∫
𝐵(0,𝑅]

𝑐(𝑅 −
√︃
𝑥2 + 𝑦2) 𝑑𝑥𝑑𝑦 𝑝𝑜𝑙.𝑐𝑜𝑜𝑟𝑑𝑠=

∫
0⩽𝜌⩽𝑅, 0⩽𝜃⩽2𝜋

𝑐(𝑅 − 𝜌)𝜌 𝑑𝜌𝑑𝜃

= 𝑐2𝜋
∫ 𝑅

0
(𝑅 − 𝜌)𝜌 𝑑𝜌 = 2𝜋𝑐

(
𝑅
𝑅2

2
− 𝑅3

3

)
=

2𝜋𝑅3

6
𝑐

from which 𝑐 = 3
𝜋𝑅3 . Now, for 0 ⩽ 𝑎 ⩽ 𝑅 we have

P((𝑋,𝑌 ) ∈ 𝐵(0, 𝑎]) =
∫
𝐵(0,𝑎]

𝑓 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = 6
𝑅3

∫ 𝑎

0
(𝑅 − 𝜌)𝜌 𝑑𝜌 =

6
𝑅3

(
𝑅
𝑎2

2
− 𝑎3

3

)
=
𝑎2

𝑅3 (3𝑅 − 2𝑎).

The distance from the centre of the target is 𝐷 :=
√
𝑋2 + 𝑌2. The problem asks to compute the distribution

of 𝐷. Starting from the cdf

𝐹𝐷 (𝑎) = P ((𝑋,𝑌 ) ∈ 𝐵(0, 𝑎]) =


0, 𝑎 < 0,

𝑎2

𝑅3 (3𝑅 − 2𝑎), 0 ⩽ 𝑎 ⩽ 𝑅,

1, 𝑎 ⩾ 𝑅.

Clearly, 𝐹𝐷 is differentiable for 𝑎 ≠ 0, 𝑅, so 𝐷 is absolutely continuous with density

𝑓𝐷 (𝑎) = 𝜕𝑎𝐹𝐷 (𝑎) =


0, 𝑎 < 0, 𝑎 > 𝑅

2𝑎
𝑅3 (3𝑅 − 2𝑎) + 𝑎2

𝑅3 (−2) = 2𝑎
𝑅3 (3𝑅 − 𝑎), 0 < 𝑎 < 𝑅,

=
6𝑎
𝑅3 (𝑅 − 𝑎)1[0,𝑅] (𝑎).

Finally,

E[𝐷] =
∫
R
𝑎 𝑓𝐷 (𝑎) 𝑑𝑎 =

∫ 𝑅

0

6𝑎2

𝑅3 (𝑅 − 𝑎) 𝑑𝑎 =
6
𝑅3

(
𝑅
𝑅3

3
− 𝑅4

4

)
=
𝑅

2
. □

4.3.9. i) We notice that

𝑥2 − 2𝜌𝑥𝑦 + 𝑦2 =

[
1 −𝜌
−𝜌 1

]
︸          ︷︷          ︸

=:𝑀

(
𝑥

𝑦

)
·
(
𝑥

𝑦

)
where 𝑀 is a 2 × 2 matrix with det𝑀 = 1 − 𝜌2. Therefore

1
1 − 𝜌2𝑀 = 𝐶−1, 𝐶 =

[
1 𝜌

𝜌 1

]
,

with 𝐶 positive definite (provided 𝜌2 ⩽ 1) and symmetric matrix. Therefore, if 𝑣 =
(𝑥
𝑦

)
, we have

𝑓 (𝑣) = 𝑐𝑒− 1
2𝐶

−1𝑣 ·𝑣 ,

so 𝑓 is a Gaussian density with 𝑐 = 1√
(2𝜋 )2 (1−𝜌2 )

.
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ii) Let (𝑋, 𝑍) = (𝑋, 𝑌−𝜌𝑋√
1−𝜌2

) = Ψ(𝑋,𝑌 ). Notice that Ψ is a linear transformation of R2 into itself, and

Ψ′(𝑥, 𝑦) =
[

1 0
− 𝜌√

1−𝜌2
1√

1−𝜌2

]
, =⇒ | detΨ′ | = 1√︁

1 − 𝜌2
, =⇒ | det(Ψ−1)′ | =

√︃
1 − 𝜌2.

Moreover

(𝑥, 𝑧) = Ψ(𝑥, 𝑦), ⇐⇒


𝑥 = 𝑥,

𝑧 =
𝑦−𝜌𝑥√

1−𝜌2
,

⇐⇒

𝑥 = 𝑥,

𝑦 =
√︁

1 − 𝜌2𝑧 + 𝜌𝑥,

Therefore, if 𝑣 = (𝑥, 𝑧),

𝑓𝑋,𝑍 (𝑥, 𝑧) = 𝑓𝑋,𝑌 (𝑥,
√︃

1 − 𝜌2𝑧 + 𝜌𝑥)
√︃

1 − 𝜌2 =
1√︁
(2𝜋)2

𝑒−
1
2𝐶

−1𝑇𝑣 ·𝑇𝑣

where

𝑇 =

[
1 0
𝜌

√︁
1 − 𝜌2

]
We notice that 𝑇𝑇⊤ = 𝐶, so

𝑇⊤𝐶−1𝑇 = 𝑇⊤(𝑇𝑇⊤)−1𝑇 = 𝑇⊤(𝑇⊤)−1𝑇−1𝑇 = I2,

from which
𝑓𝑋,𝑍 (𝑥, 𝑧) =

1√︁
(2𝜋)2

𝑒−
1
2 (𝑥

2+𝑧2 ) .

This shows that (𝑋, 𝑍) ∼ 𝒩(0, I2). Clearly 𝑓𝑍 (𝑧) = 1√
2𝜋
𝑒−

𝑧2
2 , that is 𝑍 ∼ 𝒩(0, 1).

iii) We have

P(𝑋 > 0, 𝑌 > 0) = P

(
𝑋 > 0,

√︃
1 − 𝜌2𝑍 + 𝜌𝑋 > 0

)
=

∫
𝑥>0, 𝑧>− 𝜌√

1−𝜌2 𝑥
𝑒−

𝑥2+𝑧2
2

𝑑𝑥𝑑𝑧√︁
(2𝜋)2

=
1

2𝜋

∫ +∞

0
𝑒−

𝑥2
2

∫ +∞

− 𝜌√
1−𝜌2 𝑥

𝑒−
𝑧2
2 𝑑𝑧 𝑑𝑥 =

1
√

2𝜋

∫ +∞

0
𝑒−

𝑥2
2

(
1 −Φ

(
− 𝜌√︁

1 − 𝜌2
𝑥

))
𝑑𝑥

=
1
2
− 1
√

2𝜋

∫ +∞

0
𝑒−

𝑥2
2 Φ

(
− 𝜌√︁

1 − 𝜌2
𝑥

)
𝑑𝑥.

where Φ(𝑢) :=
∫ 𝑢
−∞ 𝑒

− 𝑧2
2 𝑑𝑧√

2𝜋
is the cdf of the standard Gassian. Let, for brevity, 𝑟 := − 𝜌√

1−𝜌2
. We notice

that Φ′(𝑢) = 1√
2𝜋
𝑒−

𝑢2
2 . Therefore

1
√

2𝜋

∫ +∞

0
𝑒−

𝑥2
2 Φ

(
− 𝜌√︁

1 − 𝜌2
𝑥

)
𝑑𝑥 =

1
√

2𝜋

∫ +∞

0
𝑒−

𝑥2
2 Φ(𝑟𝑥) 𝑑𝑥 =: 𝐼 (𝑟).
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where 𝑟 = − 𝜌√
1−𝜌2

. We notice that, differentiating under integral sign, being Φ′(𝑢) = 𝑒− 𝑢2
2 1√

2𝜋
,

𝜕𝑟 𝐼 (𝑟) =
∫ +∞

0
𝑒−

𝑥2
2

1
√

2𝜋
𝑒−

𝑟2𝑥2
2 𝑥

𝑑𝑥
√

2𝜋
=

1
2𝜋

∫ +∞

0
𝑥𝑒−

(1+𝑟2 )𝑥2
2︸      ︷︷      ︸

=𝜕𝑥− 1
1+𝑟2 𝑒

−(1+𝑟2 ) 𝑥2
2

𝑑𝑥 =
1

(2𝜋) (1 + 𝑟2)
.

From this,
𝐼 (𝑟) = 1

2𝜋
arctan 𝑟 + 𝑐,

and since 𝐼 (0) = 1√
2𝜋

∫ +∞
0 𝑒−

𝑥2
2 Φ(0) 𝑑𝑥 = 1

4 , we get

𝐼 (𝑟) = 1
2𝜋

arctan 𝑟 + 1
4
.

Therefore

P(𝑋 > 0, 𝑌 > 0) = 1
2
−

(
1

2𝜋
arctan

(
− 𝜌√︁

1 − 𝜌2

)
+ 1

4

)
=

1
4
+ 1

2𝜋
arctan

𝜌√︁
1 − 𝜌2

. □

5.3.1. For a standard Bernoulli r.v., P(𝑋 = 0) = 𝑝, P(𝑋 = 1) = 1 − 𝑝 we have
𝜙𝑋 (𝜉) = E[𝑒𝑖 𝜉𝑋] = 𝑒𝑖 𝜉0P(𝑋 = 0) + 𝑒𝑖 𝜉1P(𝑋 = 1) = 𝑝 + (1 − 𝑝)𝑒𝑖 𝜉 .

For a binomial r.v. 𝑋 ∈ {0, . . . , 𝑛}, P(𝑋 = 𝑘) =
(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 (with 𝑝 ∈ [0, 1]), we have

𝜙𝑋 (𝜉) = E[𝑒𝑖 𝜉𝑋] =
𝑛∑︁
𝑘=0

𝑒𝑖 𝜉 𝑘P(𝑋 = 𝑘) =
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘𝑒𝑖 𝜉 𝑘 =

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
(𝑒𝑖 𝜉 𝑝)𝑘 (1 − 𝑝)𝑛−𝑘

=

(
1 − 𝑝 + 𝑝𝑒𝑖 𝜉

)𝑛
.

For a Poisson r.v. 𝑋 ∈ N, P(𝑋 = 𝑘) = 𝑒−𝜆 𝜆𝑘
𝑘! , so

𝜙𝑋 (𝜉) = E[𝑒𝑖 𝜉𝑋] =
∞∑︁
𝑘=0

𝑒𝑖 𝜉 𝑘𝑒−𝜆
𝜆𝑘

𝑘!
= 𝑒−𝜆

∞∑︁
𝑘=0

(𝜆𝑒𝑖 𝜉 )𝑘
𝑘!

= 𝑒−𝜆𝑒𝜆𝑒
𝑖 𝜉

= 𝑒𝜆(𝑒
𝑖 𝜉 −1) . □

5.3.2. Since 𝑓𝑋 ∈ 𝐿1(R), we have

𝜙𝑋 (𝜉) = 𝑓̂𝑋 (−𝜉) =
�1

𝜋

𝑎

𝑎2 + (♯ − 𝑚)2 (−𝜉) = 𝑒
𝑖 𝜉𝑚 𝑎

𝜋

�1
𝑎2 + ♯2 (−𝜉) = 𝑒

𝑖 𝜉𝑚−𝑎 | 𝜉 | . □

5.3.3. If 𝑓𝑋 (𝑥) = 𝜆𝛼−1

Γ (𝛼) 𝑥
𝛼−1𝑒−𝜆𝑥1[0,+∞[ (𝑥), then

𝜙𝑋 (𝜉) = 𝑓̂𝑋 (−𝜉) =
𝜆𝛼−1

Γ(𝛼)

∫ +∞

0
𝑥𝛼−1𝑒−𝜆𝑥𝑒𝑖 𝜉 𝑥 𝑑𝑥 =

𝜆𝛼−1

Γ(𝛼)

∫ +∞

0
𝑥𝛼−1𝑒−(𝜆−𝑖 𝜉 )𝑥 𝑑𝑥

=
𝜆𝛼−1

Γ(𝛼) Γ(𝛼) (𝜆 − 𝑖𝜉)
−𝛼 =

1
𝜆

(
1 − 𝑖𝜉

𝜆

)−𝛼
.
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5.3.6. Since 𝜇(𝐸) = E[𝑌1𝐸 (𝑋)], that is∫
R

1𝐸 𝑑𝜇 = E[𝑌1𝐸 (𝑋)] .

By linearity, ∫
R
𝑠 𝑑𝜇 = E[𝑌𝑠(𝑋)],

for every simple function 𝑠. By standard approximation, we get∫
R
𝜑 𝑑𝜇 = E[𝑌𝜑(𝑋)], ∀𝜑 ∈ 𝐿∞.

In particular, setting 𝜑(𝑥) = 𝑒𝑖 𝜉 𝑥 we get∫
R
𝑒𝑖 𝜉 𝑥 𝑑𝜇(𝑥) = E[𝑌𝑒𝑖 𝜉𝑋] = 0, ∀𝜉 ∈ R,

so 𝜇(−𝜉) ≡ 0. From injectivity it follows that 𝜇 = 0. The second part (𝑌 = 0) is not true unless𝑌 = 𝑓 (𝑋).

5.3.7. i) We have

|𝜇(𝜉) | =
����∫
R
𝑒−𝑖 𝜉 𝑥 𝑑𝜇(𝑥)

���� ⩽ ∫
R
|𝑒−𝑖 𝜉 𝑥 | 𝑑𝜇 = 1.

ii) We have

𝜇(𝜉) =
∫
R
𝑒−𝑖 𝜉 𝑥 𝑑𝜇(𝑥) =

∫
R
𝑒−𝑖 𝜉 𝑥 𝑑𝜇(𝑥) =

∫
R
𝑒𝑖 𝜉 𝑥 𝑑𝜇(𝑥) = 𝜇(−𝜉).

iii) We have∑︁
𝑗 ,𝑘

𝜇(𝜉 𝑗 − 𝜉𝑘)𝑧 𝑗 𝑧𝑘 =
∫
R

∑︁
𝑗 ,𝑘

𝑒−𝑖 ( 𝜉 𝑗−𝜉𝑘 )𝑥𝑧 𝑗 𝑧𝑘 𝑑𝜇(𝑥) =
∫
R

∑︁
𝑗

𝑒−𝑖 𝜉 𝑗 𝑥𝑧 𝑗︸         ︷︷         ︸
=:𝑤 (𝑥 )

∑︁
𝑘

𝑒𝑖 𝜉𝑘 𝑥𝑧𝑘︸       ︷︷       ︸
=:𝑤 (𝑥 )

𝑑𝜇(𝑥) ⩾ 0.

iv) We have

𝜇(𝜉) =
∫
R
𝑒−𝑖 𝜉 𝑥 𝑑𝜇(𝑥) =

∫
R
𝑓 (𝜉, 𝑥) 𝑑𝜇(𝑥).

We notice that 𝑓 (♯, 𝑥) ∈ 𝒞(R) for 𝜇−a.e. 𝑥 ∈ R, and | 𝑓 (𝜉, 𝑥) | = 1 ∈ 𝐿1(R, 𝜇). By continuity of integrals
depending on parameters, 𝜇 ∈ 𝒞(R). □

5.3.8. Let 𝜙𝑋 (𝜉) = E[𝑒𝑖 𝜉𝑋] = 𝑓̂𝑋 (−𝜉). Then

|𝜙𝑋 (𝜉) |2 = 𝜙𝑋 (𝜉)𝜙𝑋 (𝜉) = 𝑓̂𝑋 (−𝜉) 𝑓̂𝑋 (−𝜉) = �𝑓𝑋 (−♯) (𝜉) 𝑓̂𝑋 (𝜉) = �𝑓𝑋 (−♯) ∗ 𝑓𝑋 (𝜉) = �( 𝑓𝑋 (−♯) ∗ 𝑓𝑋) (−♯) (−𝜉).

Now, let

𝑓 (𝑦) := ( 𝑓𝑋 (−♯) ∗ 𝑓𝑋) (−𝑦) =
∫
R
𝑓𝑋 (−𝑥) 𝑓𝑋 (−𝑦 − 𝑥) 𝑑𝑥 =

∫
R
𝑓𝑋 (𝑥) 𝑓𝑋 (−𝑦 + 𝑥) 𝑑𝑥.
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By Young theorem, being 𝑓𝑋 ∈ 𝐿1, 𝑓 is well defined and 𝐿1. Clearly, 𝑓 ⩾ 0 (being 𝑓𝑋 ⩾ 0) and∫
R
𝑓 (𝑦) 𝑑𝑦 =

∫
R

∫
R
𝑓𝑋 (𝑥) 𝑓𝑋 (−𝑦 + 𝑥) 𝑑𝑥 𝑑𝑦 =

∫
R

∫
R
𝑓𝑋 (𝑥) 𝑓𝑋 (−𝑦 + 𝑥) 𝑑𝑦 𝑑𝑥

=

∫
R
𝑓𝑋 (𝑥)

∫
R
𝑓𝑋 (−𝑦 + 𝑥) 𝑑𝑦︸                ︷︷                ︸

=1

𝑑𝑥 =

∫
R
𝑓𝑋 (𝑥) 𝑑𝑥 = 1,

so 𝑓 is a probability density. As well known, there is 𝑌 r.v. such that 𝑓𝑌 = 𝑓 and the conclusion
follows. □

5.3.9. If 𝑑𝜇𝑋 = 𝑓𝑋 (𝑥) 𝑑𝑥, then
𝜇𝑋 (𝜉) = 𝑓̂𝑋 (−𝜉).

Known that 𝜇𝑋 ∈ 𝐿1(R), inversion formula would apply and

𝑓̂𝑋 (𝜉) = 𝜇𝑋 (−𝜉), =⇒ 𝑓𝑋 (𝑥) =
1

2𝜋
̂̂
𝑓𝑋 (−𝑥) =

1
2𝜋

�̂𝜇𝑋 (−♯) (−𝑥).
This formula yileds the possible 𝑓𝑋. This is the starting point. Let

𝑓𝑋 (𝑥) :=
1

2𝜋
�̂𝜇𝑋 (−♯) (−𝑥).

The goal is to check that 𝑑𝜇𝑋 = 𝑓𝑋 (𝑥) 𝑑𝑥. We notice that, by the duality Lemma, if 𝜓, 𝜓 ∈ 𝐿1 we have∫
R
𝜓(𝑥) 𝑓𝑋 (𝑥) 𝑑𝑥 =

∫
R
𝜓(𝑥) 1

2𝜋
�̂𝜇𝑋 (−♯) (−𝑥) 𝑑𝑥 = 1

2𝜋

∫
R
𝜓(−𝑥)�̂𝜇𝑋 (−♯) (𝑥) 𝑑𝑥

=
1

2𝜋

∫
R

�𝜓(−♯) (𝜉)𝜇𝑋 (−𝜉) 𝑑𝜉 = 1
2𝜋

∫
R
𝜓(−𝜉)𝜇𝑋 (𝜉) 𝑑𝜉

𝑑𝑢𝑎𝑙𝑖𝑡 𝑦
=

1
2𝜋

∫
R

��𝜓(−♯) (𝑥) 𝑑𝜇𝑋 (𝑥) = 1
2𝜋

∫
R

̂̂
𝜓(−𝑥) 𝑑𝜇𝑋 (𝑥)

𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
=

∫
R
𝜓(𝑥) 𝑑𝜇𝑋 (𝑥).

Therefore, ∫
R
𝜓(𝑥) 𝑓𝑋 (𝑥) 𝑑𝑥 =

∫
R
𝜓(𝑥) 𝑑𝜇𝑋 (𝑥), ∀𝜓 : 𝜓, 𝜓 ∈ 𝐿1(R).

In particular, this holds for every 𝜓 ∈ 𝒮(R), and by standard approximation arguments, for every Borel
function. □

6.4.1. We notice that
P(𝑋 > 𝑥,𝑌 > 𝑦) = 1 − P({𝑋 ⩽ 𝑥} ∪ {𝑌 ⩽ 𝑦}) = 1 − (P(𝑋 ⩽ 𝑥) + P(𝑌 ⩽ 𝑦) − P(𝑋 ⩽ 𝑥,𝑌 ⩽ 𝑦))

= 1 −
(
𝐹𝑋 (𝑥) + 𝐹𝑌 (𝑦) − 𝐹𝑋,𝑌 (𝑥, 𝑦)

)
.



10

On the other side,
P(𝑋 > 𝑥)P(𝑌 > 𝑦) = (1 − P(𝑋 ⩽ 𝑥)) (1 − P(𝑌 ⩽ 𝑦)) = 1 − 𝐹𝑋 (𝑥) − 𝐹𝑌 (𝑦) + 𝐹𝑋 (𝑥)𝐹𝑌 (𝑦),

and by the assumption
1 −

(
𝐹𝑋 (𝑥) + 𝐹𝑌 (𝑦) − 𝐹𝑋,𝑌 (𝑥, 𝑦)

)
= 1 − 𝐹𝑋 (𝑥) − 𝐹𝑌 (𝑦) + 𝐹𝑋 (𝑥)𝐹𝑌 (𝑦),

from which
𝐹𝑋,𝑌 (𝑥, 𝑦) = 𝐹𝑋 (𝑥)𝐹𝑌 (𝑦), ∀(𝑥, 𝑦) ∈ R2,

which is equivalent to the independence of 𝑋 and 𝑌 . □

6.4.3. i) We have 𝑓−𝑌 (𝑦) = 𝑓𝑌 (−𝑦) = 𝑒−2 |−𝑦 | = 𝑒−2 |𝑦 | = 𝑓𝑌 (𝑦). The characteristic function is

𝜙−𝑌 (𝜉) = 𝜙𝑌 (𝜉) =
∫
R
𝑒𝑖 𝜉 𝑦𝑒−2 |𝑦 | 𝑑𝑦 =

∫ 0

−∞
𝑒 (𝑖 𝜉+2)𝑦 𝑑𝑦 +

∫ +∞

0
𝑒 (𝑖 𝜉−2)𝑦 𝑑𝑦

=

[
𝑒 (𝑖 𝜉+2)𝑦

𝑖𝜉 + 2

] 𝑦=0

𝑦=−∞
+

[
𝑒 (𝑖 𝜉−2)𝑦

𝑖𝜉 − 2

] 𝑦=+∞
𝑦=0

=
1

𝑖𝜉 + 2
− 1
𝑖𝜉 − 2

=
4

4 + 𝜉2 .

ii) Since 𝑍 = 𝑋 − 𝑌 and 𝑋,𝑌 are independent,

𝜙𝑍 (𝜉) = 𝜙𝑋−𝑌 (𝜉) = 𝜙𝑋 (𝜉)𝜙−𝑌 (𝜉) =
(

4
4 + 𝜉2

)2
.

As we can see, 𝑍 is not a Laplace random variable. □

6.4.5. Let 𝑋 ∈ [0, 𝑎] and 𝑌 ∈ [0, 𝑏]. Then, the area of the triangle is 𝑇𝑋,𝑌 = 1
2𝑋𝑌 . So, being 𝑋,𝑌

independent (so 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) = 1
𝑎

1[0,𝑎] (𝑥) 1
𝑏

1[0,𝑏] (𝑦)), the required probability is

P

(
𝑇𝑋,𝑌 ⩾

1
4
𝑎𝑏

)
= P

(
𝑋𝑌 ⩾

𝑎𝑏

2

)
=

∫
𝑥𝑦⩾𝑎𝑏/2

1
𝑎𝑏

1[0,𝑎] (𝑥)1[0,𝑏] (𝑦) 𝑑𝑥𝑑𝑦

=
1
𝑎𝑏

∫
0⩽𝑥⩽𝑎, 0⩽𝑦⩽𝑏, 𝑥𝑦⩾𝑎𝑏/2

1 𝑑𝑥𝑑𝑦

=
1
𝑎𝑏

∫ 𝑎

𝑎/2

∫ 𝑏

𝑎𝑏/2𝑥
1 𝑑𝑦 𝑑𝑥 =

1
𝑎𝑏

∫ 𝑎

𝑎/2

(
𝑏 − 𝑎𝑏

2𝑥

)
𝑑𝑥 =

∫ 𝑎

𝑎/2

(
1
𝑎
− 1

2𝑥

)
𝑑𝑥

=
1
2

(
1 − [log 𝑥]𝑥=𝑎𝑥=𝑎/2

)
=

1 + log 2
2

. □

6.4.8. i) Let 𝑆𝑛 := min(𝑇1, . . . , 𝑇𝑛−1). Let
𝐹𝑆𝑛 (𝑡) = P(min(𝑇1, . . . , 𝑇𝑛−1) ⩽ 𝑡).

Since 0 ⩽ 𝑇𝑗 ⩽ 1 for every 𝑗 , 𝐹𝑆𝑛 (𝑡) = 0 if 𝑡 < 0 and 𝐹𝑆𝑛 (𝑡) = 1 if 𝑡 ⩾ 1. For 0 ⩽ 𝑡 < 1,

𝐹𝑆𝑛 (𝑡) = 1 − P(min(𝑇1, . . . , 𝑇𝑛−1) > 𝑡) = 1 −
𝑛−1∏
𝑘=1
P(𝑇𝑘 > 𝑡)︸     ︷︷     ︸

=1−𝑡

= 1 − (1 − 𝑡)𝑛−1.
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In conclusion

𝐹𝑆𝑛 (𝑡) =


0, 𝑡 < 0,
1 − (1 − 𝑡)𝑛−1, 0 ⩽ 𝑡 < 1,
1, 𝑡 ⩾ 1.

ii) Since 𝑆𝑛 := min(𝑇1, . . . , 𝑇𝑛−1) depends on 𝑇1, . . . , 𝑇𝑛−1, which are independent of 𝑇𝑛, we have that 𝑆𝑛
and 𝑇𝑛 are independent, and the conclusion follows.

iii) Let 𝐴𝑛 be the event ”a new record is set in the 𝑛−th race. We can write this as

𝐴𝑛 = {𝑇𝑛 < min(𝑇1, . . . , 𝑇𝑛)} = {𝑇𝑛 < 𝑆𝑛}.
Therefore

P(𝐴𝑛) =
∫
𝑡<𝑠

𝑓𝑇𝑛 ,𝑆𝑛 (𝑡, 𝑠) 𝑑𝑡𝑑𝑠
𝑖𝑛𝑑𝑒𝑝
=

∫
𝑡<𝑠

𝑓𝑇𝑛 (𝑡) 𝑓𝑆𝑛 (𝑠) 𝑑𝑡𝑑𝑠.

We notice that 𝑓𝑇𝑛 (𝑡) = 1[0,1] (𝑡) while

𝑓𝑆𝑛 (𝑠) = 1[0,1] (𝑛 − 1) (1 − 𝑠)𝑛−2,

so

P(𝐴𝑛) =

∫
0⩽𝑡<𝑠⩽1

(𝑛 − 1) (1 − 𝑠)𝑛−2 𝑑𝑡𝑑𝑠 =

∫ 1

0

∫ 1

𝑡

(𝑛 − 1) (1 − 𝑠)𝑛−2 𝑑𝑠 𝑑𝑡

=

∫ 1

0

[
(1 − 𝑠)𝑛−1] 𝑠=1

𝑠=𝑡
𝑑𝑡 =

∫ 1

0
−(1 − 𝑡)𝑛−1 𝑑𝑡 =

[
(1 − 𝑡)𝑛
𝑛

] 𝑡=1

𝑡=0
=

1
𝑛
.

iv) The event ”a record remains unbroken” is 𝐴 := 𝐴1 ∩
⋂
𝑛⩾2 𝐴

𝑐
𝑛. By independence,

P(𝐴) = P(𝐴1)
∏
𝑛⩾2
P(𝐴𝑐𝑛) =

∏
𝑛⩾2

(
1 − 1

𝑛

)
= 𝑒

∑
𝑛⩾2 log(1− 1

𝑛 ) ,

and recalling of the inequality log(1 + 𝑥) ⩽ 𝑥, we have

P(𝐴) ⩽ 𝑒−
∑

𝑛⩾2
1
𝑛 = 𝑒−∞ = 0. □

7.3.3. Let 𝑋 be such that P(𝑋 = 𝑛) =
𝜆𝑛1
𝑛! 𝑒

−𝜆1 and 𝑌 with P(𝑌 = 𝑚) =
𝜆𝑚2
𝑚! 𝑒

−𝜆2 . To compute the
conditional expectation, since 𝑋 + 𝑌 is a discrete random variable, 𝜎(𝑋 + 𝑌 ) is generated by the events
{𝑋 + 𝑌 = 𝑘} who form a partition of the sample space Ω. Therefore

E[𝑋 | 𝑋 + 𝑌 ] =
∞∑︁
𝑘=0

1
P(𝑋 + 𝑌 = 𝑘)E[𝑋1𝑋+𝑌=𝑘]1𝑋+𝑌=𝑘 .

Now,

P(𝑋 + 𝑌 = 𝑘) =

𝑘∑︁
𝑗=0
P(𝑋 + 𝑌 = 𝑘,𝑌 = 𝑗) =

𝑘∑︁
𝑗=0
P(𝑋 = 𝑘 − 𝑗 , 𝑌 = 𝑗) 𝑖𝑛𝑑𝑒𝑝=

𝑘∑︁
𝑗=0
P(𝑋 = 𝑘 − 𝑗) (𝑌 = 𝑗)

=

𝑘∑︁
𝑗=0

𝜆
𝑘− 𝑗
1

(𝑘 − 𝑗)!𝑒
−𝜆1

𝜆
𝑗

2
𝑗!
𝑒−𝜆2 = 𝑒−(𝜆1+𝜆2 ) 1

𝑘!

𝑘∑︁
𝑗=0

(
𝑘

𝑗

)
𝜆
𝑘− 𝑗
1 𝜆

𝑗

2 = 𝑒−(𝜆1+𝜆2 ) (𝜆1 + 𝜆2)𝑘
𝑘!

.
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Similarly

E[𝑋1𝑋+𝑌=𝑘] =

𝑘∑︁
𝑗=0
E[𝑋1𝑋=𝑘− 𝑗1𝑌= 𝑗] =

𝑘∑︁
𝑗=0

(𝑘 − 𝑗)
𝜆
𝑘− 𝑗
1

(𝑘 − 𝑗)!𝑒
−𝜆1

𝜆
𝑗

2
𝑗!
𝑒−𝜆2

= 𝜆1𝑒
−(𝜆1+𝜆2 )

𝑘−1∑︁
𝑗=0

𝜆
𝑘−1− 𝑗
1 𝜆

𝑗

2
(𝑘 − 1 − 𝑗)! 𝑗! = 𝜆1𝑒

−(𝜆1+𝜆2 ) (𝜆1 + 𝜆2)𝑘−1

(𝑘 − 1)! .

Therefore

E[𝑋 | 𝑋 + 𝑌 ] =
∞∑︁
𝑘=0

1

𝑒−(𝜆1+𝜆2 ) (𝜆1+𝜆2 )𝑘
𝑘!

𝜆1𝑒
−(𝜆1+𝜆2 ) (𝜆1 + 𝜆2)𝑘−1

(𝑘 − 1)! 1𝑋+𝑌=𝑘 =
𝜆1

𝜆1 + 𝜆2

∑︁
𝑘

𝑘1𝑋+𝑌=𝑘 . □

7.3.4. We start noticing that
E[𝑋 | 𝑌 = 𝑦] = E[(𝑋 − 𝑚𝑋) + 𝑚𝑋 | 𝑌 − 𝑚𝑌 = 𝑦 − 𝑚𝑌 ] = 𝑚𝑋 + E[𝑋 − 𝑚𝑋 | 𝑌 − 𝑚𝑌 = 𝑦 − 𝑚𝑌 ],

so we are reduced to the case 𝑚𝑋 = 𝑚𝑌 = 0. We have

E[𝑋 | 𝑌 = 𝑦] =
∫
R
𝑥
𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

𝑑𝑥 =
1√︃

2𝜋 det𝐶
𝑐22

𝑒
𝑦2

2𝑐22

∫
R
𝑥𝑒

− 1
2𝐶

−1(𝑥𝑦) ·(𝑥𝑦)𝑑𝑥

Now,

𝐶−1 =
1

det𝐶

[
𝑐22 −𝑐12
−𝑐12 𝑐11

]
so,

𝐶−1
(
𝑥

𝑦

)
·
(
𝑥

𝑦

)
=

1
det𝐶

(
𝑐22𝑥

2 + 𝑐11𝑦
2 − 2𝑐12𝑥𝑦

)
.

Therefore, ∫
R
𝑥𝑒

− 1
2𝐶

−1(𝑥𝑦) ·(𝑥𝑦) 𝑑𝑥 =
∫
R
𝑥𝑒

−
𝑥2−2𝑥 𝑐12

𝑐22
𝑦+

(
𝑐12
𝑐22

𝑦

)2

2 det𝐶/𝑐22 𝑑𝑥 𝑒−
𝑐11𝑦

2
2 det𝐶 𝑒

𝑐2
12𝑦

2

2𝑐22 det𝐶

from which

E[𝑋 | 𝑌 = 𝑦] =
1√︃

2𝜋 det𝐶
𝑐22

exp

(
1
2

det𝐶 − 𝑐11𝑐22 + 𝑐2
12

𝑐22 det𝐶
𝑦2

) ∫
R
𝑥𝑒

−
(
𝑥− 𝑐12

𝑐22
𝑦

)2

2 det𝐶/𝑐22 𝑑𝑥

=
𝑐12
𝑐22

𝑦.

Returning to the conditional expectation we get

E[𝑋 | 𝑌 = 𝑦] = 𝑚𝑋 + 𝑐12
𝑐22

(𝑦 − 𝑚𝑌 ),

from which we finally have
E[𝑋 | 𝑌 ] = 𝑚𝑋 + 𝑐12

𝑐22
(𝑌 − 𝑚𝑌 ). □
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7.3.5. Let (𝑍,𝑊) := (𝑋 − 𝑌, 𝑋 + 𝑌 ) = Ψ(𝑋,𝑌 ). Then

E[𝑋 − 𝑌 | 𝑋 + 𝑌 = 𝑤] =
∫
R
𝑧 𝑓𝑍 |𝑊 (𝑧 | 𝑤) 𝑑𝑧 = 1

𝑓𝑊 (𝑤)

∫
R
𝑧 𝑓𝑍,𝑊 (𝑧, 𝑤) 𝑑𝑧,

if 𝑓𝑊 (𝑤) ≠ 0, and 0 elsewhere. Now,
𝑓𝑍,𝑊 (𝑧, 𝑤) = 𝑓𝑋,𝑌 (Ψ−1(𝑧, 𝑤)) | det(Ψ−1)′(𝑧, 𝑤) |.

We have

Ψ :

𝑧 = 𝑥 − 𝑦,

𝑤 = 𝑥 + 𝑦,
⇐⇒ Ψ−1 :


𝑥 = 𝑧+𝑤

2 ,

𝑦 = 𝑤−𝑧
2 ,

and
| det(Ψ−1)′(𝑧, 𝑤) | =

����det
[ 1

2
1
2

− 1
2

1
2

] ���� = 1
2
.

Therefore,
𝑓𝑍,𝑊 (𝑧, 𝑤) = 1

2
𝑓𝑋,𝑌

(𝑤 + 𝑧
2

,
𝑤 − 𝑧

2

)
=

1
2
𝑓

(𝑤 + 𝑧
2

)
𝑓

(𝑤 − 𝑧
2

)
,

so

𝐼 :=
∫
R
𝑧 𝑓𝑍,𝑊 (𝑧, 𝑤) 𝑑𝑧 = 1

2

∫
R
𝑧 𝑓

(𝑤 + 𝑧
2

)
𝑓

(𝑤 − 𝑧
2

)
𝑑𝑧 = −1

2

∫
R
𝑧 𝑓

(𝑤 − 𝑧
2

)
𝑓

(𝑤 + 𝑧
2

)
𝑑𝑧 = −𝐼

from which 𝐼 = 0. We conclude that
E[𝑋 − 𝑌 | 𝑋 + 𝑌 = 𝑤] = 0,

from which E[𝑋 − 𝑌 | 𝑋 + 𝑌 ] = 0. □

7.3.6. Let 𝑍 := E[𝑋 | 𝑌 ]. We have to check that
E[𝑋 | 𝑍] = 𝑍, ⇐⇒ E[𝑋1𝐹] = E[𝑍1𝐹], ∀𝐹 ∈ 𝜎(𝑍).

Let 𝐹 ∈ 𝜎(𝑍). Since 𝑍 = E[𝑋 | 𝑌 ] is, in particular, 𝑌−measurable, 𝐹 ∈ 𝜎(𝑌 ). So,
E[𝑋1𝐹] = E[E[𝑋 | 𝑌 ]1𝐹] = E[𝑍1𝐹],

and since 𝑍 ∈ 𝜎(𝑍) we conclude that E[𝑋 | 𝑍] = 𝑍 , from which the conclusion follows. □

7.3.7. Let (𝑋𝑛) ↑, 𝑋𝑛 ⩾ 0. Let 𝑋 := lim𝑛 𝑋𝑛, the limit existing because 𝑋𝑛 ↑ with 𝑛. Moreover, being
(𝑋𝑛) ⊂ 𝐿 (Ω), also 𝑋 ∈ 𝐿 (Ω) and since 𝑋𝑛 ⩾ 0 we have 𝑋 ⩾ 0. Let

𝑌𝑛 := E[𝑋𝑛 | 𝐺], 𝑌 := E[𝑋 | 𝒢] .
By the monotonicity of the conditional expectation, 𝑌𝑛 = E[𝑋𝑛 | 𝒢] ⩽ E[𝑋𝑛+1 | ℱ] = 𝑌𝑛+1 so, in
particular,

∃ lim
𝑛
𝑌𝑛 =: 𝑍.

Let’s check that 𝑍 = E[𝑋 | 𝒢]. First, since 𝑌𝑛 ∈ 𝒢, also 𝑍 ∈ 𝒢. Moreover, for 𝐺 ∈ 𝒢, we have

E[𝑋1𝐺]
𝑚𝑜𝑛𝑜𝑡.𝑐𝑜𝑛𝑣.

= lim
𝑛
E[𝑋𝑛1𝐺] = lim

𝑛
E[𝑌𝑛1𝐺]

𝑚𝑜𝑛𝑜𝑡.𝑐𝑜𝑛𝑣.
= E[𝑍1𝐺],

so 𝑍 = E[𝑋 | 𝐺] and from this it follows that
lim
𝑛
E[𝑋𝑛 | 𝒢] = E[𝑋 | 𝒢], P − 𝑎.𝑠. □
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7.3.8. We notice that
|E[𝑋𝑛 | 𝒢] − E[𝑋 | 𝒢] | = |E[𝑋𝑛 − 𝑋 | 𝒢] | ⩽ E [|𝑋𝑛 − 𝑋 | | 𝒢] .

Let 𝑍𝑛 := sup𝑘⩾𝑛 |𝑋𝑛 − 𝑋 |. Clearly
|𝑋𝑛 − 𝑋 | ⩽ 𝑍𝑛, =⇒ E [|𝑋𝑛 − 𝑋 | | 𝒢] ⩽ E [𝑍𝑛 | 𝒢]

and 𝑍𝑛 ↓ 0, so 0 ⩽ 𝑍1 − 𝑍𝑛 ↑ 𝑍1 − lim𝑛 𝑍𝑛 = 𝑍1 because, by i), 𝑍𝑛 −→ 0. Therefore, by 7.3.7.,
lim
𝑛
E[𝑍1 − 𝑍𝑛 | 𝒢] = E[𝑍1 | 𝒢], P − 𝑎.𝑠.

We also notice since |𝑋𝑛 | ⩽ 𝑌 ∈ 𝐿1, also |𝑋 | ⩽ 𝑌 and 𝑍𝑛 ⩽ sup𝑘⩾𝑛 ( |𝑋𝑛 | + |𝑋 |) ⩽ 2𝑌 ∈ 𝐿1. Therefore
E[𝑍1 − 𝑍𝑛 | 𝒢] = E[𝑍1 | 𝒢] − E[𝑍𝑛 | 𝒢],

and from this
lim
𝑛
E[𝑍𝑛 | 𝒢] = 0, P − 𝑎.𝑠.

from which the conclusion follows. □

8.5.2. Let 𝜀 > 0. We have

P( |𝑋𝑛 | ⩾ 𝜀) = P(𝑋𝑛 ⩾ 𝜀) =
∫ +∞

𝜀

𝑛𝑒−𝑛𝑥 𝑑𝑥 = [−𝑒−𝑛𝑥]𝑥=+∞𝑥=𝜀 = 𝑒−𝑛𝜀 −→ 0.

Is also 𝑋𝑛
𝐿1
−→ 0? We have

E[|𝑋𝑛 − 0|] = E[|𝑋𝑛 |] =
∫
R
|𝑥 |𝑛𝑒−𝑛𝑥1[0,+∞[ (𝑥) 𝑑𝑥 =

∫ +∞

0
𝑥𝑛𝑒−𝑛𝑥 𝑑𝑥

= [−𝑥𝑒−𝑛𝑥]𝑥=+∞𝑥=0 +
∫ +∞

0
𝑒−𝑛𝑥 𝑑𝑥 =

1
𝑛
[−𝑒−𝑛𝑥]𝑥=+∞𝑥=0 =

1
𝑛
−→ 0.

Is also 𝑋𝑛
𝑎.𝑠.−→ 0? This happens iff

P

(
lim sup

𝑛

{|𝑋𝑛 | ⩾ 𝜀
)
= 0.

We notice that

P( |𝑋𝑛 | ⩾ 𝜀) = 𝑒−𝑛𝜀 , =⇒
∑︁
𝑛

P( |𝑋𝑛 | ⩾ 𝜀) =
∑︁
𝑛

𝑒−𝑛𝜀 =
∑︁
𝑛

(𝑒−𝜀)𝑛 𝑒
−𝜀<1
=

1
1 − 𝑒−𝜀 < +∞.

By the first Borel-Cantelli lemma it follows that

P

(
lim sup

𝑛

{|𝑋𝑛 | ⩾ 𝜀
)
= 0,

so 𝑋𝑛
𝑎.𝑠.−→ 0. □

8.5.3. We have P(𝑋𝑛 = 0) = 1 − 1
𝑛

, P(𝑋𝑛 = 1) = 1
𝑛

. We check 𝑋𝑛
𝐿1
−→ 0. Indeed

E[|𝑋𝑛 − 0|] = E[|𝑋𝑛 |]
𝑋𝑛⩾0
= E[𝑋𝑛] = 0 · P(𝑋𝑛 = 0) + 1 · P(𝑋𝑛 = 1) = 1

𝑛
−→ 0.
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About a.s. limit, if 𝑋𝑛
𝑎.𝑠.−→ 𝑋 then, by 𝐿1 convergence necessarily 𝑋 = 0. This happens iff

∀𝜀 > 0, P (lim sup{|𝑋𝑛 | ⩾ 𝜀}) = 0.
Now, since |𝑋𝑛 | ⩾ 𝜀 iff 𝑋𝑛 ⩾ 𝜀 and, for 0 < 𝜀 ⩽ 1,

P(𝑋𝑛 ⩾ 𝜀) = P(𝑋𝑛 = 1) = 1
𝑛
,

being the 𝑋𝑛 independent the events 𝐸𝑛 = {𝑋𝑛 ⩾ 𝜀} are independent. Moreover, since∑︁
𝑛

P(𝐸𝑛) =
∑︁
𝑛

1
𝑛
= +∞,

the second Borel-Cantelli lemma applies: we conclude that
P (lim sup{|𝑋𝑛 | ⩾ 𝜀}) = 1,

thus (𝑋𝑛) is almost never convergent.

Since 𝑋𝑛
𝐿1
−→ 0, this implies that 𝑋𝑛

P−→ 0 and 𝑋𝑛
𝑑−→ 0. □

8.5.4. Since
∑
𝑛 𝜀𝑛 < +∞, we notice that if

(★) ∃𝑁, : |𝑋𝑛 | ⩽ 𝜀𝑛, ∀𝑛 ⩾ 𝑁,
then ∑︁

𝑛

|𝑋𝑛 | ⩽
𝑁−1∑︁
𝑛=0

|𝑋𝑛 |︸    ︷︷    ︸
𝑓 𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑚

+
∞∑︁
𝑛=𝑁

𝜀𝑛 < +∞,

that is
∑
𝑛 |𝑋𝑛 | converges, hence also

∑
𝑛 𝑋𝑛 converges. Therefore (★) is a sufficient condition for

convergence. We notice that

𝑝 := P (∃𝑁, : |𝑋𝑛 | ⩽ 𝜀𝑛, ∀𝑛 ⩾ 𝑁) = P
(⋃
𝑁

⋂
𝑛⩾𝑁

{|𝑋𝑛 | ⩽ 𝜀𝑛}
)
,

so the conclusion holds if 𝑝 = 1 or, equivalently,

0 = P

(⋂
𝑁

⋃
𝑛⩾𝑁

{|𝑋𝑛 | > 𝜀𝑛}
)
= P

(
lim sup

𝑛

{|𝑋𝑛 | > 𝜀𝑛}
)
.

According to first Borel-Cantelli Lemma, this happens if
∑
𝑛 P({|𝑋𝑛 | > 𝜀𝑛) is finite, this being true

because, by assumption, P( |𝑋𝑛 | > 𝜀𝑛) ⩽ P( |𝑋𝑛 | ⩾ 𝜀𝑛) ⩽ 𝜀𝑛 and
∑
𝑛 𝜀𝑛 < +∞. □

8.5.5. By assumption
P( |𝑋𝑛 − 𝑋 | ⩾ 𝜀) −→ 0, P( |𝑌𝑛 − 𝑌 | ⩾ 𝜀) −→ 0, ∀𝜀 > 0.

Now, since
| (𝑋𝑛 + 𝑌𝑛) − (𝑋 + 𝑌 ) | = | (𝑋𝑛 − 𝑋) + (𝑌𝑛 − 𝑌 ) | ⩽ |𝑋𝑛 − 𝑋 | + |𝑌𝑛 − 𝑌 |,

it is clear that
| (𝑋𝑛 + 𝑌𝑛) − (𝑋 + 𝑌 ) | ⩾ 𝜀, =⇒ |𝑋𝑛 − 𝑋 | ⩾

𝜀

2
∨ |𝑌𝑛 − 𝑌 | ⩾

𝜀

2
,
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otherwise, if |𝑋𝑛 − 𝑋 |, |𝑌𝑛 − 𝑌 | < 𝜀
2 we would have | (𝑋𝑛 + 𝑌𝑛) − (𝑋 + 𝑌 ) | < 𝜀. This means that

P ( | (𝑋𝑛 + 𝑌𝑛) − (𝑋 + 𝑌 ) | ⩾ 𝜀) ⩽ P
(
{|𝑋𝑛 − 𝑋 | ⩾

𝜀

2
} ∪ {|𝑌𝑛 − 𝑌 | ⩾

𝜀

2
}
)

⩽ P
(
{|𝑋𝑛 − 𝑋 | ⩾

𝜀

2
}
)
+ P

(
{|𝑌𝑛 − 𝑌 | ⩾

𝜀

2
}
)
−→ 0.

8.5.6. i) Let 𝜙𝑋𝑛
be the characteristic function of 𝑋𝑛. Since 𝑓𝑋𝑛

∈ 𝐿1(R) we have

𝜙𝑋𝑛
(𝜉) = E[𝑒𝑖 𝜉𝑋𝑛] =

∫
R
𝑓𝑋𝑛

(𝑥)𝑒𝑖 𝜉 𝑥 𝑑𝑥 = 𝑓̂𝑋𝑛
(−𝜉).

Now, we remind that �1
𝑎2 + ♯2 (𝜉) =

𝜋

𝑎
𝑒−𝑎 | 𝜉 | ,

so

𝑓̂𝑋𝑛
(𝜉) = 𝑛

𝑛2𝜋

�1(
1
𝑛

)2
+ ♯2

(𝜉) = 1
𝑛𝜋

𝜋

1/𝑛𝑒
− |𝜉 |

𝑛 = 𝑒−
|𝜉 |
𝑛 .

From this,
𝜙𝑋𝑛

(𝜉) = 𝑒−
|𝜉 |
𝑛 −→ 𝑒0 = 1𝜙0(𝜉), =⇒ 𝑋𝑛

𝑑−→ 0.
ii) We have

P ( |𝑋𝑛 − 0| ⩾ 𝜀) = P ( |𝑋𝑛 | ⩾ 𝜀) =
∫
|𝑥 |⩾𝜀

𝑓𝑋𝑛
(𝑥) 𝑑𝑥 = 1

𝜋

∫
|𝑥 |⩾𝜀

𝑛

1 + 𝑛2𝑥2 𝑑𝑥 =
2
𝜋

∫ +∞

𝜀

𝑛

1 + (𝑛𝑥)2 𝑑𝑥

=
2
𝜋
[arctan(𝑛𝑥)]𝑥=+∞𝑥=𝜀 =

2
𝜋

(𝜋
2
− arctan(𝑛𝜀)

)
−→ 2

𝜋

(𝜋
2
− 𝜋

2

)
= 0, 𝑛→ +∞.

We conclude that 𝑋𝑛
P−→ 0.

iii) Since a.s. convergence implies convergence in probability, if 𝑋𝑛
𝑎.𝑠.−→ 𝑋 , then, necessarily, 𝑋 = 0,

that is 𝑋𝑛
𝑎.𝑠.−→ 0. Now, this happens iff

P

(
lim sup

𝑛

{|𝑋𝑛 | ⩾ 𝜀}
)
= 0, ∀𝜀 > 0.

Notice that
P( |𝑋𝑛 | ⩾ 𝜀) =

2
𝜋

(𝜋
2
− arctan(𝑛𝜀)

)
−→ 0.

Now, the question is: is this enough to make
∑
𝑛 P( |𝑋𝑛 | ⩾ 𝜀) convergent? If yes, the conclusion would

follow by the first Borel-Cantelli Lemma. To discuss this, we need to establish the asymptotic behavior
of arctan(𝑛𝜀) when 𝑛 ∼ +∞, for 𝜀 > 0 fixed. To this aim we recall the remarkable identity

arctan 𝑥 + arctan
1
𝑥
=
𝜋

2
, ∀𝑥 > 0,

so
𝜋

2
− arctan(𝑛𝜀) = arctan

1
𝑛𝜀

∼ 1
𝑛𝜀
,
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being arctan 𝑦 ∼ 𝑦 when 𝑦 → 0. Therefore,∑︁
𝑛

P( |𝑋𝑛 | ⩾ 𝜀) ∼
∑︁
𝑛

1
𝑛𝜀

= +∞.

Since the (𝑋𝑛) are independent, and
∑
𝑛 P( |𝑋𝑛 | ⩾ 𝜀) = +∞, we can apply the second Borel-Cantelli

Lemma and conclude that
P (lim sup{|𝑋𝑛 | ⩾ 𝜀}) = 1,

that is (𝑋𝑛) is almost never convergent. □

8.5.7. Let𝑈𝑛 ∼ 𝑈 ( [0, 1]) be i.i.d. and let 𝑋𝑛 := min(𝑈1, . . . ,𝑈𝑛). Then

𝐹𝑋𝑛
(𝑥) = P(min(𝑈1, . . . ,𝑈𝑛) ⩽ 𝑥) =


0, 𝑥 < 0,

1, 𝑥 ⩾ 1.

For 0 ⩽ 𝑥 ⩽ 1 we have
𝐹𝑋𝑛

(𝑥) = P(min(𝑈1, . . . ,𝑈𝑛) ⩽ 𝑥)

= P ({𝑈1 ⩽ 𝑥} ⊔ {𝑈1 > 𝑥,𝑈2 ⩽ 𝑥} ⊔ . . . {𝑈1,𝑈2, . . . ,𝑈𝑛−1 > 𝑥,𝑈𝑛 ⩽ 𝑥})

= P(𝑈1 ⩽ 𝑥) + P(𝑈1 > 𝑥, 𝑈2 ⩽ 𝑥) + · · · P(𝑈1 > 𝑥, . . . ,𝑈𝑛−1 > 𝑥,𝑈𝑛 ⩽ 𝑥).

Now, by the independence,

P(𝑈1 > 𝑥, . . . ,𝑈𝑘−1 > 𝑥,𝑈𝑘 ⩽ 𝑥) = P(𝑈1 > 𝑥) · · · P(𝑈𝑘−1 > 𝑥)P(𝑈𝑘 ⩽ 𝑥) = 𝑥(1 − 𝑥)𝑘−1.

Therefore,

𝐹𝑋𝑛
(𝑥) = 𝑥 + 𝑥(1 − 𝑥) + 𝑥(1 − 𝑥)2 + · · · + 𝑥(1 − 𝑥)𝑛−1 = 𝑥

𝑛−1∑︁
𝑘=0

(1 − 𝑥)𝑘 = 𝑥 1 − (1 − 𝑥)𝑛
1 − (1 − 𝑥) = 1 − (1 − 𝑥)𝑛.

We conclude that

𝐹𝑋𝑛
(𝑥) =


0, 𝑥 < 0,
1 − (1 − 𝑥)𝑛, 0 ⩽ 𝑥 ⩽ 1,
1, 𝑥 > 1.

ii) We notice that

𝐹𝑛𝑋𝑛
(𝑥) = P(𝑛𝑋𝑛 ⩽ 𝑥) = P(𝑋𝑛 ⩽

𝑥

𝑛
) = 𝐹𝑋𝑛

( 𝑥
𝑛

)
=


0, 𝑥 < 0,
1 −

(
1 − 𝑥

𝑛

)𝑛
, 0 ⩽ 𝑥 ⩽ 𝑛,

1, 𝑥 > 𝑛.

From this we notice that

𝐹𝑛𝑋𝑛
(𝑥) −→

{
0, 𝑥 < 0,
1 − 𝑒−𝑥 , 𝑥 ⩾ 0, =: 𝐹𝑌 (𝑥),

where 𝑌 ∼ exp(1), and 𝑛𝑋𝑛
𝑑−→ 𝑌 .
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Let’s discuss convergence in probability: since this is stronger than convergence in distribution, the
unique possibility is 𝑛𝑋𝑛

P−→ 𝑌 , that is

P( |𝑛𝑋𝑛 − 𝑌 | ⩾ 𝜀) −→ 0.

Let 𝛼 > 0 be fixed and let 𝑛 ⩾ 𝛼 (that is 𝑛 ⩾ [𝛼] + 1). We notice that
{|𝑛𝑋𝑛 − 𝑌 | ⩾ 𝜀} = {𝑌 ⩽ 𝛼, 𝑛𝑋𝑛 ⩽ 𝑌 − 𝜀 ∨ 𝑛𝑋𝑛 ⩾ 𝑌 + 𝜀} ⊔ {𝑌 > 𝛼, 𝑛𝑋𝑛 ⩽ 𝑌 − 𝜀 ∨ 𝑛𝑋𝑛 ⩾ 𝑌 + 𝜀}

⊃ {𝑌 ⩽ 𝛼, 𝑛𝑋𝑛 ⩾ 𝛼 + 𝜀} ⊔ {𝑌 > 𝛼, 𝑛𝑋𝑛 ⩽ 𝛼 − 𝜀}
so

P( |𝑛𝑋𝑛 − 𝑌 | ⩾ 𝜀) ⩾ P(𝑌 ⩽ 𝛼, 𝑛𝑋𝑛 ⩾ 𝛼 + 𝜀) + P(𝑌 > 𝛼, 𝑛𝑋𝑛 ⩽ 𝛼 − 𝜀).
Now,

P(𝑌 ⩽ 𝛼, 𝑛𝑋𝑛 ⩾ 𝛼+𝜀) = P({𝑌 ⩽ 𝛼}\{𝑛𝑋𝑛 ⩽ 𝛼+𝜀}) ⩾ P(𝑌 ⩽ 𝛼)−P(𝑛𝑋𝑛 ⩽ 𝛼+𝜀) = 1−𝑒−𝛼−
(
1 − 𝛼 + 𝜀

𝑛

)𝑛
,

and, similarly,

P(𝑌 > 𝛼, 𝑛𝑋𝑛 ⩽ 𝛼 − 𝜀) ⩾ P(𝑛𝑋𝑛 ⩽ 𝛼 − 𝜀) − P(𝑌 < 𝛼) =
(
1 − 𝛼 − 𝜀

𝑛

)𝑛
− (1 − 𝑒−𝛼).

Therefore

P( |𝑛𝑋𝑛 − 𝑌 | ⩾ 𝜀) ⩾
(
1 − 𝛼 − 𝜀

𝑛

)𝑛
−

(
1 − 𝛼 + 𝜀

𝑛

)𝑛
−→ 𝑒−(𝛼−𝜀) − 𝑒−(𝛼+𝜀) = 2𝑒−𝛼 cosh 𝜀 > 0.

From this it follows that lim𝑛 P( |𝑛𝑋𝑛 −𝑌 | ⩾ 𝜀) cannot be = 0, so (𝑋𝑛) cannot converge in probability to
𝑌 .

8.5.8. i) We have

𝐹𝑀𝑛
(𝑥) = P(max(𝑋1, . . . , 𝑋𝑛) ⩽ 𝑥) = P({𝑋1 ⩽ 𝑥} ∩ · · · {𝑋𝑛 ⩽ 𝑥}) =

𝑛∏
𝑘=1
P(𝑋𝑘 ⩽ 𝑥).

Since we know that

P(𝑋𝑘 > 𝑥) =
1
√
𝑥
, 𝑥 ⩾ 1, 𝐹𝑋𝑘

(𝑥) = P(𝑋𝑘 ⩽ 𝑥) = 1 − P(𝑋𝑘 > 𝑥) = 1 − 1
√
𝑥
, 𝑥 ⩾ 1,

in particular 𝐹𝑋𝑘
(1) = 0 and since 𝐹𝑋𝑘

↗, this means that 𝐹𝑋𝑘
(𝑥) = 0 for every 𝑥 ⩽ 1. Therefore,

𝐹𝑀𝑛
(𝑥) = 0 for 𝑥 ⩽ 1, while

𝐹𝑀𝑛
(𝑥) =

𝑛∏
𝑘=1

(
1 − 1

√
𝑥

)
=

(
1 − 1

√
𝑥

)𝑛
, 𝑥 ⩾ 1.

ii) Clearly, lim𝑛 𝐹𝑀𝑛
(𝑥) = 0 for every 𝑥 ⩽ 1. For 𝑥 > 1 fixed, since 1 − 1√

𝑥
< 1,

lim
𝑛→∞

𝐹𝑀𝑛
(𝑥) = lim

𝑛→∞

(
1 − 1

√
𝑥

)𝑛
= 0.

Therefore,
lim
𝑛→+∞

𝐹𝑀𝑛
(𝑥) = 0, ∀𝑥 ∈ R.
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From this it follows that (𝑀𝑛) cannot be convergent in distribution to any 𝑀 . Indeed, if this would
happen, we would have 𝐹𝑀𝑛

(𝑥) −→ 𝐹𝑀 (𝑥) at every 𝑥 continuity point of 𝑀 . Since the number of
discontinuity points of 𝑀 is at most countable (see exercise 3.4.9), it means that 𝐹𝑀 (𝑥) = 0 apart, at
most, for a countable set of 𝑥. This implies 𝐹𝑀 ≡ 0. Indeed, if 𝐹𝑀 (𝑥0) > 0 for some 𝑥0, then by
monotonicity, 𝐹𝑀 (𝑥) ⩾ 𝐹𝑀 (𝑥0) > 0 for every 𝑥 > 𝑥0. Therefore 𝐹𝑀 shuld be discontinuous at every
𝑥 > 𝑥0 (otherwise, 𝐹𝑀 (𝑥) = 0), thus the set of discontinuity points of 𝐹𝑀 would contain [𝑥0, +∞[, that
is, it would be uncountable.

9.4.1. We have

𝜙
𝑋𝑛

(𝜉) = E
[
𝑒𝑖 𝜉𝑋𝑛

]
= E

[
𝑒𝑖

𝜉

𝑛

∑𝑛
𝑘=1 𝑋𝑘

]
= E

[∏
𝑘

𝑒𝑖
𝜉

𝑛
𝑋𝑘

]
𝑖𝑛𝑑𝑒𝑝
=

∏
𝑘

E[𝑒𝑖
𝜉

𝑛
𝑋𝑘 ] =

∏
𝑘

𝜙𝑋𝑘

(
𝜉

𝑛

)
.

Since 𝑋𝑘 ∈ 𝐿1(Ω),
𝜙𝑋𝑘

(𝜂) = 𝜙𝑋𝑘
(0) + 𝜕𝜂𝜓𝑋𝑘

(0)𝜂 + 𝑜(𝜂) = 1 + 𝑖𝜂E[𝑋𝑘] + 𝑜(𝜂) = 1 + 𝑖𝜂𝑚 + 𝑜(𝜂),
so

𝜙𝑋𝑘

(
𝜉

𝑛

)
= 1 + 𝑖 𝜉

𝑛
𝑚 + 𝑜

(
𝜉

𝑛

)
.

Therefore

𝜙
𝑋𝑛

(𝜉) =
∏
𝑘

(
1 + 𝑖 𝜉

𝑛
𝑚 + 𝑜

(
𝜉

𝑛

))
=

(
1 + 𝑖 𝜉

𝑛
𝑚 + 𝑜

(
𝜉

𝑛

))𝑛
−→ 𝑒𝑖 𝜉𝑚, ∀𝜉 ∈ R.

The conclusion now follows by the continuity theorem. □

9.4.2. We notice that
1
√
𝑛
| (𝑋1, . . . , 𝑋𝑛) | =

√√
1
𝑛

𝑛∑︁
𝑘=1

𝑋2
𝑘

so, the conclusion is equivalent to

P
©­«1 − 𝜀

√
3
⩽

√√
1
𝑛

𝑛∑︁
𝑘=1

𝑋2
𝑘
⩽

1 + 𝜀
√

3
ª®¬ = P

(
(1 − 𝜀)2

3
⩽

1
𝑛

𝑛∑︁
𝑘=1

𝑋2
𝑘 ⩽

(1 + 𝜀)2

3

)
−→ 1.

This is equivalent to
1
𝑛

𝑛∑︁
𝑘=1

𝑋2
𝑘

P−→ 1
3
.

Since the 𝑋𝑘 are i.i.d. (with 𝑓𝑋𝑘
(𝑥) = 1

2 1[−1,1] (𝑥)), the same holds for the 𝑋2
𝑘
. Moreover,

E[𝑋2
𝑘] =

∫ 1

−1
𝑥2 𝑑𝑥

2
=

∫ 1

0
𝑥2 𝑑𝑥 =

[
𝑥3

3

] 𝑥=1

𝑥=0
=

1
3
,

and,

V[𝑋2
𝑘] = E[𝑋

4
𝑘] − E[𝑋𝑘]

4 =

∫ 1

−1
𝑥4 𝑑𝑥

2
=

∫ 1

0
𝑥4 𝑑𝑥 =

[
𝑥5

5

] 𝑥=1

𝑥=0
=

1
5
.

Therefore, the Chebishev theorem applies and the conclusion follows. □
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9.4.3. i) We notice that

E[𝑋𝑘] = 𝑘 ×
1

2𝑘 log 𝑘
− 𝑘 × 1

2𝑘 log 𝑘
+ 0 ×

(
1 − 1

2𝑘 log 𝑘

)
= 0,

and
V[𝑋𝑘] = E[𝑋2

𝑘] − E[𝑋𝑘]
2 = 2𝑘2 × 1

2𝑘 log 𝑘
=

𝑘

log 𝑘
.

By the Chebishev bound,

P
(
|𝑋𝑛 | ⩾ 𝜀

)
⩽

1
𝜀2𝑛2V

[
𝑛∑︁
𝑘=1

𝑋𝑘

]
.

By the independence,

V

[
𝑛∑︁
𝑘=1

𝑋𝑘

]
=

𝑛∑︁
𝑘=1
V [𝑋𝑘] =

𝑛∑︁
𝑘=2

𝑘

log 𝑘
,

so

lim
𝑛→+∞

P
(
|𝑋𝑛 | ⩾ 𝜀

)
⩽

1
𝜀2 lim

𝑛

1
𝑛2

𝑛∑︁
𝑘=2

𝑘

log 𝑘
.

We notice that, if 𝑓 (𝑘) := 𝑘
log 𝑘 , 𝑓 ′(𝑘) = log 𝑘−1

(log 𝑘 )2 ⩾ 0 for 𝑘 ⩾ 1. In particular, 𝑘
log 𝑘 ↑, so

1
𝑛2

𝑛∑︁
𝑘=1

𝑘

log 𝑘
⩽

1
𝑛2

𝑛∑︁
𝑘=1

𝑛

log 𝑛
=

1
𝑛2

𝑛

log 𝑛
· 𝑛 = 1

log 𝑛
−→ 0,

so
lim
𝑛→+∞

P
(
|𝑋𝑛 | ⩾ 𝜀

)
= 0,

this ensuring that 𝑋𝑛
P−→ 0.

ii) If 𝑋𝑛 converges P−a.s., necessarily 𝑋𝑛
𝑎.𝑠.−→ 0. We notice that

𝑋𝑛 =
1
𝑛

𝑛∑︁
𝑘=1

𝑋𝑘 =
1
𝑛

𝑛−1∑︁
𝑘=1

𝑋𝑘 ± 1 =
𝑛 − 1
𝑛

𝑋𝑛−1 ± 1 =
𝑛 − 1
𝑛

𝑋𝑛−1 +
𝑋𝑛

𝑛
=:
𝑛 − 1
𝑛

𝑋𝑛−1 + 𝑌𝑛.

If 𝑋𝑛
𝑎.𝑠.−→ 0, then

𝑌𝑛 = 𝑋𝑛 −
𝑛 − 1
𝑛

𝑋𝑛−1 −→ 0, P − 𝑎.𝑠.
This happens iff

P(lim sup
𝑛

|𝑌𝑛 | ⩾ 𝜀) = 0.

However, since the 𝑌𝑛 are independent, and

P( |𝑌𝑛 | ⩾ 𝜀) = P(𝑋𝑛 = ±𝑛) = 1
𝑛 log 𝑛

, =⇒
∑︁
𝑛

P( |𝑌𝑛 | ⩾ 𝜀) =
∑︁
𝑛

1
𝑛 log 𝑛

= +∞,

by the second Borel-Cantelli lemma we obtain
P(lim sup

𝑛

|𝑌𝑛 | ⩾ 𝜀) = 1.
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We get a contradiction, The conclusion is that 𝑋𝑛 cannot be convergent with probability 1. □

9.4.4. We notice that, setting 𝑌𝑘 := 𝑋𝑘𝑋𝑘+1, 𝑌𝑘 ∈ 𝐿1(Ω) (indeed, E[|𝑌𝑘 |] = E[|𝑋𝑘 | |𝑋𝑘+1 |] =

E[|𝑋𝑘 |]E[|𝑋𝑘+1 |] < +∞), and moreover

E[𝑌𝑘] = E[𝑋𝑘𝑋𝑘+1] = E[𝑋𝑘]E[𝑋𝑘+1] = 𝑚2.

We also notice that, if 𝜇 is the common law of the 𝑋𝑘 , then

𝐹𝑌𝑘 (𝑦) = P(𝑋𝑘𝑋𝑘+1 ⩽ 𝑢) =
∫
𝑥𝑦⩽𝑢

𝜇(𝑑𝑥)𝜇(𝑑𝑦)

is independent of 𝑘 , that is the 𝑌𝑘 are identicaslly distributed. However, 𝑌𝑘 is not independent of 𝑌𝑘+1
because both variables depend on 𝑋𝑘+1. However, 𝑌1, 𝑌3, . . . , 𝑌2𝑘+1, . . . are independent and, similarly,
𝑌2, 𝑌4, . . . , 𝑌2𝑘 , . . . areindependent too. The 𝐿1 SLLN applies, so if 𝑛 := 2𝑁 + 1 we have

𝑌𝑛 =
1

2𝑁 + 1

2𝑁+1∑︁
𝑘=1

𝑌𝑘 =
1

2𝑁 + 1
©­«
𝑁∑︁
𝑗=0
𝑌2 𝑗+1 +

𝑁∑︁
𝑗=1
𝑌2 𝑗

ª®¬
=
𝑁 − 1

2𝑁 + 1
1

𝑁 + 1

𝑁∑︁
𝑗=0
𝑌2 𝑗+1 +

𝑁

2𝑁 + 1
1
𝑁

𝑁∑︁
𝑗=1
𝑌2 𝑗

𝑎.𝑠.−→ 1
2
𝑚2 + 1

2
𝑚2 = 𝑚2,

and, similarly
𝑌2𝑁

𝑎.𝑠.−→ 𝑚2.

We conclude that 𝑌𝑛
𝑎.𝑠.−→ 𝑚2. □

9.4.5. As suggested, let 𝑋𝑘 be independent random variables uniformly distributed on [0, 1]. In this
way

E[𝜑(𝑋1, . . . , 𝑋𝑛)] =
∫
R𝑛
𝜑(𝑥1, . . . , 𝑥𝑛) 𝑑𝜇𝑋1,...,𝑋𝑛

(𝑥1, . . . , 𝑥𝑛) =
∫
[0,1]𝑛

𝜑(𝑥1, . . . , 𝑥𝑛) 𝑑𝑥1 · · · 𝑑𝑥𝑛.

Therefore, ∫
[0,1]𝑛

𝑥2
1 + · · · + 𝑥2

𝑛

𝑥1 + · · · + 𝑥𝑛
𝑑𝑥1 · · · 𝑑𝑥𝑛 = E

[
𝑋2

1 + · · · + 𝑋2
𝑛

𝑋1 + · · · + 𝑋𝑛

]
.

Now, since (𝑋𝑘), (𝑋2
𝑘
) ⊂ 𝐿1(Ω) are i.i.d., the 𝐿1−SLLN applies and

1
𝑛

𝑛∑︁
𝑘=1

𝑋𝑘
𝑎.𝑠.−→ E[𝑋1] =

1
2
,

while
1
𝑛

𝑛∑︁
𝑘=1

𝑋2
𝑘

𝑎.𝑠.−→ E[𝑋2
1 ] =

1
3
.

Therefore,
𝑋2

1 + · · · + 𝑋2
𝑛

𝑋1 + · · · + 𝑋𝑛
=

1
𝑛

∑𝑛
𝑘=1 𝑋

2
𝑘

1
𝑛

∑𝑛
𝑘=1 𝑋𝑘

𝑎.𝑠.−→ 1/3
1/2

=
2
3
.
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Therefore,

lim
𝑛

∫
[0,1]𝑛

𝑥2
1 + · · · + 𝑥2

𝑛

𝑥1 + · · · + 𝑥𝑛
𝑑𝑥1 · · · 𝑑𝑥𝑛 = lim

𝑛
E

[
𝑋2

1 + · · · + 𝑋2
𝑛

𝑋1 + · · · + 𝑋𝑛

]
(∗)
= E

[
lim
𝑛

𝑋2
1 + · · · + 𝑋2

𝑛

𝑋1 + · · · + 𝑋𝑛

]
=

2
3
,

provided (∗) applies. To carry lim𝑛 inside theE, we invoke the Lebesgue dominated convergence theorem:
we already know that

lim
𝑛

𝑋2
1 + · · · + 𝑋2

𝑛

𝑋1 + · · · + 𝑋𝑛
=

2
3
, P − 𝑎.𝑠..

We need to dominate (independently of 𝑛) the ratio. To this aim, we just notice that, since 𝑋𝑘 ∈ [0, 1],
then 0 ⩽ 𝑋2

𝑘
⩽ 𝑋𝑘 ⩽ 1, so

𝑋2
1 + · · · + 𝑋2

𝑛 ⩽ 𝑋1 + · · · + 𝑋𝑛, =⇒
𝑋2

1 + · · · + 𝑋2
𝑛

𝑋1 + · · · + 𝑋𝑛
⩽ 1 := 𝑍 ∈ 𝐿1(Ω), P − 𝑎.𝑠.

The conclusion now follows. □

9.4.6. i) No: indeed,

E[|𝑋𝑘 |]
∫
R
|𝑥 | 𝑓𝑋𝑘

(𝑥) 𝑑𝑥 =
∫
R
|𝑥 | 1
𝜋

𝑎

𝑎2 + 𝑥2 𝑑𝑥 = +∞.

ii) Let 𝑋𝑛 = 1
𝑛

∑𝑛
𝑘=1 𝑋𝑘 . Then

𝜙
𝑋𝑛

(𝜉) = E
[
𝑒𝑖

𝜉

𝑛

∑𝑛
𝑘=1 𝑋𝑘

]
= E

[
𝑛∏
𝑘=1

𝑒𝑖
𝜉

𝑛
𝑋𝑘

]
𝑖𝑛𝑑𝑒𝑝
=

𝑛∏
𝑘=1
E

[
𝑒𝑖

𝜉

𝑛
𝑋𝑘

]
=

𝑛∏
𝑘=1

𝜙𝑋𝑘

(
𝜉

𝑛

)
.

Notice that

𝜙𝑋𝑘
(𝜉) =

�1
𝜋

𝑎

𝑎2 + ♯2 (−𝜉) =
𝑎

𝜋

𝜋

𝑎
𝑒−𝑎 |−𝜉 | = 𝑒−𝑎 | 𝜉 | ,

so

𝜙
𝑋𝑛

=

𝑛∏
𝑘=1

𝑒−𝑎 |
𝜉

𝑛 = 𝑒−𝑎 | 𝜉 | .

iii) Since 𝜙
𝑋𝑛

(𝜉) ≡ 𝑒−𝑎 | 𝜉 | −→ 𝑒−𝑎 | 𝜉 | , ∀𝜉 ∈ R, by the continuity theorem 𝑋𝑛
𝑑−→ 𝑋 where 𝑋 has the

same distribution of 𝑋𝑘 .
Let’s analyze the convergence in probability. Since this is stronger than convergence in distribution, if

true, necessarily 𝑋𝑛
P−→ 𝑋 where 𝑋 is still a Cauchy distribution of same type of the 𝑋𝑘 . We notice that

{|𝑋𝑛 − 𝑋 | ⩾ 𝜀} ⊂
{
|𝑋𝑛 | ⩾

𝜀

2

}
∪

{
|𝑋 | ⩾ 𝜀

2

}
9.4.7. We notice that(

𝑒−𝑛

𝑋1 · 𝑋2 · · · 𝑋𝑛

)1/
√
𝑛

= 𝑒
1√
𝑛
(−𝑛−∑𝑛

𝑘=1 log𝑋𝑘)
= 𝑒

− 1√
𝑛

∑𝑛
𝑘=1 (log𝑋𝑘+1)
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so, if 0 < 𝑎 < 𝑏,

𝑎 ⩽

(
𝑒−𝑛

𝑋1 · · · 𝑋𝑛

)1/
√
𝑛

⩽ 𝑏, ⇐⇒ − log 𝑏 ⩽
1
√
𝑛

𝑛∑︁
𝑘=1

(log 𝑋𝑘 + 1) ⩽ − log 𝑎

Now, if 𝑌𝑘 := log 𝑋𝑘 + 1 we have that

E[𝑌𝑘] = 1 + E[log 𝑋𝑘] = 1 +
∫ 1

0
log 𝑥 𝑑𝑥 = 1 + [𝑥 log 𝑥]𝑥=1

𝑥=0 −
∫ 1

0
1 𝑑𝑥 = 0,

and
V[𝑌𝑘] = E[𝑌2

𝑘 ] − E[𝑌𝑘]
2 = E

[
(1 + log 𝑋𝑘)2] = 1 + 2E[log 𝑋𝑘]︸      ︷︷      ︸

=−1

+E[log2 𝑋𝑘] = E[log2 𝑋𝑘] − 1.

We have

E[log2 𝑋𝑘] =
∫ 1

0
log2 𝑥 𝑑𝑥 =

[
𝑥 log2 𝑥

] 𝑥=1
𝑥=0 −

∫ 1

0
𝑥2 log 𝑥 · 1

𝑥
𝑑𝑥 = 0 − 2

∫ 1

0
log 𝑥 𝑑𝑥 = 2,

from which V[𝑌𝑘] = 2 − 1 = 1. From the CLT

1
√
𝑛

𝑛∑︁
𝑘=1

𝑌𝑘
𝑑−→ 𝒩(0, 1),

and since the limit distribution is absolutely continuous, in particular

P

(
𝑎 ⩽

(
𝑒−𝑛

𝑋1 · · · 𝑋𝑛

)1/
√
𝑛

⩽ 𝑏

)
= P

(
− log 𝑏 ⩽

1
√
𝑛

𝑛∑︁
𝑘=1

𝑌𝑘 ⩽ − log 𝑎

)
−→

∫ − log 𝑎

− log 𝑏
𝑒−

𝑥2
2

𝑑𝑥
√

2𝜋
. □

9.4.8. We notice that

𝑌𝑛 :=
∑𝑛
𝑘=1 𝑋𝑘√︃∑𝑛
𝑘=1 𝑋

2
𝑘

=
1√︃

1
𝑛

∑𝑛
𝑘=1 𝑋

2
𝑘

1
√
𝑛

𝑛∑︁
𝑘=1

𝑋𝑘 .

By the assumptions, (𝑋2
𝑘
) ⊂ 𝐿1(Ω) are i.i.d., hence, by the 𝐿1−SLLN we have

1
𝑛

𝑛∑︁
𝑘=1

𝑋2
𝑘

𝑎.𝑠.−→ E[𝑋2
1 ] =: 𝜎2.

Therefore,
𝑍𝑛 :=

𝜎√︃
1
𝑛

∑𝑛
𝑘=1 𝑋

2
𝑘

𝑎.𝑠.−→ 1,

and

𝑌𝑛 = 𝑍𝑛
1

𝜎
√
𝑛

𝑛∑︁
𝑘=1

𝑋𝑘 .

Now, by the CLT, being E[𝑋𝑘] = 0, we have

1
𝜎
√
𝑛

𝑛∑︁
𝑘=1

𝑋𝑘
𝑑−→ 𝒩(0, 1),
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We claim that also
𝑌𝑛

𝑑−→ 𝒩(0, 1).
We need a general fact:

𝑍𝑛
𝑎.𝑠.−→ 1, 𝑌𝑛

𝑑−→ 𝑌, =⇒ 𝑍𝑛𝑌𝑛
𝑑−→ 𝑌 .

Indeed, we have

𝜙𝑍𝑛𝑌𝑛 (𝜉) = E[𝑒𝑖 𝜉 𝑍𝑛𝑌𝑛] = E[𝑒𝑖 𝜉𝑌𝑛𝑒𝑖 𝜉 (𝑍𝑛−1)𝑌𝑛] = E[𝑒𝑖 𝜉𝑌𝑛] + E
[
𝑒𝑖 𝜉𝑌𝑛

(
𝑒𝑖 𝜉 (𝑍𝑛−1)𝑌𝑛 − 1

)]
and since, by assumption, E[𝑒𝑖 𝜉𝑌𝑛] = 𝜙𝑌𝑛 (𝜉) −→ 𝜙𝑌 (𝜉), we need to prove that the last term goes to 0.
We have���E [

𝑒𝑖 𝜉𝑌𝑛
(
𝑒𝑖 𝜉 (𝑍𝑛−1)𝑌𝑛 − 1

)] ��� ⩽ E [���𝑒𝑖 𝜉 (𝑍𝑛−1)𝑌𝑛 − 1
���]

= E
[���𝑒𝑖 𝜉 (𝑍𝑛−1)𝑌𝑛 − 1

��� 1 |𝑌𝑛 |<𝐾
]
+ E

[���𝑒𝑖 𝜉 (𝑍𝑛−1)𝑌𝑛 − 1
��� 1 |𝑌𝑛 |⩾𝐾

]
Here 𝐾 is fixed independently of 𝑛 (we will see son how). The first expectation goes to 0 because of the
dominated convergence: since 𝑍𝑛

𝑎.𝑠.−→ 1, and |𝑌𝑛 | < 𝐾 , (𝑍𝑛 − 1)𝑌𝑛 −→ 0, and everything is controlled
by 1 ∈ 𝐿1(Ω). About the second expectation we have

E
[���𝑒𝑖 𝜉 (𝑍𝑛−1)𝑌𝑛 − 1

��� 1 |𝑌𝑛 |⩾𝐾
]
⩽ 2P( |𝑌𝑛 | ⩾ 𝐾),

and since P( |𝑌𝑛 | ⩾ 𝐾) −→ P( |𝑌 | ⩾ 𝐾), we can say that P( |𝑌𝑛 | ⩾ 𝐾) ⩽ P( |𝑌 | ⩾ 𝐾) + 𝜀 ⩽ 2𝜀 for 𝑛 large,
and 𝐾 large enough. Therefore

lim
𝑛

���E [
𝑒𝑖 𝜉𝑌𝑛

(
𝑒𝑖 𝜉 (𝑍𝑛−1)𝑌𝑛 − 1

)] ��� ⩽ 2𝜀,

and since 𝜀 > 0 can be take arbitrarily, we have the conclusion.


