

METODI STATISTICI PER LA BIOINGEGNERIA (B)

PARTE 13: REGRESSIONE LOGISTICA

A.A. 2025-2026

Prof. Martina Vettoretti

STUDIO DEI FATTORI ASSOCIATI AD UNA VARIABILE QUALITATIVA

- > Spesso siamo interessati a capire se sussiste una relazione tra una serie di fattori o variabili indipendenti e una variabile dipendente di tipo qualitativo.
- Esempio: vogliamo investigare se sussiste una relazione tra la lunghezza di un impianto dentale e il fallimento dello stesso.
 - Variabile indipendente: lunghezza impianto dentale [mm]
 - Outcome: esito dell'impianto (fallimento o successo) → variabile qualitativa binaria
- Come possiamo affrontare questo problema? Nei modelli di regressione lineare multipla possiamo inserire variabili indipendenti di tipo qualitativo mediante opportuna codifica. Possiamo procedere allo stesso modo se la variabile qualitativa è la variabile di outcome?

REGRESSIONE LINEARE CON VARIABILE DI OUTCOME BINARIA

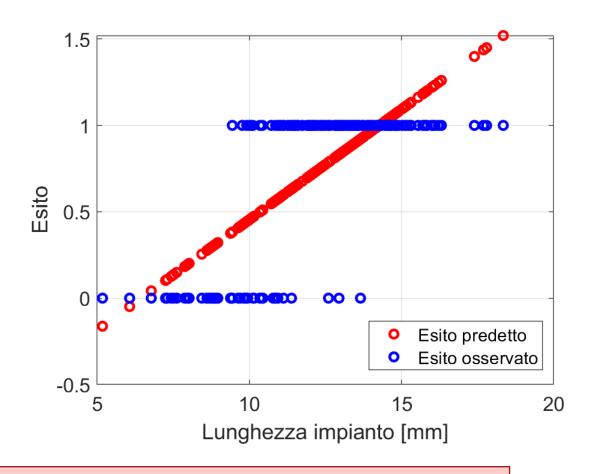
 \triangleright Codifichiamo la variabile di outcome con una variabile 0/1.

$$Y = \begin{cases} 0 & \text{fallimento dell'impianto} \\ 1 & \text{successo dell'impianto} \end{cases}$$

Identifichiamo un modello di regressione lineare semplice:

$$Y = \beta_0 + \beta \cdot X + \varepsilon$$

ightharpoonup Confrontiamo le predizioni del modello \widehat{Y} con i valori di Y. Che problema osserviamo?



- ➤ Vorremmo predire una quantità che vale 0 o 1.
- La regressione lineare predice una quantità che varia linearmente in un range illimitato che eccede l'intervallo [0 1].

MODELLI LINEARI GENERALIZZATI

- > Il modello di regressione lineare non è appropriato per descrivere relazioni che coinvolgono una variabile dipendente di tipo qualitativo.
- > Soluzione: modelli lineari generalizzati (generalised linear models o GLM)
- Viene applicata una funzione g detta **link function** per mappare il dominio $(-\infty, +\infty)$ della regressione lineare su di un range limitato desiderato.

$$E(Y) = g^{-1}(\boldsymbol{\beta}^T \boldsymbol{X})$$
$$g(E(Y)) = \boldsymbol{\beta}^T \boldsymbol{X}$$

 \triangleright Se siamo interessati a predire una quantità che è 0 o 1, potremmo scegliere una funzione g tale che $g^{-1}(\pmb{\beta}^T \pmb{X}) \in [0\ 1]$.

REGRESSIONE LOGISTICA

- **Regressione logistica:** particolare tipo di GLM che impiega una funzione di link di tipo **logit** per mappare l'esito di una regressione lineare, compreso nell'intervallo $(-\infty, +\infty)$, in una quantità compresa in $[0\ 1]$.
- Funzione logit:

$$g(x) = \log\left(\frac{x}{1-x}\right), \qquad g^{-1}(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$$

> Equazione della regressione logistica:

$$\log\left(\frac{p}{1-p}\right) = \beta^{T} X = \beta_{0} + \beta_{1} X_{1} + \beta_{2} X_{2} + \dots + \beta_{m} X_{m}$$

$$p = \frac{e^{\beta^{T} X}}{1 + e^{\beta^{T} X}} = \frac{e^{\beta_{0} + \beta_{1} X_{1} + \beta_{2} X_{2} + \dots + \beta_{m} X_{m}}}{1 + e^{\beta_{0} + \beta_{1} X_{1} + \beta_{2} X_{2} + \dots + \beta_{m} X_{m}}}$$

Odds:
$$\frac{p}{1-p}$$
Log-odds: $\log\left(\frac{p}{1-p}\right)$

IL SIGNIFICATO DEL VALORE PREDETTO DALLA REGRESSIONE LOGISTICA

- Problema iniziale: vogliamo stabilire se sussiste una relazione tra un set di variabili indipendenti, $X_1, X_2, ..., X_m$, e una variabile di outcome Y, binaria, i cui valori sono rappresentati con 0 e 1.
- Applichiamo la regressione logistica:

$$\log\left(\frac{p}{1-p}\right) = \beta^{T} X = \beta_{0} + \beta_{1} X_{1} + \beta_{2} X_{2} + \dots + \beta_{m} X_{m}$$

$$p = \frac{e^{\beta^{T} X}}{1 + e^{\beta^{T} X}} = \frac{e^{\beta_{0} + \beta_{1} X_{1} + \beta_{2} X_{2} + \dots + \beta_{m} X_{m}}}{1 + e^{\beta_{0} + \beta_{1} X_{1} + \beta_{2} X_{2} + \dots + \beta_{m} X_{m}}}$$

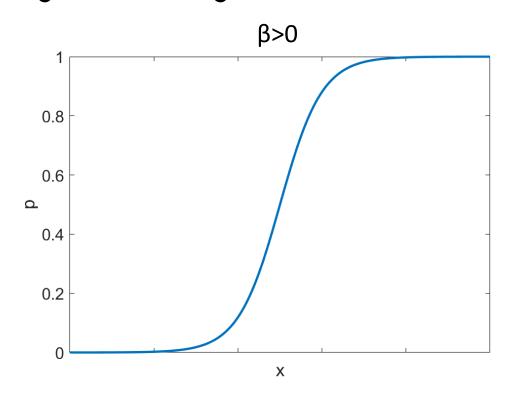
L'uscita p della regressione logistica è una quantità compresa in [0, 1] che rappresenta la probabilità che Y sia pari a 1:

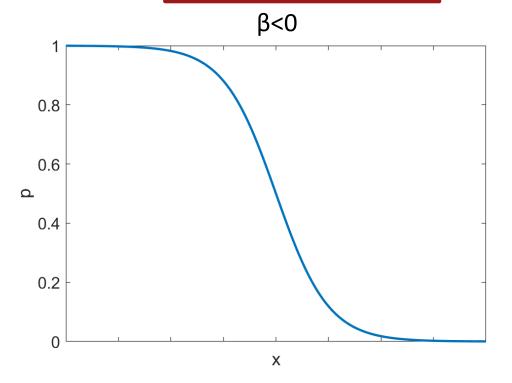
$$p = P(Y = 1|X, \beta)$$

REGRESSIONE LOGISTICA SEMPLICE

Com'è fatta la quantità p predetta dalla regressione logistica?

$$p = \frac{e^{\beta_0 + \beta \cdot X}}{1 + e^{\beta_0 + \beta \cdot X}}$$

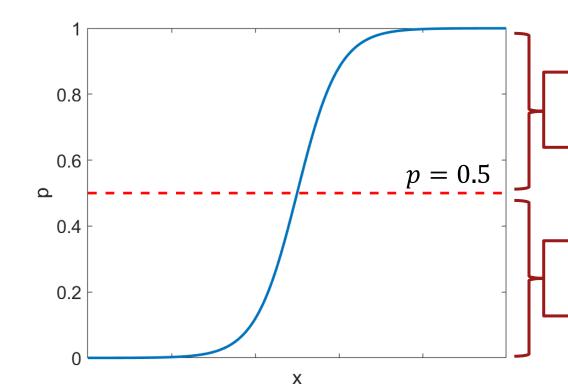




> Se vogliamo che il modello predica il valore di Y (0 o 1) come facciamo?

SOGLIA DI CLASSIFICAZIONE

- \triangleright Applichiamo una soglia th sul valore di p:
 - Se p
 - Se $p \ge th \rightarrow \hat{Y} = 1$



$$p = P(Y = 1|X, \beta)$$

 $p \ge 0.5 \rightarrow \hat{Y} = 1$ Prediciamo la classe 1

 $p < 0.5 \rightarrow \hat{Y} = 0$ Prediciamo la classe 0

Di fatto stiamo affrontando un problema di **classificazione binaria**: cerchiamo di costruire un modello matematico per predire il valore di una variabile binaria Y usando delle variabili esplicative X_1, X_2, \ldots, X_m .

STIMA DEI COEFFICIENTI DELLA REGRESSIONE LOGISTICA (1/2)

- Il problema della stima dei coefficienti della regressione logistica è un problema di stima parametrica non lineare.
- > L'equazione del modello è infatti una funzione non lineare nei parametri.
- > Si affronta con il metodo della massima verosimiglianza.

STIMA DEI COEFFICIENTI DELLA REGRESSIONE LOGISTICA (2/2)

Dataset (training set)

	X_1	X_2	•••	X_m	Y	
Oss. 1					0	
Oss. 2					1	
• • •					•••	
Oss. n					0	

*Il metodo della massima verosimiglianza stima i valori dei parametri β che massimizzano la probabilità a posteriori (noti i β) dei valori osservati per l'outcome.

Stima dei coefficienti mediante il metodo di massima verosimiglianza*

Stime dei coefficienti del modello

$$\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_m$$

Equazione del modello

$$\hat{p} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_m X_m}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_m X_m}}$$

LA FUNZIONE DI VEROSIMIGLIANZA

- $\triangleright \beta = [\beta_0, \beta_1, ..., \beta_m]^T \rightarrow \text{vettore dei parametri incogniti della regressione logistical}$
- $ightharpoonup Y = [Y_1, Y_2, ..., Y_n]^T \rightarrow$ vettore aleatorio che rappresenta le n osservazioni di Y
- $y = [y_1, y_2, ..., y_n]^T \rightarrow \text{vettore dei valori osservati per l'outcome } Y \text{ (realizzazione di Y)}$
- $\boldsymbol{x}_i = [x_{i1}, ..., x_{im}]^{\mathrm{T}} \rightarrow$ vettore dei valori osservati per le variabili indipendenti in corrispondenza di y_i

$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ 1 & x_{21} & \cdots & x_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix} \rightarrow \text{Matrice avente sulle colonne i valori delle variabili indipendenti e una colonna di 1 in corrispondenza dell'intercetta}$$

Funzione di verosimiglianza ("likelihood"):

$$L(\beta|Y = y) = P(Y = y|X, \beta) = P(Y_1 = y_1|x_1, \beta) \cdot P(Y_2 = y_2|x_2, \beta) \cdot \cdots \cdot P(Y_m = y_m|x_m, \beta)$$

$$L(\boldsymbol{\beta}|\boldsymbol{y}) = \prod_{i=1}^{n} P(Y_i = y_i|\boldsymbol{x_i}, \boldsymbol{\beta})$$

STIMATORE DI MASSIMA VEROSIMIGLIANZA

- \succ Noti i valori delle variabili esplicative x_i , la funzione di verosimiglianza è una funzione dei parametri incogniti $oldsymbol{eta}.$
- > Stimatore di massima verosimiglianza:

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmax}} L(\boldsymbol{\beta}|\boldsymbol{y}) = \underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{n} P(Y_i = y_i|\boldsymbol{x_i}, \boldsymbol{\beta})$$

- \triangleright Cerchiamo il vettore β che massimizza la verosimiglianza dei valori osservati di Y (probabilità dei valori osservati di Y dati i valori osservati per le variabili esplicative e β).
- \triangleright Questo problema di ottimizzazione <u>non presenta soluzione in forma chiusa</u> (non si riesce a ricavare una formula per calcolare $\widehat{\beta}$). La soluzione viene cercata mediante <u>algoritmi di ottimizzazione iterativi</u> (implementati nei software per l'analisi statistica).

RISULTATI DEL PROCESSO DI STIMA

- > Stime dei coefficienti: $\hat{\beta}_j$, j = 0, ..., m
- > Standard error sulle stime dei coefficienti: SE_j , j=0,...,m

> Intervallo di confidenza al 95% sulle stime dei parametri:

$$\hat{\beta}_j \pm 1.96 \cdot SE_j, \qquad j = 0, \dots, m$$

Odds ratio delle stime dei coefficienti:

$$OR_j = e^{\widehat{\beta}_j}$$

Intervallo di confidenza al 95% sugli odds ratio:

$$e^{\widehat{\beta}_j \pm 1.96 \cdot SE_j}$$

ESEMPIO (1/2)

- Vogliamo investigare se sussiste una relazione tra il successo/fallimento di un impianto dentale (Y) e due variabili esplicative: la lunghezza dell'impianto dentale (X_1) e l'età del paziente al momento dell'impianto (X_2) .
- > Dataset: 200 osservazioni per le 3 variabili in gioco.
 - Per 50 osservazioni l'esito è fallimentare (Y=0)
 - Per 150 osservazioni l'esito è successo (Y=1)
- > Applichiamo il modello di regressione logistica
- Equazione del modello:

$$p = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2}}$$

ESEMPIO (2/2)

> Risultato della stima di massima verosimiglianza:

Variabile	Stima del coefficiente \hat{eta}_j	Standard error SE_j	Intervallo di confidenza al 95% $\hat{eta}_j \pm 1.96 \cdot SE_j$	Odds ratio $e^{\widehat{eta}_j}$	Intervallo di confidenza al 95% $e^{\widehat{eta}_j \pm 1.96 \cdot SE_j}$
Intercetta	-15.437	2.9884	[-21.29 -9.58]	1.9756 x 10 ⁻⁷	[5.6x10 ⁻¹⁰ 6.9x10 ⁻⁵]
Lunghezza impianto [mm]	1.5842	0.2559	[1.08 2.09]	4.8752	[2.95 8.05]
Età [anni]	-0.0231	0.0371	[-0.096 0.048]	0.9771	[0.91 1.05]

In Matlab: funzione glmfit

VALUTAZIONE DELLA BONTA' DEL MODELLO

Valutazione dell'errore di classificazione

Deviance e likelihood ratio test

ERRORE DI CLASSIFICAZIONE

Data una soglia th per la classificazione, dobbiamo confrontare:

- $\triangleright \hat{y}_i$: valori dell'outcome predetti dal modello (0 o 1)
 - $\hat{y}_i = 1 \rightarrow \text{valore predetto positivo}$
 - $\hat{y}_i = 0 \rightarrow \text{valore predetto negativo}$
- $\rightarrow y_i$: valori reali dell'outcome (0 o 1)
- Matrice di confusione (confusion matrix):

	# valori positivi $\mathbf{y_i} = 1$	# valori negativi $\mathbf{y_i} = 0$
# valori predetti positivi $\widehat{y}_{i}=1$	# VERI POSITIVI o TRUE POSITIVES (TP)	# FALSI POSITIVI o FALSE POSITIVES (FP)
# valori predetti negativi $\hat{\mathbf{y}}_{\mathbf{i}} = 0$	# FALSI NEGATIVI o FALSE NEGATIVES (FN)	# VERI NEGATIVI o TRUE NEGATIVES (TN)

METRICHE DI CLASSIFICAZIONE

 $y_i = 0$

ΤN

 $y_i = 1$

TP

FN

 $\hat{\mathbf{y}}_{\mathbf{i}} = \mathbf{1}$

 $\hat{\mathbf{y}}_{\mathbf{i}} = \mathbf{0}$

Accuratezza: frazione di predizioni corrette sul totale dei valori predetti

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP}$$

> Sensibilità (o Recall): frazione di valori positivi correttamente predetti

$$Sensitivity = \frac{TP}{TP + FN}$$

> Specificità: frazione di valori negativi correttamente predetti

$$Specificity = \frac{TN}{TN + FP}$$

Precisione (o positive predictive value): frazione di predizioni positive corrette

$$Precision = \frac{TP}{TP + FP}$$

Tutte queste metriche presentano valori compresi tra 0 e 1 e il loro valore è tanto migliore quanto più è vicino a 1.

METRICHE DI CLASSIFICAZIONE PER IL CLASSIFICATORE RANDOM

Un modello che predice la classe positiva o negativa a caso avrà le seguenti metriche di classificazione:

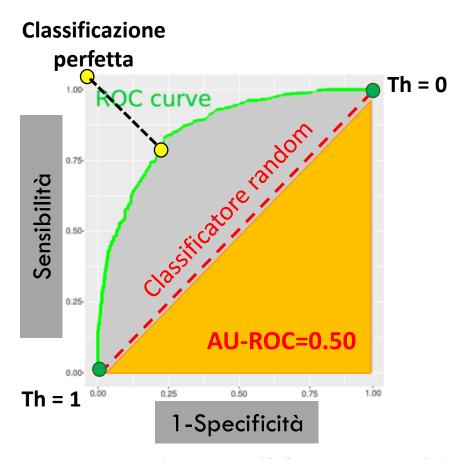
- \triangleright Accuratezza = 0.5
- \triangleright Sensibilità = 0.5
- \triangleright Specificità = 0.5
- \triangleright Precisione = (# osservazioni con Y = 1)/# totale di osservazioni

SCELTA DELLA SOGLIA DI CLASSIFICAZIONE

- \triangleright Come scegliamo la soglia di classificazione th?
- ➤ La scelta più intuitiva è 0.5, ma questa potrebbe non essere la scelta ottimale, specie se la prevalenza delle classi è sbilanciata (tante più osservazioni con Y=0 rispetto a Y=1 o viceversa).
- \triangleright Per una scelta ottimale si possono testare diversi valori di th e scegliere il migliore sulla base delle metriche di classificazione.
- \triangleright All'aumentare di th, tipicamente sensibilità diminuisce e specificità aumenta
 - Se $th = 0 \rightarrow$ tutti i valori predetti sono positivi \rightarrow sensibilità = 1, specificità = 0
 - Se $th = 1 \rightarrow$ tutti i valori predetti sono negativi \rightarrow sensibilità = 0, specificità = 1
- \blacktriangleright Idea: cercare il valore di th per cui si ha un buon compromesso tra sensibilità e specificità.

LA CURVA ROC

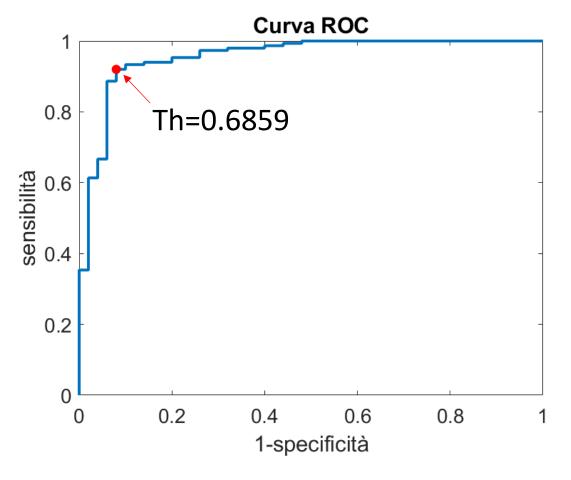
 \triangleright Curva ROC (Receiver Operating Characteristic curve): grafico che mostra sensibilità vs. 1-specificità al variare di th.



- Possibile soglia ottima: il valore di th per cui la distanza della curva ROC dall'angolo in alto a sinistra è minima.
- ightharpoonup L'area sotto la curva ROC (AU-ROC) è una metrica di classificazione indipendente da th
 - Valore compreso tra 0 e 1, tanto più è vicino a 1, tanto più il modello tende ad assegnare valori di probabilità elevati ad osservazioni per cui Y=1.
 - Il modello che assegna i valori predetti in modo random presenta AU-ROC=0.5.

ESEMPIO

> Valutiamo l'errore di classificazione per il modello dell'esempio precedente.



AU-ROC=0.9557

ESEMPIO

> Metriche di classificazione in corrispondenza della soglia ottima:

Matrice di confusione

	$y_i = 1$	$y_i = 0$
$\hat{\mathbf{y}}_{\mathbf{i}} = 1$	137	4
$\hat{\mathbf{y}}_{i} = 0$	13	46

- Accuratezza = _____
- Sensibilità = _____
- Specificità = _____
- Precisione =

DEVIANCE

> Deviance del modello:

$$D_m = -2 \cdot \log(L(\widehat{\beta}|y))$$

La deviance è una misura di quanto bene il modello descrive i dati (stesso ruolo di SSE per la regressione lineare).

LIKELIHOOD RATIO TEST (1/2)

- Elikelihood ratio test: test statistico per valutare se il modello di regressione logistica considerato è significativamente diverso da quello nullo, ovvero quello che include solo l'intercetta.
- Sistema di ipotesi:
 - H_0 : $\beta_1 = \beta_2 = \cdots = \beta_m = 0$ \rightarrow il modello trovato è uguale a quello nullo
 - H_1 : almeno uno dei coefficienti β_j , $j=1,\ldots,m$ è diverso da 0 → il modello trovato è diverso da quello nullo
- Statistica del test:

Calculation delivers:
$$D = D_0 - D_m = -2 \cdot \log(\frac{likelihood\ del\ modello\ nullo}{L(\widehat{\boldsymbol{\beta}}|\boldsymbol{y})})$$

dove D_0 è la deviance del modello nullo.

LIKELIHOOD RATIO TEST (2/2)

- \triangleright Se vale H_0 , D è distribuita come una variabile aleatoria χ^2 avente m gradi.
- \succ Livello di significatività lpha
- > Regola decisionale:
 - D > $\chi^2_{\alpha,m}$ → rifiutiamo H₀ → il modello è significativamente diverso da quello nullo
 - D $\leq \chi^2_{\alpha,m} \rightarrow$ non possiamo rifiutare H₀

ESEMPIO

Applichiamo il likelihood ratio test al modello dell'esempio precedente.

- \triangleright Log-likelihood del modello identificato: $\log(L) = -44.42$
- \triangleright Deviance del modello identificato: $D_m = -2 \cdot \log(L) = 88.84$
- \triangleright Deviance del modello nullo: $D_0=224.93$
- Statistica del test:

$$D = D_0 - D_m = 224.93 - 88.84 = 136.09$$

- \triangleright Livello di significatività $\alpha=0.05$
- Valore critico:

$$\chi_{\alpha,m}^2 = \chi_{0.05,2}^2 = 5.99$$

Conclusione: $D > \chi^2_{\alpha,m} \rightarrow$ rifiutiamo $H_0 \rightarrow$ il modello è significativamente diverso da quello nullo \rightarrow sussiste in effetti una relazione significativa tra le variabili esplicative considerate (lunghezza impianto ed età) e l'esito dell'impianto

INTERPRETAZIONE DEI COEFFICIENTI DELLA REGRESSIONE LOGISTICA

- ightarrow eta_0 : intercetta ightarrow quando tutte le variabili indipendenti sono nulle la probabilità della classe 1 è $p=rac{e^{eta_0}}{1+e^{eta_0}}$
- \triangleright β_j rappresenta di quanto varia la funzione logit di p quando la variabile X_j aumenta di una unità e tutte le altre variabili esplicative sono costanti.
- \triangleright Segno di β_j :
 - Se $\beta_j > 0$ o $e^{\beta_j} > 1$ \rightarrow Se X_j aumenta, anche la probabilità che Y sia 1 aumenta.
 - Se β_i <0 o e^{β_j} < 1 \rightarrow Se X_i aumenta, la probabilità che Y sia 1 diminuisce.
- \triangleright Valore assoluto di β_i :
 - Se $\beta_i = 0$ o $e^{\beta_j} = 1 \rightarrow X_j$ non ha effetto sulla probabilità che Y sia 1.
 - Se β_j è significativamente diverso da 0 \rightarrow X_j ha un impatto importante sulla probabilità che Y sia 1.

SIGNIFICATIVITA' STATISTICA DEI COEFFICIENTI

Wald test

- > Sistema di ipotesi:
 - H_0 : $\beta_i = 0$
 - $H_1: \beta_i \neq 0$
- Statistica del test:

Z-score del coefficiente
$$\beta_j$$
 \longrightarrow $Z_j = \frac{\beta_j}{SE_j}$

- \triangleright Quando vale H_0 , z_j ha distribuzione normale standard.
- > Regola decisionale:
 - $|Z_j| > z_{\frac{\alpha}{2}} \rightarrow \text{rifiutiamo H}_0$
 - $|Z_j| \le z_{\frac{\alpha}{2}}^2 \to \text{non possiumo rifiutare } H_0$

ESEMPIO

Come interpreteresti le stime dei coefficienti del modello dell'esempio precedente alla luce del risultato del Wald test?

Variabile	Stima del coefficiente \hat{eta}_j	Standard error SE_j	Z-score z_j^*	P-value del Wald test
Intercetta	-15.437	2.9884	-5.1657	2.40 x 10 ⁻⁷
Lunghezza impianto [mm]	1.5842	0.2559	6.191 <i>7</i>	5.95 x 10 ⁻¹⁰
Età [anni]	-0.0231	0.0371	-0.6221	0.53

*Valore critico per $\alpha = 5\% \rightarrow z_{0.025} = 1.96$

CONFRONTO TRA MODELLI IN COMPETIZIONE

- Log-likelihood ratio test: confrontiamo un modello avente m variabili indipendenti con una sua versione ridotta dove abbiamo escluso alcune variabili.
 - lacktriangle Modello con m variabili indipendenti: deviance D_m , likelihood L_m
 - lacktriangle Modello ridotto, avente p variabili indipendenti: deviance D_p , likelihood L_p

$$D = D_p - D_m = -2 \cdot \log(\frac{L_p}{L_m})$$

- \succ H_0 : il modello con m variabili è equivalente a quello ridotto.
- \triangleright Quando vale H_0 , D ha distribuzione χ^2 con gradi di libertà pari m-p.

CONFRONTO TRA MODELLI IN COMPETIZIONE

➤ Indici di parsimonia:

$$AIC = -2 \cdot \log(L(\widehat{\beta}|y)) + 2 \cdot p$$

$$BIC = -2 \cdot \log \left(L(\widehat{\beta}|\mathbf{y}) \right) + p \cdot \log(n)$$

QUIZ 1

Nel modello di regressione logistica avente equazione:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

La variabile p è:

- a. una quantità che può assumere due soli valori, 0 o 1, che rappresentano i due livelli della variabile di outcome, Y.
- b. una quantità che può assumere valori in [0, 1] che rappresenta la probabilità che la variabile di outcome, Y, sia pari a 1 (classe 1)
- c. una quantità che può assumere valori in [0, 1] che rappresenta la probabilità che la variabile di outcome, Y, sia pari a 0 (classe 0)
- d. un iperparametro del modello che deve essere ottimizzato.

QUIZ 2

Nel modello di regressione logistica, cosa rappresenta il coefficiente β_j associato alla variabile indipendente quantitativa X_j ?

- a. La variazione della probabilità della classe 1 che si ha per unità di aumento di X_i .
- b. La variazione della probabilità della classe 1 che si ha per unità di aumento di X_i , quando tutte le altre variabili indipendenti sono costanti.
- c. La variazione della funzione logit della probabilità della classe 1 che si ha per unità di aumento di X_j , quando tutte le altre variabili indipendenti sono costanti.
- d. La variazione della media della variabile di uscita che si ha per unità di aumento di X_i , quando tutte le altre variabili indipendenti sono costanti.

DOMANDA APERTA

- Quali metriche conosci per valutare l'errore di classificazione di un modello di regressione logistica?
- Che approccio potresti utilizzare per scegliere un valore ottimo per la soglia di classificazione?