StocuasTic METHODS FOR ENGINEERING
ANSWERS To LN EXERCISES

2.5.1. i) We have
Cov(aX +b,cY +d)

VaX + b2V [cY +d]V/?’

plaX +b,cY +d) =

Now,
Cov(aX +b,cY +d) =E[a(X —E[X])c(Y —E[Y])] = ac Cov(X,Y),
and
V[aX +b] = Cov(aX + b,aX +b) = a*V[X],
SO

acCov(X,Y)
lalle[VIX]/2V[Y]1/2

p(aX+b,cX+d) = =sgn(ac)p(X,Y).

i) If Y = aX + b we have
p(X.Y) = p(X,aX +b) = sgn(a)p(X, X) = sgn(a) = £1,
being p(X, X) = 1. Vice versa, assume p(X,Y) = +1, that is

Cov(X,Y)
V[X] 1/2V[Y] 1/2

==+1.

Since
| Cov(X. V)| = [E[(X ~E[X])(Y ~E[Y])]| < E[(X ~E[X])*]'E[(Y ~E[¥])*]'/? = V[X]'2V[¥]'/2,

and equality holds iff one or both X —E[X], Y —E[Y] vanish or if they are linearly dependent. In the first
case, one or both X and Y should be constant, but being X, Y non costant by assumption, it must be they
are linearly inedependent, so for example

Y -E[X] = A(X -E[X]).
From this Y = aX + b for suitable a, b € R. ]
2.5.2. On (Q, F,P) = ([-1, 1], B, 311) take
Y(w) = w,
and X = Y2, In this way p(X,Y?) = p(Y2,Y?) = 1. Clearly E[Y] = 0 and
Cov(X,Y) =E[XY] - E[X]E[Y] = E[XY] = E[Y?] =0,
from which p(X,Y) = 0. O

253. 1) 2,X € 8 indeed, ux(@) = 0 = uy(2) and ux(R) = 1 = uy(R). If E € 8§ then
ux(E€) =1 —pux(E) =1 - puy(E) = uy(E®), so als E€ € 8. Finally, if (E,) C 8. We can always
transform into a disjoint union

U E, = I_I Fy,
n n

1



2

setting Fy = E| and, forn > 2, F,, = F,,_1 U (E,;\ F,—1). Therefore

UEn I_IFn :Z/JX(Fn):ZﬂY(Fn):ﬂY

n
This proves that 8 is a o —algebra.
ii) Since § D intervals, it contains the o-—algebra generated by intervals, which is Bg, that is § > Bg.
Therefore, ux(E) = uy (E) for every E € %Bx. O

3.4.1. We have

LJE|.

n

px = px = Hy

|7,
n

Pla<X<b)=P{H{X <b}\{X <a}),
and since {X < a} C {X < b} (here a < b) and P is a probability measure, subtractivity holds and
PUX <bp\{X <a}) =P{X <b}) -P({X <a}) =Fx(b) -P({X <a}).
From the continuity from below of P,

P{X <a})= lim P(X <x)= lim F(x),

)
P(a < X < b) = Fx(b) - lim Fx(x).
X—a-—
Similarly,
Pla<X<b)=P(X<b)-P(X<a)= lirlr} Fx(x) — Fx(a),

x—b—

and

PX>2b)=1-P(X<b)=1- lirlrjl Fx(x)

x—b—

and

P(X=a) =P({X <a}\{X <a}) = Fx(a) = lim Fx(x). O

3.4.5. Let X be a.c. with density fx. We notice that X> > 0 P—a.s., so Fy2(x) = P(X? < x) = 0 for
x < 0. For x > 0 we have

NS
Fre() =P(X* <) =F(-V < X <) = | S0,

so, for x > 0,
OFye(x) = 0 jﬁ Fx () dy | = (VB —= — F(—VR) (—i) = L (i (VR) + (D)
xL'x X e X X NG E E X X .
Therefore,
0, x <0,
Haxez(x) = = sz (x)

ﬁ; (fx(Vx) + fx(=vx)), x>0

This says that X? is a.c. and fy is its density. O



3.4.6. i) We have

0, y <0,
Fy(y) =P(Y <y) =PHIX[<y) = s e
P(X| <)) =] pe 200 25 y >0,
By the fundamental thm of integral calculus,
0, y <0,
30, Fy (y) = )  (p2om)? 52-m)? = fr(y).
\/2:7 (e 2wl +e 207 ) y =0,
ii) In this case Y = ®(X) where ®(x) = lﬂ% is bijective. Indeed,
0<y<l 1 1 1- 1-
y = O(x), = 1+e_x=;, = e_x=;—1=Ty, — x=-log y=CI>_1(y).
Therefore
B 1y 1 (log 1;y+m)2 y 1
K =K@ ONI@T (»] = A (‘_2)
no BN

1 1 _(log FTy+m)2
= a2 1 .
Varya-y¢ 7t o

34.7. LetY = [X] with X ~ exp(4). We remind that Fx(x) := (1 — e"lx)l[o,wo[(x). Being Y = [X]
we have that P(Y < 0) =0, so Fy(y) =0 forevery y < 0. Let y > 0. We notice that

Fy(y) =P(Y <y) =P([X] <y) =P([X] < [y]) = P(X < [y]) = Fx([y]) = 1 — e~ "I].

Therefore,

Fy(y) = (1 - e—ﬂlyl) lys0. O

3.4.8. Without loss of generality we may assume xo = 0, so Pg = (0,yq). If 8 €] —n/2,7/2[ is
the angle made by ry and the y—axis, the abscissa of the intersection with the x—axis is x = —ygtan6.
Assuming ® ~ U(] — n/2,7/2[) we have that X = —yptan® = ®(®) and since ® is invertible on
| = /2, n/2[ with inverse

@~ !(x) = arctan i,
0
we get
1 I 1 o

1+(1)2y0 myp
Yo

F (@) = fo( @ @@V (I = 11 apoap (arctan yﬁ)

3.4.9. i) If x* # y* say x* < y* then, being Fx T, we have that Fx(x*) < Fx(y*—). Therefore
1Fx(x*=), Fx(x")[N] Fx (y*-), Fx(y") [= @.
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ii) For every I, there is at least a rational g, € I,~. Since the (I,~) are disjoint, the correspondence
x* + I+ — q’,. is injective, so theset of discontinuity points {x*} is at most countable. O

4.3.1. See slides.
4.3.2. i) To be a probability density, fx.y mustbe > 0 a.e. (x,y) € R? (this needs ¢ > 0) and such that

ij fxy = 1. Since
1 21y=2 3
fxy—J‘ J dde—cI 22+ y_] dx =c¢ 2[x_

R2 0 212 y=0 3

from which ¢ = 3
ii) The marginal density fx is obteined by the formula

x=1
+[PP | =
x=0

3 2 X 3 x [v? y=2
fx(x)=J fX,Y(er’)dy:_l[O,l](x)j x2+—ydy=—1[o,1](x) PR P = - (x"+x) 10,17 (x)
. 5 o2 5 2( 2,
iii) We have
1 px 1 ro47x=1
3 Xy 3 5 3|x 3
P(X >Y) = dxdy = S+ D) dyde==| XPdx==|= =—.
(X > Y) L?yfx,m,y) cdy L L 2+ D) dy e SL e b RS

4.3.3. Let fxy(x,y) := e‘(“”l[o,ﬂo[z(x,y). Since fxy = 0 on R?\[0,+co[2, we have that
P((X,Y) € R2) = 1. We also notice that

P(Y=0) = J fxy(x,0) dxdy =0,
x€R,y=0

and, similarly P(X = 0) = 0. Therefore P(Y < 0) =P(X <0) =0, so
Fx/y(u) = P(X/Y < u) = O, Yu < 0.
For u > 0, being P(Y > 0) = 1 we have

Fxyy(u) =P(X/Y <u) =P(X <uY)= J fxy(x,y) dxdy = J e” g ooz () dxdy
xXsuy x<uy

+00 +00 400 +00 +0o
= J. j e~ dy dx = J e"‘J e Vdy dx = J e [~e ], dx
0 x/u

0 x/u 0
+00 +00 -(1+)x =
_ _ _ 1 e u u
=I e Yo x/udxzj e (1+u)xdx= _ 1 _
0 0 1+-+ u+1
u x=0

Therefore,
Fxy(u) = T 110, +c0p (14).
From this we see that F/y is a.e. differentiable with

1
OuFxy(u) = fxyy(u) = m1u>o- |



4.3.4. Clearly, f > 0. To be a probability density it must verify

~ [ s dsay= [ e®= ey duay " | ¢(R - p)p dpdo
R3 B(0,R] 0<p<R, 0<0<2n
R 2 3 3
R R 2R
:c27rj (R-p)pdo=2nc|R— — =,
2 6
from which ¢ = LR Now, for 0 < a < R we have
6 (¢ 6 a al a?
P((X,Y) € B(O0, = ,y) dxdy = — R - dp=—|R— - —|=—3R-2a).
((X.¥) € B, a)) JB(O,a]f(x ) dudy = = [ (R~ p)p o R3( : 3) 4 GR ~20)

The distance from the centre of the targetis D := VX2 + Y2, The problem asks to compute the distribution
of D. Starting from the cdf

0, a <0,
Fp(a) =P ((X.Y) € B(0.a]) ={ % (3R-2a), 0<a<R,

1, a>R.

Clearly, Fp is differentiable for a # 0, R, so D is absolutely continuous with density

0, a<0,a>R 6a
fp(a) = 0aFp(a) = , = —(R —a)ljo,r)(a).
2(BR-2a)+%(-2)=34(3R-a), 0<a<R,
Finally,
R .42 3 4
6a 6 R> R R
E[D]=£Rafp(a) da=JO F(R—a) da:F(R?—T):E O

4.3.9. i) We notice that

eoaper=| L 7] ()()

N——————
=M
where M is a 2 x 2 matrix with det M = 1 — p?. Therefore
1
—c!, c= L p i
1-p? o 1

with C positive definite (provided p? < 1) and symmetric matrix. Therefore, if v = (§ ), we have

_lc-hy.
fv)=cem2C M,
1

Vern)2-p?)

so f is a Gaussian density with ¢ =



ii) Let (X, Z) = (X, Y-pX ) = W(X,Y). Notice that V¥ is a linear transformation of R? into itself, and

¥ (x, y) , i | det 9| = — |det(¥1Y| = |1 - p2
"y =| e _1_ |, = |det¥]= , = |det(W)| = /1 - p2.
1-p? 1-p? V1 - p?
Moreover
X =x, X =x,
(x,2) = ¥(x,y), = _ v = i
1—p2’ y=+/1-p°z+ px,

Therefore, if v = (x, z),

1 Le-ITy.
frz(x,2) = fry(x, 1 - p2z+ px)yf1 - p? = e 3CTTVTY

\V(2r)?
: [ 1 0 }
| p 1-p?
We notice that 77" = C, so

T7C'T=17(rT") 'T=T7(r") 'T7'T =1,

where

from which 1
1 2,2
Ix.z(x,2) = EEASRER)
V(2r)?
2
This shows that (X, Z) ~ #(0,1,). Clearly fz(z) = \/%Tre‘”?, thatis Z ~ 470, 1).
iii) We have
x2+22 d d
P(X >0,Y>0) =P(X>0,1/1—p2Z+pX>O)=J e 2 ez
x>0, z>- %,)ZX (2m)?
1 +0o 2 +00 12 1 +00 42
=—J e_ZJ e_Zdde:—j e T |[1-Df- p x|| dx
2r Jo -~ V2r Jo 1 - p?
P
1 1 J‘L‘x’ a2 0
== —-— e 7D |- x| dx.
2 V2rJo V1= p? )
Zz . . . .
where ®(u) := Ju e 7 j—i is the cdf of the standard Gassian. Let, for brevity, r :== ——%2—. We notice
—0 2n 1-p2?
2
"y) = o5
that @’ (u) = = Therefore
1 J+oo Zq) p d 1 I+oo xzq)( ) d ( )
—— e 20| x| dx = — e 2®(rx) dx =: I(r).
V2r Jo 1-p? V2r Jo




N}

w1

We notice that, differentiating under integral sign, being @’ (u) = e~ 2 T

where r = —
1-p
8,1(r) J‘+°° 21 22 dx 1 (* _ ()2 1
L 1(r) = e 2 e” 2 x— = — xe 2 X = ——.
0 V2 2z 27 Jo —_— 2r)(1+7r2)
o )%
X 12
From this,
I(r) = —arctanr+c

00 X2
and since 7(0) = \/%7 f; e~ 7®(0) dx = %, we get

1
I(r)=— arctan r+ T

Therefore

1 1 Jol 1 1 1 Jol
P(X >0,Y >0) == — [ z—arctan - —|=—+—arct .
(X>0,Y>0) 3 (znarcan( — +4) 7 + 7, arotan T

5.3.1. For a standard Bernoulli r.v., P(X = 0) = p, P(X = 1) = 1 — p we have

¢x(&) =E[e"¥X] = *'B(X = 0) + ¥ 'P(X = 1) = p + (1~ p)e’*

For a binomialr.v. X € {0,...,n},P(X = k) = (Z)pk(l — p)"* (with p € [0, 1]), we have
n

ox(&) =E[X]) =) dR(X=k) = ) (Z)Pk“ =) (Z)(eifmk(l -t

n

k=0 k=0
= (1 -p +pei§)n.
For a Poissonr.v. X e N,P(X = k) = e‘/l’}(—f, SO
dx (&) = E[e'¢X] :Z ke _/l/l = Z (/le =t =MD g
k=0
5.3.2. Since fx € L'(R), we have
md 1
= piém-al&l
ox(£) = Fx(=£) = 2+(ﬁ BO = (O =e :

5.3.3. If fx(x) = %xa-le-m[o,m[(x), then
/la—l +00

/la_l +00 )
a—le—/lxetfx dx =

dx (&) = fx (=€) = (@)

xa—le—(/l—if)x dx

I'(a)

a-1

" T(a)

INa)(A—-i&)~%=- (1—%)



5.3.6. Since u(E) = E[Y1g(X)], thatis

[ 1o du=B1r1c00).

By linearity,
[ s du=ztrs001.
for every simple function s. By standard afproximation, we get
| e au=Breco voe .
In particular, setting (x) = e'¢* we get
JR e du(x) = E[Ye'¢X] =0, V& e R,

so (=€) = 0. From injectivity it follows that u = 0. The second part (Y = 0) is not true unless Y = f(X).
5.3.7. i) We have

7)) = URe-"fx du(x)

< J le™ 6% du = 1.
R

ii) We have
RO = | e duto) = | T8 duo) = [ 6 du(v = -,
R R R
iii) We have
D HE - )27 = J DT Y 7 du(x) = j DTz Y e du(x) > 0.
Tk RSk R k
N e e ———
=w(x) =w(x)
iv) We have

() = jR ¢EY du(x) = JR F(Ex) du().

We notice that f(#,x) € €(R) for u—a.e. x € R, and | f(£,x)| = 1 € L'(R, ). By continuity of integrals
depending on parameters, i € € (R). ]

5.3.8. Let ¢x (&) = E[ei¢X] = fx(=&). Then

16x (€)1 = x(£)bx (&) = (=) Fx (=€) = fx (=0 () Fx (&) = fx(—4) * fx (&) = (fx (=) * fx) (~H) ().

Now, let

FO) = (=) = fi) (=) = jR Fe(=x) fie(—y —x) dx = LR F () fx(—y +x) d.




By Young theorem, being fx € L', f is well defined and L'. Clearly, f > 0 (being fx > 0) and

JRf(y) dy = JR JR Fx(6) f(=y +x) dx dy = JR JR Fx(0) =y +3) dy dx

= J fX(x)J fx(=y+x)dy dx = J‘ fx(x)dx =1,
R R R

=1
so f is a probability density. As well known, there is Y r.v. such that fy = f and the conclusion
follows. =

5.3.9. If dux = fx(x) dx, then
px (&) = fx(=§).
Known that jix € L'(R), inversion formula would apply and

RO =FR(-6. = fx(x) = 5= Jx(~0) = 5 Fix (B ().

This formula yileds the possible fx. This is the starting point. Let
I ——
fx(x) = z—ﬂx(—ﬁ)(—X)-
Vs
The goal is to check that duy = fx(x) dx. We notice that, by the duality Lemma, if ¢, € L! we have

[vwman = [ v mEDE0 dr= 5 [ SE0REDE b
R R Vs T JR

1 _ 1 —~ —
-5 | sCBOm -0 de = o | F-ome ae

duality 1

o | B0 ) = 5 [ ) duxto)

inve;sion JRw(X) d,llx(x).
Therefore,
wax)fx(x) dx=fR¢<x> dix (), Vo © . € L'(R).

In particular, this holds for every ¢ € §(R), and by standard approximation arguments, for every Borel
function. =

6.4.1. We notice that
PX>x,Y>y) =1-PH{X<x}U{yr<y ) =1-PX<x)+PY <y)-P(X<x,Y<Y))

=1 - (Fx(x) + Fy (y) = Fxy(x,y)).
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On the other side,
P(X > )P(Y > y) = (1 -P(X <x)) (1 = P(Y <)) = | = Fx(x) = Fy(y) + Fx(x) Fy (),

and by the assumption
1 (Fx(x) + Fy(y) = Fxy(x,y)) = 1 = Fx(x) = Fy (y) + Fx(x) Fy (y),

from which
Fxy(x,y) = Fx(x)Fy(y), Y(x,y) € R?,
which is equivalent to the independence of X and Y. m]
6.4.3. i) We have f_y(y) = fy(—y) = e 2179l = ¢=2’l = £(y). The characteristic function is
0 +00
$-v(&) =or()= J e'@e M dy = J ey dy +J U2 dy
R —00 0
pli€+2)y 1770 [e(if—Z)y]y:+°° 1 1 4
== il = - = .
iE+2 | i£-2 |, E+2 iE-2 4+¢&2
ii) Since Z = X — Y and X, Y are independent,
4 \2
62(6) = 031 () = ox(61©) = (')
m]

As we can see, Z is not a Laplace random variable.
6.4.5. Let X € [0,a] and Y € [0, b]. Then, the area of the triangle is Tx y = %XY. So, being X,Y
independent (so fx y(x,y) = fx(x)fr(y) = él[o,a] (x)%l[o,b] (»)), the required probability is

1 b
P(Tx,y > —ab) :P(XY > a—) :J
2 x

1
2 —110,a1 () 1[0,p] (y) dxdy

y>abj2 ab

1

ab 0<x<a, 0<y<b, xyzab/2

1 (¢ (b 1 (¢ b a1 1
:—J J Ldy dx = — (b—a—)dxzj (———)dx
ab Jap Javox ab Jap 2x ap\a  2x

1 - 1+1log?2
=3 (1 - [logx]izz/z) =—
6.4.8. i) Let S,, := min(Ty,...,T,_1). Let

Fs, (1) = P(min(Ty, ..., Th-1) <1).

Since 0 < 7} < 1 forevery j, Fs, (1) =0ifr <0Oand Fs, () =1ifr > 1. For0 <t < 1,

1 dxdy

n—1
Fs,(t)=1=P(min(Ty,...., T, ) > ) = 1=[ [P > ) = 1= (1-0)""",
kzl\_\/_._—/
=1-t



In conclusion

0, t <0,
Fs,(t)={ 1-(1-0)"', 0<t<1,
1, t > 1.
ii) Since S;, := min(7y, ..., T,-1) depends on Ty, ..., T,_1, which are independent of T, we have that S,

and 7;, are independent, and the conclusion follows.
iii) Let A,, be the event ”a new record is set in the n—th race. We can write this as

A, =A{T, <min(Ty,...,T,)} = {T, < S»}.
Therefore
P = [ s, o) dids ST [ gy 05,5 dis
We notice that f7, (1) = 1{0,1] (t)t\j&;hile -
fs,(s) = o (n = (1 = )" 72,
)

1 pl
P(A,) = L ‘<l(n —1)(1 = 9)""2 drds = L J (n=1)(1-5)""%ds dt

z=1_ 1

a-»"

n

1
=J (=50 dtzj —~(1-0)""dt=
0

1
0 =0
iv) The event ”a record remains unbroken” is A := A; N (),,5, Aj;. By independence,

P(A) =P(A) | [P(Ag) =] | (1 - %) = X2 loe(1-3)

n>2 n>2

n

and recalling of the inequality log(1 +x) < x, we have
P(A) < e Zmin =¢™®=0. O
7.3.3. Let X be such that P(X = n) = /:l—q,le"" and Y with P(Y = m) = /lm—znze"lz. To compute the

conditional expectation, since X + Y is a discrete random variable, o-(X + Y) is generated by the events
{X +Y = k} who form a partition of the sample space Q. Therefore

- 1
E[X|X+Y] = Z —————E[XIxsy=k] 1 x4y=¢-
P P(X+Y =k)

Now,
k k .

P(X+Y = k) :ZP(X+Y:k,Y:j):ZP(X:k—j,Y:j)m:epZ]P)(X:k—j)(Y:j)
= 70 70

k j i k .
= Z e—/1| Qe—/b — e—(/l|+/lz)i Z k /lk_j/lj _ e_(,1|+/12) (/11 +/12) ‘
(k=pt ! K4 1N 7
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Similarly
k k Pl J

BXIxaar] = D EX Ixesejlyaj] = (k= ) rtpe ™ e ™
=0 7=0 AN

k-1 k=1-j4J _
=le —(A1+A2) Z /l /l — /lle—(/11+,12) (4 +/12)k :
(k—l—J)'J' (k—1)! ~
Therefore

N - A+ )k A1
X X+Y = 1 (/11+/12)(—1 = 1 o
| Z 4 e~ (Ui+dy) Ut)” (/11+/12)" 1€ (k—1)! X+Y=k L+ ; X+Y=k

7.3.4. We start noticing that
E[X|Y=y]=E[(X-mx)+mx Y —my =y-mY] =mx+E[X —mx | Y —my =y —mY],

so we are reduced to the case myx = my = 0. We have

BIX ¥ =y = [ L2200 J O g

2 RO \/Tftzzc

Now,
-1 _ 1 €2  —C12
detC | —c12 cn1
SO,
-1 (X 1 2 2
C y . y :M(czzx +cr1y —2c12xy).
Therefore,
2
-1 x? ZXC£V+(C£)) c11)2 c%2y2
J xe 2 ( ) ( ) dx —J 2detC/cyo dx @ 2detC g 2¢pdetC
R R
from which
c 2
1 ]detc—611622+62 (X_%V)
E[X|Y=y] =——=¢€xp 12,2 J xe 2&Clen dy
2 pdetC detC 2 cyydetC R
€22
C12
22

Returning to the conditional expectation we get
C12
E[X Y =yl =mx+—(y —my),
€2

from which we finally have

C
E[X | Y] =mx+ —2(Y —my). O
(&)



7.3.5. Let (Z,W) := (X - ¥, X +Y) = ¥(X,Y). Then

E[X-Y|X+Y=w]= JR 2fziw(z | w) dz = zfz.w(z,w) dz,

fzw(zw) = fxy (¥ (z, W) det(¥™) (z, w)].

‘We have
¥ . — vy
w=x+y, y =%,
and
1 1 1
|det(‘P_1)'(z,w)|:det[ 2, %”:—.
3 2 2
Therefore,
1 w+z w-—z 1 /w+z w—2z
SO
1 w+z w =2z 1 W=z w4+ 2z
I= w)dz=~ )d:—— ( ) ( )d=—1
jRZfZ’W(Z w) dz 2[sz( 2 )f( 2 )% 2IRZf N EART A

from which I = 0. We conclude that
E[X-Y|X+Y=w]=0,
from which E[X -Y | X +Y] =0. O
7.3.6. Let Z := E[X | Y]. We have to check that
E[X|Z]=Z, < E[Xlg]=E[Z]lF], VF € o(2).
Let F € 0(Z). Since Z = E[X | Y] is, in particular, Y —measurable, F' € o (Y). So,
E[X1r] =E[E[X | Y]1F] =E[Z1F],
and since Z € o (Z) we conclude that E[X | Z] = Z, from which the conclusion follows. O

7.3.7. Let (X;,) T, X;, 2 0. Let X :=lim,, X,,, the limit existing because X;, T with n. Moreover, being
(Xn) € L(Q), also X € L(Q) and since X,, > 0 we have X > 0. Let

Y, :=E[X, | G], Y :=E[X|¥].

By the monotonicity of the conditional expectation, Y, = E[X,, | €] < E[Xu+1 | F] = Yue1 s0, in
particular,
dlimY, =: Z.
n
Let’s check that Z = E[X | €]. First, since Y,, € &, also Z € €. Moreover, for G € &, we have
E[XIG] monoéconv. hmE[anG] — ]ij[Yan] mOYlOZ:.COI’lV. E[ZIG],
n n

so Z = E[X | G] and from this it follows that
IimE[X, |¢]=E[X | €], P-a.s. O
n



7.3.8. We notice that
|E[X. | €] -E[X | &]| = [E[X, - X | Z]I <E[|X, — X| | &].
Let Z,, = supy,, |X,, — X|. Clearly
|Xn - X< Zy, = El[lXy-X||%] <E[Z,|¥]

and Z, | 0,500 < Z, - Z, T Z; - lim,, Z, = Z because, by i), Z, — 0. Therefore, by 7.3.7.,
lirllnE[Zl -7, €] =E[Z,| €], P—a.s.

We also notice since |X,| <Y € L', also |X| < Y and Z,, < supy,(|1Xn| +|X]) < 2Y € L. Therefore
E[Z,-Z, | 9] =E[Z | ¢] -E[Z, | Z],

and from this
limE[Z, | €] =0, P-a.s.
n

from which the conclusion follows.

8.5.2. Let £ > 0. We have

X=&

+00
P(1Xn| > &) =P(X, > &) = J ne ™ dx =[-e "I =" — 0.

1
Is also X, L, 0? We have

+00
E[|X, — 0[] = E[|X,]] =f [xle ™ g oo (¥) dx=j xne ™™ dx
R 0

Is also X,, = 0? This happens iff
P (lim sup{| Xy| = a) =0.
n
We notice that

—_e 1
B(IXal > £) = e = Y P(Xul 2 8)= ) e = ) ()" =
n n n

1—e¢

< +00.

By the first Borel-Cantelli lemma it follows that
P (lim sup{|X,| = 8) =0,
n
so X, %0,
1
8.5.3. Wehave P(X,, =0) =1 — %, P(X,=1)= % We check X, L, 0. Indeed

> 1
E[|X, - 0] = E[|X,]] *"E[X,] =0-P(X, =0) +1-P(X, =1) = — —> 0.
n



About a.s. limit, if X,, =5 X then, by L! convergence necessarily X = 0. This happens iff
Ve > 0, P(limsup{|X,| = &}) =

Now, since | X,,| > € iff X;, > € and, for 0 < & < 1,
1
P(X, > &) =P(X,=1) =

being the X,, independent the events E,, = {X,, > &} are 1ndependent Moreover, since

D P(E,) = Z - = oo,

the second Borel-Cantelli lemma applies: we conclude that
P (limsup{|X,| = &}) =1,
thus (X,,) is almost never convergent.
Since X,, - 0, this implies that X, — 0 and X,, - 0. o
8.5.4. Since }, £, < +oo0, we notice that if
(%) 3N, : |X,| < &p, Vu =N,

N-1 )
Zanl < Z | X +Z£n<+°°7
n n=0 n=N

N— e
finite sum

that is ), |X,| converges, hence also ), X,, converges. Therefore (%) is a sufficient condition for
convergence. We notice that

p:=P@3N, : |Xn| < &n, Vn > ):P(Uﬂ{|xn|<sn}),

N n>N

then

so the conclusion holds if p = 1 or, equivalently,

0=P (ﬂ | 1%l > gn}) =P (limsup{an| > gn}) .

N n>N
According to first Borel-Cantelli Lemma, this happens if Y, P({|X,| > &,) is finite, this being true
because, by assumption, P(|X,,| > &,) < P(|X,| = &,) < &, and Y, &, < +o0. |
8.5.5. By assumption
P(|X,—X|>¢) —0, P(]Y,-Y|>¢&) — 0, Ve > 0.
Now, since
|(Xn +Y5) = (X +Y)| = [(Xn = X) + (Y = V)| < | X = X[ +|Vn - Y,

it is clear that

[(Xn+Yn) - (X+Y)|2e, = [Xpn-X|2=- VI|,-Y|>

&
2a

l\JIOD
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otherwise, if | X,, — X[, [V, = Y| < § we would have |(X,, +Y,) — (X +Y)| < &. This means that

P(|(Xn+Yn) - (X+Y)[>8) < P({IX,,—X| > g}u{m-n > g})

({|X ~X| > })+P({|Y —Y|> })—>o.

e

2

8.5.6. i) Let ¢x, be the characteristic function of X,,. Since fx, € L'(R) we have
03,6 =B = | i, (06 de = T (o).

Now, we remind that

Zpmalél
— ﬁz@ ,
)
— n 1 1 o _la _lel
(€)= - ——5—(@) = — e Th =,
n’m (4 ) nrl/n
() +
From this,
bx, (&) =e”n — 0= 1g0(), = X, -5 0.
ii) We have
1 n 2 [t n
P(X,-0 =P(X, dx = ——dx=— _—
(X, =03 8) =F(X,|>e)= Jlx|>€fx (x) dx = Ju Lt e
2 2 2
= = [arctan(nx)]}ZL™ = - (g —arctan(ng)) — = (g - g) =0, n— +oo.

P
We conclude that X;,, — 0.
iii) Since a.s. convergence implies convergence in probability, if X, 2% X, then, necessarily, X =0,
that is X, — 0. Now, this happens iff

P (limsup{|Xn| > 8}) =0, Ye > 0.
n

Notice that
P(|X,| =€) =— (— - arctan(ng)) — 0.

Now, the question is: is this enough to make Z P(|X,,| = &) convergent? If yes, the conclusion would
follow by the first Borel-Cantelli Lemma. To discuss this, we need to establish the asymptotic behavior
of arctan(ne) when n ~ +oo, for € > 0 fixed. To this aim we recall the remarkable identity

1 n
arctan x + arctan — = 5 Vx > 0,
X

o)
big 1 1
— —arctan(ng) = arctan — ~ —
2 ne ne’



being arctany ~ y when y — 0. Therefore,

;Pum > 6) ~ Z o

Since the (X,,) are independent, and Y, P(|X,| = &) = +co, we can apply the second Borel-Cantelli
Lemma and conclude that

P (limsup{|Xy| > &}) = 1,
that is (X,,) is almost never convergent.

8.5.7. Let U, ~ U([0,1]) be i.i.d. and let X, := min(Uy,...,U,). Then

0, x<0,
Fx, (x) = P(min(Uy,...,U,) <x) =
1, x>1.

For 0 < x < 1 we have

Fx,(x) =P(min(Uy,...,U,) <x)
=PH{U, <x}u{U; >x,Uy <x}u...{Uy,U,,..., U1 >x,U, <x})

=P(U, <x)+PU; >x, U <x)+---P(U; >x,...,Uy_1 >x,U, <x).
Now, by the independence,
P(U; > x,...,Uk1 > x,Up <x) =P(U; > x) - P(Ug_1 > x)P(Ug < x) =x(1 —x)* 1.

Therefore,

n—1
1-(1-x)"
Fx, (x) =x+x(1 —x) +x(1 )+ x(l—x)"! zxZ(l —x)k zxM =1-(1-x)".
k—O 1-(1-x)
We conclude that
0, x <0,
Fx,()={ 1-(1-0" 0<x<l,
1, x> 1.
ii) We notice that
0, x <0,
X X n
Fax, (¥) = B(nX, <x) = P(X, < 2) = Fx, () ={ 1-(1-%)", 0<x<n,
n n
1, X > n.

From this we notice that
Fan(X)—> { l—e™*, x>0, = Fy(X),

where Y ~ exp(1), and nX, <, Y.



Let’s discuss convergence in probability: since this is stronger than convergence in distribution, the
unique possibility is nX, LN Y, that is
P(|nX, -Y| =€) — 0.
Let @ > O be fixed and let n > « (thatis n > [a] + 1). We notice that
{InX, -Y|>e} ={Y<a,nX,<Y-eVvVnX,2Y+elu{Y >a, nX,<Y-eV nX,>Y+e¢}

>S{Y <a,nX,za+e}u{Y >a, nX, <a-—&}
)
P(|nX, -Y|2¢e)2PY <a, nX,2a+¢e)+P{Y > a, nX, < a-e¢).

Now,

P(Y < @, nX, > a+e) =P({Y < a}\{nX, < a+e}) > P(Y < a)-P(nX, < a+e) = 1-e” (1 _ “":8)",

and, similarly,

—_ n
P(Y > «a, an<a—a)>P(an<a/—s)—P(Y<a):(1—a 8) —(1-e"9).
Therefore
a—&\" a+et —(a-g) —(a+e) -
P(|nX, -Y| > ¢) > ( ) —(l— ) — e —e =2e¢ %coshe > 0.
n n

From this it follows that lim,, P(|nX,, — Y| > &) cannot be = 0, so (X;,) cannot converge in probability to
Y.

8.5.8. i) We have
Fu, () = P(max(X1,..., Xp) <) =P({X; <x} N (X, <x}) = [ [PXk <),

Since we know that

1 1
]P’(Xk>x)=$,x>1, Fx, (x) =P(Xx < x)—l—P(Xk>x)—1—$ x =1,

in particular Fx, (1) = 0 and since Fx, 7, this means that Fx,(x) = O for every x < 1. Therefore,
Fp, (x) =0 forx < 1, while

Fg, () = (1__)=(1__),x>1.
ii) Clearly, lim,, Fiy, (x) = 0 for every x < 1. For x > 1 fixed, since 1 — —= < 1,

f

n—o0 X

. . 1)\"
,}HBOFM”()C) = lim (1 —?) =0.

Therefore,
lim Fy, (x) =0, Vx e R.
n—+oo
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From this it follows that (M,,) cannot be convergent in distribution to any M. Indeed, if this would
happen, we would have Fys, (x) — Fp(x) at every x continuity point of M. Since the number of
discontinuity points of M is at most countable (see exercise 3.4.9), it means that Fjs(x) = O apart, at
most, for a countable set of x. This implies Fpy = 0. Indeed, if Fjs(xg) > O for some xp, then by
monotonicity, Fas(x) > Far(xg) > 0 for every x > xg. Therefore Fjs shuld be discontinuous at every
x > x¢ (otherwise, Fjs(x) = 0), thus the set of discontinuity points of Fjs would contain [xg, +oco[, that
is, it would be uncountable.

9.4.1. We have

¢x(§) =E [eifxi"] =E [eig Ziar Xk] =E

ﬂeiiﬂ " [ ateri) =[x £).

k k k
Since Xy € L' (Q),

¢x, (1) = ¢x,(0) + 0y¥x, (0)n + 0(n) = 1 +inE[Xk] +0(n7) =1 +inm +o(n),

SO
ox, (é) =1 +i§m+o(§).
n n n
Therefore
n
P (€) = l_[ (1 +i§m +0 (é—:)) = (1 +i§m +o0 (ﬁ)) —s ¢'¥™ V& eR.

n f n n n n

The conclusion now follows by the continuity theorem. O

9.4.2. We notice that

1 1<
— (X1, X)) == ) X7
R0 ) \n; :
so, the conclusion is equivalent to
_ n a2 n 2
p|2 8<,12X§<1+8 :P((1 38) <1 X,fs(lgg))—n.
\/§ nk:1 \/5 nk:l

This is equivalent to

Since the Xj are i.i.d. (with fx, (x) = %1[_1,1] (x)), the same holds for the X,%. Moreover,
1 1 37x=1
d 1
E[Xlz] = j xz—x = J x2 dx = [X_} =—,
1 2 0 3,00 3

1 1 57x=1
dx X 1
V[X]%] = E[X;:] —E[Xk]4 = J 1x4 7 = J;) x4 dx = [?} = —.
- x=0

and,

Therefore, the Chebishev theorem applies and the conclusion follows. O
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9.4.3. 1) We notice that

1 1
E[X] = — kX ——+0X |l - —]| =
Xl = kX S ek ~ X * 2kTogk T X( 2klogk)
and . .
V[X] = E[X7] — E[Xx]* = 2k? = :
[Xi] Xl [Xi] ><2klogk log k
By the Chebishev bound,
1 n
k=1
By the independence,
\% Xe|l= ) VI[Xi] = )
k=1 k=1 — logk
)

— 1 1 vk

We notice that, if f(k) := logk’ fl(k) = i(l)fgkk_)lz > 0 for k > 1. In particular, @ T, so

1 n 1
— 0,
Zlogk nzzlogn n2logn n logn_>

SO
lim P (|X_,,| > g) -0,

n—+oco

. . — P
this ensuring that X,, — 0.
i) If X, converges P—a.s., necessarily X, 2% 0. We notice that

1 < 1'c n—1—0o n—1 —
—;ZXk—;Zinl—TXn_lil— —Xpo1+ = X 4 Y

If X, <5 0, then
n-—1

X1 —0, P—a.s.

This happens iff
P(limsup |Y,| = &) =0.
n

However, since the Y,, are independent, and

1 1
P(|Y,] > &) = P(X, = +n) = L= > P(Yalze) =) = 4o,
n n

nlogn nlogn

by the second Borel-Cantelli lemma we obtain
P(limsup |Y,]| = &) = 1.
n
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We get a contradiction, The conclusion is that X,, cannot be convergent with probability 1. O

9.4.4. We notice that, setting Y; = XiXys1, Yx € L'(Q) (indeed, E[|Yx|] = E[|Xk||Xre1l] =
E[| Xt |1E[|Xks1]|] < +00), and moreover

E[Yk] = E[ X Xis1] = E[ Xk |E[Xks1] =

We also notice that, if u is the common law of the X}, then
Fi ) =B XXt <00 = | u(@dou(dy)
y<u

is independent of k, that is the Y, are identicaslly distributed. However, Y is not independent of Y|
because both variables depend on Xi.;. However, Y1,Y3,...,Y2r41, ... are independent and, similarly,
Y5,Y4,..., Yok, ... areindependent too. The L' SLLN applies, so if n := 2N + 1 we have

2N+1

Yn =38+ Z TN+ ZYZ”HZY”

N 1 & 1 1
a.s. 2 2 2
Yo: &5 —m? 4 —m? =
2N+1N+ Z 2j+1 % 2N+1NZ 2 T Ry Em

and, similarly

a.s.
YZN — mz.

We conclude that ¥,, 25 m2, |

9.4.5. As suggested, let X be independent random variables uniformly distributed on [0, 1]. In this
way

Elg(X1,...,Xn)] = J (X1, xn) dux,,..x, (X1, ..o, Xp) = L | (X1, xp) dxy - dxy.

R% 0,1

Therefore,
X2+ 4+ X2
X1+ +X,
Now, since (Xx), (X,%) c L' (Q) arei.i.d., the L'=SLLN applies and

X34 xd
J —dx;---dx, =E
[

0,1]" X1 +--+ Xy

- Z X, £S5 E[X)]
while
1 - 2 a.s. 2
;Zxk EN X2 = <
k=1
Therefore,

Xt LT 0 132

X1+'”+X"_%ZZ:1X/< 123
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Therefore,
2 2 2 2 2 2
XS4 X X244 X X244+ X )
lim 1 Ty edyy =limE|L—— | Y E|lim—— | =2,
n [O,l]”’x1+"'+xn n Xi+--+X, n Xi+--+X, 3

provided (x) applies. To carry lim,, inside the E, we invoke the Lebesgue dominated convergence theorem:
we already know that
2 2
limu = %, P-a.s..
n Xi+---+X, 3
We need to dominate (independently of #) the ratio. To this aim, we just notice that, since X; € [0, 1],
then 0 < X7 < Xz < 1,50

2 2 X12+"'+X1% 1
Xi++X, < X1+ +X,, = ——————-<1:=2€L(Q), P-a.s.
X1+ +X,

The conclusion now follows. m|

9.4.6. i) No: indeed,
1 a
Bl [ 10175 (0 dx = [ 1ol de = von
R R T

a“+x

i) Let X, = 1 3%, Xy. Then

b5y (&) =B |en M X | =B

ﬁeiﬁxk] indep QE [eigxk’] = !:chxk (%) :

k=1
Notice that

¢x, (£) = 112( &) = ——e‘“‘ £l = pmalél
SO
b= | |emali = emalél,
% ﬂ

s s L — d

iii) Since ¢E(§) = ¢~alél 5 ¢-alél y¢ e R, by the continuity theorem X,, — X where X has the
same distribution of Xj.

Let’s analyze the convergence in probability. Since this is stronger than convergence in distribution, if

true, necessarily X;, — X where X is still a Cauchy distribution of same type of the X;. We notice that
(%= X1 > e} ¢ {%al > 2} u{ix| > 2|

9.4.7. We notice that

- 1/\/5 n n
e = ovr (P logXe) _ = i (log Xet)
X XX,
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so,if0 <a < b,

n

L3
Vi =

e 1/yn
a<(—) <b, = -—logh< log Xic +1) < —loga

XX,
Now, if Y := log Xx + 1 we have that
1 1
E[Yx] =1 +E[log Xx] = 1 +J logx dx = 1 + [xlogx] ¥ - J 1dx =0,
0 0

and
V[Yx] = E[YZ] - E[Yi]* = E[(1 +log Xx)*] = 1 + 2 E[log Xi] +E[log* Xx] = E[log” X,] - 1.
————
=1

We have

1 x=1 1 1 1
E[log? Xi] = J log®x dx = [xlog”x| _, - J x2logx - —dx=0- 2J logx dx =2,

0 B 0 X 0

from which V[Y;] =2 -1 = 1. From the CLT

1 < d
— Yk—>./V(0,1),
Vi &

and since the limit distribution is absolutely continuous, in particular

—loga

e N 1/4n 1 n 2
Pla<|—0—— <b|=P|-logh<— ) Yy <-loga —>J e 7 .o
(Xl"'Xn) \/ﬁ; ~logh V2rn

9.4.8. We notice that

I’L_ X 1 1 n
y, = D=1 Xk _ T X,
n
NN A=
By the assumptions, (X,%) c L'(Q) are i.i.d., hence, by the L' —=SLLN we have

1 < 5.
- Z X2 L5 BIx?] = o2,
n

k=1

Therefore,
Zy=——— 51,
Vi 2 X2
and .
1
Y, =27 Xk.
n no_\/ﬁ k:1

Now, by the CLT, being E[ X} ] = 0, we have

1 < d
Xk _>‘/V(0’1)’
O'\/ﬁ;
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We claim that also 4
Y, — 4(0,1).
We need a general fact:
Z 551, v, -5y, =z, Dy,
Indeed, we have
b7 v, (€) = E[e1€Zn¥n] = B[¢1€¥n i€ (Za=DYa] = B[1€Yn] 4 E [eifYn (ei§<zn—1)Yn _ 1)]

and since, by assumption, E[e'¢Y"] = ¢y (£) — ¢y (€), we need to prove that the last term goes to 0.
We have

Bl (s <

i €(Zn=DYn _ 1H

:E[

EE | 1y k| +E|

i€ (Za=1)Ys _ 1‘ 1|Y,,|>K]

Here K is fixed independently of n (we will see son how). The first expectation goes to 0 because of the

dominated convergence: since Z, 2% 1, and \Yu| < K, (Z,, — 1)Y,, — 0, and everything is controlled
by 1 € L'(Q). About the second expectation we have

|

i€ (Za )Y, _ 1| 1|Yn|>K] < 2P(|Y,| > K),

and since P(|Y,| = K) — P(]Y| > K), we can say that P(|Y,,| = K) < P(|Y| > K) + & < 2¢ for n large,
and K large enough. Therefore

lim |E [eify" (eif(z"_l)y" - l)” < 2e,
n

and since € > 0 can be take arbitrarily, we have the conclusion.



