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1

Probability Space

Probability theory arises from the problem of making predictions under uncertainty. Historically,
probability was developed to analyze games of chance, where one has basically to count the favorable
outcomes over the possible outcomes. Probability largely remained in that realm until the nineteenth
century. In 1827, R. Brown first described what is now called Brownian motion (hereafter, BM): the
irregular movement of small particles suspended in a fluid, caused by incessant collisions with the fluid’s
molecules. Typical trajectories are highly irregular, with apparently random changes of direction, which
makes them hard to model. In the early twentieth century, L. Bachelier proposed a model for stock
prices based on Brownian-like paths, drawing the attention of mathematicians. A rigorous mathematical
description of BM was later provided by N. Wiener, influenced by the then-recent measure theory
developed by H. Lebesgue. Wiener’s visionary idea was to build a probabilistic structure on path space,
that is on the space of continuous functions 𝜔 “ 𝜔p𝑡q. This shed new light on probability and paved the
way for N. Wiener’s construction Kolmogorov’s 1933 axiomatization of modern probability theory.

Since then, Probability has undergone tremendous development in many directions, becoming a
central branch of mathematics. It is no coincidence that this growth has occurred alongside advances in
science and technology. Indeed, probability has proved to be an effective tool for describing complex
phenomena, where deterministic predictions give way to probabilistic ones. This is perhaps why prob-
ability is viewed as a practical tool, and probabilistic modeling as a genuine skill rather than a merely
illustrative device.

1.1. Basic definitions

From the formal point of view, a probability space is a measure space with total measure “ 1.

Definition 1.1.1

A probability space is a measure space pΩ,ℱ, Pq such that PpΩq “ 1.
‚ Set Ω is called sample space,
‚ measurable sets are called events, their measure Pp𝐸q is called probability of 𝐸 .
‚ An event is said certain if Pp𝐸q “ 1, impossible if Pp𝐸q “ 0.

Ifℱ contains all the subsets of an impossible event, we say that pΩ,ℱ, Pq is a complete probability
space.
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2 1. PROBABILITY SPACE

Example 1.1.2

Let Ω “ R𝑑 , ℱ :“ ℳ𝑑 (Lebesgue class) and 𝑓 P 𝐿1pR𝑑q be such that 𝑓 ě 0 a.e. and
∫
R𝑑
𝑓 “ 1.

We define
Pp𝐸q “

∫
𝐸

𝑓 p𝑥q 𝑑𝑥, 𝐸 P ℳ𝑑 “: 𝜇 𝑓 p𝐸q

Then pR𝑑 ,ℳ𝑑 , 𝜇 𝑓 q is a complete probability space.

Example 1.1.3

Let Ω be a generic set, ℱ :“ 𝒫pΩq. Let 𝜔0 P Ω. We define

Pp𝐸q “

$

&

%

0, 𝜔0 R 𝐸,

1, 𝜔0 P 𝐸

“: 𝛿𝜔0p𝐸q

Then pΩ,𝒫pΩq, 𝛿𝜔0q is a probability space.

1.1.1. Discrete Probability Space. The classical Probability is described by the following setup:

Proposition 1.1.4

Let Ω be a finite or countable set, say Ω “ t𝜔𝑛 : 𝑛 P Nu. Let p𝑝𝑛q Ă r0, 1s be such that

(1.1.1)
ÿ

𝑛

𝑝𝑛 “ 1.

We call such p𝑝𝑛q a probability mass distribution. On pΩ,𝒫pΩqq we define

Pp𝐸q :“
ÿ

𝜔𝑛P𝐸

𝑝𝑛 ”
ÿ

𝑛

𝑝𝑛1𝐸p𝜔𝑛q.

Space pΩ,𝒫pΩq, Pq is a probability space called discrete probability space.

Proof. Clearly, by (1.1.1), Pp𝐸q is well defined for every 𝐸 P 𝒫pΩq. We have also that Pp𝐸q ě 0 for
every event 𝐸 . To check that P is a probability measure we need to verify that

i) Pp∅q “ 0 (trivial) and PpΩq “
ř

𝑛 𝑝𝑛1Ωp𝜔𝑛q “
ř

𝑛 𝑝𝑛 “ 1.
ii) P is countably additive. Assume 𝐸 “

Ů

𝑘 𝐸𝑘 . Notice that, since every 𝜔 belongs at most a only
one of the 𝐸𝑘 ,

1𝐸p𝜔q “
ÿ

𝑘

1𝐸𝑘
p𝜔q

thus
Pp𝐸q “

ÿ

𝑛

𝑝𝑛

ÿ

𝑘

1𝐸𝑘
p𝜔𝑛q “

ÿ

𝑘

ÿ

𝑛

𝑝𝑛1𝐸𝑘
p𝜔𝑛q “

ÿ

𝑘

Pp𝐸𝑘q. □

Discrete Probability Space model solves basically any everyday probabilistic framework. It is the classical
ancient probabilistic setup. The sample space Ω represents of set of all possible outcomes.



1.1. BASIC DEFINITIONS 3

Example 1.1.5: Coin Tossing

The tossing experiment can be described by two possible outcomes, 𝐻 for head, 𝑇 for tail. The
sample space is Ω :“ t𝐻,𝑇u. For a fair coin, 𝑝𝐻 “ 𝑝𝑇 “ 1

2 .

If the coin is unfair, we may have 𝑝𝐻 ‰ 1
2 , in that case 𝑝𝑇 “ 1 ´ 𝑝𝐻 . This is called Bernoulli

model.

Example 1.1.6: Rolling a die

In this case Ω :“ t1, . . . , 6u with 𝑝𝑛 “ 1
6 for 𝑛 “ 1, . . . , 6.

Example 1.1.7: Rolling two dice

Suppose we want to describe the set of possible outcomes when rolling two dice. We can represent
a single trial by a pair p𝑖, 𝑗q where 𝑖, 𝑗 P t1, . . . , 6u are, resp., the outcomes of the first and second
die. In this case Ω “ t1, . . . , 6u2 and, if the outcome of each die is independent of the outcome
of the other’s, 𝑝𝑖, 𝑗 “ 1

62
“ 1

36 for p𝑖, 𝑗q P Ω.

Example 1.1.8: Binomial model

In one single day, a stock price can go Up with probability 𝑝 and Down with probability 1 ´ 𝑝.
Precisely, if 𝑤 is the value at beginning of the day, at the end of the day it can be either p1 ` 𝑟q𝑤

(with rate 𝑟 ą 0) if it goes Up, or 𝑤
1`𝑟

if it goes Down. Assuming that the 𝑛´th day behavior
is independent of the past, describe the space of outcomes after 𝑁 days together with their
probabilities.

Proof. We notice that, no matter which is the order of Ups and Downs, if the price goes Up 𝑛 times
and Down 𝑁 ´ 𝑛 times, the day 𝑁 value is

p1 ` 𝑟q𝑛
ˆ

1

1 ` 𝑟

˙𝑁´𝑛

𝑤 “ p1 ` 𝑟q2𝑛´𝑁𝑤.

Since 𝑟 ą 0, when 𝑛 “ 0, . . . , 𝑁 , p1 ` 𝑟q2𝑛´𝑁 takes 𝑁 ` 1 different values. Therefore, there are 𝑁 ` 1
different final states. We can identify these states with the number of Ups, so Ω “ t0, . . . , 𝑁u. The state 𝑛
is obtained exactly when tossing 𝑁 times an unfair coin with Prob. Up=𝑝. For a single trial this probability
is 𝑝𝑛p1 ´ 𝑝q𝑁´𝑛. The number of different trials is the number of 𝑁´ples of Up and Down with 𝑛 Ups,
that is the binomial coefficient

`

𝑁
𝑛

˘

. Thus,

𝑝𝑛 :“ Prob.p𝑛 Upsq “

ˆ

𝑁

𝑛

˙

𝑝𝑛p1 ´ 𝑝q𝑁´𝑛, 𝑛 P t0, . . . , 𝑁u “ Ω.

Let’s check that this is indeed a probability distribution: we have 𝑝𝑛 ě 0 for every 𝑛 and
𝑁
ÿ

𝑛“0

𝑝𝑛 “

𝑁
ÿ

𝑛“0

ˆ

𝑁

𝑛

˙

𝑝𝑛p1 ´ 𝑝q𝑁´𝑛 “ p𝑝 ` 1 ´ 𝑝q𝑁 “ 1.
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1.1.2. Basic properties of Probability measures. Since a probability measure is a particular type
of measure, it fulfills all the basic properties of any measure. We notice that, by additivity, for any event
𝐸 P ℱ, we have

1 “ PpΩq “ Pp𝐸 \ 𝐸𝑐q “ Pp𝐸q ` Pp𝐸𝑐q,

from which
Pp𝐸𝑐q “ 1 ´ Pp𝐸q.

As every measure, a probability measure is continuous from below. In addition, since the total measure
PpΩq “ 1 ă `8, a probability measures is always also continuous from above. An interesting fact is
the following: continuity from above at ∅ is in fact equivalent to countable additivity.

Proposition 1.1.9

Let P be a finitely additive probability on pΩ,ℱq. Then, the following properties are equivalent:
i) P is countably additive on ℱ.

ii) P is continuous from above at ∅, that is
p𝐸𝑛q Ă ℱ, : 𝐸𝑛 Ó ∅, ùñ lim

𝑛
Pp𝐸𝑛q “ 0.

Proof. i) ùñ ii). It follows from the continuity from above of any countably additive finite measure.
ii) ùñ i) Let p𝐸𝑛q Ă ℱ be such that 𝐸𝑛 X 𝐸𝑚 “ ∅ for 𝑛 ‰ 𝑚, and let 𝐸 :“

Ů

𝑛 𝐸𝑛 P ℱ. Then, setting
𝐹𝑛 :“ 𝐸z

Ů𝑛
𝑘“0 𝐸𝑘 Ó ∅, so by the assumption

lim
𝑛
P

˜

𝐸z

𝑛
ğ

𝑘“0

𝐸𝑘

¸

“ 0.

Now, since

𝐸 “

˜

𝐸z

𝑛
ğ

𝑘“0

𝐸𝑘

¸

\

˜

𝑛
ğ

𝑘“0

𝐸𝑘

¸

by finite additivity of P we have

Pp𝐸q “ P

˜

𝐸z

𝑛
ğ

𝑘“0

𝐸𝑘

¸

` P

˜

𝑛
ğ

𝑘“0

𝐸𝑘

¸

“ P

˜

𝐸z

𝑛
ğ

𝑘“0

𝐸𝑘

¸

`

𝑛
ÿ

𝑘“0

Pp𝐸𝑘q ÝÑ 0 `

8
ÿ

𝑘“0

Pp𝐸𝑘q. □

1.2. Space of Sequences

A rudimentary model for the BM is the random walk model. We assume that a particle starts at the
origin, then, at each second it moves left or right with equal probability. A random walk is described by
an infinite sequence of 𝐿 and 𝑅, like 𝐿𝐿𝑅𝐿𝑅𝑅𝐿𝑅𝐿𝑅𝐿𝑅𝑅𝑅𝐿 . . .. The set of all possible sequences of
this type,

Ω : t𝜔 “ p𝜔𝑛q : 𝜔𝑛 P t𝑅, 𝐿u, @𝑛 P Nu ” t𝑅, 𝐿uN.

is the path space. Imagine now we aim to introduce a probabilistic structure on this Ω. The problem is
that Ω is not countable: t0, 1uN are all possible binary sequences, it is in correspondence 1-1 with r0, 1s.
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1.2.1. Sample space. Without no particular effort, we can extend this framework. Let 𝑆 “

t𝑠1, . . . , 𝑠𝑁u be any finite set. This set will be called state space. We define, as sample space, the
set Ω made of all possible sequences of states, that is

Ω :“ t𝜔 “ p𝜔𝑛q : 𝜔𝑛 P 𝑆, @𝑛 P Nu ” 𝑆N.

In some modelsN can be replaced by Zwithout any relevant change. Our goal is to define on Ω a structure
of probability space in such a way that natural sets are events to which we can assign a probability. The
natural sets we consider are called cylinders. These are sets for which only a finite number of components
of 𝜔 are constrained, while all the remaining are free to take any value of 𝑆. Formally, for 𝑘 P N, and
𝐸0, . . . , 𝐸𝑘 Ă 𝑆 we set

𝐶p𝑘; 𝐸0 ˆ ¨ ¨ ¨ ˆ 𝐸𝑘q “ t𝜔 P Ω : 𝜔0 P 𝐸0, . . . , 𝜔𝑘 P 𝐸𝑘u ,

or, more in general, for 𝐸 Ă 𝑆𝑘`1,
𝐶p𝑘; 𝐸q :“ t𝜔 P Ω : p𝜔0, . . . , 𝜔𝑘q P 𝐸u.

Sets 𝐶p𝑘; 𝐸q are called cylinders (this because they remind of geometrical cylinders, where some of the
coordinates are constrained to some domain, e.g. a disk, and others are free). We also set 𝒞 the family
of all the cylinders, for all possible choices of 𝑘 , and 𝐸 Ă 𝑆𝑘 . Notice that

i) Ω,∅ P 𝒞: indeed, for example,
∅ “ 𝐶p0;∅q, Ω “ 𝐶p0, 𝑆q.

ii) if 𝐶 P 𝒞 then also 𝐶𝑐 P 𝒞. Indeed,
𝐶p𝑘; 𝐸q𝑐 “ t𝜔 P Ω : p𝜔0, . . . , 𝜔𝑘q R 𝐸u “ t𝜔 P Ω : p𝜔0, . . . , 𝜔𝑘q P 𝐸𝑐u

“ 𝐶p𝑘; 𝐸𝑐q.

iii) 𝒞 is closed wrt finite unions. Let’s check this for 𝐶1 Y𝐶2, 𝐶 𝑗 “ 𝐶p𝑘 𝑗 ; 𝐸 𝑗q, 𝑗 “ 1, 2, cylinders.
Let 𝑘 :“ maxt𝑘1, 𝑘2u, then

𝐶p𝑘 𝑗 ; 𝐸 𝑗q “ 𝐶p𝑘; 𝐸 𝑗 ˆ 𝑆𝑘´𝑘 𝑗 q

so we can always assume that 𝐶 𝑗 “ 𝐶p𝑘; 𝐸 𝑗q with the same 𝑘 . Then
𝐶1 Y 𝐶2 “ t𝜔 P Ω : p𝜔0, . . . , 𝜔𝑘q P 𝐸1 Y 𝐸2u “ 𝐶p𝑘; 𝐸1 Y 𝐸2q.

Unfortunately, 𝒞 is not a 𝜎´algebra. For example, if ∅ Ĺ 𝐸 Ĺ 𝑆, then
ď

𝑛

𝐶p𝑛; 𝐸𝑛q “
␣

𝜔 P Ω : 𝜔 𝑗 P 𝐸, @ 𝑗
(

R 𝒞.

Definition 1.2.1

We say that 𝒜 is an algebra of sets if
‚ ∅,Ω P 𝒜;
‚ if 𝐴 P 𝒜 then also 𝐴𝑐 P 𝒜;
‚ if 𝐴1, . . . , 𝐴𝑛 P 𝒜 then

Ť𝑛
𝑘“1 𝐴𝑘 P 𝒜.

Thus, 𝒞 is an algebra of sets. We know that a natural 𝜎´algebra is always available: it is 𝜎p𝒞q, the
𝜎´algebra generated by 𝒞, which is also the smallest 𝜎´algebra containing 𝒞.
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1.2.2. Probability structure. Let’s now introduce a probabilistic structure on Ω “ 𝑆N. Let 𝑝 :
𝑆 ÝÑ r0, 1s be a probability mass distribution, so

ÿ

𝑠P𝑆

𝑝𝑠 “ 1.

We now define
P : 𝒞 ÝÑ r0, 1s.

The idea is simple: if for example we consider the cylinder 𝐶p0; t𝑠uq “ t𝜔 P Ω : 𝜔0 “ 𝑠u. It would be
natural to say

Pp𝐶p0; t𝑠uqq “ Probp𝜔0 “ 𝑠q “ 𝑝𝑠 .

This yields the definition

(1.2.1) P p𝐶p𝑘; 𝐸qq :“
ÿ

p𝑠0,...,𝑠𝑘qP𝐸

𝑝𝑠0 𝑝𝑠2 . . . 𝑝𝑠𝑘 .

This quantity is well posed. We need to check this because we can represent any cylinder in infinitely
many ways. For instance

𝐶p𝑘; 𝐸q “ 𝐶p𝑘 ` 1; 𝐸 ˆ 𝑆q.

According to the (1.2.1) we have

Pp𝐶p𝑘 ` 1; 𝐸 ˆ 𝑆q “
ř

p𝑠0,...,𝑠𝑘 ,𝑠𝑘`1qP𝐸ˆ𝑆 𝑝𝑠1 𝑝𝑠2 . . . 𝑝𝑠𝑘 𝑝𝑠𝑘`1

“
ř

p𝑠0,...,𝑠𝑘qP𝐸 𝑝𝑠1 𝑝𝑠2 . . . 𝑝𝑠𝑘

ÿ

𝑠𝑘`1P𝑆

𝑝𝑠𝑘`1

looooomooooon

“1

“
ř

p𝑠0,...,𝑠𝑘qP𝐸 𝑝𝑠1 𝑝𝑠2 . . . 𝑝𝑠𝑘 “ Pp𝐶p𝑘; 𝐸qq.

Similarly,𝐶p𝑘; 𝐸q “ 𝐶p𝑘`𝑚; 𝐸ˆ𝑆𝑚q and Pp𝐶p𝑘; 𝐸qq “ Pp𝐶p𝑘`𝑚; 𝐸ˆ𝑆𝑚qq. Furthermore, Pp∅q “ 0
and

PpΩq “ Pp𝐶p0; 𝑆qq “
ÿ

𝑠P𝑆

𝑝𝑠 “ 1.

P is also additive. Indeed, if 𝐶1, 𝐶2 are disjoint cylinders, since we can always represent them as
𝐶1 “ 𝐶p𝑘; 𝐸1q and 𝐶2 “ 𝐶p𝑘; 𝐸2q then, necessarily, 𝐸1 and 𝐸2 must be disjoint. In this case,

Pp𝐶1 Y 𝐶2q “ Pp𝐶p𝑘; 𝐸1 Y 𝐸2qq “
ř

p𝑠1,...,𝑠𝑘qP𝐸1Y𝐸2
𝑝𝑠1 ¨ ¨ ¨ 𝑝𝑠𝑘

“
ř

p𝑠1,...,𝑠𝑘qP𝐸1
𝑝𝑠1 ¨ ¨ ¨ 𝑝𝑠𝑘 `

ř

p𝑠1,...,𝑠𝑘qP𝐸2
𝑝𝑠1 ¨ ¨ ¨ 𝑝𝑠𝑘

“ Pp𝐶p𝑘; 𝐸1qq ` Pp𝐶p𝑘; 𝐸2qq “ Pp𝐶1q ` Pp𝐶2q.

In general, as we said, 𝒞 is not a 𝜎´algebra. So, a countable union of cylinders might not be a cylinder.
If however this happens and the union is disjoint, it turns out that P is countably additive. To show this,
we first state an equivalent condition for countable additivity that holds for probability measures:
So, we need to prove the
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Lemma 1.2.2

Let p𝐶𝑛q Ă 𝒞 be a sequence of cylinders such that 𝐶𝑛 Ó ∅. Then
lim
𝑛
Pp𝐶𝑛q “ 0.

Proof. Suppose, by contradiction, that Pp𝐶𝑛q ­ÝÑ 0. Since 𝐶𝑛 Ó and P is finitely additive, easily
Pp𝐶𝑛q Ó. So, the contradiction means that

D𝜀 ą 0, : Pp𝐶𝑛q ě 𝜀, @𝑛 P N.

The goal is to prove that
D𝜔 P

č

𝑛

𝐶𝑛.

Since Pp𝐶𝑛q ě 𝜀 ą 0, 𝐶𝑛 ‰ ∅, so
D𝜔1 “ p𝜔1,1 𝜔1,2 𝜔1,3 . . .q P 𝐶1,

D𝜔2 “ p𝜔2,1 𝜔2,2 𝜔2,3 . . .q P 𝐶2

D𝜔3 “ p𝜔3,1 𝜔3,2 𝜔3,3 . . .q P 𝐶3

...
...

...
...

D𝜔𝑛 “ p𝜔𝑛,1 𝜔𝑛,2 𝜔𝑛,3 . . .q P 𝐶𝑛

...
...

...
...

Let’s focus on the sequence of first components p𝜔𝑛,1q Ă 𝑆. Since 𝑆 is finite, there is at least one of the
element of the sequence that repeats infintely many times. In other words,

Dp𝑛1𝑗q Ă N : 𝜔𝑛1
𝑗
,1 ” r𝜔1.

Let’s now consider the subsequence 𝜔𝑛1
𝑗

and, in particular, the second coordinates p𝜔𝑛1
𝑗
,2q Ă 𝑆. By the

same argument, at least one of the elements of the sequence repeats infinitely many times, that is,
Dp𝑛2𝑗q Ă p𝑛1𝑗q : 𝜔𝑛2

𝑗
,2 ” r𝜔2.

Notice that p𝜔𝑛2
𝑗
,1q Ă p𝜔𝑛1

𝑗
,1q so 𝜔𝑛2

𝑗
,1 ” r𝜔1. Iterating this procedure we have that

Dp𝑛𝑘𝑗 q Ă p𝑛𝑘´1
𝑗

q : 𝜔𝑛𝑘
𝑗
,𝑖 ” r𝜔𝑘 , 𝑖 “ 1, . . . , 𝑘 .

Let finally
r𝜔 :“ pr𝜔1, r𝜔2, . . .q.

We claim that r𝜔 P
Ş

𝑛 𝐶𝑛. Indeed, 𝐶𝑛 “ 𝐶p𝑘𝑛; 𝐸𝑛q for some 𝑘𝑛 P N, 𝐸𝑛 Ă 𝑆𝑘𝑛 . So
r𝜔 P 𝐶𝑛 ðñ pr𝜔1, . . . , r𝜔𝑘𝑛q P 𝐸𝑛.

Notice that pr𝜔1, . . . , r𝜔𝑘𝑛q “

´

𝜔
𝑛
𝑘𝑛
𝑗

,1
, . . . , 𝜔

𝑛
𝑘𝑛
𝑗

,𝑘𝑛

¯

which are the first 𝑘𝑛 components of 𝜔
𝑛
𝑘𝑛
𝑗

P 𝐶
𝑛
𝑘𝑛
𝑗

.

For 𝑗 large enough, 𝑛𝑘𝑛
𝑗

ě 𝑛, so 𝐶
𝑛
𝑘𝑛
𝑗

Ă 𝐶𝑛, so

pr𝜔1, . . . , r𝜔𝑘𝑛q “ p𝜔
𝑛
𝑘𝑛
𝑗

,1
, 𝜔

𝑛
𝑘𝑛
𝑗

,2
, . . . , 𝜔

𝑛
𝑘𝑛
𝑗

,𝑘𝑛
q P 𝐸𝑛,

from which the conclusion follows. □
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Definition 1.2.3

Let 𝒜 be an algebra of sets of Ω. A set-function P : 𝒜 ÝÑ r0, 1s is a pre-probability if
i) Pp∅q “ 0, PpΩq “ 1.

ii) if p𝐴𝑛q Ă 𝒜 is such that
Ů

𝑛 𝐴𝑛 P 𝒜 then

P

˜

ğ

𝑛

𝐴𝑛

¸

“
ÿ

𝑛

Pp𝐴𝑛q.

It can be proved that any pre-probability can be extended in a unique way to the 𝜎´algebra generated by
𝒜:

Theorem 1.2.4: Carathéodory’s extension theorem

Let 𝒜 Ă 𝒫pΩq be an algebra of subsets and P : 𝒜 ÝÑ r0, 1s be a pre-probability. Then P admits
a unique extension to 𝜎p𝒜q.

1.3. Exercises

Exercise 1.3.1 (˚ geometric distribution). Let Ω “ N, 𝑝𝑛 :“ p1 ´ 𝑝q𝑝𝑛 with 0 ă 𝑝 ă 1. Check that
p𝑝𝑛q is a probability mass distribution.

Exercise 1.3.2 (˚ Poisson distribution). Let Ω “ N, 𝑝𝑛 :“ 𝑒´𝜆 𝜆𝑛

𝑛! , for 𝜆 ą 0 fixed. Check that p𝑝𝑛q is a
probability mass distribution.

Exercise 1.3.3 (˚). Let pΩ,ℱ, Pq be a probability space, 𝐸, 𝐹 two events such that Pp𝐸q “ 3
4 and

Pp𝐹q “ 1
3 . Show that Pp𝐸 X 𝐹q ě 1

12 .

Exercise 1.3.4 (˚). Let pΩ,ℱ, Pq be a probability space, p𝐸𝑛q Ă ℱ be sure events, that is Pp𝐸𝑛q “ 1
for every 𝑛. Then, also

Ş

𝑛 𝐸𝑛 is a sure event.

Exercise 1.3.5 (˚˚). Let Ω “ r0, 1s, ℱ :“ t𝐸 Ă r0, 1s : 𝐸 countable or 𝐸𝑐countableu, and

P : ℱ ÝÑ r0, 1s, Pp𝐸q :“

$

&

%

0, 𝐸 countable,

1, 𝐸𝑐, countable.

Determine whether pΩ,ℱ, Pq is a probability space or not.

Exercise 1.3.6 (˚˚). Let Ω be a sample space, ℱ a 𝜎´algebra of events, P,Q two probability measures
on ℱ.

i) Check that, if Pp𝐸q “ Qp𝐸q for every 𝐸 P ℱ with Pp𝐸q ď 1
2 , then P “ Q (that is, Pp𝐸q “ Qp𝐸q

for every 𝐸 P ℱ).
ii) Is i) still true if Pp𝐸q “ Qp𝐸q for every 𝐸 P ℱ with Pp𝐸q ă 1

2 ?

Exercise 1.3.7 (˚˚). Let Ω “ N, ℱ “ 𝒫pΩq and define

P𝑛p𝐸q :“
7𝐸 X t0, . . . , 𝑛 ´ 1u

𝑛
.
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i) Prove that P𝑛 is finitely additive. Is also countably additive?
ii) Define the class rℱ Ă ℱ as follows:

rℱ :“ t𝐸 P ℱ : D lim
𝑛Ñ`8

P𝑛p𝐸q “: Pp𝐸qu.

Check that rℱ is closed for finite unions and P is finitely additive.
iii) Is ℱ a 𝜎´algebra? Is P countably additive?

Exercise 1.3.8 (˚˚). Letting 𝑁 ÝÑ `8 into the binomial model we may obtain the Poisson model.
Precisely, consider a binomial model with parameter 𝑝𝑁 “ 𝜆

𝑁
and set

𝑝𝑁𝑛 :“

ˆ

𝑁

𝑛

˙

𝑝𝑛𝑁 p1 ´ 𝑝𝑁 q𝑁´𝑛, 𝑛 “ 0, . . . , 𝑁.

Show that
lim

𝑁Ñ`8
𝑝𝑁𝑛 “

𝜆𝑛

𝑛!
𝑒´𝜆.

(hint: use Stirling’s formula 𝑘! „`8

?
2𝜋𝑘 𝑘𝑘

𝑒𝑘
.)

Exercise 1.3.9 (˚˚). Let Ω “ 𝑆N. For each of the following sets 𝐾 determine if it is a cylinder and if it
belongs to 𝜎p𝒞q.

‚ A singleton 𝐾 :“ tr𝜔u, where r𝜔 P Ω.
‚ Let𝑈 Ă 𝑆, and 𝐾 :“ t𝜔 P Ω : 𝜔𝑛 P 𝑈, @𝑛 ě 𝑁u;
‚ Let 𝑠 P 𝑆, 𝐾 :“ t𝜔 P Ω : 𝜔2𝑘 ” 𝑠, @𝑘u

‚ Let 𝑠 P 𝑆, and 𝐾 :“ t𝜔 P Ω : 𝜔𝑘 “ 𝑠, for infinitely many 𝑘u.
Let P be the probability that originates from p𝑝𝑠q𝑠P𝑆 with 0 ă 𝑝𝑠 ă 1 for every 𝑠 and

ř

𝑠P𝑆 𝑝𝑠 “ 1 What
is the P of previous examples?
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Random Variables

2.1. Basic definitions

Let pΩ,ℱ, Pq be a probability space. A random variable (random variable) is just anℱ´measurable
function 𝑋 : Ω ÝÑ R. Usually, r.vs. are denoted by uppercase letters as 𝑋,𝑌, . . .. Therefore, all
properties of measurable functions apply. In particular, sum, difference, product of r.vs. is a random
variable, as well as the point-wise limit of a sequence of random variable is a random variable. We say
that a property 𝑝 “ 𝑝p𝜔q holds P´almost surely (shortening: P´a.s.) if it holds almost everywhere in
the ordinary language of measures. So, for example, if 𝑋 is a random variable,

𝑋 ě 0, P´ 𝑎.𝑠., ðñ Pp𝑋 ă 0q “ 0.

If 𝑋 ě 0 P´a.s. it is always defined ∫
Ω

𝑋 𝑑P,

possibly equal to `8. If 𝑋 P 𝐿1pΩq, then it is well defined the expected value of 𝑋 (or, also, expectation
of 𝑋)

Er𝑋s :“

∫
Ω

𝑋 𝑑P P R.

An important value is the variance of 𝑋 . This is defined for 𝑋 P 𝐿2pΩq as

Vr𝑋s :“ E
”

p𝑋 ´ Er𝑋sq
2
ı

“ Er𝑋2s ´ Er𝑋s2 “

∫
Ω

𝑋2 𝑑P´

ˆ∫
Ω

𝑋 𝑑P

˙2

.

Notice that, by the CS inequality,

|Er𝑋s| “ |Er1 ¨ 𝑋s| ď Er1s1{2Er𝑋2s1{2 “ Er𝑋2s1{2,

so if 𝑋 P 𝐿2 then 𝑋 P 𝐿1. In general, the quantity

Er𝑋 𝑘s “

∫
Ω

𝑋 𝑘 𝑑P, p𝑘 P Nq,

is called 𝑘´th moment of 𝑋 (to be defined we need 𝑋 P 𝐿𝑘pΩq).
Given 𝑋,𝑌 random variables we define the covariance of 𝑋 and 𝑌 as the quantity

Covp𝑋,𝑌q :“ Erp𝑋 ´ Er𝑋sqp𝑌 ´ Er𝑌 sqs.

By the CS inequality, Covp𝑋,𝑌q is well defined for 𝑋,𝑌 P L2 and

|Covp𝑋,𝑌q| ď Erp𝑋 ´ Er𝑋sq2s1{2Erp𝑌 ´ Er𝑌 sq2s1{2 “ Vr𝑋s1{2Vr𝑌 s1{2.

11
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The quantity Vr𝑋s1{2 is also called standard deviation. The linear correlation (or Pearson’s correla-
tion) is

𝜌p𝑋,𝑌q :“
Covp𝑋,𝑌q

Vr𝑋s1{2Vr𝑌 s1{2
.

The linear correlation is well defined provided 𝑋,𝑌 P 𝐿2 are not a.e. constants and, because of CS
inequality

|𝜌p𝑋,𝑌q| ď 1.

2.2. Law of a random variable

A random variable induces a natural probability on R equipped with Borel 𝜎´algebra ℬR. We recall
that this is the 𝜎´algebra generated by open sets of R. The idea is to define

𝜇𝑋p𝐸q :“ Pp𝑋 P 𝐸q, 𝐸 P ℬR.

To be sure that this definition makes sense, we need first to verify that t𝑋 P 𝐸u P ℱ for every 𝐸 is a
Borel set. This is the content of the following Proposition.

Proposition 2.2.1

Let pΩ,ℱ, Pq be a probability space, 𝑋 : Ω ÝÑ R a function. Then, the following properties are
equivalent:

i) 𝑋 is a random variable.
ii) t𝑋 P 𝐸u P ℱ, @𝐸 P ℬR.

Proof. ii) ùñ i) is trivial: since ℬR is generated by open sets, it contains, in particular, all intervals
𝐼 Ă R, so by ii) we have t𝑋 P 𝐼u P ℱ for every 𝐼 interval, and this means that 𝑋 P 𝐿pΩq, that is 𝑋 is a
random variable.
Let’s prove that i) ùñ ii). To this aim, define the family of sets

𝒢 :“ t𝐸 P ℬR : t𝑋 P 𝐸u P ℱu Ă ℬR.

The goal is to prove that 𝒢 “ ℬR. To this aim we will verify that
i) 𝒢 contains the open sets (of R);

ii) 𝒢 is a 𝜎´algebra.
From this, it follows that 𝒢 Ą 𝜎ptopen setsuq “ ℬR, and since by definition 𝒢 Ă ℬR the conclusion
follows.
i) Let 𝐸 be an open interval. By definition of measurable function t𝑋 P 𝐸u P ℱ. Now, if 𝐸 is a generic open
set, we know that for every 𝑥 P 𝐸 there exists 𝐼𝑥 open neighbourhood of 𝑥 (something like s𝑥 ´ 𝜀, 𝑥 ` 𝜀r)
such that 𝐼𝑥 Ă 𝐸 . In this way

𝐸 “
ď

𝑥

𝐼𝑥 .

We need to refine this union to a countable union. By density of Q in R, for every 𝑥 P 𝐸 we can find 𝑞𝑥 P Q
and an open neighbourhood 𝐽𝑞𝑥

such that 𝑥 P 𝐽𝑞𝑥
Ă 𝐼𝑥 . Thus

𝐸 “
ď

𝑥

𝐽𝑞𝑥
,
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and since the p𝑞𝑥q𝑥P𝐸 are at most a countable number, say p𝑞𝑥q𝑥P𝐸 “ p𝑟𝑛q𝑛PN, we have

𝐸 “
ď

𝑛

𝐽𝑟𝑛 .

Therefore, since t𝑋 P 𝐽𝑟𝑛u P ℱ by the first part of the argument and ℱ is a 𝜎´algebra, we have

t𝑋 P 𝐸u “
ď

𝑛

t𝑋 P 𝐽𝑟𝑛u P ℱ

ii) We check that 𝒢 is a 𝜎´algebra of subsets of R. First t𝑋 P Ru “ Ω P ℱ, thus R P 𝒢. Similarly,
t𝑋 P ∅u “ ∅ P ℱ, so ∅ P 𝒢. If 𝐸 P 𝒢, then, since

t𝑋 P 𝐸𝑐u “ t𝑋 P 𝐸u𝑐 P ℱ,

we have 𝐸𝑐 P 𝒢. Finally, if p𝐸𝑛q Ă 𝒢 we have
#

𝑋 P
ď

𝑛

𝐸𝑛

+

“
ď

𝑛

t𝑋 P 𝐸𝑛u P ℱ,

thus
Ť

𝑛 𝐸𝑛 P 𝒢.

Definition 2.2.2

Let pΩ,ℱ, Pq be a probability space, 𝑋 a random variable. We call law of 𝑋 the probability
measure 𝜇𝑋 on pR,ℬRq defined by

𝜇𝑋p𝐸q :“ P p𝑋 P 𝐸q , 𝐸 P ℬR.

Example 2.2.3: constant random variable

The simplest possible example of random variable is a constant one, namely 𝑋 “ 𝑥0 a.s.. In this
case the law of 𝑋 is

𝜇𝑋p𝐸q “ P p𝑋 P 𝐸q “

$

&

%

1, 𝑥0 P 𝐸,

0, 𝑥0 R 𝐸,

“ 𝛿𝑥0p𝐸q.

the delta Dirac 𝛿𝑥0 .

Example 2.2.4: Bernoulli random variable

The simplest non constant random variable is that one who takes two values, say 𝑋 “ 1 with
probability 𝑝 and 𝑋 “ 0 with prob. 1 ´ 𝑝. We write 𝑋 „ Berp𝑝q. The law of 𝑋 is

𝜇𝑋p𝐸q “

$

’

’

&

’

’

%

0, 𝐸 S 0, 1,
𝑝, 𝐸 Q 1, 𝐸 S 0,
1 ´ 𝑝, 𝐸 Q 0, 𝐸 S 1,
1, 𝐸 Q 0, 1.

“ 𝑝𝛿1p𝐸q ` p1 ´ 𝑝q𝛿0p𝐸q,
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Example 2.2.5: Uniform random variable

A uniform random variable is a random variable taking values in r𝑎, 𝑏s with law

𝜇𝑋p𝐸q “
1

𝑏 ´ 𝑎
𝜆1p𝐸 X r𝑎, 𝑏sq,

where 𝜆1 is the one-dimensional Lebesgue measure. We write 𝑋 „ 𝑈pr𝑎, 𝑏sq.

2.3. Change of measure

By definition of law we can write

Er1𝐸p𝑋qs “ Pp𝑋 P 𝐸q “ 𝜇𝑋p𝐸q “

∫
R
1𝐸 𝑑𝜇𝑋 .

By linearity, if 𝑠 “
ř𝑛

𝑘“0 𝑐𝑘1𝐸𝑘
is a simple Borel function (that is 𝐸𝑛 P ℬR for every 𝑛), we have

Er𝑠p𝑋qs “ E

«

𝑛
ÿ

𝑘“0

𝑐𝑘1𝐸𝑘

ff

“

𝑛
ÿ

𝑘“0

𝑐𝑘Er1𝐸𝑘
p𝑋qs “

𝑛
ÿ

𝑘“0

𝑐𝑘

∫
R
1𝐸𝑘

𝑑𝜇𝑋 “

∫
R
𝑠 𝑑𝜇𝑋 .

This formula extends to any function 𝜙p𝑋q provided 𝜙 be a Borel measurable function.

Proposition 2.3.1

Let pΩ,ℱ, Pq be a probability space, 𝑋 a random variable. Let 𝜙 “ 𝜙p𝑥q : R ÝÑ R be a Borel
measurable function. We have 𝜙p𝑋q P 𝐿1pΩ,ℱ, Pq iff 𝜙 P 𝐿1pR,ℬR, 𝜇𝑋q and the following
identity holds:

(2.3.1) Er𝜙p𝑋qs “

∫
R
𝜙 𝑑𝜇𝑋 .

In particular,

Er𝑋s “

∫
R
𝑥 𝑑𝜇𝑋p𝑥q, Vr𝑋s “

∫
R
𝑥2 𝑑𝜇𝑋p𝑥q ´

ˆ∫
R
𝑥 𝑑𝜇𝑋p𝑥q

˙2

.

Proof. Let 𝜙 P 𝐿`pR,ℬRq be a positive Borel-function. As we know for general positive measurable
functions, there exists a sequence p𝑠𝑛q Ă 𝐿`pR,ℬRq of simple Borel functions such that 𝑠𝑛 Ò 𝜙 on R.
Then, by monotone convergence,

lim
𝑛

∫
R
𝑠𝑛 𝑑𝜇𝑋 “

∫
R
𝜙 𝑑𝜇𝑋 .

On the other hand, 𝑠𝑛p𝑋q Ò 𝜙p𝑋q P´a.s. and. by monotone convergence,
lim
𝑛
Er𝑠𝑛p𝑋qs “ Er𝜙p𝑋qs.

So, formula (2.3.1) holds for every 𝜙 P 𝐿`pR,ℬRq.
Let now 𝜙 P 𝐿pR,ℬRq be a generic Borel-measurable function. The, as well knonw,

𝜙 P 𝐿1pR, 𝜇𝑋q ðñ

∫
R
𝜙˘ 𝑑𝜇𝑋 “ Er𝜙˘p𝑋qs ă `8, ðñ 𝜙p𝑋q P 𝐿1pΩ, Pq.
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In this case,∫
R
𝜙 𝑑𝜇𝑋 “

∫
R
𝜙` 𝑑𝜇𝑋 ´

∫
R
𝜙´ 𝑑𝜇𝑋 “ Er𝜙`p𝑋qs ´ Er𝜙´p𝑋qs “ Er𝜙p𝑋qs. □

Example 2.3.2

Let 𝑋 „ 𝑈pr𝑎, 𝑏sq. Then

Er𝑋s “

∫
R
𝑥 𝑑𝜇𝑋, where 𝜇p𝐸q “

1

𝑏 ´ 𝑎
𝜆1p𝐸 X r𝑎, 𝑏sq.

Notice that

𝜇𝑋p𝐸q “
1

𝑏 ´ 𝑎

∫
𝐸Xr𝑎,𝑏s

𝑑𝑥 “
1

𝑏 ´ 𝑎

∫ 𝑏

𝑎

1𝐸p𝑥q 𝑑𝑥,

so ∫
R
𝜙p𝑥q 𝑑𝜇𝑋p𝑥q “

1

𝑏 ´ 𝑎

∫ 𝑏

𝑎

𝜙p𝑥q 𝑑𝑥,

whence

Er𝑋s “
1

𝑏 ´ 𝑎

∫ 𝑏

𝑎

𝑥 𝑑𝑥 “
1

𝑏 ´ 𝑎

„

𝑥2

2

ȷ𝑥“𝑏

𝑥“𝑎

“
𝑎 ` 𝑏

2
.

Notice also that

Er𝑋2s “
1

𝑏 ´ 𝑎

∫ 𝑏

𝑎

𝑥2 𝑑𝑥
1

𝑏 ´ 𝑎

„

𝑥3

3

ȷ𝑥“𝑏

𝑥“𝑎

“
1

3

𝑏3 ´ 𝑎3

𝑏 ´ 𝑎
“
𝑎2 ` 𝑎𝑏 ` 𝑏2

3
.

Therefore

Vr𝑋s “ Er𝑋2s ´ Er𝑋s2 “
𝑎2 ` 𝑎𝑏 ` 𝑏2

3
´

ˆ

𝑎 ` 𝑏

2

˙2

“
p𝑏 ´ 𝑎q2

12
.

2.4. Markowitz’s Optimal Portfolio selection

Markowitz’s Optimal Portfolio selection model was introduced in 1952 to describe the efficient
selection of a portfolio. An investor seeks for the most efficient allocation of a wealth 𝑤 in a portfolio
made of 𝑁 risky assets and 1 risk free asset. The assets have known values 𝑥𝑘 (𝑘 “ 1, . . . , 𝑁 ` 1,
𝑘 “ 𝑁 ` 1 represents the risk free asset) at moment when the decision on the allocation is made, and
uncertain values 𝑋𝑘 at moment when uncertainty is resolved.

Let p𝑎1, . . . , 𝑎𝑁`1q the array of the allocations. Because of wealth constraint,

(2.4.1) 𝑤 “ 𝑎1𝑥1 ` ¨ ¨ ¨ ` 𝑎𝑁𝑥𝑁 ` 𝑎𝑁`1𝑥𝑁`1.

Final wealth is then
𝑊 “ 𝑎1𝑋1 ` ¨ ¨ ¨ ` 𝑎𝑁𝑋𝑁 ` 𝑎𝑁`1𝑋𝑁`1

The rate of return of each asset is the quantity 𝑅 𝑗 such that

𝑋 𝑗 “ p1 ` 𝑅 𝑗q𝑥 𝑗 .
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Notice that, for the risk free asset, 𝑅𝑁`1 ” 𝑟 is constant. The portfolio return rate is then

𝑊 “

𝑁
ÿ

𝑗“1

𝑎 𝑗p1 ` 𝑅 𝑗q𝑥 𝑗 ` 𝑎𝑁`1p1 ` 𝑟q𝑥𝑁`1 “ 𝑤 `

𝑁
ÿ

𝑗“1

𝑎 𝑗𝑥 𝑗𝑅 𝑗 ` 𝑎𝑁`1𝑟𝑥𝑁`1

“

˜

1 `

𝑁
ÿ

𝑗“1

𝑎 𝑗𝑥 𝑗

𝑤
𝑅 𝑗 `

𝑎𝑁`1𝑥𝑁`1

𝑤
𝑟

¸

𝑤

“:
´

1 ` ®𝜃 ¨ ®𝑅 ` 𝜃𝑁`1𝑟

¯

𝑤

where 𝜃 𝑗 :“
𝑎 𝑗 𝑥 𝑗

𝑤
. Notice that, because of the budget constraint (2.4.1), we have

𝑁
ÿ

𝑗“1

𝜃 𝑗 ` 𝜃𝑁`1 “
1

𝑤
p𝑎1𝑥1 ` ¨ ¨ ¨ ` 𝑎𝑁`1𝑥𝑁`1q “ 1.

This allows a one variable reduction setting 𝜃𝑁`1 “ 1 ´
ř𝑁

𝑗“1 𝜃 𝑗 ,

𝑊 “

´

1 ` ®𝜃 ¨ ®𝑅 ` p1 ´ ®𝜃 ¨ ®1q𝑟

¯

𝑤,

Hereafter we use the notation𝑊 ®𝜃 for the previous value, and we denote by

𝑅p®𝜃q :“ ®𝜃 ¨ ®𝑅 ` p1 ´ ®𝜃 ¨ ®1q𝑟

the portfolio return rate. Notice that the array ®𝜃 is now unconstrained in R𝑛.
The efficient investor problem consists in determining the optimal allocation that combines the highest

expected rate of return 𝑅p®𝜃q with the minimum possible risk. We assume an underlying probability space
pΩ,ℱ, Pq. Here P is also called physical probability and, in the model, it reflects the beliefs of the
investor. The return rates 𝑅1, . . . , 𝑅𝑁 of risky assets are r.vs. We assume moreover that the investor
is risk averse. This means that the investor is disappointed when an investment yields a high risk. We
assume as measure of risk variance

Vr𝑅s “ E
“

p𝑅 ´ Er𝑅sq2
‰

Of course, this is a very limited way of measuring risk. For example, Vr𝑅s does not distinguish between
good states – when the rate of return 𝑅 ą Er𝑅s is above its expectation – from bad states, when the
opposite happens. Nonetheless, since pioneering work of Markowitz, it is a very popular measure of risk.
The basic idea is that Vrp𝑅 ´ Er𝑅sq2s emphasizes large displacements from expected return Er𝑅s

To cope expected return with risk, Markowitz proposed a mixed target functional

MVr𝑅p®𝜃qs “ Er𝑅p®𝜃qs ´
𝜚

2
Vr𝑅p®𝜃qs.

Here, 𝜚 ą 0 it is called risk aversion parameter, it yields a way to weight risk respect to expected return.
We can now formalize Markowitz’s Optimal Portfolio Selection Problem:

max
®𝜃PR𝑛
MVr𝑅p®𝜃qs.
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We can easily solve the problem now. First notice that

𝑅p®𝜃q “ ®𝜃 ¨ p ®𝑅 ´ ®𝑟q ` 𝑟,

and since, as easily checked,MVr𝑅p®𝜃qs “ MVr®𝜃 ¨ p ®𝑅 ´ ®𝑟qs ` 𝑟 . Now,

Er®𝜃 ¨ p ®𝑅 ´ ®𝑟qs “ ®𝜃 ¨ Er ®𝑅 ´ ®𝑟s “ ®𝜃 ¨ p ®𝜇 ´ ®𝑟q,
where ®𝜇 “ Er ®𝑅s is the array of expected return rates. Notice also that

Vr®𝜃 ¨ p ®𝑅 ´ ®𝑟qs “ E

„

´

®𝜃 ¨ p ®𝑅 ´ ®𝜇q

¯2
ȷ

“ E

«

ÿ

𝑖, 𝑗

𝜃𝑖𝜃 𝑗p𝑅𝑖 ´ 𝜇𝑖qp𝑅 𝑗 ´ 𝜇 𝑗q

ff

“ 𝐶 ®𝜃 ¨ ®𝜃,

where 𝐶 is the 𝑁 ˆ 𝑁 covariance matrix
𝐶 “ r𝐶𝑖 𝑗s, 𝐶𝑖 𝑗 “ Covp𝑅𝑖 ´ 𝜇𝑖 , 𝑅 𝑗 ´ 𝜇 𝑗q “ Covp𝑅𝑖 , 𝑅 𝑗q.

In particular, 𝐶 is a positive definite matrix. Therefore

MVr𝑅p®𝜃qs “ ®𝜃 ¨ p ®𝜇 ´ ®𝑟q ´
𝜚

2
𝐶 ®𝜃 ¨ ®𝜃.

Assuming the covariance matrix 𝐶 strictly positive definite, the target function is negative quadratic,
hence it has a global maximum ®𝜃˚ that verifies the first order condition

∇MVr𝑅p®𝜃˚qs “ ®𝜇 ´ ®𝑟 ´ 𝜚𝐶 ®𝜃˚ “ ®0,
from which we obtain the well known Markowitz formula:

®𝜃˚ “
1

𝜚
𝐶´1p ®𝜇 ´ ®𝑟q.

2.5. Exercises

Exercise 2.5.1 (˚˚). Let 𝑋,𝑌 P 𝐿2 be non constant r.vs.
i) Check that 𝜌p𝑎𝑋 ` 𝑏, 𝑐𝑌 ` 𝑑q “ ˘𝜌p𝑋,𝑌q, for every 𝑎, 𝑏, 𝑐, 𝑑 P R.

ii) p`q True or false: is 𝜌p𝑋,𝑌q “ ˘1 iff 𝑌 “ 𝑎𝑋 ` 𝑏 for some 𝑎, 𝑏 P R? (hint: think to
Cauchy-Schwarz inequality)

Exercise 2.5.2 (˚˚). Show with an example that we may have 𝜌p𝑋,𝑌2q “ ˘1 and 𝜌p𝑋,𝑌q “ 0.

Exercise 2.5.3 (˚˚). Let 𝑋,𝑌 be two random variable on pΩ,ℱ, Pq such that 𝜇𝑋p𝐼q “ 𝜇𝑌 p𝐼q for every
𝐼 Ă R interval.

i) Let 𝒮 :“ t𝐸 P ℬR : 𝜇𝑋p𝐸q “ 𝜇𝑌 p𝐸qu. Check that 𝒮 is a 𝜎´algebra.
ii) Deduce 𝜇𝑋 “ 𝜇𝑌 .

Exercise 2.5.4 (˚˚). We consider an extension of the concept of measurable function. Let Ω1,2 two sets,
ℱ1,2 two 𝜎´algebras of sets of, resp., Ω1,2. We say that a map 𝑇 : Ω1 ÝÑ Ω2 is measurable wrt ℱ1,2 if

t𝑇 P 𝐸u P ℱ1, @𝐸 P ℱ2.

We write 𝑇 P 𝐿ppΩ1,ℱ1q; pΩ2,ℱ2qq.
i) Check that 𝑇´1pℱ2q “ t𝑇´1p𝐸q : 𝐸 P ℱ2u is a sub 𝜎´algebra of ℱ1.

ii) Check that by composing two measurable maps you get a measurable map.
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Cumulative Distribution Function (cdf)

3.1. Definition and main properties

From the probabilistic point of view, a random variable 𝑋 is fully described by its law. This is a
measure on R equipped with the Borel 𝜎´algebra. However, dealing with measures is not easy. It is
therefore natural to find some other mathematical tool to make the handling of a random variable a bit
easier. The cdf is a function associated to every random variable.

Definition 3.1.1

Let pΩ,ℱ, Pq be a probability space, 𝑋 a random variable. We call cumulative distribution
function of 𝑋 the function 𝐹𝑋 : R ÝÑ r0, 1s defined as

𝐹𝑋p𝑥q :“ Pp𝑋 ď 𝑥q, p“ 𝜇𝑋ps ´ 8, 𝑥sqq, 𝑥 P R.

The principal properties of cdf are listed in the following Proposition.

Proposition 3.1.2

Let pΩ,ℱ, Pq be a probability space, 𝐹𝑋 the cdf of the random variable 𝑋 . The following properties
hold:

i) 𝐹𝑋 is increasing, that is 𝐹𝑋p𝑥q ď 𝐹𝑋p𝑦q for every 𝑥 ď 𝑦.
ii) 𝐹𝑋p´8q “ lim𝑥Ñ´8 𝐹𝑋p𝑥q “ 0 and 𝐹𝑋p`8q “ lim𝑥Ñ`8 𝐹𝑋p𝑥q “ 1.

iii) 𝐹𝑋 is right continuous, that is
D lim
𝑦Ñ𝑥`

𝐹𝑋p𝑦q “ 𝐹𝑋p𝑥q, @𝑥 P R.

iv) 𝐹𝑋 has left limit, that is
D lim
𝑦Ñ𝑥´

𝐹𝑋p𝑦q ď 𝐹𝑋p𝑥q, @𝑥 P R.

Proof. i) This is an easy consequence of monotonicity of probability measure P: if 𝑥 ď 𝑦 then
t𝑋 ď 𝑥u Ă t𝑋 ď 𝑦um thus

𝐹𝑋p𝑥q “ Pp𝑋 ď 𝑥q ď Pp𝑋 ď 𝑦q “ 𝐹𝑋p𝑦q.

ii) This follows from continuity properties of probability measure P. We first notice that, since by i)
𝐹𝑋 is monotonic, unilateral limits always exist. Thus, in particular, 𝛼 :“ lim𝑥Ñ´8 𝐹𝑋p𝑥q and 𝛽 :“
lim𝑥Ñ`8 𝐹𝑋p𝑥q exist. Now, for the first take 𝑛 P Z and define 𝐸𝑛 :“ t𝑋 ď 𝑥𝑛u. Notice that 𝐸𝑛 Ó t𝑋 ď
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´8u “ ∅ when 𝑛 Ó ´8. Since P is a finite measure, it is continuous from above, so
0 “ Pp∅q “ lim

𝑛Ñ´8
Pp𝑋 ď 𝑛q “ lim

𝑛Ñ´8
𝐹𝑋p𝑛q “ 𝛼.

Similarly, 𝐸𝑛 Ò t𝑋 ď `8u “ Ω when 𝑛 Ò `8 thus, by continuity from below,
1 “ PpΩq “ lim

𝑛Ñ`8
Pp𝑋 ď 𝑛q “ lim

𝑛Ñ`8
𝐹𝑋p𝑛q “ 𝛽.

iii) By i), left limit lim𝑦Ñ𝑥` 𝐹𝑋p𝑦q exists, and since 𝐹𝑋 Õ, we have also lim𝑦Ñ𝑥` 𝐹𝑋p𝑦q ě 𝐹𝑋p𝑥q. To
prove the equality, take 𝑦𝑛 Ó 𝑥 and define 𝐸𝑛 :“ t𝑋 ď 𝑥𝑛u, in such a way that

𝐸𝑛 Ó
č

𝑘

𝐸𝑘 “
č

𝑘

t𝑋 ď 𝑦𝑘u

We claim this intersection is t𝑋 ď 𝑥u. Indeed, since 𝑦𝑘 ą 𝑥, t𝑋 ď 𝑥u Ă t𝑋 ď 𝑦𝑘u for every 𝑘¡ thus
t𝑋 ď 𝑥u Ă

Ş

𝑘t𝑋 ď 𝑦𝑘u. Conversely, if 𝜔 P
Ş

𝑘t𝑋 ď 𝑦𝑘u, then 𝑋p𝜔q ď 𝑦𝑘 for every 𝑘 . Letting
𝑘 ÝÑ `8 we have 𝑋p𝜔q ď lim𝑘 𝑦𝑘 “ 𝑥, thus 𝜔 P t𝑋 ď 𝑥u, and this proves

Ş

𝑘t𝑋 ď 𝑦𝑘u Ă t𝑋 ď 𝑥u,
from which equality follows. Thus

𝐸𝑛 Ó t𝑋 ď 𝑥u,

and by continuity from above the conclusion now follows.
iv) Existence of the left limit, once more, follows by the monotonic nature of 𝐹𝑋 and since 𝐹𝑋p𝑦q ď 𝐹𝑋p𝑥q

for every 𝑦 ă 𝑥, we deduce lim𝑦Ñ𝑥´ 𝐹𝑋p𝑦q ď 𝐹𝑋p𝑥q. □

Example 3.1.3

Let 𝑋 “ 𝑥0 a.s.. In this case the law of 𝑋 is the delta Dirac 𝛿𝑥0 . The cdf is
𝐹𝑋p𝑥q “ Pp𝑋 ď 𝑥q “ 𝜇𝑋ps ´ 8, 𝑥sq “ 𝛿𝑥0ps ´ 8, 𝑥sq “ 1r𝑥0,`8rp𝑥q.

x0
x

1

FX (x)

Example 3.1.4

Let 𝑋 „ Berp𝑝q be a Bernoulli random variable of parameter 𝑝. The cdf is

𝐹𝑋p𝑥q “ 𝜇𝑋ps ´ 8, 𝑥sq “

$

&

%

0, 𝑥 ă 0,
1 ´ 𝑝, 0 ď 𝑥 ă 1,
1, 𝑥 ě 1.

1
x

1-p

1

FX (x)
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Example 3.1.5

Let 𝑋 „ 𝑈p𝑎, 𝑏q. We have

𝐹𝑋p𝑥q “ 𝜇𝑋ps ´ 8, 𝑥sq “
1

𝑏 ´ 𝑎
𝜆ps ´ 8, 𝑥s X r𝑎, 𝑏sq “

$

&

%

0, 𝑥 ă 𝑎,
𝑥´𝑎
𝑏´𝑎

, 𝑎 ď 𝑥 ď 𝑏,

1, 𝑥 ą 𝑏.

a b
x

1

FX (x)

To each random variable 𝑋 it is associated a cdf 𝐹𝑋. The viceversa also holds:

Proposition 3.1.6

Assume that 𝐹 “ 𝐹p𝑥q : R ÝÑ r0, 1s verifies properties i)–iv) of Proposition 3.1. There exists
then a random variable 𝑋 on a suitable probability space such that 𝐹𝑋 “ 𝐹.

Proof. For simplicity, we assume that 𝐹 be strictly increasing and continuous. Let pΩ,ℱ, Pq :“
pr0, 1s,ℬpr0, 1sq, 𝜆1q where ℬpr0, 1sq are the Borel sets of r0, 1s. Now, since we want

Pp𝑋 ď 𝑥q ” 𝜆1p𝑋 ď 𝑥q “ 𝐹𝑋p𝑥q,

the idea is to define, for 𝜔 P r0, 1s,
𝑋p𝜔q :“ 𝐹´1p𝜔q.

In this way we would have
Pp𝑋 ď 𝑥q “ 𝜆1pt𝜔 P r0, 1s : 𝐹´1p𝜔q ď 𝑥uq “ 𝜆1pt𝜔 P r0, 1s : 𝜔 ď 𝐹p𝑥quq “ 𝜆1pr0, 𝐹p𝑥qsq “ 𝐹p𝑥q,

as desired.

3.2. Absolutely continuous random variable

Definition 3.2.1

Let pΩ,ℱ, Pq be a probability space, 𝑋 a random variable. We say that 𝑋 is absolutely continuous
(a.c.) with density 𝑓𝑋 P 𝐿1pR,ℬR, 𝜆1q with respect to P if

𝑑𝜇𝑋 “ 𝑓𝑋 𝑑𝑥,

that is,

(3.2.1) 𝜇𝑋p𝐸q “

∫
𝐸

𝑓𝑋p𝑥q 𝑑𝑥, @𝐸 P ℬR.

Clearly, a density 𝑓𝑋 is non negative and∫
R
𝑓𝑋p𝑥q 𝑑𝑥 “ 𝜇𝑋pRq “ Pp𝑋 P Rq “ 1.
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Moreover, if 𝑋 is a.c. random variable with density 𝑓 , we have

Er𝜙p𝑋qs “

∫
R
𝜙p𝑥q 𝑓𝑋p𝑥q 𝑑𝑥.

This means that 𝜙p𝑋q P 𝐿1pΩq iff 𝜙 P 𝐿1pR, 𝜇𝑋q, iff∫
R

|𝜙p𝑥q| 𝑓𝑋p𝑥q 𝑑𝑥 ă `8.

So, in particular,

Er𝑋s “

∫
R
𝑥 𝑓𝑋p𝑥q 𝑑𝑥, Er𝑋2s “

∫
R
𝑥2 𝑓𝑋p𝑥q 𝑑𝑥.

provided, respectively, ∫
R

|𝑥| 𝑓𝑋p𝑥q 𝑑𝑥 ă `8,

∫
R
𝑥2 𝑓𝑋p𝑥q 𝑑𝑥 ă `8.

If 𝑋 is an a.c. random variable, then

𝐹𝑋p𝑥q “

∫
s´8,𝑥s

𝑓𝑋p𝑦q 𝑑𝑦 ”

∫ 𝑥

´8

𝑓𝑋p𝑦q 𝑑𝑦.

From this we have the

Proposition 3.2.2

Let pΩ,ℱ, Pq be a probability space, 𝐹𝑋 the cdf of a random variable 𝑋 . Then, 𝑋 is absolutely
continuous with density 𝑓𝑋 iff

i) 𝐹𝑋 P 𝒞pRq;
ii) 𝐹𝑋 is a.e. differentiable and

𝐹 1
𝑋p𝑥q “ 𝑓𝑋p𝑥q, 𝑎.𝑒. 𝑥 P R.

iii) 𝑓𝑋 P 𝐿1pRq.

Proof. Necessity: let 𝑋 be a.c. and let’s prove that i),ii),iii) hold. We already know that 𝐹𝑋 is right
continuous with left limit. If 𝑥𝑛 Ò 𝑥 then, by monotone convergence,

𝐹𝑋p𝑥𝑛q “

∫
R
1s´8,𝑥𝑛sp𝑥q 𝑓𝑋p𝑥q 𝑑𝑥 ÝÑ

∫
R
1s´8,𝑥rp𝑥q 𝑓𝑋p𝑥q 𝑑𝑥 “

∫
R
1s´8,𝑥sp𝑥q 𝑓𝑋p𝑥q 𝑑𝑥 “ 𝐹𝑋p𝑥q,

since singletons are null sets for the Lebesgue measure. This proves continuity. Differentiability is more
complex. We start noticing that if 𝜀 ą 0,

𝐹𝑋p𝑥 ` 𝜀q ´ 𝐹𝑋p𝑥q

𝜀
“

1

𝜀

∫ 𝑥`𝜀

𝑥

𝑓𝑋p𝑦q 𝑑𝑦 “

∫
R
𝑓𝑋p𝑦q

1

𝜀
1r0, 𝜀sp𝑦 ´ 𝑥q 𝑑𝑦 “ 𝑓 ˚ 𝛿𝜀p𝑥q,

where 𝛿𝜀p𝑢q “ 1
𝜀
1r0,1sp´ 𝑢

𝜀
q is an approximate unit and 𝑓 ˚ 𝛿𝜀

𝐿1

ÝÑ 𝑓 . We want pointwise convergence.
We notice that the previous property implies that

(3.2.2) @p𝜀𝑛q, 𝜀𝑛 ÝÑ 0, Dp𝜀𝑛𝑘 q :
𝐹𝑋p𝑥 ` 𝜀𝑛𝑘 q ´ 𝐹𝑋p𝑥q

𝜀𝑛𝑘
ÝÑ 𝑓𝑋p𝑥q, 𝑎.𝑒.
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Now,, pick an 𝑥 for which the previous property is true and assume We claim that

D lim
𝜀Ñ0

𝐹𝑋p𝑥 ` 𝜀q ´ 𝐹𝑋p𝑥q

𝜀
“ 𝑓𝑋p𝑥q, 𝑎.𝑒. 𝑥 P R.

Indeed, if false, there would be 𝜀𝑛 ÝÑ 0 for which

𝜆1

ˆ

lim
𝑛

𝐹𝑋p𝑥 ` 𝜀𝑛q ´ 𝐹𝑋p𝑥q

𝜀𝑛
‰ 𝑓𝑋p𝑥q

˙

ą 0.

But then,

𝜆1

ˆ

lim
𝑘

𝐹𝑋p𝑥 ` 𝜀𝑛𝑘 q ´ 𝐹𝑋p𝑥q

𝜀𝑛𝑘
‰ 𝑓𝑋p𝑥q

˙

ą 0,

that is
𝜆1 p 𝑓𝑋p𝑥q ‰ 𝑓𝑋p𝑥qq ą 0,

which is impossible!
Sufficiency: we assume i),ii) and iii) hold and we prove 𝑋 is a.c. By ii) and the fundamental theorem of
integral calculus (weak form) we have

𝜇𝑋ps𝑎, 𝑏sq “ Pp𝑎 ă 𝑋 ď 𝑏q “ Ppt𝑋 ď 𝑏uzt𝑋 ď 𝑎uq “ Pp𝑋 ď 𝑏q ´ Pp𝑋 ď 𝑎q

“ 𝐹𝑋p𝑏q ´ 𝐹𝑋p𝑎q “

∫ 𝑏

𝑎

𝑓𝑋p𝑦q 𝑑𝑦,

and since 𝐹𝑋 is continuous, from the continuity from above (valud for 𝜇𝑋 probability measure), we have

𝜇𝑋pr𝑎, 𝑏sq “ lim
𝛼Ñ𝑎´

𝜇𝑋ps𝛼, 𝑏sq “ lim
𝛼Ñ𝑎´

p𝐹𝑋p𝑏q ´ 𝐹𝑋p𝛼qq “ 𝐹𝑋p𝑏q ´ 𝐹𝑋p𝑎q “

∫ 𝑏

𝑎

𝑓𝑋p𝑥q 𝑑𝑥.

In other words, 𝜇𝑋p𝐼q “
∫
𝐼
𝑓𝑋 for every 𝐼 interval, and since this extends to the 𝜎´algebra generate by

intervals, that is to ℬR, we have that (3.2.1) holds, that is 𝑋 is a.c.

Example 3.2.3

Constant and Bernoulli r.vs are not a.c. being their cdf not continuous. For 𝑋 „ 𝑈pr𝑎, 𝑏sq we
have

D𝐹 1
𝑋p𝑥q “

$

&

%

0, 𝑥, 𝑎, 𝑥 ą 𝑏,

1
𝑏´𝑎

, 𝑎 ă 𝑥 ă 𝑏.

𝑎.𝑒.
“

1

𝑏 ´ 𝑎
1r𝑎,𝑏sp𝑥q “ 𝑓𝑋p𝑥q.

Density is also a practical way to introduce random variables. Here some remarkable examples.

3.2.1. Exponential. An exponential random variable, notation 𝑋 „ exp𝜆, is a random variable
with density

𝑓𝑋p𝑥q “ 𝜆𝑒´𝜆𝑥1r0,`8rp𝑥q,

with 𝜆 ą 0 (notice that
∫
R
𝑓𝑋 “

∫`8

0
𝜆𝑒´𝜆𝑥 𝑑𝑥 “ r´𝑒´𝜆𝑥s

𝑥“`8
𝑥“0 “ 0 ´ p´1q “ 1). The cdf is

𝐹𝑋p𝑥q “

∫ 𝑥

´8

𝑓𝑋p𝑦q 𝑑𝑦 “

$

&

%

0, 𝑥 ď 0,∫ 𝑥

0
𝜆𝑒´𝜆𝑦 𝑑𝑦 “ r´𝑒´𝜆𝑦s

𝑥“𝑦

𝑥“0 “ 1 ´ 𝑒´𝜆𝑥 , 𝑥 ą 0.
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x

λ

fX (x)

x

1

FX (x)

We have also
Er𝑋s “

∫
R
𝑥 𝑓𝑋 “

∫`8

0
𝜆𝑥𝑒´𝜆𝑥 𝑑𝑥 “ 1

𝜆

∫`8

0
𝑢𝑒´𝑢 𝑑𝑢 “ 1

𝜆
,

Vr𝑋s “
∫`8

0
𝑥2𝜆𝑒´𝜆𝑥 𝑑𝑥 ´ 1

𝜆2
“ 1

𝜆2

´∫`8

0
𝑢2𝑒´𝑢 𝑑𝑢 ´ 1

¯

“ 1
𝜆2
.

Exponential random variable are used to model the distribution of random occurrence times.

3.2.2. Gaussian. A Gaussian (or normal) random variable, notation 𝑋 „ 𝒩p𝑚, 𝜎2q with 𝑚 P R
and 𝜎2 ą 0, is a random variable with density

𝑓𝑋p𝑥q “
1

?
2𝜋𝜎2

𝑒
´

p𝑥´𝑚q2

2𝜎2 .

An 𝑋 „ 𝒩p0, 1q is also called standard gaussian random variable. There is not an explicit formula for
the cdf

𝐹𝑋p𝑥q “

∫ 𝑥

´8

1
?
2𝜋𝜎2

𝑒
´

p𝑥´𝑚q2

2𝜎2 𝑑𝑥 “ Φ

ˆ

𝑥 ´ 𝑚

𝜎

˙

,

where Φ is the cdf of the standard Gaussian

Φp𝑥q “

∫ 𝑥

´8

𝑒´
𝑦2

2
𝑑𝑦

?
2𝜋
,

which is considered as an elementary function.

m
x

fX (x)

m
x

1

1/2

FX (x)

The function
Erfp𝑥q :“

1
?
𝜋

∫ 𝑥

´𝑥

𝑒´𝑦2 𝑑𝑦

is called error function and
Φp𝑥q “

1

2

ˆ

1 ` Erf
ˆ

𝑥
?
2

˙˙

We also have
Er𝑋s “ 𝑚, Vr𝑋s “ 𝜎2.

Gaussian random variable are central in Probability Theory. Because of the Central Limit Theorem,
averages of independent random variable with the same distribution converge to gaussian distributions,
these last are used to model phenomena for which no particular information on the randomness is known.
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3.2.3. Gamma. This is a class of distributions that extends the exponentials. We recall that the
Euler’s Γ function is defined by the integral

Γp𝛼q :“

ż `8

0
𝑢𝛼´1𝑒´𝑢 𝑑𝑢.

It is not difficult to show that DΓp𝛼q P R iff 𝛼 ´ 1 ą ´1, that is 𝛼 ą 0. We notice also that, if 𝑛 P N,

Γp𝑛 ` 1q “
∫`8

0
𝑢𝑛𝑒´𝑢 𝑑𝑢 “

∫`8

0
𝑢𝑛 p´𝑒´𝑢q

1
𝑑𝑢 “ r´𝑢𝑛𝑒´𝑢s

𝑢“`8

𝑢“0 `
∫`8

0
𝑛𝑢𝑛´1𝑒´𝑢 𝑑𝜉

“ 𝑛Γp𝑛q

Then,
Γp𝑛q “ p𝑛 ´ 1qΓp𝑛 ´ 1q “ p𝑛 ´ 1qp𝑛 ´ 2qΓp𝑛 ´ 2q “ . . . “ p𝑛 ´ 1qp𝑛 ´ 2q ¨ ¨ ¨ 1Γp1q,

and since
Γp1q “

ż `8

0
𝑒´𝜉 𝑑𝜉 “ 1,

we have Γp𝑛q “ p𝑛 ´ 1q! . Let now

𝑓𝛼,𝜆p𝑥q “ 𝐶𝛼,𝜆𝑥
𝛼´1𝑒´𝜆𝑥1r0,`8rp𝑥q, p𝛼 ą 1, 𝜆 ą 0q.

We determine 𝐶𝛼,𝜆 in such a way that 𝑓𝛼,𝜆 be a probability density. Since
ż

R
𝑓𝛼,𝜆p𝑥q 𝑑𝑥 “

ż `8

0
𝐶𝛼,𝜆𝑥

𝛼´1𝑒´𝜆𝑥 𝑑𝑥
𝜆𝑥“𝑢

“ 𝐶𝛼,𝜆

ż `8

0

1

𝜆𝛼´1
𝑢𝛼´1𝑒´𝑢 𝑑𝑢 “ 𝐶𝛼,𝜆

Γp𝛼q

𝜆𝛼´1
,

from which
ż

R
𝑓𝛼,𝜆p𝜉q 𝑑𝜉 “ 1, ðñ 𝐶𝛼,𝜆 “

𝜆𝛼´1

Γp𝛼q
.

We say that a random variable 𝑋 has gamma distribution 𝑋 „ Γp𝛼, 𝜆q if it is a.c. with density

𝑓𝛼,𝜆p𝑥q :“
𝜆𝛼´1

Γp𝛼q
𝑥𝛼´1𝑒´𝜆𝑥1r0,`8rp𝑥q.

Notice that Γp1, 𝜆q “ expp𝜆q and, for 𝑛 P N,

𝑓𝑛,1p𝑥q “
1

p𝑛 ´ 1q!
𝑥𝑛´1𝑒´𝑥𝜒r0,`8rp𝑥q.

f1/2,1(x)

f1,1(x)

f2,1(x)

x

fα,λ(x)

It holds
Er𝑋s “

𝛼

𝜆
, Vr𝑋s “

𝛼

𝜆2
.
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3.2.4. Cauchy. A Cauchy random variable 𝑋 „ 𝐶p𝑥0, 𝑎q is a random variable with density

𝑓𝑥0,𝑎p𝑥q “
1

𝜋

𝑎

𝑎2 ` p𝑥 ´ 𝑥0q2
. p𝑥0 P R, 𝑎 ą 0q

It is easy to verify that 𝑓𝑋 is a probability density. The cdf is

𝐹𝑥0,𝑎p𝑥q “
∫ 𝑥

´8
𝑓𝑋p𝑦q 𝑑𝑦 “ 1

𝜋

∫ 𝑥

´8

1

1`

´

𝑦´𝑥0
𝑎

¯2
𝑑𝑦

𝑎
“ 1

𝜋

”

arctan 𝑦´𝑥0
𝑎

ı𝑦“𝑥

𝑦“´8

“ 1
𝜋

`

arctan 𝑥´𝑥0
𝑎

` 𝜋
2

˘

“ 1
𝜋
arctan 𝑥´𝑥0

𝑎
` 1

2 .

x0
x

fx0,a(x)

x0
x

1

Fx0,a(x)

If 𝑋 „ 𝐶p𝑥0, 𝑎q then Er𝑋s is not defined. Indeed,

Er|𝑋|s “

∫
R

|𝑥| 𝑓𝑋p𝑥q 𝑑𝑥 “
𝑎

𝜋

∫
R

|𝑥|

𝑎2 ` p𝑥 ´ 𝑥0q2
𝑑𝑥 “ `8,

being the intrgrand not integrable at ˘8. Similarly, Vr𝑋s “ `8.

3.2.5. Log-Normal. A log-normal random variable, notation log 𝑋 „ 𝒩p𝑚, 𝜎2q is a random vari-
able 𝑋 “ 𝑒𝑌 where 𝑌 „ 𝒩p𝑚, 𝜎2q. We need a general result:

Proposition 3.2.4

Let 𝑋 “ 𝜙p𝑌q where 𝜙 is a regular 1 ´ 1 bijection and 𝑌 has density 𝑓𝑌 . Then

𝑓𝑋p𝑥q “ 𝑓𝑌 p𝜙´1p𝑥qq|p𝜙´1q1p𝑥q|.

Proof. Just notice that
𝜇𝑋p𝐸q “ Pp𝑋 P 𝐸q “ Pp𝜙p𝑌q P 𝐸q “ P

`

𝑌 P 𝜙´1p𝐸q
˘

“ 𝜇𝑌 p𝜙´1p𝐸qq

“

∫
𝜙´1p𝐸q

𝑓𝑌 p𝑦q 𝑑𝑦
𝑥“𝜙p𝑦q, 𝑦“𝜙´1p𝑥q

“

∫
𝐸

𝑓𝑌 p𝜙´1p𝑥qq|p𝜙´1q1p𝑥q|
loooooooooooomoooooooooooon

“: 𝑓𝑋p𝑥q

𝑑𝑥. □

So, in particular, if 𝑋 “ 𝑒𝑌 with 𝑌 „ 𝒩p𝑚, 𝜎2q we have 𝜙p𝑦q “ 𝑒𝑦 and 𝜙´1p𝑥q “ log 𝑥, so

𝑓𝑋p𝑥q “
1

𝑥
?
2𝜋𝜎2

𝑒
´

plog 𝑥´𝑚q2

2𝜎2 1s0,`8rp𝑥q.
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For the cdf we have

𝐹𝑋p𝑥q “ Φ

ˆ

log 𝑥 ´ 𝑚

𝜎

˙

.

m
x

fX (x)

m
x

1

1/2

FX (x)

We also have
Er𝑋s “ 𝑒𝑚` 𝜎2

2 , Vr𝑋s “ p𝑒𝜎
2

´ 1q𝑒2𝑚`𝜎2
.

Log-normal distributions are used in Finance to model prices.

3.2.6. Piecewise regular cdfs. We now derive a representation formula for a regular cdf 𝐹𝑋 with
a finite number of discontinuities. The conclusion holds under less demanding conditions, but this
representation is sufficient for many applied cases.

Theorem 3.2.5

Let 𝐹𝑋 be the cdf of a random variable 𝑋 . Assume that 𝐹𝑋 P 𝒞
1pRzt𝑥1, . . . , 𝑥𝑁uq, where

𝑥1 ă 𝑥2 ă . . . ă 𝑥𝑁 are the discontinuity points of 𝐹𝑋. Set
𝜆𝑘 :“ 𝐹𝑋p𝑥𝑘q ´ 𝐹𝑋p𝑥𝑘´q ą 0. p𝑘 ´ 1, . . . , 𝑁q

There exists then 𝑓 P 𝐿1pRq such that

(3.2.3) 𝐹𝑋p𝑥q “

𝑁
ÿ

𝑘“1

𝜆𝑘𝐻p𝑥 ´ 𝑥𝑘q

looooooooomooooooooon

“:𝐹𝑠
𝑋

p𝑥q

`

ż 𝑥

´8

𝑓 p𝑦q 𝑑𝑦
loooooomoooooon

“:𝐹𝑎𝑐
𝑋

p𝑥q

, @𝑥 P R,

where 𝐻p𝑢q “ 1r0,`8rp𝑢q is the Heaviside function.
𝐹𝑠
𝑋

is called singular component and 𝐹𝑎𝑐
𝑋

is called absolutely continuous component.

Proof. For simplicity, we assume that 𝐹𝑋 P 𝒞
1pRzt𝑥˚uq. Let

𝑓𝑋p𝑥q :“ 𝐹1
𝑋p𝑥q, 𝑥 P Rzt𝑥˚u

By the fundamental thm of Integral Calculus, if 𝑥 ă 𝑥˚ we have

𝐹𝑋p𝑥q ´ 𝐹𝑋p´8q “

ż 𝑥

´8

𝑓𝑋p𝑦q 𝑑𝑦, ðñ 𝐹𝑋p𝑥q “

ż 𝑥

´8

𝑓𝑋p𝑢q 𝑑𝑢, @𝑥 ă 𝑥˚.

In particular,

𝐹𝑋p𝑥˚´q “ lim
𝑥Ñ𝑥˚´

𝐹𝑋p𝑥q “

∫ 𝑥˚

´8

𝑓𝑋p𝑢q 𝑑𝑢.
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Setting 𝜆˚ :“ 𝐹p𝑥˚q ´ 𝐹p𝑥˚´q ą 0, we have

𝐹𝑋p𝑥q “ 𝜆˚𝐻p𝑥 ´ 𝑥˚q `

ż 𝑥

´8

𝑓 p𝑢q 𝑑𝑢, @𝑥 ď 𝑥˚.

This formula holds also for 𝑥 ą 𝑥˚. Indeed, if 𝑥˚ ă 𝑦 ă 𝑥 we have

𝐹𝑋p𝑥q ´ 𝐹𝑋p𝑦q “

∫ 𝑥

𝑦

𝑓𝑋p𝑢q 𝑑𝑢,

and letting 𝑦 ÝÑ 𝑥˚` we have

𝐹𝑋p𝑥q “ 𝐹𝑋p𝑥˚q`

∫ 𝑥

𝑥˚

𝑓𝑋p𝑢q 𝑑𝑢 “ 𝜆˚ `

∫ 𝑥˚

´8

𝑓𝑋p𝑢q 𝑑𝑢`

∫ 𝑥

𝑥˚

𝑓𝑋p𝑢q 𝑑𝑢 “ 𝜆˚𝐻p𝑥´𝑥˚q`

∫ 𝑥

´8

𝑓𝑋p𝑢q 𝑑𝑢,

as claimed.

3.3. The classical Newsvendor model

The newsvendor model is a mathematical model in Operations Management used to determine optimal
inventory levels. A firm produces a certain quantity 𝑞 of a good at unit cost 𝑐 ą 0 selling at unit price
𝑝 ą 𝑐 and facing an uncertain demand 𝐷 ě 0. The origin of the name comes by analogy with the
situation faced by a newspaper vendor who must decide how many copies of the day’s paper to stock in
the face of uncertain demand and knowing that unsold copies will be worthless at the end of the day. It
is one of the most ancient inventory models dating back to XIX century.

Let us give a mathematical form to this problem. The key ingredient is the profit and loss statement
(P&L). Let 𝑞 be the number of units produced/ordered at unit cost 𝑐. This quantity 𝑞 is assumed to
be positive and determined by the firm. In particular, it is not uncertain. The total cost of production
is 𝐶p𝑞q :“ ´𝑐𝑞 and it has a deterministic nature. Revenues come from the sale of goods at a future
time, when the demand 𝐷 is uncertain and described by a random variable. The firm can sell only what
produced until the demand is satisfied at unit price 𝑝. Therefore, the revenues are

𝑅p𝑞q “

$

&

%

𝑝𝑞, 𝐷 ą 𝑞,

𝑝𝐷, 𝐷 ď 𝑞.

“ 𝑝minp𝑞, 𝐷q.

The P&L is then the business position

𝑃p𝑞q :“ 𝑅p𝑞q ´ 𝐶p𝑞q “ 𝑝minp𝑞, 𝐷q ´ 𝑐𝑞.

The P&L is then uncertain. We assume the firm aims to maximize the expected P&L, that is solving

max
𝑞ě0
E r𝑃p𝑞qs .

Notice that, if 𝐷 is a.c. with density 𝑓𝐷 and cdf 𝐹𝐷 , we have

Er𝑃p𝑞qs “ 𝑝Erminp𝑞, 𝐷qs ´ 𝑐𝑞 “ 𝑝Er𝑞 1𝐷ą𝑞
loomoon

1´1𝐷ď𝑞

`𝐷1𝐷ď𝑞s ´ 𝑐𝑞

“ 𝑝

´

𝑞p1 ´ 𝐹𝐷p𝑞qq `
∫ 𝑞
0
𝑥 𝑓𝐷p𝑥q 𝑑𝑥

¯

´ 𝑐𝑞
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Now, being 𝑓𝐷 “ 𝐹 1
𝐷

, we have∫ 𝑞

0
𝑥 𝑓𝐷p𝑥q 𝑑𝑥 “

∫ 𝑞

0
𝑥𝐹 1

𝐷p𝑥q 𝑑𝑥 “ r𝑥𝐹𝐷p𝑥qs
𝑥“𝑞

𝑥“0 ´

∫ 𝑞

0
𝐹𝐷p𝑥q 𝑑𝑥 “ 𝑞𝐹𝐷p𝑞q ´

∫ 𝑞

0
𝐹𝐷p𝑥q 𝑑𝑥,

so
𝑢p𝑞q :“ Er𝑃p𝑞qs “ 𝑝

ˆ

𝑞 ´

∫ 𝑞

0
𝐹𝐷p𝑥q 𝑑𝑥

˙

´ 𝑐𝑞.

Now,

𝑢1p𝑞q “ 𝑝p1 ´ 𝐹𝐷p𝑞qq ´ 𝑐 ě 0, ðñ 1 ´ 𝐹𝐷p𝑞q ě
𝑐

𝑝
, ðñ 𝐹𝐷p𝑞q ď 1 ´

𝑐

𝑝
,

and if 𝐹𝐷 is strictly increasing, we obtain

𝑞 ď 𝐹´1
𝐷

ˆ

1 ´
𝑐

𝑝

˙

.

Therefore, the optimal 𝑞 is

𝑞˚ :“ 𝐹´1
𝐷

ˆ

1 ´
𝑐

𝑝

˙

.

For example, assume 𝐷 has a uniform distribution in the range r0, p𝑑s. Then

𝐹𝐷p𝑥q “

$

’

&

’

%

0, 𝑥 ă 0,
𝑥
p𝑑
, 0 ď 𝑥 ď p𝑑,

1, 𝑥 ą p𝑑.

We have
𝐹𝐷p𝑞˚q “ 1 ´

𝑐

𝑝
, ðñ

𝑞˚

p𝑑
“ 1 ´

𝑐

𝑝
, ðñ 𝑞˚ “

ˆ

1 ´
𝑐

𝑝

˙

p𝑑.

3.4. Exercises

Exercise 3.4.1 (˚). Let 𝐹𝑋 be the cdf of 𝑋 . Use 𝐹𝑋 to express the following probabilities:
P p𝑎 ď 𝑋 ď 𝑏q , P p𝑎 ă 𝑋 ă 𝑏q , P p𝑋 ě 𝑏q , Pp𝑋 “ 𝑎q.

Exercise 3.4.2 (˚). For each of the following 𝐹 say if they are cdf of some random variable:
i) 𝐹p𝑥q :“ p1 ´ 𝑒´𝑥

3 q1s0,`8rp𝑥q

ii) 𝐹p𝑥q “ 1
𝜋
arctan 𝑥 ` 1

2 .
iii) 𝐹p𝑥q :“ 1

2 ` 1
𝜋
arctanp𝑥3 ´ 𝑥q

Exercise 3.4.3 (˚). Let

𝐹p𝑥q :“

$

&

%

0, 𝑥 ă 0,

1 ´ 3´r𝑥s, 𝑥 ě 0.

Is 𝐹 the cdf of a random variable 𝑋? If yes, what is the probability Pp𝑋 ą 3q and of Pp𝑋 “ 2q?

Exercise 3.4.4 (˚˚). Let 𝑋 be a random variable with cdf 𝐹𝑋. What is the cdf of |𝑋|?

Exercise 3.4.5 (˚˚). Let 𝑋 be an absolutely continuous random variable with density 𝑓𝑋. Show that also
𝑋2 is a.c., and determine its density in terms of 𝑓𝑋.
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Exercise 3.4.6 (˚˚). Let 𝑋 „ 𝒩p𝑚, 𝜎2q.
i) Determine if 𝑌 :“

a

|𝑋| is a.c. and, in this case, compute its density 𝑓𝑌 .
ii) Determine if 𝑌 :“ 1

1`𝑒´𝑋 is a.c. and, in this case, compute its density 𝑓𝑌 .

Exercise 3.4.7 (˚˚). Let 𝑋 „ expp𝜆q. Determine the cdf of 𝑌 “ r𝑋s (the integer part of 𝑋).

Exercise 3.4.8 (˚˚). Let 𝑃0 :“ p𝑥0, 𝑦0q be a fixed point in the Cartesian plane with 𝑦0 ą 0. Consider the
straight line 𝑟𝜃 passing through point 𝑃0, where 𝜃 is the angle formed with the vertical line through 𝑃0.
Assume that 𝜃 is a uniformly distributed random variable taking values in the open interval

`

´ 𝜋
2 ,

𝜋
2

˘

.
Determine the distribution of 𝑋 , where 𝑋 is the abscissa of the point where 𝑟𝜃 intersects the 𝑥-axis.

Exercise 3.4.9 (˚˚˚). Let 𝐹𝑋 be the cdf of a random variable 𝑋 . For each 𝑥˚ discontinuity of 𝐹𝑋, we
define

𝐼𝑥˚ :“s𝐹𝑋p𝑥˚´q, 𝐹𝑋p𝑥˚qr.

i) Check that, if 𝑥˚ ‰ 𝑦˚ then 𝐼𝑥˚ X 𝐼𝑦˚ “ ∅.
ii) Deduce, from i), that the set 𝐷 of discontinuity points of 𝐹𝑋 is, at most, countable.
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Multivariate random variables

4.1. Definitions

Together with scalar random variables, we consider also vector valued random variables. Let
𝑋 “ p𝑋1, . . . , 𝑋𝑁 q : Ω ÝÑ R𝑁 . We call 𝑋 a random vector (or, multivariate random variable) if
each 𝑋 𝑗 is a random variable (notation: 𝑋 P 𝐿pΩq iff 𝑋 𝑗 P 𝐿pΩq for all 𝑗 “ 1, . . . , 𝑁). If 𝑁 “ 2,
𝑋 “ p𝑋1, 𝑋2q is also called bi-variate random variable. We define the expected value of 𝑋 as

Er𝑋s :“ pEr𝑋1s, . . . ,Er𝑋𝑁 sq P R𝑁 ,

provided 𝑋 𝑗 P 𝐿1 for 𝑗 “ 1, . . . , 𝑁 (in this case we write 𝑋 P 𝐿1pΩq). If 𝑋 𝑗 P 𝐿2pΩq, 𝑗 “ 1, . . . , 𝑁 (we
write 𝑋 P 𝐿2pΩq) the covariance matrix is defined: this is the matrix 𝐶 :“ r𝑐𝑖 𝑗s where

𝑐𝑖 𝑗 :“ Covp𝑋𝑖 , 𝑋 𝑗q ” E
“

p𝑋𝑖 ´ Er𝑋𝑖sqp𝑋 𝑗 ´ Er𝑋 𝑗sq
‰

” Er𝑋𝑖𝑋 𝑗s ´ Er𝑋𝑖sEr𝑋 𝑗s.

In general, the covariance matrix is a symmetric and positive definite matrix (notation 𝐶 ě 0), that is

𝐶𝑣 ¨ 𝑣 ě 0, @𝑣 P R𝑁

Indeed, clearly 𝑐𝑖 𝑗 “ 𝑐 𝑗𝑖 . Moreover,

𝐶𝑣 ¨ 𝑣 “
ÿ

𝑖, 𝑗

E
“

p𝑋𝑖 ´ Er𝑋𝑖sq𝑣𝑖p𝑋 𝑗 ´ Er𝑋 𝑗sq𝑣 𝑗
‰

“ E

«

ÿ

𝑖, 𝑗

p𝑋𝑖 ´ Er𝑋𝑖sq𝑣𝑖p𝑋 𝑗 ´ Er𝑋 𝑗sq𝑣 𝑗

ff

“ E

»

–

˜

ÿ

𝑖

p𝑋𝑖 ´ Er𝑋𝑖sq𝑣𝑖

¸2
fi

fl ě 0.

It is sometimes useful to represent the entries of the covariance matrix in the form
𝑐𝑖 𝑗 “ Covp𝑋𝑖 , 𝑋 𝑗q “ 𝜌𝑖 𝑗𝜎𝑖𝜎𝑗

where 𝜌𝑖 𝑗 “ 𝜌p𝑋𝑖 , 𝑋 𝑗q is the linear correlation of 𝑋𝑖 and 𝑋 𝑗 , 𝜎𝑖 “ Vr𝑋𝑖s
1{2 is the standard deviation of

𝑋𝑖 .

4.1.1. Law. Similarly to the scalar case, for random arrays we also have a definition of the law of 𝑋 ,
𝜇𝑋p𝐸q :“ Pp𝑋 P 𝐸q, @𝐸 P ℬR𝑁 .

The well posedness of 𝜇𝑋 follows by an argument similar to the one-dimensional case. Given 𝜑 :
R𝑁 ÝÑ R we say that 𝜑 is Borel-measurable (or 𝜑 is a Borel function) if 𝜑 is measurable w.r.t. the
Borel 𝜎´algebra ℬR𝑁 . It turns out that

𝜑p𝑋q P 𝐿1pΩ,ℱq ðñ 𝜑 P 𝐿1pR𝑁 ,ℬR𝑁 , 𝜆𝑁 q

31
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and the change of variable formula holds:

Er𝜑p𝑋qs “

∫
R𝑁

𝜑p𝑥1, . . . , 𝑥𝑁 q 𝑑𝜇𝑋p𝑥1, . . . , 𝑥𝑁 q.

4.1.2. Cdf. The cdf of a r.vect. 𝑋 : Ω ÝÑ R𝑁 is a function 𝐹𝑋 : R𝑁 ÝÑ r0, 1s defined by

𝐹𝑋p𝑥1, . . . , 𝑥𝑁 q :“ Pp𝑋1 ď 𝑥1, . . . , 𝑋𝑁 ď 𝑥𝑁 q.

The cdf of a r.vect. fulfils properties similar to the cdfs of scalar (or univariate) r.vs. For example,
i) limp𝑥1,...,𝑥𝑁 qÝÑp´8,...,´8q 𝐹𝑋p𝑥1, . . . , 𝑥𝑁 q “ 0,, limp𝑥1,...,𝑥𝑁 qÝÑp`8,...,`8q 𝐹𝑋p𝑥1, . . . , 𝑥𝑁 q “

1.
ii) 𝐹𝑋 is monotonic increasing in each of its variables (the others remaining fixed).

iii) 𝐹𝑋 is right continuous with left limits in each of its coordinates.
It is a straightforward exercise to prove these properties.

4.1.3. A.c. r.vects. We say that 𝑋 is absolutely continuous (notation a.c.) if there exists 𝑓𝑋p𝑥1, . . . , 𝑥𝑁 q

such that

𝜇𝑋p𝐸q “

∫
R𝑁

𝑓𝑋p𝑥1, . . . , 𝑥𝑁 q 𝑑𝑥1 ¨ ¨ ¨ 𝑑𝑥𝑁 ,

where the last integral is w.r.t. the Lebesgue measure. In this case, 𝑓𝑋 ě 0 a.e. and∫
R𝑁

𝑓𝑋p𝑥1, . . . , 𝑥𝑁 q 𝑑𝑥1 ¨ ¨ ¨ 𝑑𝑥𝑁 “ 1,

and the change of variable formula takes the form

Er𝜑p𝑋qs “

∫
R𝑁

𝜑p𝑥1, . . . , 𝑥𝑁 q 𝑓𝑋p𝑥1, . . . , 𝑥𝑁 q 𝑑𝑥1 ¨ ¨ ¨ 𝑑𝑥𝑁 ,

The density 𝑓𝑋 is also called joint density. Having this, we automatically have that each of the components
of 𝑋 is an a.c. random variable. Indeed,

Pp𝑋 𝑗 P 𝐸 𝑗q “ Pp𝑋 P R 𝑗´1 ˆ 𝐸 𝑗 ˆ R𝑁´ 𝑗´1q “

∫
R 𝑗´1ˆ𝐸 𝑗ˆR𝑁´ 𝑗´1

𝑓𝑋p𝑥1, . . . , 𝑥𝑁 q 𝑑𝑥1 ¨ ¨ ¨ 𝑑𝑥𝑁

Since 𝑓𝑋 P 𝐿1pR𝑁 q, Fubini-Tonelli theorem applies, so

Pp𝑋 𝑗 P 𝐸 𝑗q “

∫
𝐸 𝑗

ˆ∫
R𝑁´1

𝑓𝑋p𝑥1, . . . , 𝑥𝑁 q 𝑑𝑥1 ¨ ¨ ¨ 𝑑𝑥 𝑗´1𝑑𝑥 𝑗`1 ¨ ¨ ¨ 𝑑𝑥𝑁

˙

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

“: 𝑓𝑋𝑗
p𝑥 𝑗q

𝑑𝑥 𝑗 .

Functions

𝑓𝑋 𝑗
p𝑥 𝑗q “

∫
R𝑁´1

𝑓𝑋p𝑥1, . . . , 𝑥𝑁 q 𝑑𝑥1 ¨ ¨ ¨ 𝑑𝑥 𝑗´1𝑑𝑥 𝑗`1 ¨ ¨ ¨ 𝑑𝑥𝑁

are called marginal densities. So, from the joint density it is possible to derive the marginal densities.
The vice versa is more complex and we will return on later.
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4.1.4. Multivariate Gaussian. A very important class of multivariate random variables are multi-
variate Gaussian distributions.

Definition 4.1.1

We say that 𝑋 is Gaussian with mean 𝑚 P R𝑁 and covariance 𝐶, with 𝐶 a symmetric positive
definite 𝑁 ˆ 𝑁 matrix if 𝑋 is absolutely continuous with density

𝑓𝑋p𝑥q “
1

a

p2𝜋q𝑁 det𝐶
𝑒´ 1

2𝐶
´1p𝑥´𝑚q¨p𝑥´𝑚q, @𝑥 P R𝑁 .

Remark 4.1.2

Since 𝐶 ą 0, it is invertible: indeed, 𝐶 is injective because 𝐶𝑥 “ 0 implies 𝐶𝑥 ¨ 𝑥 “ 0 which
is possible iff 𝑥 “ 0. Since 𝐶 is an 𝑁 ˆ 𝑁 matrix, injectivity implies surjectivity, that is 𝐶 is
invertible. Thus, det𝐶 ‰ 0. Actually, since 𝐶 is symmetric it is diagonalizable, that is there
exists an orthogonal matrix 𝑇 (that is, 𝑇´1 “ 𝑇J the transposed matrix of 𝑇) such that

𝑇𝐶𝑇J “ diagp𝜎2
1 , . . . , 𝜎

2
𝑁 q “

»

—

—

—

–

𝜎2
1 0 . . . 0
0 𝜎2

2 . . . 0
...

...
...

0 0 . . . 𝜎2
𝑁

fi

ffi

ffi

ffi

fl

where the 𝜎2
𝑗

are the eigenvalues of 𝐶, which are positive being 𝐶 ą 0. □

Example 4.1.3: p˚˚q

Q. If 𝑋 „ 𝒩p𝑚,𝐶q is a multivariate Gaussian, then Er𝑋s “ 𝑚 while the covariance matrix is 𝐶.

A. If 𝑋 „ 𝒩p𝑚,𝐶q, we have

Er𝑋s “ Er𝑋 ´ 𝑚s ` 𝑚 “

∫
R𝑁

p𝑥 ´ 𝑚q
1

a

p2𝜋q𝑁 det𝐶
𝑒´ 1

2
𝐶´1p𝑥´𝑚q¨p𝑥´𝑚q 𝑑𝑥

“ 𝑚 `
1

a

p2𝜋q𝑁 det𝐶

∫
R𝑁

𝑦𝑒´ 1
2
𝐶´1𝑦¨𝑦 𝑑𝑦 “ 𝑚

being 𝑦 ÞÝÑ 𝑦𝑒´ 1
2
𝐶´1𝑦¨𝑦 even. We also notice that

Covp𝑋𝑖 , 𝑋 𝑗q “ Erp𝑋𝑖 ´ 𝑚𝑖qp𝑋 𝑗 ´ 𝑚 𝑗qs “

∫
R𝑁

p𝑥𝑖 ´ 𝑚𝑖qp𝑥 𝑗 ´ 𝑚 𝑗q
1

a

p2𝜋q𝑁 det𝐶
𝑒´ 1

2
𝐶´1p𝑥´𝑚q¨p𝑥´𝑚q 𝑑𝑥

“
1

a

p2𝜋q𝑁 det𝐶

∫
R𝑁

𝑦𝑖𝑦 𝑗𝑒
´ 1

2
𝐶´1𝑦¨𝑦 𝑑𝑦
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Since 𝐶 ą 0 is diagonalizable, 𝐶 “ 𝑇𝐷𝑇J where 𝐷 “ diagp𝜎2
1 , . . . , 𝜎

2
𝑁

q, changing variable 𝑢 “ 𝑇J𝑦,
that is 𝑦 “ 𝑇𝑢, and since 𝑇 orthogonal implies, in particular, that |det𝑇 | “ 1, we have

Covp𝑋𝑖 , 𝑋 𝑗q “
1

a

p2𝜋q𝑁 det𝐶

∫
R𝑁

p𝑇𝑢q𝑖p𝑇𝑢q 𝑗𝑒
´ 1

2
𝐶´1𝑇𝑢¨𝑇𝑢 𝑑𝑢

“
1

a

p2𝜋q𝑁 det𝐶

∫
R𝑁

p𝑇𝑖 ¨ 𝑢qp𝑇𝑗 ¨ 𝑢q𝑒´ 1
2
𝐷´1𝑢¨𝑢 𝑑𝑢

where 𝑇𝑖 is the 𝑖´th line of the matrix 𝑇 . Now,∫
R𝑁

p𝑇𝑖 ¨ 𝑢qp𝑇𝑗 ¨ 𝑢q𝑒´ 1
2
𝐷´1𝑢¨𝑢 𝑑𝑢 “

ÿ

ℎ,𝑘

𝑡𝑖ℎ𝑡 𝑗𝑘

∫
R𝑁
𝑢ℎ𝑢𝑘𝑒

´ 1
2
𝐷´1𝑢¨𝑢 𝑑𝑢

“
ÿ

ℎ,𝑘

𝑡𝑖ℎ𝑡 𝑗𝑘

ź

𝑚‰ℎ,𝑘

∫
R
𝑒

´
𝑢2𝑚

2𝜎2
𝑚 𝑑𝑢𝑚

∫
R2
𝑢ℎ𝑢𝑘𝑒

´
𝑢2
ℎ

2𝜎2
ℎ 𝑒

´
𝑢2
𝑘

2𝜎2
𝑘 𝑑𝑢ℎ𝑑𝑢𝑘 .

Now, ∫
R
𝑒

´
𝑢2𝑚

2𝜎2
𝑚 𝑑𝑢𝑚 “

b

2𝜋𝜎2
𝑚,

and, for ℎ ‰ 𝑘 , ∫
R2
𝑢ℎ𝑢𝑘𝑒

´
𝑢2
ℎ

2𝜎2
ℎ 𝑒

´
𝑢2
𝑘

2𝜎2
𝑘 𝑑𝑢ℎ𝑑𝑢𝑘 “

∫
R
𝑢ℎ𝑒

´
𝑢2
ℎ

2𝜎2
ℎ 𝑑𝑢ℎ

∫
R
𝑢𝑘𝑒

´
𝑢2
𝑘

2𝜎2
𝑘 𝑑𝑢𝑘 “ 0,

while, for ℎ “ 𝑘 , ∫
R2
𝑢2ℎ𝑒

´
𝑢2
ℎ

2𝜎2
ℎ 𝑑𝑢ℎ “

b

2𝜋𝜎2
ℎ

¨ 𝜎2
ℎ .

Therefore, since det𝐶 “ detp𝑇𝐷𝑇Jq “ detp𝑇𝑇Jqdet𝐷 “ det𝐷, we have

Covp𝑋𝑖 , 𝑋 𝑗q “

a

p2𝜋q𝑁 det𝐷
a

p2𝜋q𝑁 det𝐶

ÿ

𝑘

𝑡𝑖𝑘 𝑡 𝑗𝑘𝜎
2
𝑘 “ 𝐷𝑇𝑖 ¨ 𝑇𝑗 “ p𝑇J𝐷𝑇q𝑖 𝑗 “ 𝑐 𝑗𝑖 “ 𝑐𝑖 𝑗 .

4.2. Mapping multivariate random variables

Suppose 𝑋 is a multivariate random variable on pΩ,ℱ, Pq. Let Φ : R𝑁 ÝÑ R𝑁 be a map and
𝑌 :“ Φp𝑋q. We notice that 𝑌 is a multivariate random variable iff

t𝑌 P 𝐸u “ tΦp𝑋q P 𝐸u “ t𝑋 P Φ´1p𝐸qu P ℬR𝑁 , @𝐸 P ℬR𝑁 .

If 𝑋 is a multivariate random variable, what we need is that Φ verifies the following definition:

Definition 4.2.1

A map Φ : R𝑁 ÝÑ R𝑁 is a Borel map if
Φ´1p𝐸q P ℬR𝑁 , @𝐸 P ℬR𝑁 .
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So, if Φ is a Borel map
𝜇𝑌 p𝐸q “ 𝜇𝑋pΦ´1p𝐸qq, @𝐸 P ℬR𝑁 .

When 𝑋 is absolutely continuous, a natural question is whether 𝑌 “ Φp𝑋q is also absolutely continuous
and, in that case, what relation holds between the density of 𝑋 and that of 𝑌 . Clearly, this is not true in
general: if Φp𝑥q ” 𝑐, then 𝑌 “ Φp𝑋q ” 𝑐, so 𝜇𝑌 “ 𝛿𝑐, which does not admit a density. However, if Φ
is regular enough, absolute continuity of 𝑌 may hold.

Definition 4.2.2

A map Φ “ Φp𝑥q : R𝑁 ÝÑ R𝑁 is a diffeomorphism if
i) Φ is a bijection;

ii) Both Φ,Φ´1 are differentiable with Φ1, pΦ´1q1 continuous mappings.

Proposition 4.2.3

Let 𝑋 be absolutely continuous, Φ be a diffeomeorphism on R𝑁 . Then, if 𝑌 “ Φp𝑋q, 𝑌 is
absolutely continuous and

𝑓𝑌 p𝑦q “ 𝑓𝑋pΦ´1p𝑦qq| detpΦ´1q1p𝑦q|

Proof. Let 𝐸 P ℬR𝑁 . By the change of variable formula,

𝜇𝑌 p𝐸q “ 𝜇𝑋pΦ´1p𝐸qq “

∫
Φ´1p𝐸q

𝑓𝑋p𝑥q 𝑑𝑥
𝑦“Φp𝑥q, 𝑥“Φ´1p𝑦q

“

∫
𝐸

𝑓𝑋pΦ´1p𝑦qq|detpΦ´1q1p𝑦q| 𝑑𝑦

from which the conclusion follows.

Example 4.2.4: p˚˚q

Q. Let 𝑋 „ 𝒩p𝑚,𝐶q, where 𝑚 P R𝑁 , and 𝐶 ą 0 is a symmetric 𝑁 ˆ 𝑁 matrix. Show that there
exists a matrix 𝑀 such that 𝑀´1p𝑋 ´ 𝑚q „ 𝒩p0, I𝑁 q.

A. Since 𝐶 ą 0 is symmetric, it can be diagonalized: there exists an orthogonal matrix 𝑇 (𝑇𝑇J “ I𝑁 )
such that 𝑇𝐶𝑇J “ diagp𝜎2

1 , . . . , 𝜎
2
𝑁

q :“ 𝐷. Then, the density of 𝑍 “ 𝑇p𝑋 ´ 𝑚q “: Φp𝑋q (Φ´1p𝑧q “

𝑚 ` 𝑇´1𝑧 “ 𝑚 ` 𝑇J𝑧) is

𝑓𝑍p𝑧q “
1

a

p2𝜋q𝑁 det𝐶
𝑒´ 1

2
𝐶´1𝑇´1𝑧¨𝑇´1𝑧|det𝑇´1|,

and since 𝑇 is orthogonal, 𝑇´1 “ 𝑇J and detp𝑇𝑇Jq “ 𝑑𝑒𝑡pI𝑁 q “ 1, from which detp𝑇q2 “ 1, that is
|det𝑇 | “ |det𝑇´1| “ 1. Moreover,

𝐶´1𝑇´1𝑧 ¨ 𝑇´1𝑧 “ 𝐶´1𝑇´1𝑧 ¨ 𝑇J𝑧 “ 𝑇𝐶´1𝑇´1𝑧 ¨ 𝑧 “ p𝑇Jq´1𝐶´1𝑇´1𝑧 ¨ 𝑧 “ p𝑇𝐶𝑇Jq´1𝑦 ¨ 𝑧,

so
𝑓𝑍p𝑧q “

1
a

p2𝜋q𝑁 det𝐶
𝑒´ 1

2
𝐷´1𝑧¨𝑧 “

1
a

p2𝜋q𝑁 det𝐷
𝑒´ 1

2
𝐷´1𝑧¨𝑧
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beingdet𝐷 “ detp𝑇𝐶𝑇Jq “ detp𝑇J𝑇𝐶q “ det𝐶. Set now
?
𝐷 :“ diagp𝜎1, . . . , 𝜎𝑁 q, and set 𝑧 “

?
𝐷𝑦,

that is 𝑦 “ p
?
𝐷q´1𝑧. Then 𝑌 “ p

?
𝐷q´1𝑍 “ p

?
𝐷q´1𝑇p𝑋 ´ 𝑚q has density

𝑓𝑌 p𝑦q “
1

a

p2𝜋q𝑁 det𝐷
𝑒´ 1

2
𝐷´1

?
𝐷𝑦¨

?
𝐷𝑦|det

?
𝐷|

Since 𝐷 is diagonal as well as 𝐷´1 “ diag
´

1
𝜎2

1

, . . . , 1
𝜎2

𝑁

¯

and
?
𝐷, we easily have

𝐷´1
?
𝐷𝑦 ¨

?
𝐷𝑦 “ }𝑦}2 “ 𝑦21 ` ¨ ¨ ¨ ` 𝑦2𝑁 ,

and
?
det𝐷 “ det

?
𝐷, so

𝑓𝑌 p𝑦q “
1

a

p2𝜋q𝑁
𝑒´ 1

2
}𝑦}2 , ùñ 𝑌 “ p

?
𝐷q´1𝑇p𝑋 ´ 𝑚q „ 𝒩p0, I𝑁 q.

4.3. Exercises

Exercise 4.3.1 (˚˚). Let p𝑋,𝑌q have density 𝑓𝑋,𝑌 p𝑥, 𝑦q “ 4𝑥𝑦1r0,1s2p𝑥, 𝑦q.
i) Determine the cdf 𝐹𝑋,𝑌 .

ii) Compute Pp𝑋 ` 𝑌 ă 1q.

Exercise 4.3.2 (˚˚). Let p𝑋,𝑌q have density 𝑓𝑋,𝑌 p𝑥, 𝑦q “ 𝑐p𝑥2 `
𝑥𝑦

2 q1r0,1sˆr0,2sp𝑥, 𝑦q.
i) Determine the value of the constant 𝑐 in such a way that 𝑓𝑋,𝑌 be a probability density.

ii) Determine 𝑓𝑋.
iii) Compute Pp𝑋 ą 𝑌q.

Exercise 4.3.3 (˚˚). Let p𝑋,𝑌q be a bivariate random variable with 𝑓𝑋,𝑌 p𝑥, 𝑦q “ 𝑒´p𝑥`𝑦q1r0,`8r2p𝑥, 𝑦q.
Determine the density of 𝑋{𝑌 . (hint: start computing 𝐹𝑋{𝑌 . . . )

Exercise 4.3.4 (˚˚). In a circular target with radius 𝑅 ą 0, the density of impact points p𝑋,𝑌q is given
by the formula

𝑓𝑋,𝑌 p𝑥, 𝑦q “ 𝑐p𝑅 ´
a

𝑥2 ` 𝑦2q1𝐵p0,𝑅sp𝑥, 𝑦q,

where 𝐵p0, 𝑅s :“ tp𝑥, 𝑦q P R2 : 𝑥2 ` 𝑦2 ď 𝑅2u. Determine the value of 𝑐 that makes 𝑓 a probability den-
sity function and calculate the probability that the impact point falls in 𝐵p0, 𝑎s with 𝑎 ă 𝑅. Additionally,
compute the distribution of the distance from the center of the target and determine the mean distance of
the impact point from the center.

Exercise 4.3.5 (˚˚). Let p𝑋,𝑌q be a bivariate random variable with density 𝑓𝑋,𝑌 p𝑥, 𝑦q “ 1
4𝑒

´p𝑥`𝑦q{21r0,`8r2p𝑥, 𝑦q.
Let p𝑍,𝑊q :“ p𝑋´𝑌

2 , 𝑌q. Determine 𝑓𝑍,𝑊 , 𝑓𝑍 and 𝑓𝑊 .

Exercise 4.3.6 (˚˚). Let p𝑋,𝑌q be a bivariate random variable with joint density

𝑓𝑋𝑌 p𝑥, 𝑦q “ 𝑒´𝑥´2|𝑦|1r0,`8rp𝑥q.

i) Check that 𝑓𝑋𝑌 is a true probability density.
ii) Define 𝑍 :“ 𝑋2 `𝑌 and𝑊 :“ 3𝑋2 ´𝑌 . Show that p𝑍,𝑊q is a.c. determining its density 𝑓𝑍,𝑊 .

iii) Calculate Pp𝑍 `𝑊 ě 0q.
iv) Compute the marginal densities 𝑓𝑍 and 𝑓𝑊 .
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Exercise 4.3.7 (˚˚). Let p𝑋,𝑌q be a random vector on R2 with joint density

𝑓𝑋,𝑌 p𝑥, 𝑦q :“ 𝑒´𝑦1r0,1sp𝑥q1r0,`8rp𝑦q.

i) Determine the joint density of 𝑍 :“ 𝑋𝑌 and𝑊 :“ 𝑋
𝑌

.
ii) Compute Pp𝑍𝑊 ą 1q.

Exercise 4.3.8 (˚˚). A point p𝑋,𝑌q is picked at random uniformly in the unit circle. This means that

Ppp𝑋,𝑌q P 𝐸q “
1

𝜋
𝜆2p𝐸 X 𝐵p0, 1sq.

Find the joint density of p𝑋, 𝑅q where 𝑅 “
?
𝑋2 ` 𝑌2.

Exercise 4.3.9. Let

𝑓 p𝑥, 𝑦q :“ 𝑐𝑒
´

𝑥2´2𝜌𝑥𝑦`𝑦2

2p1´𝜌2q , p𝑥, 𝑦q P R2.

i) Determine the value of 𝑐 in such a way 𝑓 be a probability density. Is such 𝑓 a Gaussian density?
ii) For the value 𝑐 of i), let p𝑋,𝑌q be such that 𝑓𝑋,𝑌 “ 𝑓 . Determine the joint density of p𝑋, 𝑍q

with 𝑍 “
𝑌´𝜌𝑋?
1´𝜌2

. Deduce the density of 𝑍 .

iii) Determine Pp𝑋 ą 0, 𝑌 ą 0q.





5

Characteristic function

5.1. Fourier Transform of a Borel probability

A random variable 𝑋 is characterized by its law, a probability measure on pR,ℬR) (or pR𝑁 ,ℬR𝑁 q for
the multivariate case). All important quantities (probabilities, expectations) can be calculated in terms of
the law of 𝑋 and two random variable with same law identical form the probabilistic point of view. As a
measure, the law of 𝑋 is not an easy tool to handle. A more convenient tool is the cdf 𝐹𝑋 or, even better,
for absolutely continuous random variables its density 𝑓𝑋.

If 𝑋 is a.c. with density 𝑓𝑋, being this an 𝐿1pRq function with
∫
R
𝑓𝑋 𝑑𝑥 “ 1, its 𝐿1 FT is well defined,

x𝑓𝑋p𝜉q :“

∫
R
𝑒´𝑖 𝜉 𝑥 𝑓𝑋p𝑥q 𝑑𝑥 ”

∫
R
𝑒´𝑖 𝜉 𝑥 𝑑𝜇𝑋p𝑥q.

This last integral makes sense whatever is 𝑋 . This because, being 𝜇𝑋 a probability measure, 𝑒´𝑖 𝜉 𝑥 is an
𝐿1pR, 𝜇𝑋q function: ∫

R
|𝑒´𝑖 𝜉 𝑥| 𝑑𝜇𝑋 “

∫
R
1 𝑑𝜇𝑋 “ 1, @𝜉 P R.

This yields to the following extension of the FT to probability measures:

Definition 5.1.1

Let 𝜇𝑋 be a Borel-probability measure on pR,ℬRq. We define FT of 𝜇𝑋 the function

x𝜇𝑋p𝜉q :“

∫
R
𝑒´𝑖 𝜉 𝑥 𝑑𝜇𝑋p𝑥q, 𝜉 P R.

Similarly, if 𝜇𝑋 is a Borel probability measure on pR𝑁 ,ℬR𝑁 q, we set

x𝜇𝑋p𝜉q :“

∫
R𝑁

𝑒´𝑖 𝜉 ¨𝑥 𝑑𝜇𝑋p𝑥q, 𝜉 P R𝑁 .

We notice that
x𝜇𝑋p𝜉q “ Er𝑒´𝑖 𝜉𝑋s,

for a random variable, and
x𝜇𝑋p𝜉q “ Er𝑒´𝑖 𝜉 ¨𝑋s,

for a multivariate random variable The function

(5.1.1) 𝜙𝑋p𝜉q :“ E
“

𝑒𝑖 𝜉𝑋
‰

“ x𝜇𝑋p´𝜉q,

is called characteristic function of 𝑋 .
39
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Example 5.1.2: Gaussian distribution

If 𝑋 „ 𝒩p𝑚, 𝜎2q, 𝑚 P R, 𝜎2 ą 0, then

𝜙𝑋p𝜉q “ 𝑒𝑖 𝜉𝑚´ 1
2 𝜎

2 𝜉2
, @𝜉 P R.

More in general, if 𝑋 „ 𝒩p𝑚,𝐶q with 𝑚 P R𝑁 and 𝐶 ą 0 a symmetric matrix, then

𝜙𝑋p𝜉q “ 𝑒𝑖 𝜉 ¨𝑚´ 1
2𝐶𝜉 ¨𝜉 , @𝜉 P R𝑁 .

Proof. We check the formula for the scalar case, the vector case being similar and left as exercise. We
have

𝜙𝑋p𝜉q “

∫
R
𝑒𝑖 𝜉 𝑥

1
?
2𝜋𝜎2

𝑒
´

p𝑥´𝑚q2

2𝜎2 𝑑𝑥
𝑦“𝑥´𝑚

“ 𝑒𝑖 𝜉𝑚
∫
R
𝑒´𝑖 𝜉 𝑦 1

?
2𝜋𝜎2

𝑒
´

𝑦2

2𝜎2 𝑑𝑦

“ 𝑒𝑖 𝜉𝑚
{1

?
2𝜋𝜎2

𝑒
´

72

2𝜎2 p´𝜉q “ 𝑒𝑖 𝜉𝑚𝑒´ 1
2
𝜎2p´𝜉q2 “ 𝑒𝑖 𝜉𝑚´ 1

2
𝜎2 𝜉2

. □

Example 5.1.3: uniform distribution

Let 𝑋 „ 𝑈p𝑎, 𝑏q. Then

𝜙𝑋p𝜉q “
𝑒𝑖𝑏𝜉 ´ 𝑒𝑖𝑎𝜉

𝑖𝜉p𝑏 ´ 𝑎q
. □

Proof. Here, 𝑓𝑋p𝑥q “ 1
𝑏´𝑎

1r𝑎,𝑏sp𝑥q, so

𝜙𝑋p𝜉q “
1

𝑏 ´ 𝑎
z1r𝑎,𝑏sp´𝜉q.

Now, since 1r𝑎,𝑏sp𝑥q “ 1
r´

𝑏´𝑎
2

,
𝑏´𝑎
2

s
p𝑥 `

𝑎`𝑏
2 q we have

𝜙𝑋p𝜉q “
1

𝑏 ´ 𝑎

{

rect 𝑏´𝑎{2p7 `
𝑎 ` 𝑏

2
qp´𝜉q “ 𝑒𝑖

𝑎`𝑏
2

𝜉
sin

`

𝑏´𝑎
2 𝜉

˘

𝑏´𝑎
2 𝜉

,

and, by Euler formulas sin 𝜃 “
𝑒𝑖𝜃´𝑒´𝑖𝜃

2𝑖 , we get the conclusion.

Example 5.1.4: exponential

Let 𝑋 „ exp𝜆. Then
𝜙𝑋p𝜉q “

𝜆

𝜆 ´ 𝑖𝜉
.

Proof. Here 𝑓𝑋p𝑥q “ 𝜆𝑒´𝜆𝑥1r0,`8rp𝑥q, so

𝜙𝑋p𝜉q “ 𝜆 {𝑒´𝜆71r0,`8rp7qp´𝜉q “ 𝜆

∫ `8

0

𝑒´𝜆𝑥𝑒𝑖 𝜉 𝑥 𝑑𝑥 “ 𝜆

„

𝑒p´𝜆`𝑖 𝜉q𝑥

´𝜆 ` 𝑖𝜉

ȷ𝑥“`8

𝑥“0

“
𝜆

𝜆 ´ 𝑖𝜉
.
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In general, the characteristic function is continuous. This follows from the continuity of integrals
depending on parameters because

‚ 𝜉 ÞÝÑ 𝑒𝑖 𝜉 𝑥 P 𝒞pRq, @𝑥 P R;
‚ |𝑒𝑖 𝜉 𝑥| “ 1 P 𝐿1pΩq, @𝜉 P R, @𝑥 P R.

Therefore 𝜙𝑋p𝜉q “
∫
R
𝑒𝑖 𝜉 𝑥 𝑑𝜇𝑋p𝑥q P 𝒞pRq. Differently from usual properties of the FT, in general

Riemann-Lebesgue’s lemma does not hold.

Example 5.1.5: p˚q

Let 𝑋 „ 𝑥0 (constant random variable). Then 𝜇𝑋 “ 𝛿𝑥0 and

𝜙𝑋p𝜉q “

∫
R
𝑒𝑖 𝜉 𝑥 𝑑𝛿𝑥0p𝑥q “ 𝑒𝑖 𝜉 𝑥0 ,

so in particular |𝜙𝑋p𝜉q| ” 1 so 𝜙𝑋p𝜉q ­ÝÑ 0 for 𝜉 ÝÑ ˘8.

Proposition 5.1.6

Let 𝑋 be a random variable and assume that 𝑋 has moment of order 𝑛, that is Er|𝑋𝑛|s ă `8.
Then 𝜙𝑋 P 𝒞

𝑛pRq and
B𝑘
𝜉𝜙𝑋p𝜉q “ Erp𝑖𝑋q𝑘𝑒𝑖 𝜉𝑋s, @𝜉 P R, 𝑘 “ 0, 1, . . . , 𝑛.

In particular:
B𝑘
𝜉𝜙𝑋p0q “ 𝑖𝑘Er𝑋 𝑘s, 𝑘 “ 0, 1, . . . , 𝑛.

Proof. Notice that 𝑋 P 𝐿𝑛pΩq ãÑ 𝐿𝑘pΩq for every 𝑘 “ 1, . . . , 𝑛 ´ 1. In particular, all moments
Er𝑋 𝑘s of order 𝑘 are finite for 𝑘 “ 1, . . . , 𝑛. To compute the derivatives of 𝜙𝑋, we apply the differentiation
under integral sign theorem. We get

B𝑘
𝜉𝜙𝑋p𝜉q “ Erp𝑖𝑋q𝑘𝑒𝑖 𝜉𝑋s,

because |p𝑖𝑋q𝑘𝑒𝑖 𝜉𝑋| “ |𝑋|𝑘 P 𝐿1pΩq for every 𝜉 P R. So, differentiation theorem applies and the
conclusion follows.

In particular, if Vr𝑋s ă `8 then by the McLaurin formula we have

𝜙𝑋p𝜉q “ 𝜙𝑋p0q ` B𝜉𝜙𝑋p0q𝜉 `
1

2
B2
𝜉𝜙𝑋p0q𝜉2 ` 𝑜p𝜉2q “ 1 ` 𝑖𝜉Er𝑋s ´

1

2
𝜉2Er𝑋2s ` 𝑜p𝜉2q.

5.2. Uniqueness of the characteristic function

The characteristic function characterizes uniquely a random variable 𝑋 . This because

𝜙𝑋 “ 𝜙𝑌 , ùñ 𝜇𝑋 “ 𝜇𝑌 .

To show this is the goal of this section. Notice that, if 𝑋 and 𝑌 are absolutely continuous, this is a
consequence of injectivity of the 𝐿1 FT: indeed

𝜙𝑋 ” 𝜙𝑌 , ðñ x𝑓𝑋p´7q ” x𝑓𝑌 p´7q, ðñ x𝑓𝑋 ” x𝑓𝑌 , ðñ 𝑓𝑋 “ 𝑓𝑌 , ðñ 𝜇𝑋 “ 𝜇𝑌 .
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The general case is based on uniqueness for the FT of Borel probabilities. To show this we need a couple
of auxiliary results. The first is the extension of the duality lemma:

Lemma 5.2.1: duality ∫
R

p𝜓 𝑑𝜇 “

∫
R
𝜓p𝜇 𝑑𝜉, @𝜓 P 𝐿1pRq.

Proof. First, notice that p𝜓 P 𝐿8pRq, so p𝜓 P 𝐿1pR, 𝜇q so
∫
R
p𝜓 𝑑𝜇 makes sense. We have∫

R

p𝜓 𝑑𝜇 “

∫
R

∫
R
𝑒´𝑖𝑥 𝜉𝜓p𝜉q 𝑑𝜉 𝑑𝜇p𝑥q

𝐹𝑢𝑏𝑖𝑛𝑖
“

∫
R

∫
R
𝑒´𝑖 𝜉 𝑥 𝑑𝜇p𝑥q 𝜓p𝜉q 𝑑𝜉 “

∫
R
p𝜇p𝜉q𝜓p𝜉q 𝑑𝜉.

So, if 𝜇, 𝜈 are two Borel probabilities such that p𝜇 “ p𝜈, then

(5.2.1)
∫
R

p𝜓 𝑑𝜇 “

∫
R

p𝜓 𝑑𝜈, @𝜓 P 𝐿1pRq.

Now, if we could apply the previous identity with p𝜓 “ 1r𝑎,𝑏s, we would have that 𝜇pr𝑎, 𝑏sq “ 𝜈pr𝑎, 𝑏sq

for every r𝑎, 𝑏s, then easily for every intervals, whence 𝜇 “ 𝜈. Unfortunately, 1r𝑎,𝑏s cannot be a FT,
because it is discontinuous. The next proof shows how to circumvent this issue.

Theorem 5.2.2: uniqueness

If p𝜇 “ p𝜈 then 𝜇 “ 𝜈.

Proof. Let 𝜑 P 𝒮pRq Ă 𝐿1pRq (Schwarz’s space). Then p𝜑 P 𝒮pRq Ă 𝐿1pRq, so, in particular,
inversion formula applies, and

𝜑p𝑥q “
1

2𝜋
x

x𝜑p´𝑥q ùñ 𝜑 “ p𝜓.

Therefore, by identity (5.2.1), we get

(5.2.2)
∫
R
𝜑 𝑑𝜇 “

∫
R
𝜑 𝑑𝜈, @𝜑 P 𝒮pRq.

We not build an 𝒮pRq approximation of 1r𝑎,𝑏s. We start with a particular case: define

𝛿𝑛p𝑥q :“

$

’

&

’

%

1, ´1 ď 𝑥 ď 1,

exp
´

1
p1` 1

𝑛
q2´1

´ 1
p1` 1

𝑛
q2´𝑥2

¯

, 1 ď |𝑥| ď 1 ` 1
𝑛
,

0, |𝑥| ě 1 ` 1
𝑛
.

We can check that
‚ 𝛿𝑛 P 𝒞

8pRq

‚ 𝛿𝑛 ” 1 on r´1, 1s and 𝛿𝑛 ” 0 off r´1 ´ 1
𝑛
, 1 ` 1

𝑛
s

‚ 0 ď 𝛿𝑛p𝑥q ď 1, @𝑥 P R,
‚ 𝛿𝑛p𝑥q

𝑝𝑤
ÝÑ 1r´1,1sp𝑥q
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.In particular, 𝛿𝑛 P 𝒮pRq. Define now

𝛿𝑛,r𝑎,𝑏sp𝑥q “ 𝛿𝑛

ˆ

2𝑥 ´ p𝑎 ` 𝑏q

𝑏 ´ 𝑎

˙

.

Then 𝛿𝑛,r𝑎,𝑏s P 𝒮pRq, 0 ď 𝛿𝑛,r𝑎,𝑏sp𝑥q ď 1 and 𝛿𝑛,r𝑎,𝑏sp𝑥q
𝑝𝑤

ÝÑ 1r𝑎,𝑏sp𝑥q. Therefore, from (5.2.2) we have∫
R
𝛿𝑛,r𝑎,𝑏s 𝑑𝜇 “

∫
R
𝛿𝑛,r𝑎,𝑏s 𝑑𝜈,

and by dominated convergence we get∫
R
1r𝑎,𝑏s 𝑑𝜇 “

∫
R
1r𝑎,𝑏s 𝑑𝜈, ðñ 𝜇pr𝑎, 𝑏sq “ 𝜈pr𝑎, 𝑏sq,

this for every r𝑎, 𝑏s. The conclusion now follows.

So, for example,
𝑋 „ 𝒩p𝑚, 𝜎2q, ðñ 𝜙𝑋p𝜉q “ 𝑒𝑖 𝜉𝑚´ 1

2 𝜎
2 𝜉2

.

In certain circumstances, this is an important characterization that simplifies calculations.

Example 5.2.3: p˚˚q

Q. Let 𝑋 „ 𝒩p𝑚,𝐶q be a multivariate Gaussian, 𝑚 P R𝑁 and 𝐶 symmetric and positive definite
covariance matrix. Use the characteristic function to determine the distribution of 𝑎 ¨ 𝑋 , where
𝑎 P R𝑁 .

A. We have

𝜙𝑎¨𝑋p𝜉q “ E
“

𝑒𝑖 𝜉 𝑎¨𝑋
‰

“ E
”

𝑒𝑖p𝜉𝑎q¨𝑋
ı

“ 𝑒𝑖p𝜉𝑎q¨𝑚´ 1
2
𝐶p𝜉𝑎q¨p𝜉𝑎q “ 𝑒𝑖 𝜉p𝑎¨𝑚q´ 1

2
p𝐶𝑎¨𝑎q𝜉2

,

from which we deduce that 𝑎 ¨ 𝑋 „ 𝒩p𝑎 ¨ 𝑚,𝐶𝑎 ¨ 𝑎q.

5.3. Exercises

Exercise 5.3.1 (˚). Compute the characteristic functions of a Bernoulli, binomial and Poisson random
variable

Exercise 5.3.2 (˚˚). Determine the characteristic function of a Cauchy random variable 𝑋 , that is, such
that 𝑓𝑋p𝑥q “ 1

𝜋
𝑎

𝑎2`p𝑥´𝑚q2

Exercise 5.3.3 (˚˚). Determine the characteristic function of a Gamma random variable 𝑋 , that is, such
that 𝑓𝑋p𝑥q “ 𝜆𝛼´1

Γp𝛼q
𝑥𝛼´1𝑒´𝜆𝑥1r0,`8rp𝑥q (here 𝛼 ą 0 and 𝜆 ą 0).

Exercise 5.3.4 (˚˚). For each of the following functions say if i) they are characteristic functions of some
random variable 𝑋 , and (if yes), ii) what is the distribution of 𝑋 .

‚ 𝜙p𝜉q “ p1 ´ |𝜉|q1r´1,1sp𝜉q.
‚ 𝜙p𝜉q “ sin 𝜉.
‚ 𝜙p𝜉q “ cos 𝜉.
‚ 𝜙p𝜉q “ 1

1`𝜉2 .
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‚ 𝜙p𝜉q “ 1 ´ sin 𝜉.

Exercise 5.3.5 (˚˚). Let 𝑋,𝑌 be absolutely continuous random variables. Prove the identity∫
R
𝜙𝑋p𝜉q 𝑓𝑌 p𝜉q𝑒´𝑖 𝜉 𝑦 𝑑𝜉 “

∫
R
𝜙𝑌 p𝑥 ´ 𝑦q 𝑓𝑋p𝑥q 𝑑𝑥.

Exercise 5.3.6 (˚˚`). Let 𝑋,𝑌 be random variables on pΩ,ℱ, Pq for which

E
“

𝑒𝑖 𝜉𝑋𝑌
‰

“ 0, @𝜉 P R.

Define 𝜇p𝐸q “ Er𝑌1𝐸s for 𝐸 P ℬR. Check that p𝜇 “ 0. Deduce that 𝑌 “ 0 a.s.

Exercise 5.3.7 (˚˚`). Let 𝜇 be a probability on pR,ℬRq. Then:
i) |p𝜇p𝜉q| ď 1 “ p𝜇p0q, for every 𝜉 P R.

ii) p𝜇p´𝜉q “ p𝜇p𝜉q.
iii) p𝜇 is positive definite in the sense that

ÿ

𝑗 ,𝑘

p𝜇p𝜉 𝑗 ´ 𝜉𝑘q𝑧 𝑗 𝑧𝑘 ě 0, @𝜉1, . . . , 𝜉𝑛 P R, @𝑧1, . . . , 𝑧𝑛 P C.

iv) p𝜇 P 𝒞pRq.

Exercise 5.3.8 (˚˚`). Let 𝜙𝑋 be the characteristic function of an absolutely continuous random variable
𝑋 . Show that |𝜙𝑋|2 is still a characteristic function of a random variable 𝑌 , determining also its density
𝑓𝑌 .

Exercise 5.3.9 (˚˚˚). Let x𝜇𝑋 P 𝐿1pRq. Show that 𝑑𝜇𝑋 “ 𝑓𝑋p𝑥q 𝑑𝑥 for some 𝑓𝑋 P 𝐿1pRq, 𝑓𝑋 ě 0 and∫
R
𝑓𝑋p𝑥q 𝑑𝑥 “ 1. (hint: use the duality Lemma with 𝜓 P 𝒮pRq. . . )
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Independence

6.1. Independent Events

Independence is a key concept of Probability. Independence is a concept ranging from events, to
𝜎´algebras to random variable, for a finite number of objects to infinitely many. We start by the simplest
of the definitions: independence of events.

Definition 6.1.1

Let pΩ,ℱ, Pq be a probability space. Two events 𝐸, 𝐹 P ℱ are said to be independent if
Pp𝐸 X 𝐹q “ Pp𝐸qPp𝐹q.

More in general, 𝑛 events 𝐸1, . . . , 𝐸𝑛 P ℱ are independent iff
Pp𝐸1 X ¨ ¨ ¨ X 𝐸𝑛q “ Pp𝐸1q ¨ ¨ ¨Pp𝐸𝑛q.

Warning 6.1.2

Events might be pairwise independent but not jointly independent.

Proof. Consider the probability space of a rolling of two dices: Ωtp𝑖, 𝑗q : 𝑖, 𝑗 P t1 . . . , 6uu,
ℱ “ 𝒫pΩq, 𝑝𝑖 𝑗 “ 1

36 . Take the events 𝐸 :“ tfirst roll is 1u, 𝐹 :“ tsecond roll is 6u and 𝐺 :“
tsum of rolls is 7u. Notice that

Pp𝐸q “
1

6
, Pp𝐹q “

1

6
, Pp𝐺q “

6

36
“

1

6
.

Clearly, 𝐸 X 𝐹 “ tp1, 6qu so Pp𝐸 X 𝐹q “ 1
36 “ 1

6 ¨ 1
6 “ Pp𝐸qPp𝐹q. Moreover, 𝐸 X 𝐺 “ tp1, 6qu so,

again Pp𝐸 X 𝐺q “ 1
36 “ 1

6 ¨ 1
6 “ Pp𝐸qPp𝐺q and, in the same manner Pp𝐹 X 𝐺q “ Pp𝐹qPp𝐺q. However,

𝐸 X 𝐹 X 𝐺 “ tp1, 6qu so

Pp𝐸 X 𝐹 X 𝐺q “
1

36
‰

1

216
“ Pp𝐸qPp𝐹qPp𝐺q. □

Remark 6.1.3

The previous example also shows that an event might be independent of two others, but not of
their intersection.

45
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Proof. In notations of the previous example, 𝐸 is independent of 𝐹 and 𝐺. Notice that Pp𝐸 X p𝐹 X

𝐺qq “ 1
36 while, being 𝐹 X 𝐺 “ tp1, 6qu so Pp𝐹 X 𝐺q “ 1

36 from which
Pp𝐸 X p𝐹 X 𝐺qq ‰ Pp𝐸q X Pp𝐹 X 𝐺q. □

We now extend independence to 𝜎´algebras.

Definition 6.1.4

Let pΩ,ℱ, Pq be a probability space. We say that two sub 𝜎´algebras 𝒢1 and 𝒢2 of ℱ are
independent if 𝐸1 and 𝐸2 are independent for every 𝐸1 P 𝒢1 and 𝐸2 P 𝒢2.
More in general, given a family of 𝜎´algebras p𝒢𝑗q 𝑗P𝐽 Ă ℱ we say that they are independent if

𝐸1, 𝐸2, . . . , 𝐸𝑛 are independent @𝐸1 P 𝒢𝑗1 , . . . , @𝐸𝑛 P 𝒢𝑗𝑛 , @ 𝑗1, . . . , 𝑗𝑛 P 𝐽, @𝑛 P N.

In general, it is very difficult to characterize all the events of a 𝜎´algebra. Fortunately, to check the
independence of two 𝜎´algebras it is sufficient to check that some generator families are independent:

Proposition 6.1.5

Let 𝒢𝑗 :“ 𝜎p𝒜𝑗q be the 𝜎´algebra generated by a multiplicative class 𝒜𝑗 Ă ℱ, 𝑗 “ 1, 2 (that
is, if 𝐴, 𝐵 P 𝒜𝑗 then also 𝐴 X 𝐵 P 𝒜𝑗). The following facts are equivalent:

i) 𝒢1 and 𝒢2 are independent.
ii) 𝐸 and 𝐹 are independent, @𝐸 P 𝒜1, @𝐹 P 𝒜2.

6.2. Independent random variable

Independence extends in a natural way to random variable. Here, for simplicity we refer to the case
of random variables, the definitions and properties for the multivariate case are similar.

Definition 6.2.1

Let 𝑋,𝑌 P 𝐿pΩq be two random variables. We say that 𝑋 and 𝑌 are independent if
Pp𝑋 P 𝐸, 𝑌 P 𝐹q “ Pp𝑋 P 𝐸qPp𝑌 P 𝐹q, @𝐸, 𝐹 P ℬR.

We call 𝜎´algebra generated by a random variable 𝑋 (sometimes also called information generated by
𝑋) the family

𝜎p𝑋q :“ tt𝑋 P 𝐸u : 𝐸 P ℬRu .

It is easy to check that this is a 𝜎´algebra (exercise). This 𝜎´algebra represents the minimal family of
events such that 𝑋 is measurable.
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Proposition 6.2.2

𝑋,𝑌 independent ðñ 𝜎p𝑋q, 𝜎p𝑌q independent.

An extension of the definition if provided by the following

Proposition 6.2.3

Let 𝑋,𝑌 P 𝐿pΩq. Then, 𝑋 and 𝑌 are independent if and only if
(6.2.1) Er𝜑p𝑋q𝜓p𝑌qs “ Er𝜑p𝑋qsEr𝜓p𝑌qs, @𝜑 P 𝐿1pR, 𝜇𝑋q, @𝜓 P 𝐿1pR, 𝜇𝑌 q.

In particular: if 𝑋,𝑌 P 𝐿1pΩq are independent, then also 𝑋𝑌 P 𝐿1pΩq and
Er𝑋𝑌 s “ Er𝑋sEr𝑌 s.

Proof. ðù 𝑋 and 𝑌 are independent iff
Pp𝑋 P 𝐸, 𝑌 P 𝐹q “ Pp𝑋 P 𝐸qPp𝑌 P 𝐹q, @𝐸, 𝐹 P ℬR.

Now,
Pp𝑋 P 𝐸, 𝑌 P 𝐹q “ Ppp𝑋,𝑌q P 𝐸 ˆ 𝐹q “ Er1𝐸ˆ𝐹p𝑋,𝑌qs “ Er1𝐸p𝑋q1𝐹p𝑌qs,

while,
Pp𝑋 P 𝐸qPp𝑌 P 𝐹q “ Er1𝐸p𝑋qsEr1𝐹p𝑌qs.

So independence follows by the identity (6.2.1) taking 𝜑 “ 1𝐸 and 𝜓 “ 1𝐹 we get In particular.
ùñ. The first part shows that independence is equivalent to (6.2.1) for 𝜑 “ 1𝐸 , 𝜓 “ 1𝐹 , 𝐸, 𝐹 P ℬR.
By linearity we extend this to simple functions 𝑠p𝑋q “

ř𝑁
𝑗“1 1𝐸 𝑗

p𝑋q and similarly for r𝑠p𝑌q. If now, 𝜑, 𝜓
are two positive Borel-measurable functions, there exist sequences p𝑠𝑛q, pr𝑠𝑛q of simple functions such that
𝑠𝑛 Ò 𝜑 and r𝑠𝑛 Ò 𝜓 point-wise everywhere. By monotone convergence, then,

Er𝜑p𝑋q𝜓p𝑌qs ÐÝ Er𝑠𝑛p𝑋qr𝑠𝑛p𝑌qs “ Er𝑠𝑛p𝑋qsErr𝑠𝑛p𝑌qs ÝÑ Er𝜑p𝑋qsEr𝜓p𝑌qs.

Thus (6.2.1) now holds for 𝜑 P 𝐿`pR, 𝜇𝑋q and 𝜓 P 𝐿`pR, 𝜇𝑌 q. Finally, let 𝜑 P 𝐿1pR, 𝜇𝑋q and 𝜓 P

𝐿1pR, 𝜇𝑌 q. Writing 𝜑 “ 𝜑` ´ 𝜑´ and doing the same for 𝜓, we have
𝜑𝜓 “ p𝜑` ´ 𝜑´qp𝜓` ´ 𝜓´q “ p𝜑`𝜓` ` 𝜑´𝜓´q

looooooooomooooooooon

“p𝜑𝜓q`

´ p𝜑`𝜓´ ` 𝜑´𝜓`q
looooooooomooooooooon

“p𝜑𝜓q´

Therefore,
Erp𝜑p𝑋q𝜓p𝑌qq`s “ Er𝜑`p𝑋q𝜓`p𝑌q`𝜑´p𝑋q𝜓´p𝑌qs “ Er𝜑`p𝑋qsEr𝜓`p𝑌qs`Er𝜑´p𝑋qsEr𝜓´p𝑌qs ă `8,

and, similarly,
Erp𝜑p𝑋q𝜓p𝑌qq´s ă `8,

from which we conclude that 𝜑p𝑋q𝜓p𝑌q P 𝐿1pΩq and, easily, formula (6.2.1) holds.

Remark 6.2.4

In particular, if 𝑋 and 𝑌 are independent, then also 𝜑p𝑋q and 𝜓p𝑌q are independent, for any Borel
functions 𝜑, 𝜓.
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Independence of random variables reflects on their cdf and densities (if any).

Proposition 6.2.5

Let 𝑋,𝑌 P 𝐿pΩq. The following properties are equivalent:
i) 𝑋 and 𝑌 are independent.

ii) 𝐹𝑋,𝑌 p𝑥, 𝑦q “ 𝐹𝑋p𝑥q𝐹𝑌 p𝑦q, @𝑥, 𝑦 P R.
iii) If p𝑋,𝑌q is absolutely continuous, then 𝑓𝑋,𝑌 “ 𝑓𝑋 𝑓𝑌 a.e.

Proof. i) ùñ ii). If 𝑋,𝑌 are independent, then
𝐹𝑋,𝑌 p𝑥, 𝑦q “ Pp𝑋 ď 𝑥, 𝑌 ď 𝑦q “ Pp𝑋 ď 𝑥qPp𝑌 ď 𝑦q “ 𝐹𝑋p𝑥q𝐹𝑌 p𝑦q, @𝑥, 𝑦 P R.

ii) ùñ i). Assume 𝐹𝑋𝑌 ” 𝐹𝑋𝐹𝑌 . Consider a rectangle 𝑅 :“s𝑎, 𝑏sˆs𝑐, 𝑑s. Since

𝑅 “s ´ 8, 𝑏sˆs ´ 8, 𝑑sz

¨

˚

˝
s ´ 8, 𝑎sˆs ´ 8, 𝑑s
looooooooooomooooooooooon

“:𝑅1

\ s𝑎, 𝑏sˆs ´ 8, 𝑐s
loooooooomoooooooon

“:𝑅2

˛

‹

‚
,

from which
Ppp𝑋,𝑌q P 𝑅q “ Pp𝑋 ď 𝑏, 𝑌 ď 𝑑q ´ Pp𝑋 ď 𝑎, 𝑌 ď 𝑑q ´ Pp𝑎 ă 𝑋 ď 𝑏, 𝑌 ď 𝑐q

loooooooooooomoooooooooooon

“Pp𝑋ď𝑏, 𝑌ď𝑐q´Pp𝑋ď𝑎, 𝑌ď𝑐q

“ 𝐹𝑋𝑌 p𝑏, 𝑑q ´ 𝐹𝑋𝑌 p𝑎, 𝑑q ´ p𝐹𝑋𝑌 p𝑏, 𝑐q ´ 𝐹𝑋𝑌 p𝑎, 𝑐qq

“ 𝐹𝑋p𝑏q𝐹𝑌 p𝑑q ´ 𝐹𝑋p𝑎q𝐹𝑌 p𝑑q ´ p𝐹𝑋p𝑏q𝐹𝑌 p𝑐q ´ 𝐹𝑋p𝑎q𝐹𝑌 p𝑐qq

“ p𝐹𝑋p𝑏q ´ 𝐹𝑋p𝑎qq
looooooooomooooooooon

“Pp𝑎ă𝑋ď𝑏q

𝐹𝑌 p𝑑q ´ p𝐹𝑋p𝑏q ´ 𝐹𝑋p𝑎qq 𝐹𝑌 p𝑐q

“ Pp𝑋 Ps𝑎, 𝑏sqPp𝑌 Ps𝑐, 𝑑sq.

So, if ℛ𝑋 :“ t𝑋 Ps𝑎, 𝑏s : 𝑎 ď 𝑏u and ℛ𝑌 :“ t𝑌 Ps𝑐, 𝑑s : 𝑐 ď 𝑑u, then ℛ𝑋 and ℛ𝑌 are independent
algebras of sets. Therefore 𝜎pℛ𝑋q “ 𝜎p𝑋q and 𝜎pℛ𝑌 q “ 𝜎p𝑌q are independent, which is the conclusion.
iii) ðñ i). Assume p𝑋,𝑌q a.c., and let 𝑓𝑋,𝑌 be its density. Then

Pp𝑋 P 𝐸, 𝑌 P 𝐹q “

∫
𝐸ˆ𝐹

𝑓𝑋,𝑌 p𝑥, 𝑦q 𝑑𝑥𝑑𝑦

On the other hand,

Pp𝑋 P 𝐸, 𝑌 P 𝐹q “ Pp𝑋 P 𝐸qPp𝑌 P 𝐹q “

∫
𝐸

𝑓𝑋p𝑥q 𝑑𝑥

∫
𝐹

𝑓𝑌 p𝑦q 𝑑𝑦
𝐹𝑢𝑏.
“

∫
𝐸ˆ𝐹

𝑓𝑋p𝑥q 𝑓𝑌 p𝑦q 𝑑𝑥𝑑𝑦.

So 𝑋,𝑌 are independent iff∫
𝐸ˆ𝐹

𝑓𝑋,𝑌 p𝑥, 𝑦q 𝑑𝑥𝑑𝑦 “

∫
𝐸ˆ𝐹

𝑓𝑋p𝑥q 𝑓𝑌 p𝑦q 𝑑𝑥𝑑𝑦, ðñ

∫
𝐸ˆ𝐹

p 𝑓𝑋,𝑌 ´ 𝑓𝑋 𝑓𝑌 q “ 0, @𝐸, 𝐹 P ℬR.

Now, since 𝜎pℬR ˆ ℬRq “ ℬR2 the previous relation holds for every Borel set of R2. Therefore,
𝑓𝑋𝑌 “ 𝑓𝑋 𝑓𝑌 a.e. (w.r.t. the Lebesgue measure).
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Example 6.2.6

Q. Let 𝑋 and 𝑌 be independent random variables with densities given by

𝑓𝑋p𝑥q :“
1

𝜋
?
1 ´ 𝑥2

𝜒s´1,1rp𝑥q, 𝑓𝑌 p𝑦q :“
𝑦

𝜎
𝑒´

𝑦2

2𝜎 𝜒r0,`8rp𝑦q.

Show that 𝑋𝑌 „ 𝒩p0, 𝜎q.

A. First, we note that since 𝑓𝑌 ” 0 for 𝑦 ď 0, it follows that Pp𝑌 ď 0q “ 0, or equivalently Pp𝑌 ą 0q “ 1.
Thus, letting 𝑍 “ 𝑋𝑌 and denoting the c.d.f. of 𝑍 by 𝐹𝑍 , we have:

𝐹𝑍p𝑧q “ Pp𝑋𝑌 ď 𝑧q “ P
´

𝑋 ď
𝑧

𝑌

¯

“ P

ˆ

p𝑋,𝑌q P tp𝑥, 𝑦q : 𝑥 ď
𝑧

𝑦
u

˙

“

ż

𝑥ď 𝑧
𝑦

𝑓𝑋,𝑌 p𝑥, 𝑦q 𝑑𝑥𝑑𝑦,

By the independence of 𝑋 and 𝑌 , we have 𝑓𝑋,𝑌 p𝑥, 𝑦q “ 𝑓𝑋p𝑥q 𝑓𝑌 p𝑦q, so

𝐹𝑍p𝑧q “

ż `8

0

˜

ż 𝑧{𝑦

´8

𝑓𝑋p𝑥q 𝑓𝑌 p𝑦q 𝑑𝑥

¸

𝑑𝑦 “

ż `8

0

𝑓𝑌 p𝑦q

ż 𝑧{𝑦

´8

𝑓𝑋p𝑥q 𝑑𝑥 𝑑𝑦.

Therefore,

𝑓𝑍p𝑧q “ 𝐹1
𝑍p𝑧q “

ż `8

0

𝑓𝑌 p𝑦q
1

𝑦
𝑓𝑋

ˆ

𝑧

𝑦

˙

𝑑𝑦.

In our case,

𝑓𝑍p𝑧q “

ż `8

0

𝑦

𝜎
𝑒´

𝑦2

2𝜎
1

𝑦

1

𝜋

1
b

1 ´ 𝑧2

𝑦2

𝜒s´1,1r

ˆ

𝑧

𝑦

˙

𝑑𝑦 “
1

𝜋𝜎

ż `8

0

𝑒´
𝑦2

2𝜎
1

b

1 ´ 𝑧2

𝑦2

𝜒s´1,1r

ˆ

𝑧

𝑦

˙

𝑑𝑦.

Now, note that 𝜒s´1,1r

´

𝑧
𝑦

¯

“ 1 if and only if
ˇ

ˇ

ˇ

𝑧
𝑦

ˇ

ˇ

ˇ
“

|𝑧|

𝑦
ă 1, which implies 𝑦 ą |𝑧|; otherwise, it is 0.

Thus,

𝑓𝑍p𝑧q “
1

𝜋𝜎

ż `8

|𝑧|

𝑒´
𝑦2

2𝜎
1

b

1 ´ 𝑧2

𝑦2

𝑑𝑦 “
1

𝜋𝜎

ż `8

|𝑧|

𝑒´
𝑦2

2𝜎
𝑦

a

𝑦2 ´ 𝑧2
𝑑𝑦.

Setting 𝑤 “
a

𝑦2 ´ 𝑧2, so that 𝑑𝑤 “
𝑦?

𝑦2´𝑧2
𝑑𝑦, we have

𝑓𝑍p𝑧q “
1

2𝜋𝜎

ż `8

0

𝑒´
𝑤2`𝑧2

2𝜎 𝑑𝑤 “
1

𝜋𝜎
𝑒´ 𝑧2

2𝜎

ż `8

0

𝑒´ 𝑤2

2𝜎 𝑑𝑤 “
1

𝜋𝜎
𝑒´ 𝑧2

2𝜎 ¨
1

2

ż

R
𝑒´ 𝑤2

2𝜎 𝑑𝑤.

The integral evaluates to
?
2𝜋𝜎, so

𝑓𝑍p𝑧q “
1

2𝜋𝜎
𝑒´ 𝑧2

2𝜎

?
2𝜋𝜎 “

1
?
2𝜋𝜎

𝑒´ 𝑧2

2𝜎 ,

which is the conclusion. □

Independence of random variables reflects also on their characteristic functions.

Proposition 6.2.7: Kač theorem

Let 𝑋,𝑌 P 𝐿pΩq. The following properties are equivalent:
‚ 𝑋 and 𝑌 are independent.
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‚ 𝜙𝑋,𝑌 p𝜉, 𝜂q “ 𝜙𝑋p𝜉q𝜙𝑌 p𝜂q, @𝜉, 𝜂 P R2.

Proof. i) ùñ ii). Let 𝑋,𝑌 be independent. Then

𝜙𝑋,𝑌 p𝜉, 𝜂q “ Er𝑒𝑖p𝜉 ,𝜂q¨p𝑋,𝑌qs “ Er𝑒𝑖 𝜉𝑋`𝑖𝜂𝑌 s “ Er𝑒𝑖 𝜉𝑋𝑒𝑖𝜂𝑌 s
p6.2.1q

“ Er𝑒𝑖 𝜉𝑋sEr𝑒𝑖𝜂𝑌 s “ 𝜙𝑋p𝜉q𝜙𝑌 p𝜂q.

ii) ùñ i). Define the function
𝜈p𝐸 ˆ 𝐹q “ 𝜇𝑋p𝐸q𝜇𝑌 p𝐹q, @𝐸, 𝐹 P ℬR.

This 𝜈 is well defined on the product class 𝒫 :“ t𝐸 ˆ 𝐹 : 𝐸, 𝐹 P ℬRu Ă ℬR2 which is not a 𝜎´algebra,
nonetheless it contains rectangles 𝐼 ˆ 𝐽 with 𝐼 and 𝐽 intervals. Therefore, 𝜎p𝒫q “ ℬR2 . It is not difficult
to check that 𝜈 is a pre-probability, so by Caratheodory’s extension theorem, 𝜈 extends to a probability
measure. By its definition, it is clear that∫

R2
𝜑p𝑥q𝜓p𝑦q 𝑑𝜈p𝑥, 𝑦q “

∫
R
𝜑p𝑥q 𝑑𝜇𝑋p𝑥q

∫
R
𝜓p𝑦q 𝑑𝜇𝑌 p𝑦q.

From this,

p𝜈p𝜉, 𝜂q “

∫
R2
𝑒´𝑖p𝜉 ,𝜂q¨p𝑥,𝑦q 𝑑𝜈p𝑥, 𝑦q “

∫
R
𝑒´𝑖 𝜉 𝑥 𝑑𝜇𝑋p𝑥q

∫
R
𝑒´𝑖𝜂𝑦 𝑑𝜇𝑌 p𝑦q “ 𝜙𝑋p𝑥q𝜙𝑌 p𝑦q.

Since p𝜈 “ 𝜙𝑋𝜙𝑌 “ 𝜙𝑋,𝑌 “ p𝜇𝑋,𝑌 , by the uniqueness of FT of Borel measures (thm 5.2) we conclude that
𝜇𝑋,𝑌 “ 𝜈. In particular,

𝜇𝑋,𝑌 p𝐸 ˆ 𝐹q “ 𝜈p𝐸 ˆ 𝐹q “ 𝜇𝑋p𝐸q𝜇𝑌 p𝐹q,

that is
Pp𝑋 P 𝐸, 𝑌 P 𝐹q “ Pp𝑋 P 𝐸qPp𝑌 P 𝐹q,

which is the independence of 𝑋 and 𝑌 .

Here is a nice (and important) application of the characterization of independent r.vs.

Proposition 6.2.8

Let 𝑋,𝑌 be absolutely continuous, independent random variables with densities 𝑓𝑋 and 𝑓𝑌 . Then
𝑋 ` 𝑌 is absolutely continuous with density

𝑓𝑋`𝑌 “ 𝑓𝑋 ˚ 𝑓𝑌 .

Proof. We use the characteristic function: we have
𝜙𝑋`𝑌 p𝜉q “ Er𝑒𝑖 𝜉p𝑋`𝑌qs “ Er𝑒𝑖 𝜉𝑋𝑒𝑖 𝜉𝑌 s “ Er𝑒𝑖 𝜉𝑋sEr𝑒𝑖 𝜉𝑌 s “ 𝜙𝑋p𝜉q𝜙𝑌 p𝜉q

“ x𝑓𝑋p´𝜉qx𝑓𝑌 p´𝜉q “ {𝑓𝑋 ˚ 𝑓𝑌 p´𝜉q.

Now, by the injectivity of FT, we conclude that
𝑓𝑋`𝑌 “ 𝑓𝑋 ˚ 𝑓𝑌 .

These properties extend in a straightforward way to the case of any finite number of random variables.
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6.3. i.i.d.

Modeling a random experiment repeated infinitely many times, we need to be able to work with
infinitely many independent random variables, all with the same distribution.

Definition 6.3.1

Let p𝑋𝑛q𝑛PN Ă 𝐿pΩq. We say that the p𝑋𝑛q are independent, identically distributed if
‚ p𝜎p𝑋𝑛qq is a family of independent 𝜎´algebras
‚ 𝐹𝑋𝑛

” 𝐹𝑋𝑚
for all 𝑛, 𝑚 P N.

We use the shortening p𝑋𝑛q i.i.d. random variables.

We have seen that it is always possible to build a random variable with an assigned cdf (proposition 3.1).
If, for example 𝐹 is continuous, we take

pΩ,ℱ, Pq “ pr0, 1s,ℬR, 𝜆1q, 𝑋p𝜔q :“ 𝐹´1p𝜔q, ùñ 𝐹𝑋 ” 𝐹.

Extending this idea, we can build any finite number of i.i.d. random variables 𝑋1, . . . , 𝑋𝑁 all with a
given cdf 𝐹. For example, if 𝐹 are continuous, we take

pΩ,ℱ, Pq “ pr0, 1s𝑁 ,ℬR𝑁 , 𝜆𝑁 q, 𝑋 𝑗p𝜔1, . . . , 𝜔𝑁 q “ 𝐹´1p𝜔 𝑗q.

The 𝑋 𝑗 are i.i.d. random variables. Indeed:

Pp𝑋 𝑗 ď 𝑥q “ 𝜆𝑁
`␣

𝜔 P r0, 1s𝑁 : 𝐹´1p𝜔 𝑗q ď 𝑥
(˘

“ 𝜆𝑁
`␣

𝜔 P r0, 1s𝑁 : 𝜔 𝑗 ď 𝐹p𝑥q
(˘

“ 𝐹p𝑥q,

so 𝐹𝑋 𝑗
” 𝐹, so the 𝑋 𝑗 have the same cdf 𝐹. Moreover, if 1 ď 𝑖1 ă 𝑖2 ă . . . ă 𝑖𝑛 ď 𝑁 ,

𝐹𝑋𝑖1 ,...,𝑋𝑖𝑛
p𝑥𝑖1 , . . . , 𝑥𝑖𝑛q “ P p𝑋𝑖1 ď 𝑥𝑖1 , . . . , 𝑋𝑖𝑛 ď 𝑥𝑖𝑛q

ď 𝜆𝑁
`␣

p𝜔1, . . . , 𝜔𝑁 q P r0, 1s𝑁 : 𝐹´1p𝜔𝑖1q ď 𝑥𝑖1 , . . . , 𝐹
´1p𝜔𝑖𝑛q ď 𝑥𝑖𝑛

(˘

ď 𝜆𝑁
`␣

p𝜔1, . . . , 𝜔𝑁 q P r0, 1s𝑁 : 𝜔𝑖1 ď 𝐹p𝑥𝑖1q, . . . , 𝜔𝑖𝑛 ď 𝐹p𝑥𝑖𝑛q
(˘

“ 𝐹p𝑥𝑖1q ¨ ¨ ¨ 𝐹p𝑥𝑖𝑛 “ 𝐹𝑋𝑖1
p𝑥𝑖1q ¨ ¨ ¨ 𝐹𝑋𝑖𝑛

p𝑥𝑖𝑛q,

that is 𝑋𝑖1 , . . . , 𝑋𝑖𝑛 are also independent.
This construction becomes complicate when we set 𝑁 “ `8. This because, we do not have an

infinite dimensional version of the Lebesgue’s measure. The proof of the existence of infinitely many
i.i.d. random variables is more sophisticated.

Theorem 6.3.2

Given a cdf 𝐹, there exists a probability space pΩ,ℱ, Pq and a sequence p𝑋𝑛q𝑛PN of i.i.d. random
variables such that 𝐹𝑋𝑛

” 𝐹 for every 𝑛 P N.

Proof. We divide the proof in two steps. The first step proves the conclusion assuming 𝐹 being the
cdf of a uniform distribution on the interval r0, 1s. In the second step we will remove this restriction.
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.First step. Let pΩ,ℱ, Pq “ pr0, 1s,ℬR, 𝜆1q. For 𝑥 P r0, 1s, its binary expansion is uniquely defined as

𝑥 “

8
ÿ

𝑘“1

𝐶𝑘p𝑥q

2𝑘
,

choosing, by convention, the representation that eventually consists of the digit 1. We look at𝐶𝑘 : r0, 1s ÝÑ

t0, 1u Ă R as random variables. Notice that t𝐶𝑘 “ 0u and t𝐶𝑘 “ 1u are unions of 2𝑘´1 intervals of length
1
2𝑘

each, so they are Borel sets and 𝐶𝑘 is a random variable for every 𝑘 . They are also independent. Indeed,
if 𝑘 ă 𝑗 ,

t𝐶𝑘 “ 𝑎, 𝐶 𝑗 “ 𝑏u

where 𝑎, 𝑏 P t0, 1u is made of 2 𝑗´1{2 “ 2 𝑗´2 intervals each of length 1
2 𝑗 so,

Pp𝐶𝑘 “ 𝑎, 𝐶 𝑗 “ 𝑏q “ 𝜆1p𝐶𝑘 “ 𝑎, 𝐶 𝑗 “ 𝑏q “ 2 𝑗´2 1

2 𝑗
“

1

4
while

Pp𝐶𝑘 “ 𝑎qPp𝐶 𝑗 “ 𝑏q “ 𝜆1p𝐶𝑘 “ 𝑎q𝜆1p𝐶 𝑗 “ 𝑏q “
1

2
¨
1

2
“

1

4
.

Let now 𝑟 : N2 ÝÑ N be a bijection, and define

𝐶𝑛,𝑘 :“ 𝐶𝑟p𝑛,𝑘q and 𝑈𝑛 :“
8
ÿ

𝑘“1

𝐶𝑛,𝑘

2𝑘
.

We notice that 𝑈𝑛 is well-defined (the series converges) and measurable (as it is a pointwise limit of
measurable functions). To show that𝑈𝑛 is uniformly distributed, we compute its cdf. Since 0 ď 𝑈𝑛p𝑥q ď 1
for all 𝑥, we have

Pp𝑈𝑛 ď 𝑥q “ 0, @𝑥 ă 0, Pp𝑈𝑛 ď 𝑥q “ 1, @𝑥 ě 1.

Let 0 ď 𝑥 ă 1. We have

t𝑈𝑛 ď 𝑥u “

#

𝑦 P r0, 1s :
8
ÿ

𝑘“1

𝐶𝑛,𝑘p𝑦q

2𝑘
ď

8
ÿ

𝑘“1

𝐶𝑘p𝑥q

2𝑘

+

“

8
ğ

𝑘“1

t𝐶𝑛,1 “ 𝑐1p𝑥q, . . . , 𝐶𝑛,𝑘´1 “ 𝑐𝑘´1p𝑥q, 𝐶𝑛,𝑘p𝑦q ă 𝑐𝑘p𝑥qu \ t𝐶𝑛,𝑘 “ 𝑐𝑘p𝑥q, @𝑘u.

Noticed that

Pp𝐶𝑛,1 “ 𝑐1p𝑥q, . . . , 𝐶𝑛,𝑘 “ 𝑐𝑘p𝑥qq “
ź

𝑗

Pp𝐶𝑛, 𝑗 “ 𝑐 𝑗p𝑥qq “
ź

𝑗

1

2
“

1

2𝑘
,

by the continuity from above we have

P pt𝐶𝑛,𝑘 “ 𝑐𝑘p𝑥q, @𝑘uq “ lim
𝑘Ñ8

1

2𝑘
“ 0.

Moreover,

Pp𝐶𝑛,1 “ 𝑐1p𝑥q, . . . , 𝐶𝑛,𝑘´1 “ 𝑐𝑘´1p𝑥q, 𝐶𝑛,𝑘 ă 𝑐𝑘p𝑥qq “
1

2𝑘´1
Pp𝐶𝑛,𝑘 ă 𝑐𝑘p𝑥qq,

and since,

Pp𝐶𝑛,𝑘 ă 𝑐𝑘p𝑥qq “

$

&

%

0, 𝑐𝑘p𝑥q “ 0,

1
2 , 𝑐𝑘p𝑥q “ 1,

“
𝑐𝑘p𝑥q

2
,
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we conclude that

Pp𝑈𝑛 ď 𝑥q “

8
ÿ

𝑘“1

𝑐𝑘p𝑥q

2𝑘
“ 𝑥.

Therefore,

Pp𝑈𝑛 ď 𝑥q “

$

&

%

0, 𝑥 ď 0,
𝑥, 0 ă 𝑥 ď 1,
1, 𝑥 ě 1,

and this shows that𝑈𝑛 is a uniform random variable. Finally, we verify that the𝑈𝑛 are independent. Now,
denote by ℱ𝑛 :“ 𝜎p𝐶𝑛,𝑘 : 𝑘 P Nq. It is clear that 𝑈𝑛 is ℱ𝑛 measurable and that ℱ𝑛 are independent
𝜎´algebras, so also the𝑈𝑛 are independent.
Second step. Let 𝐹 be a generic cfd. By the first step, pr0, 1s,ℬR, 𝜆1q there is a sequence of i.i.d. p𝑈𝑛q,
that is

𝜆1p𝑈𝑛 ď 𝑢q “ 𝑢, 𝑢 P r0, 1s.

So, in particular,
𝐹p𝑥q “ 𝜆1 p𝑈𝑛 ď 𝐹p𝑥qq .

If 𝐹 is continuous and strictly increasing, we can write previous relation as
𝐹𝑛p𝑥q “ 𝜆1

`

𝐹´1p𝑈𝑛q ď 𝑥
˘

,

so defining 𝑋𝑛 :“ 𝐹´1p𝑈𝑛q we have the desired sequence.
For a general cdf 𝐹, this is not necessarily continuous and strictly increasing. However, if we define

𝐺 : r0, 1s Ñ r´8,`8s, 𝐺p𝑦q :“ inft𝑥 P R : 𝐹p𝑥q ě 𝑦u,

and we set 𝑋𝑛 :“ 𝐺p𝑈𝑛q. Then,
𝑋𝑛 “ 𝐺p𝑈𝑛q ď 𝑥 ðñ 𝑈𝑛 ď 𝐹p𝑥q,

so
Pp𝑋𝑛 ď 𝑥q “ 𝜆1p𝑈𝑛 ď 𝐹p𝑥qq “ 𝐹p𝑥q,

from which the conclusion follows.

6.4. Exercises

Exercise 6.4.1 (˚). Let 𝑋 and 𝑌 be random variables such that

Pp𝑋 ą 𝑥, 𝑌 ą 𝑦q “ Pp𝑋 ą 𝑥qPp𝑌 ą 𝑦q, @𝑥, 𝑦 P R.

Does it follow from this that 𝑋 and 𝑌 are independent?

Exercise 6.4.2 (˚˚). Let 𝑋,𝑌 be independent random variables.
i) Check that 𝜌p𝑋,𝑌q “ 0.

ii) Check that if p𝑋,𝑌q is Gaussian, then also the vice versa of i) holds.
iii) Show, with an example, that it is possible to have 𝜌p𝑋,𝑌q “ 0 but 𝑋,𝑌 are not independent.

Exercise 6.4.3 (˚˚). Random variables with the density 𝑓 p𝑥q “ 𝛼
2 𝑒

´𝛼|𝑥|, where 𝛼 ą 0, are called
Laplace random variables with parameter 𝛼. Let 𝑋 and 𝑌 be independent exponential random variables
with parameter 2, and let 𝑍 “ 𝑋 ´ 𝑌 .

i) Find the density and the characteristic function of the random variable ´𝑌 .
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ii) Prove that 𝑍 is a Laplace random variable, determine its parameter, and compute its charac-
teristic function.

Exercise 6.4.4 (˚˚). Let 𝑋,𝑌 „ exp𝜆. Show that if 𝑋 and 𝑌 are independent, then the random variables
𝑋 ` 𝑌 and 𝑋

𝑌
are also independent.

Exercise 6.4.5 (˚˚). Consider a rectangle 𝑅 :“ r0, 𝑎s ˆ r0, 𝑏s. On each side of the rectangle, points
p𝑋, 0q and p0, 𝑌q are chosen randomly, uniformly in their respective intervals, and independently. Let
𝑇𝑋,𝑌 denote the triangle with vertices p0, 0q, p𝑋, 0q, and p0, 𝑌q. What is the probability that the area of
𝑇𝑋,𝑌 is less than one-quarter of the area of the rectangle 𝑅?

Exercise 6.4.6 (˚˚). Let 𝐴 and 𝐵 be independent random variables uniformly distributed on r0, 1s.
Consider the quadratic equation

𝑥2 ` 2𝐴𝑥 ` 𝐵 “ 0.

What is the probability that its solutions are real?

Exercise 6.4.7 (˚˚). Let 𝑋,𝑌 „ 𝑈pr0, 1sq be independent random variables and let
𝑈 :“ minp𝑋,𝑌q, 𝑉 :“ maxp𝑋,𝑌q.

Determine Er𝑈s,Er𝑉s and Covp𝑈,𝑉q.

Exercise 6.4.8 (˚˚). We denote by 𝑇𝑛 the best time recorded in the 100m of the 𝑛-th race. Since the
temporal dimensions are not of interest to us, we assume 𝑇𝑛 „ 𝑈p0, 1q, and we also assume that the 𝑇𝑛
are independent random variables. Let 𝐴𝑛 be the event ”a new 100m record is set in the 𝑛-th race.”

i) Compute the c.d.f. of the random variable 𝑆𝑛 :“ mint𝑇1, . . . , 𝑇𝑛´1u.
ii) Prove that Pp𝑆𝑛 ą 𝑡, 𝑇𝑛 ą 𝑠q “ Pp𝑆𝑛 ą 𝑡qPp𝑇𝑛 ą 𝑠q.

iii) Describe 𝐴𝑛 in terms of the random variables 𝑇𝑘 , 𝑘 “ 1, . . . , 𝑛, and show that Pp𝐴𝑛q “ 1
𝑛

.
iv) Assuming that the 𝐴𝑛 are independent, what is the probability that a record remains unbroken

forever?

Exercise 6.4.9 (˚˚). On the segment r𝑎, 𝑏s, let 𝑐 Ps𝑎, 𝑏r (i.e., 𝑎 ă 𝑐 ă 𝑏, with 𝑎, 𝑏, 𝑐 fixed). Two points
𝑋 P r𝑎, 𝑐s and 𝑌 P r𝑐, 𝑏s are chosen randomly with a uniform distribution. Compute the probability
that the lengths of the segments r𝑎, 𝑋s, r𝑋,𝑌 s, and r𝑌, 𝑏s can form the sides of a triangle. (Recall that
𝛼, 𝛽, 𝛾 ě 0 can be the lengths of the sides of a triangle if and only if 𝛼 ď 𝛽 ` 𝛾, 𝛽 ď 𝛼 ` 𝛾, and
𝛾 ď 𝛼 ` 𝛽).
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7.1. 𝐿2 conditional expectation

Let pΩ,ℱ, Pq be a probability space, 𝒢 be a sub 𝜎´algebra of events, that is 𝒢 Ă ℱ. A
𝒢´measurable random variable 𝑌 is a random variable for which

t𝑌 P 𝐸u P 𝒢, @𝐸 P ℬR.

Equivalently,
𝑌 is 𝒢´measurable ðñ 𝜎p𝑌q Ă 𝒢.

With a little abuse of notations, we will sometimes write 𝑌 P 𝒢 to represent this situation.
Given a random variable 𝑋 , we consider the problem of determining the ”best approximation” of

𝑋 through a 𝒢´measurable random variable. A natural setup for this problem is the following. Let
H :“ 𝐿2pΩ,ℱ, Pq be the Hilbert space of 𝐿2 random variables equipped by the scalar product

x𝑋,𝑌y :“ Er𝑋𝑌 s ”

∫
Ω

𝑋𝑌 𝑑P.

Let also
G :“ 𝐿2pΩ,𝒢, Pq,

be the subspace of H made of 𝒢´measurable random variables. Clearly, G is a closed subspace of H.
This because if p𝑌𝑛q Ă G is such that 𝑌𝑛

𝐿2

ÝÑ 𝑌 , then 𝑌 P 𝐿2 and since the limit of 𝒢´measurable
functions is a 𝒢´measurable function, we conclude that 𝑌 P G. These facts suggest a proper set up of
the approximation problem posed above: determine 𝑌 P G such that

}𝑋 ´ 𝑌}2 “ min
𝑍PG

}𝑋 ´ 𝑍}2.

In this setup, the solution is provided by the orthogonal projection of 𝑋 on G, that is

𝑌 “ ΠG𝑋.

It is convenient to recall that ΠG𝑋 is characterized to be the unique 𝑌 P G such that

x𝑋 ´ 𝑌, 𝑍y “ 0, @𝑍 P G,

that is,

(7.1.1) E r𝑋𝑍s “ Er𝑌𝑍s, @𝑍 P G.

The orthogonal projection verifies some simple properties:
55
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Proposition 7.1.1

The following properties hold:
i) (linearity): ΠGp𝛼𝑋 ` 𝛽𝑌q “ 𝛼ΠG𝑋 ` 𝛽ΠG𝑌

ii) (monotonicity) 𝑋 ď 𝑌 a.s., then ΠG𝑋 ď ΠG𝑌 a.s.
iii) If 𝑋 is 𝒢´measurable, then ΠG𝑋 “ 𝑋 .
iv) If 𝑋 is independent of 𝒢, then ΠG𝑋 “ Er𝑋s.
v) If ℋ Ă 𝒢 Ă ℱ then ΠHpΠG𝑋q “ ΠH𝑋 .

vi) If 𝑋 P 𝐿2 and 𝑌 P 𝐿8, with 𝑌 P 𝒢, then ΠGp𝑋𝑌q “ 𝑌ΠG𝑋.

Proof. All the properties follow from the orthogonality characterization (7.1.1). For i) we have
Erp𝛼𝑋 ` 𝛽𝑌q𝑍s “ 𝛼Er𝑋𝑍s ` 𝛽Er𝑌𝑍s “ 𝛼ErpΠG𝑋q𝑍s ` 𝛽ErpΠG𝑌q𝑍s “ E rp𝛼ΠG𝑋 ` 𝛽ΠG𝑌q 𝑍s ,

@𝑍 P G. And since 𝛼ΠG𝑋 ` 𝛽ΠG𝑌 P G we conclude that
ΠGp𝛼𝑋 ` 𝛽𝑌q “ 𝛼ΠG𝑋 ` 𝛽ΠG𝑌 .

ii) Let 𝑍 P G, 𝑍 ě 0. We have
ErΠG𝑋𝑍s “ Er𝑋𝑍s ď Er𝑌𝑍s “ ErΠG𝑌𝑍s, ùñ E rpΠG𝑌 ´ ΠG𝑋q𝑍s ě 0.

Let 𝐺 :“ tΠG𝑌 ´ ΠG𝑋 ă ´𝜀u (with 𝜀 ą 0) and 𝑍 :“ 1𝐺 P G. Then, the previous says
0 ď E rpΠG𝑌 ´ ΠG𝑋q1𝐺s ď Er´𝜀1𝐺s “ ´𝜀Pp𝐺q, ùñ Pp𝐺q ď 0,

which possible iff Pp𝐺q “ 0. Since 𝜀 is arbitrary, we conclude that P
´

ΠG
r𝑋 ´ ΠG𝑋 ă 0

¯

“ 0.
iii) If 𝑋 P 𝒢, then 𝑋 P G, so ΠG𝑋 “ 𝑋.

iv) If 𝑋 is independent of 𝒢 we notice that
Er𝑋𝑍s “ Er𝑋sEr𝑍s “ E rEr𝑋s𝑍s ,

and since constants are 𝒢´measurable we conclude.
v), vi) Straightforward.

Example 7.1.2

Let𝒢 “ 𝜎p𝐸1, . . . , 𝐸𝑛q where p𝐸𝑘q are a partition of Ω, that is Ω “
Ů𝑛

𝑘“1 𝐸𝑘 , with 0 ă Pp𝐸𝑘q ă

1, 𝑘 “ 1, . . . , 𝑛. Then

ΠG𝑋 “

𝑛
ÿ

𝑘“1

1

Pp𝐸𝑘q
Er𝑋1𝐸𝑘

s1𝐸𝑘
.

Proof. It is easy to check that 𝜎p𝐸1, . . . , 𝐸𝑛q is made of finite unions of the sets 𝐸𝑘 . From this it
follows that the 𝒢 measurable functions are the simple functions with bases the 𝐸𝑘 , that is function of type
řℎ

𝑗“1 𝑐 𝑗1𝐸𝑘 𝑗
. Thus, G “ Spanp1𝐸1

, . . . , 1𝐸𝑛
q. In this case, setting 𝑒𝑘 :“

1𝐸𝑘

}1𝐸𝑘
}2

, p𝑒𝑘q is an orthonormal
basis for G. we have

ΠG𝑋 “

𝑛
ÿ

𝑘“1

x𝑋, 𝑒𝑘y𝑒𝑘 “

𝑛
ÿ

𝑘“1

1

}1𝐸𝑘
}22

Er𝑋1𝐸𝑘
s1𝐸𝑘

,

and since }1𝐸𝑘
}22 “ Er12

𝐸𝑘
s “ Er1𝐸𝑘

s “ Pp𝐸𝑘q, the conclusion follows.
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In previous example, we have that

ΠG𝑋p𝜔q “
1

Pp𝐸𝑘q
Er𝑋1𝐸𝑘

s “
1

Pp𝐸𝑘q

∫
𝐸𝑘

𝑋 𝑑P, 𝜔 P 𝐸𝑘

This motivates the notation
Er𝑋 | 𝒢s :“ ΠG𝑋,

called the conditional expectation of 𝑋 given 𝒢. With this notation, the properties i),. . . ,vi) of the
Proposition 7.1.1 acquire a new flavor:

i) (linearity): Erp𝛼𝑋 ` 𝛽𝑌q | 𝒢s “ 𝛼Er𝑋 | 𝒢s ` 𝛽Er𝑌 | 𝒢s, @𝛼, 𝛽 P R.
ii) (monotonicity) 𝑋 ď 𝑌 P´a.s., then Er𝑋 | 𝒢s ď Er𝑌 | 𝒢s P´a.s.

iii) If 𝑋 is 𝒢´measurable, then Er𝑋 | 𝒢s “ 𝑋 .
iv) If 𝑋 is independent of 𝒢, then Er𝑋 | 𝒢s “ Er𝑋s.
v) (sub-conditioning) If ℋ Ă 𝒢 Ă ℱ then E rEr𝑋 | 𝒢s | ℋs “ Er𝑋 | ℋs.

vi) If 𝑋 P 𝐿2 and 𝑌 P 𝐿8, with 𝑌 P 𝒢, then Er𝑋𝑌 | 𝒢s “ 𝑌Er𝑋 | 𝒢s.

This is the bridge to the next section topic.

7.2. 𝐿1 conditional expectation

The properties of the 𝐿2 conditional expectation enlighten the nature of an ”expectation” of the
orthogonal projection on G “ 𝐿2pΩ,𝒢, Pq. As such, we could expect that

Er𝑋 | 𝒢s,

should be well defined for 𝑋 P 𝐿1pΩ,𝒢, Pq. However, since 𝐿1 Ć 𝐿2 (but rather, by the Cauchy-
Schwarz’s inequality, 𝐿2 Ă 𝐿1), and the definition of the 𝐿2 conditional expectation is a typical Hilbert
spaces story (something which is not 𝐿1) the definition of this conditional expectation is not automatic.
We will now show the way to do this.

Theorem 7.2.1

Let pΩ,ℱ, Pq be a Probability space, 𝒢 Ă ℱ a sub 𝜎´algebra of ℱ. If 𝑋 P 𝐿1pΩ,ℱ, Pq, there
exists then a unique (modulo probability null sets) 𝑌 P 𝐿1pΩ,𝒢, Pq such that
(7.2.1) Er𝑋𝑍s “ Er𝑌𝑍s, @𝑍 P 𝐿8pΩ,𝒢, Pq.

𝑌 is called conditional expectation of 𝑋 given 𝒢 and we denote it by Er𝑋 | 𝒢s.

Proof. Step 1. Let 𝑋 ě 0 a.s.. Recall that there exists a sequence p𝑆𝑛q of positive simple random
variables such that

𝑆𝑛 Õ, 𝑆𝑛
𝑝𝑤

ÝÑ 𝑋.

Since p𝑆𝑛q Ă 𝐿8 Ă 𝐿2, the conditional expectation Er𝑆𝑛 | 𝒢s is well defined and, by monotonicity of the
cond. exp., we have Er𝑆𝑛 | 𝒢s Õ. This authorizes to set

𝑌 :“ lim
𝑛
Er𝑆𝑛 | 𝒢s.
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Being 𝑌 the point wise limit of 𝒢 measurable random variables, 𝑌 P 𝒢. Therefore, if 𝑍 P 𝐿8pΩ,𝒢, Pq is
positive, by monotone convergence,

Er𝑋𝑍s “ lim
𝑛
Er𝑆𝑛𝑍s

p7.1.1q
“ lim

𝑛
E rEr𝑆𝑛 | 𝒢s𝑍s “ Er𝑌𝑍s.

Now, for a generic 𝑍 P 𝐿8pΩ,𝒢, Pq, writing 𝑍 “ 𝑍` ´ 𝑍´ we have
Er𝑋𝑍˘s “ Er𝑌𝑍˘s, ùñ Er𝑋𝑍s “ Er𝑋p𝑍` ´ 𝑍´qs “ Er𝑌p𝑍` ´ 𝑍´qs “ Er𝑌𝑍s,

from which the conclusion follows.
Step 2. Let 𝑋 P 𝐿1. Writing 𝑋 “ 𝑋` ´ 𝑋´, we have
(7.2.2) Er𝑋˘𝑍s “ Er𝑌˘𝑍s, @𝑍 P 𝐿8pΩ,𝒢, Pq.

Setting 𝑍˘ “ 1𝑌˘ą0 P 𝐿8pΩ,𝒢, Pq then
Er𝑌˘s “ Er𝑌˘𝑍˘s “ Er𝑋˘1𝑌˘ą0s ď Er𝑋˘s ă `8

because 𝑋 P 𝐿1. Therefore, 𝑌˘ P 𝐿1pΩ,𝒢, Pq, then also 𝑌 P 𝐿1pΩ,𝒢, Pq. Now, by subtracting the two ˘

identities (7.2.2) we get
Er𝑋𝑍s “ Erp𝑋` ´ 𝑋´q𝑍s “ Erp𝑌` ´ 𝑌´q𝑍s “ Er𝑌𝑍s, @𝑍 P 𝐿8pΩ,𝒢, Pq,

which is the (7.2.1).
Step 3. Uniqueness. If 𝑌, r𝑌 veirfy the (7.2.1), then

Erp𝑌 ´ r𝑌q𝑍s “ 0, @𝑍 P 𝐿8, 𝑍 P 𝒢.

Since 𝑌, r𝑌 P 𝒢, we have sgnp𝑌 ´ r𝑌q P 𝒢 and

0 “ Erp𝑌 ´ r𝑌q𝑍s “ Er|𝑌 ´ r𝑌 |s

from which 𝑌 “ r𝑌 with probability 1.

𝐿1 conditional expectation verifies similar properties as for the 𝐿2 conditional expectation.

Proposition 7.2.2

The following properties hold:
i) (linearity): Er𝛼𝑋 ` 𝛽𝑌 | 𝒢s “ 𝛼Er𝑋 |𝒢s ` 𝛽Er𝑌 |𝒢s

ii) (monotonicity) 𝑋 ď 𝑌 P´a.s., then Er𝑋 | 𝒢s ď Er𝑌 | 𝒢s P´a.s.
iii) If 𝑋 is 𝒢´measurable, then Er𝑋 | 𝒢s “ 𝑋 .
iv) If 𝑋 is independent of 𝒢, then Er𝑋 | 𝒢s “ Er𝑋s.
v) (sub-conditioning) If ℋ Ă 𝒢 Ă ℱ then E rEr𝑋 | 𝒢s |ℋs “ Er𝑋 | ℋs.

vi) If 𝑋 P 𝐿1 and 𝑌 P 𝐿8, with 𝑌 P 𝒢, then Er𝑋𝑌 | 𝒢s “ 𝑌Er𝑋 | 𝒢s.

The proof is left as an exercise.

7.2.1. Conditional density. A particular case of conditional expectation is the following: given any
two random variables 𝑋,𝑌 , determine

Er𝑋 | 𝜎p𝑌qs “: Er𝑋 | 𝑌 s
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Proposition 7.2.3

Assume that p𝑋,𝑌q is absolutely continuous bivariate random variable with density 𝑓𝑋,𝑌 . Then,
Er𝑋 | 𝑌 s “ 𝜑p𝑌q,

where

(7.2.3) 𝜑p𝑦q “

∫
R
𝑥 𝑓𝑋|𝑌 p𝑥|𝑦q𝑑𝑥.

with

(7.2.4) 𝑓𝑋|𝑌 p𝑥|𝑦q :“
𝑓𝑋,𝑌 p𝑥, 𝑦q

𝑓𝑌 p𝑦q

The function 𝑓𝑋|𝑌 is called conditional density of 𝑋 given 𝑌 .

Proof. It is clear that 𝜑p𝑌q P 𝜎p𝑌q. We verify the characterizing condition (7.2.1) for 𝜑p𝑌q, that is
Er𝑋𝑍s “ Er𝜑p𝑌q𝑍s, @𝑍 P 𝐿8pΩ,𝒢, Pq.

Let 𝑍 “ 1𝐺 where 𝐺 P 𝜎p𝑌q “ tt𝑌 P 𝐸u : 𝐸 P ℬRu, that is, let us show that
Er𝑋1𝑌P𝐸s “ Er𝜑p𝑌q1𝑌P𝐸s

If this happens, we get (7.2.1) for every simple function, then the conclusion follows by a standard
approximation argument. We have

Er𝜑p𝑌q1𝑌P𝐸s “

∫
𝐸

𝜑p𝑦q 𝑓𝑌 p𝑦q 𝑑𝑦 “

∫
𝐸

ˆ∫
R
𝑥 𝑓𝑋|𝑌 p𝑥|𝑦q 𝑑𝑥

˙

𝑓𝑌 p𝑦q 𝑑𝑦

“

∫
𝐸

ˆ∫
R
𝑥 𝑓 p𝑥, 𝑦q 𝑑𝑥

˙

𝑑𝑦 “

∫
RˆR

𝑥1𝐸p𝑦q 𝑓 p𝑥, 𝑦q 𝑑𝑦 𝑑𝑥

“ Er𝑋1𝐸p𝑌qs.

With this the conclusion follows.

Since
Er𝑋 | 𝑌 s “ 𝜑p𝑌q,

the notation
𝜑p𝑦q “ Er𝑋 | 𝑌 “ 𝑦s

is often used.

Example 7.2.4

Q. Let 𝑋 „ 𝒩p𝑚, 𝜎2q, and 𝑌 „ 𝒩p0, 𝜎2q be independent random variables. Determine
Er𝑋 ` 𝑌 |𝑋s and Er𝑋|𝑋 ` 𝑌 s.

A. We have Er𝑋 `𝑌 | 𝑋s “ Er𝑋 | 𝑋s ` Er𝑌 | 𝑋s “ 𝑋 ` Er𝑌 s because of the assumptions. More involved
is the calculation of Er𝑋 | 𝑋 ` 𝑌 s. We need first to determine the conditional density 𝑓𝑋|𝑋`𝑌 p𝑥|𝑦q, and
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this means that we need to determine first the joint density 𝑓𝑋,𝑋`𝑌 . Set 𝑍 “ 𝑋 ` 𝑌 in such a way that
p𝑋, 𝑋 ` 𝑌q “ p𝑋, 𝑍q “ 𝑇p𝑋,𝑌q where

𝑇p𝑥, 𝑦q “ p𝑥, 𝑥 ` 𝑦q “

»

–

1 0

1 1

fi

fl

ˆ

𝑥

𝑦

˙

As well known

𝑓𝑋𝑍p𝑥, 𝑧q “ 𝑓𝑋𝑌 p𝑇´1p𝑥, 𝑧qq |det𝑇´1|
loooomoooon

“1

“ 𝑓𝑋𝑌 p𝑥, 𝑧 ´ 𝑥q
𝑖𝑛𝑑𝑒𝑝.

“ 𝑓𝑋p𝑥q 𝑓𝑌 p𝑧 ´ 𝑥q.

Therefore,

𝑓𝑋|𝑍p𝑥|𝑧q “
𝑓𝑋𝑍p𝑥, 𝑧q

𝑓𝑍p𝑧q
“

𝑓𝑋p𝑥q 𝑓𝑌 p𝑧 ´ 𝑥q

𝑓𝑍p𝑧q
.

Since 𝑍 “ 𝑋 ` 𝑌 and 𝑋,𝑌 are independent,
𝑓𝑍p𝑧q “ 𝑓𝑋 ˚ 𝑓𝑌 p𝑧q.

We have
x𝑓𝑍p𝜉q “ x𝑓𝑋p𝜉qx𝑓𝑌 p𝜉q “ 𝑒𝑖 𝜉𝑚´ 1

2
𝜎2 𝜉2

𝑒´ 1
2
𝜎2 𝜉2

“ 𝑒𝑖𝑚𝜉´ 1
2

p2𝜎2q𝜉2

,

from which
𝑓𝑍p𝑧q “

1
?
4𝜋𝜎2

𝑒
´

p𝑧´𝑚q2

4𝜎2 .

Therefore,

Er𝑋 | 𝑍 “ 𝑧s “

∫
R
𝑥 𝑓𝑋|𝑍p𝑥|𝑧q 𝑑𝑥 “

∫
R
𝑥
𝑓𝑋p𝑥q 𝑓𝑌 p𝑧 ´ 𝑥q

𝑓𝑍p𝑧q
𝑑𝑥.

Now,
𝑓𝑋p𝑥q 𝑓𝑌 p𝑧 ´ 𝑥q “ 1

2𝜋𝜎2 𝑒
´

p𝑥´𝑚q2

2𝜎2 𝑒
´

p𝑧´𝑥q2

2𝜎2 “ 1
2𝜋𝜎2 𝑒

´
𝑥2´2𝑚𝑥`𝑚2`𝑥2´2𝑥𝑧`𝑧2

2𝜎2

“ 1
2𝜋𝜎2 𝑒

´
𝑥2´p𝑚`𝑧q𝑥`p𝑚`𝑧

2 q
2

𝜎2 𝑒
´

´2p𝑚`𝑧
2 q

2
`𝑚2`𝑧2

2𝜎2

“ 1
2𝜋𝜎2 𝑒

´
p𝑥´

𝑚`𝑧
2 q

2

𝜎2 𝑒
´

p𝑧´𝑚q2

4𝜎2 “ 1?
𝜋𝜎2

𝑒
´

p𝑥´
𝑚`𝑧

2 q
2

𝜎2 𝑓𝑍p𝑧q,

so

Er𝑋 | 𝑍 “ 𝑧s “
1

?
𝜋𝜎2

∫
R
𝑥𝑒

´
p𝑥´

𝑚`𝑧
2 q

2

𝜎2 𝑑𝑥 “
1

?
2

∫
R
𝑢𝑒

´

ˆ

𝑢´
𝑚`𝑧
?

2

˙2

2𝜎2
𝑑𝑢

?
2𝜋𝜎2

“
𝑚 ` 𝑧

2
.

We conclude that Er𝑋 | 𝑋 ` 𝑌 s “
𝑚`𝑋`𝑌

2 .

7.3. Exercises

Exercise 7.3.1 (˚˚). For each of the following cases, determine Er𝑌 | 𝑋s known the joint distribution of
p𝑋,𝑌q:

i) 𝑓𝑋,𝑌 p𝑥, 𝑦q “ 𝜆2𝑒´𝜆𝑦1r0,𝑦sp𝑥q.

ii) 𝑓𝑋,𝑌 p𝑥, 𝑦q “ 𝑥𝑒´𝑥p𝑦`1q1r0,`8r2p𝑥, 𝑦q.

Exercise 7.3.2 (˚˚). Let 𝑌 be a random variable with density 𝑎
𝑦2
1r1,2sp𝑦q, where 𝑎 ą 0 is a constant to

be determined. Let also 𝑋 be a random variable such that 𝑓𝑋|𝑌 p7|𝑦q is a Gaussian distribution 𝒩p0, 𝑦2q.
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i) Compute the density of 𝑋𝑌 , Er𝑋 | 𝑌 s, Er𝑋s and Pp𝑋 ą 0q.
ii) Compute 𝑓𝑋 and Vr𝑋s. Is 𝑋 normal?

iii) Are 𝑋 and 𝑌 independent?

Exercise 7.3.3 (˚˚). Let 𝑋 and 𝑌 be independent random variables having Poisson distribution with
parameter 𝜆1 and 𝜆2 respectively. Determine Er𝑋 | 𝑋 ` 𝑌 s.

Exercise 7.3.4 (˚˚). Let p𝑋,𝑌q „ 𝒩p𝑚,𝐶q. Determine Er𝑋 | 𝑌 s.

Exercise 7.3.5 (˚˚). Let 𝑋,𝑌 i.i.d. random variables with common density 𝑓 . DetermineEr𝑋´𝑌 | 𝑋`𝑌 s.

Exercise 7.3.6 (˚˚). Let 𝑋,𝑌 P 𝐿1. Prove the formula
E r𝑋 | Er𝑋 |𝑌 ss “ Er𝑋 | 𝑌 s.

Do the proof for both cases, assuming 𝑋𝑌 is absolutely continuous and in general.

Exercise 7.3.7 (˚˚`). Prove the monotone convergence for the 𝐿1 conditional expectation. That is: let
p𝑋𝑛q Ă 𝐿1 be such that 0 ď 𝑋𝑛 ď 𝑋𝑛`1 a.s., @𝑛 P N. Then,

lim
𝑛
Er𝑋𝑛 | 𝒢s “ Erlim

𝑛
𝑋𝑛 | 𝒢s.

Exercise 7.3.8 (˚˚`). Prove the dominated convergence property for the 𝐿1 conditional expectation: let
p𝑋𝑛q Ă 𝐿pΩq be such that:

i) 𝑋𝑛
𝑎.𝑠.
ÝÑ 𝑋 .

ii) there exists 𝑌 P 𝐿1 such that |𝑋𝑛| ď 𝑌 a.s. @𝑛 P N.
Then

Er𝑋𝑛|𝒢s
𝑎.𝑠.
ÝÑ Er𝑋|𝒢s.

Exercise 7.3.9 (˚˚`). Let pΩ,ℱ, Pq be a probability space, 𝒢 Ă ℱ be a sub 𝜎´algebra of ℱ. We
define the conditional probability

Pp𝐸 | 𝒢q :“ E r1𝐸 | 𝒢s .

Check that:
i) Pp∅ | 𝒢q “ 0 (a.s.), PpΩ | 𝒢q “ 1 (a.s.).

ii) 0 ď Pp𝐸 | 𝒢q ď 1 a.s., @𝐸 P ℱ.
iii) P p

Ů

𝑛 𝐸𝑛 | 𝒢q “
ř

𝑘 Pp𝐸𝑛 | 𝒢q (a.s.).
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Convergence

In this chapter we consider sequences of random variable p𝑋𝑛q and discuss their convergence. Since
the 𝑋𝑛 are measurable functions, natural options for convergence are the 𝐿 𝑝 convergence and almost sure
pointwise convergence or, as preferred in Probability Theory, convergence with probability 1. Other and
weaker difinitions of convergence can be introduced, as convergence in probability and weak convergence.
We introduce all these concepts exploring what are their relations.

8.1. 𝐿 𝑝 convergence

Let us recall that 𝐿 𝑝pΩq, 1 ď 𝑝 ď `8 is a normed space equipped with } ¨ }𝑝 norm. This is defined
as

}𝑋}𝑝 :“

ˆ∫
Ω

|𝑋|𝑝 𝑑P

˙1{𝑝

” Er|𝑋|𝑝s1{𝑝, p1 ď 𝑝 ă `8q,

and
}𝑋}8 :“ ess sup|𝑋|, p𝑝 “ `8q.

We say that

𝑋𝑛
𝐿𝑝

ÝÑ 𝑋, ðñ }𝑋𝑛 ´ 𝑋}𝑝 ÝÑ 0.

The 𝑝´norms are ordered in the sense, as we will prove now,

}𝑋}𝑝 ď }𝑋}𝑞, 1 ď 𝑝 ă 𝑞 ď `8.

If 𝑞 “ `8 the inequality is trivial:

}𝑋}𝑝 “ Er|𝑋|𝑝s1{𝑝 ď Er}𝑋}
𝑝
8s1{𝑝 “ }𝑋}8Er1s1{𝑝 “ }𝑋}8.

If 1 ď 𝑝 ă 𝑞 ă `8 the inequality is non trivial. It can be proved as a consequence of Hölder inequality
or, in alternative, as a consequence of the following remarkable inequality:

Theorem 8.1.1: Jensen inequality

Let pΩ,ℱ, Pq be a probability space. Let 𝜑 : R ÝÑ R be a convex function, that is
𝜑p𝜆𝑥 ` p1 ´ 𝜆q𝑦q ď 𝜆𝜑p𝑥q ` p1 ´ 𝜆q𝜑p𝑦q, @𝜆 P r0, 1s, @𝑥, 𝑦 P R,

Then, if 𝑋 P 𝐿1pΩq, it holds
𝜑 pEr𝑋sq ď Er𝜑p𝑋qs.

63
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Proof. , For simplicity, we do the proof in the case of a differentiable function 𝜑. In this case, being
convex

𝜑p𝑦q ě 𝜑p𝑥q ` 𝜑1p𝑥qp𝑦 ´ 𝑥q, @𝑥, 𝑦 P R,

so
𝜑p𝑋q ě 𝜑p𝑥q ` 𝜑1p𝑥qp𝑋 ´ 𝑥q,

and, taking the expectation, we would have
Er𝜑p𝑋qs ě 𝜑p𝑥q ` 𝜑1p𝑥q pEr𝑋s ´ 𝑥q .

Choosing 𝑋 “ Er𝑋s we get Er𝜑p𝑋qs ě 𝜑p𝑥q “ 𝜑pEr𝑋sq which is the conclusion.

Corollary 8.1.2

}𝑋}𝑝 ď }𝑋}𝑞, @1 ď 𝑝 ă 𝑞 ă `8.

Proof. Let 𝜑p𝑥q “ 𝑥𝑞{𝑝 . Since 𝛼 ą 1, 𝜑 is convex. Therefore,

}𝑋}
𝑞
𝑝 “ Er|𝑋|𝑝s𝑞{𝑝 “ 𝜑 pEr|𝑋|𝑝sq ď E r𝜑p|𝑋|𝑝qs “ Er|𝑋|𝑞s “ }𝑋}

𝑞
𝑞 ,

from which the conclusion follows.

Thus, in particular, among the 𝐿 𝑝 convergences, the 𝐿1 convergence is the weakest, the 𝐿8 the strongest.

8.2. Almost sure convergence

Almost sure convergence or, in probabilistic jargoon, convergence with probability 1:

𝑋𝑛
𝑎.𝑠.
ÝÑ 𝑋, ðñ P

´!

𝜔 P Ω : lim
𝑛
𝑋𝑛p𝜔q “ 𝑋p𝜔q

)¯

“ 1.

We already know that this convergence is, in general, weaker than 𝐿 𝑝 convergence and, at the same time,
it is not implied by 𝐿 𝑝 convergence when 𝑝 ă `8. The following fact provides a mild relation between
the two convergences:

𝑋𝑛
𝐿𝑝

ÝÑ 𝑋, ùñ Dp𝑋𝑛𝑘q Ă p𝑋𝑛q : 𝑋𝑛𝑘

𝑎.𝑠.
ÝÑ 𝑋.

A possible strategy for proving 𝑋𝑛
𝑎.𝑠.
ÝÑ 𝑋 is to prove that the event of 𝜔 where convergence fails has

probability 0. Let’s describe this event. We may notice that

𝑋𝑛p𝜔q ÝÑ 𝑋p𝜔q, ðñ @𝜀 ą 0, D𝑁 “ 𝑁p𝜀q : |𝑋𝑛p𝜔q ´ 𝑋p𝜔q| ď 𝜀, @𝑛 ě 𝑁.

So

t𝑋𝑛
𝑎.𝑠.
ÝÑ 𝑋u “

č

𝜀ą0

ď

𝑁

č

𝑛ě𝑁

t|𝑋𝑛 ´ 𝑋| ď 𝜀u ”
č

𝑘

ď

𝑁

č

𝑛ě𝑁

"

|𝑋𝑛 ´ 𝑋| ď
1

𝑘

*

Therefore,

t𝑋𝑛

𝑎.𝑠.

­ÝÑ 𝑋u “
ď

𝑘

č

𝑁

ď

𝑛ě𝑁

"

|𝑋𝑛 ´ 𝑋| ě
1

𝑘

*

,
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from which we obtain

(8.2.1) 𝑋𝑛
𝑎.𝑠.
ÝÑ 𝑋, ðñ P

˜

č

𝑁

ď

𝑛ě𝑁

t|𝑋𝑛 ´ 𝑋| ě 𝜀u

¸

“ 0, @𝜀 ą 0.

In general, given a sequence p𝑋𝑛q we might not be able to identify a possible limit 𝑋 to test convergence.
Since p𝑋𝑛p𝜔qq Ă R and R is a complete space (that is convergence is the same of fulfilling the Cauchy
property), we have

tp𝑋𝑛q Cauchyu “
č

𝑘

ď

𝑁

č

𝑛,𝑚ě𝑁

"

|𝑋𝑛 ´ 𝑋𝑚| ď
1

𝑘

*

,

so,

tp𝑋𝑛q not Cauchyu “
ď

𝑘

č

𝑁

ď

𝑛,𝑚ě𝑁

"

|𝑋𝑛 ´ 𝑋𝑚| ě
1

𝑘

*

.

Therefore,

(8.2.2) p𝑋𝑛q converges with P “ 1, ðñ P

˜

č

𝑁

ď

𝑛,𝑚ě𝑁

t|𝑋𝑛 ´ 𝑋𝑚| ě 𝜀u

¸

“ 0, @𝜀 ą 0.

The two conditions (8.2.1) and (8.2.2) emphasize the role of the set

lim sup
𝑛

𝐸𝑛 :“
č

𝑁

ď

𝑛ě𝑁

𝐸𝑛,

which is the event of 𝜔 that belong to infinitely many 𝐸𝑛. The following result provides a condition to
ensure that this is a probability 0 ´ 1 event:

Lemma 8.2.1: Borel-Cantelli

Let p𝐸𝑛q Ă ℱ. Then

(8.2.3)
ÿ

𝑛

Pp𝐸𝑛q ă `8, ùñ Pplim sup
𝑛

𝐸𝑛q “ 0.

Moreover, if the event 𝐸𝑛 are independent,

(8.2.4)
ÿ

𝑛

Pp𝐸𝑛q “ `8, ùñ Pplim sup
𝑛

𝐸𝑛q “ 1.

Proof. For (8.2.3), notice that

P

˜

ď

𝑛ě𝑁

𝐸𝑛

¸

ď
ÿ

𝑛ě𝑁

Pp𝐸𝑛q,

and since
Ť

𝑛ě𝑁 𝐸𝑛 Ó
Ş

𝑁

Ť

𝑛ě𝑁 𝐸𝑛, by the continuity from above,

P

ˆ

lim sup
𝑛

𝐸𝑛

˙

“ lim
𝑁
P

˜

ď

𝑛ě𝑁

𝐸𝑛

¸

ď lim
𝑁

ÿ

𝑛ě𝑁

Pp𝐸𝑛q “ 0.
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For the (8.2.4) notice that

P

ˆ

plim sup
𝑛

𝐸𝑛q𝑐
˙

“ P

˜

ď

𝑁

č

𝑛ě𝑁

𝐸𝑐
𝑛

¸

ď
ÿ

𝑛

P

˜

č

𝑛ě𝑁

𝐸𝑐
𝑛

¸

.

Now, by independence

P

˜

č

𝑛ě𝑁

𝐸𝑐
𝑛

¸

“
ź

𝑛ě𝑁

Pp𝐸𝑐
𝑛q “

ź

𝑛ě𝑁

p1 ´ Pp𝐸𝑛qq “
ź

𝑛ě𝑁

𝑒logp1´Pp𝐸𝑛qq,

and since logp1 ` 𝑥q ď 𝑥 for every 𝑥 ą 0, we have

P

˜

č

𝑛ě𝑁

𝐸𝑐
𝑛

¸

ď
ź

𝑛ě𝑁

𝑒´Pp𝐸𝑛q “ 𝑒´
ř

𝑛ě𝑁 Pp𝐸𝑛q “ 𝑒´8 “ 0,

from which the conclusion follows.

Warning 8.2.2

The (8.2.4) is false, in general, if the events 𝐸𝑛 are not independent. Take 𝐸𝑛 ” 𝐸 with
0 ă Pp𝐸q ă 1. Notice that, in order 𝐸𝑛 “ 𝐸 be independent of 𝐸𝑚 “ 𝐸 we must have
Pp𝐸 X 𝐸q “ Pp𝐸qPp𝐸q that is, Pp𝐸q “ Pp𝐸q2, which is true iff Pp𝐸q “ 0, 1. In this case

ÿ

𝑛

Pp𝐸𝑛q “
ÿ

𝑛

Pp𝐸q “ `8,

but

Pplim sup
𝑛

𝐸𝑛q “ P

˜

č

𝑁

ď

𝑛ě𝑁

𝐸𝑛

¸

“ Pp𝐸q ă 1. □

Example 8.2.3

Q. Let p𝑋𝑛q be a sequence of Bernoulli r.vs. with
Pp𝑋𝑛 “ 1q “ 𝑝𝑛, Pp𝑋𝑛 “ 0q “ 1 ´ 𝑝𝑛.

Check that if
ř

𝑛 𝑝𝑛 ă `8 then 𝑋𝑛
𝑎.𝑠.
ÝÑ 0.

A. Notice that
Pp|𝑋𝑛| ě 𝜀q “ Pp𝑋𝑛 “ 1q “ 𝑝𝑛.

So, since
ř

𝑛 𝑝𝑛 ă `8, by the Borel-Cantelli lemma se have

P

˜

č

𝑁

ď

𝑛ě𝑁

t|𝑋𝑛| ě 𝜀u

¸

“ 0, @𝜀 ą 0,

and, from (8.2.1), the conclusion follows.
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Example 8.2.4: The monkey paradox

A monkey types randomly on a typewriter for an indefinite amount of time. As improbable as it
may seem, given enough time this monkey should be able to reproduce any predefined text, such
as the complete works of Shakespeare. The probability of this happening within a reasonable time
frame is practically zero, but theoretically, given infinite time, the event becomes certain!

Proof. We may represent the predefined text as a suitable binary sequence 𝑥1, . . . , 𝑥𝑁 P t0, 1u𝑁 .
So we assume the typewriter has just two keys, 0 and 1. Let 𝑋𝑛 the 𝑛´th key typed. We assume
Pp𝑋𝑛 “ 0q “ Pp𝑋𝑛 “ 1q “ 1

2 .
The event ”the monkey reproduces the sequence 𝑥1, . . . , 𝑥𝑁 at time 𝑛” can be written as

𝐸𝑛 :“ t𝑋𝑛 “ 𝑥1, 𝑋𝑛`1 “ 𝑥2, . . . , 𝑋𝑛`𝑁´1 “ 𝑥𝑁u.

Notice that, since the 𝑋 𝑗 are independent

Pp𝐸𝑛q “
1

2𝑁
.

In general, 𝐸𝑛 and 𝐸𝑚 are not independent, but 𝐹𝑛 :“ 𝐸𝑛𝑁 are independent and Pp𝐹𝑛q “ 1
2𝑁 so, trivially,

ÿ

𝑛

Pp𝐹𝑛q “ `8.

According to the second Borel-Cantelli’s Lemma, Pplim sup𝑛 𝐹𝑛q “ 1, this meaning that the event ”the
monkey types the sequence 𝑥1, . . . , 𝑥 infinitely many times” is a sure event!
Define now the ”random time” 𝑇 as the first time the monkey types the right sequence:

𝑇p𝜔q “ 𝑛, 𝜔 P 𝐹𝑛z

𝑛´1
ď

𝑗“1

𝐹𝑗 .

Since

1 “ Pplim sup
𝑛

𝐹𝑛q “ P

˜

č

𝑁

ď

𝑛ě𝑁

𝐹𝑛

¸

,

the random time 𝑇 is well defined and finite for almost every 𝜔. We have

Er𝑇s “

8
ÿ

𝑛“0

𝑛P

˜

𝐹𝑛z

𝑛´1
ď

𝑗“1

𝐹𝑗

¸

.

Now,

P

˜

𝐹𝑛z

𝑛´1
ď

𝑗“1

𝐹𝑗

¸

“ P

˜

𝐹𝑛 X

𝑛´1
č

𝑗“1

𝐹𝑐
𝑗

¸

“ Pp𝐹𝑛q

𝑛´1
ź

𝑗“1

Pp𝐹𝑐
𝑗 q “

1

2𝑁

𝑛´1
ź

𝑗“1

ˆ

1 ´
1

2𝑁

˙

“
1

2𝑁

ˆ

1 ´
1

2𝑁

˙𝑛´1

.

Therefore

Er𝑇s “

8
ÿ

𝑛“1

𝑛
1

2𝑁

ˆ

1 ´
1

2𝑁

˙𝑛´1

“
1

2𝑁

8
ÿ

𝑛“1

𝑛𝑞𝑛´1,

where 𝑞 “ 1 ´ 1
2𝑁 . Now, recall that

ř8

𝑛“0 𝑞
𝑛 “ 1

1´𝑞
. Differentiating w.r.t 𝑞 we get

8
ÿ

𝑛“1

𝑛𝑞𝑛´1 “
1

p1 ´ 𝑞q2
.
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(this formula holds for |𝑞| ă 1). Therefore,

Er𝑇s “
1

2𝑁
𝑞

8
ÿ

𝑛“1

𝑛𝑞𝑛´1 “

ˆ

1 ´
1

2𝑁

˙

1

2𝑁
1

`

1 ´
`

1 ´ 1
2𝑁

˘˘2
“ 2𝑁

ˆ

1 ´
1

2𝑁

˙

“ 2𝑁 ´ 1.

So imagine that the donkey has to write a text made of 𝑁 “ 60 binary digits, typing 1 key each a second.
According to the previous calculation, it will take an expected time 2𝑁 ´ 1 “ 260 ´ 1 seconds for the
monkey to reproduce the sequence, a time far beyond the time life of the Universe. . . □

8.3. Convergence in Probability

Definition 8.3.1

Let p𝑋𝑛q Ă 𝐿pΩq. We say that

𝑋𝑛
P

ÝÑ 𝑋, ðñ lim
𝑛Ñ`8

P p|𝑋𝑛 ´ 𝑋| ě 𝜀q “ 0, @𝜀 ą 0.

The convergence in probability is weaker than both the 𝐿 𝑝 convergence and the convergence with
probability 1.

Proposition 8.3.2

𝑋𝑛
𝐿𝑝

ÝÑ 𝑋, ùñ 𝑋𝑛
P

ÝÑ 𝑋.

Proof. By Chebishev’s inequality,

Pp|𝑋𝑛 ´ 𝑋| ě 𝜀q ď
1

𝜀𝑝
E
“

|𝑋𝑛 ´ 𝑋|𝑝1|𝑋𝑛´𝑋|ě𝜀

‰

ď E r|𝑋𝑛 ´ 𝑋|𝑝s “
1

𝛼𝑝
}𝑋𝑛 ´ 𝑋}

𝑝
𝑝 ÝÑ 0. □

Warning 8.3.3

The vice versa is false. Take pΩ,ℱ, Pq “ pr0, 1s,ℬr0,1s, 𝜆1q and define

𝑋𝑛p𝜔q :“ 𝑛21r0,1{𝑛sp𝜔q.

Then,
}𝑋𝑛}1 “ 𝑛2

1

𝑛
“ 𝑛 ÝÑ `8,

so in particular p𝑋𝑛q cannot converge in 𝐿1. However, for 𝜀 ą 0 fixed

Pp|𝑋𝑛| ě 𝜀q “ Pp𝑋𝑛 ą 0q “
1

𝑛
ÝÑ 0.

From this it follows that 𝑋𝑛
P

ÝÑ 0. □
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Proposition 8.3.4

𝑋𝑛
𝑎.𝑠.
ÝÑ 𝑋, ùñ 𝑋𝑛

P
ÝÑ 𝑋.

Proof. Recalling of (8.2.1), we have that

P p|𝑋𝑛 ´ 𝑋| ě 𝜀q ď P

˜

ď

𝑘ě𝑛

|𝑋𝑘 ´ 𝑋| ě 𝜀

¸

.

Therefore

0 ď lim
𝑛
P p|𝑋𝑛 ´ 𝑋| ě 𝜀q ď lim

𝑛
P

˜

ď

𝑘ě𝑛

|𝑋𝑛 ´ 𝑋| ě 𝜀

¸

“ P

˜

č

𝑛

ď

𝑘ě𝑛

|𝑋𝑛 ´ 𝑋| ě 𝜀

¸

“ 0.

Warning 8.3.5

The vice versa is false. Take pΩ,ℱ, Pq “ pr0, 1s,ℬr0,1s, 𝜆1q. We already shown that there exists a

sequence p𝑋𝑛q Ă 𝐿1pr0, 1sq such that 𝑋𝑛
𝐿1

ÝÑ 0 (whence 𝑋𝑛
P

ÝÑ 0) but 𝑋𝑛p𝜔q is pw convergent for no
𝜔 P r0, 1s.

As we can see from the examples, convergence in probability is a very weak form of convergence.

8.4. Convergence in distribution

All types of convergence examined so far, namely, 𝐿 𝑝 convergence, convergence in probability, and
almost sure convergence, involve directly the random variables 𝑋𝑛 as functions on some probability space
pΩ,ℱ, Pq. As we know, random variables are perfectly known through their laws or, more practically,
through their associated functions like cdfs and characteristic functions. For example, one could say that
𝑋𝑛 ÝÑ 𝑋 in some weak sense if

(8.4.1) 𝜇𝑋𝑛
p𝐸q ÝÑ 𝜇𝑋p𝐸q, @𝐸 P ℬR,

or

(8.4.2)
∫
R
𝜑 𝑑𝜇𝑋𝑛

ÝÑ

∫
R
𝜑 𝑑𝜇𝑋, @𝜑 P 𝐿1.

The problem with such a definition is that, even a trivial sequence, as 𝑋𝑛 ” 𝑥𝑛 with 𝑥𝑛 ÝÑ 𝑥˚ in R,
wouldn’t be convergent to 𝑋˚ ” 𝑥˚: assuming 𝑥˚ ‰ 𝑥𝑛 for every 𝑛, and taking 𝐸 “ t𝑥˚u, we would have

𝜇𝑋𝑛
pt𝑥˚uq “ Pp𝑋𝑛 “ 𝑥˚q “ 0 ÝÑ 0, but 𝜇𝑋˚pt𝑥˚uq “ 1.

Similarly, if 𝑥 ă 𝑥˚, then being 𝑥𝑛 ÝÑ 𝑥˚, 𝑥 ď 𝑥𝑛 for 𝑛 large, so 𝐹𝑋𝑛
p𝑥q “ 1 ÝÑ 1 but 𝐹𝑋˚p𝑥q “ 0 so

𝐹𝑋𝑛
p𝑥q ­ÝÑ 𝐹𝑋˚p𝑥q.

However, restricting the class of Borel sets in (8.4.1) or the class of functions 𝜑 in (8.4.2), we obtain an
interesting definition:
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Definition 8.4.1

Let p𝑋𝑛q Ă 𝐿pΩq. We say that p𝑋𝑛q converges in distribution to 𝑋 , and we write 𝑋𝑛
𝑑

ÝÑ 𝑋 , if

(8.4.3)
∫
R
𝜑 𝑑𝜇𝑋𝑛

ÝÑ

∫
R
𝜑 𝑑𝜇𝑋, @𝜑 P 𝒞𝑏pRq

(𝒞𝑏pRq stands for the space of bounded and continuous function of R).

Remark 8.4.2

Equivalently
𝑋𝑛

𝑑
ÝÑ 𝑋, ðñ Er𝜑p𝑋𝑛qs ÝÑ Er𝜑p𝑋qs, @𝜑 P 𝒞𝑏pRq.

Proposition 8.4.3

The following properties are equivalent:
i) 𝑋𝑛

𝑑
ÝÑ 𝑋 .

ii) 𝐹𝑋𝑛
p𝑥q ÝÑ 𝐹𝑋p𝑥q, @𝑥 P R where 𝐹𝑋 is continuous.

Proof. i) ùñ ii). Let 𝑥 be a continuity point for 𝐹𝑋:
lim

𝑦Ñ𝑥´
𝐹𝑋p𝑦q “ 𝐹𝑋p𝑥q “ lim

𝑦Ñ𝑥`
𝐹𝑋p𝑦q.

Notice that
𝐹𝑋𝑛

p𝑥q “ 𝜇𝑋𝑛
ps ´ 8, 𝑥sq “

∫
R
1s´8,𝑥s 𝑑𝜇𝑋𝑛

.

Let now 𝜑𝜀 , 𝜓𝜑 P 𝒞𝑏pRq piecewise linear defined as

𝜑𝜀p𝑦q :“

$

&

%

1, 𝑦 ď 𝑥 ´ 𝜀,

´ 1
𝜀

p𝑦 ´ 𝑥 ` 𝜀qq ` 1, 𝑥 ´ 𝜀 ď 𝑦 ď 𝑥,

0, 𝑦 ě 𝑥.

𝜓𝜀p𝑦q :“

$

&

%

1, 𝑦 ď 𝑥,

´ 1
𝜀

p𝑦 ´ 𝑥q ` 1, 𝑥 ď 𝑦 ď 𝑥 ` 𝜀,

0, 𝑦 ě 𝑥 ` 𝜀.

Then
𝐹𝑋𝑛

p𝑥q ď

∫
R
𝜓𝜀 𝑑𝜇𝑋𝑛

.

Since 𝑋𝑛
𝑑

ÝÑ 𝑋 , and 𝜓𝜀 P 𝒞𝑏, we have∫
R
𝜓𝜀 𝑑𝜇𝑋𝑛

ÝÑ

∫
R
𝜓𝜀 𝑑𝜇𝑋 ď

∫
R
1s´8,𝑥`𝜀s 𝑑𝜇𝑋 “ 𝐹𝑋p𝑥 ` 𝜀q,

so, there exists 𝑁 “ 𝑁p𝜀q such that
𝐹𝑋𝑛

p𝑥q ď 𝐹𝑋p𝑥 ` 𝜀q ` 𝜀, @𝑛 ě 𝑁.

Similarly,

𝐹𝑋𝑛
p𝑥q ě

∫
R
𝜑𝜀 𝑑𝜇𝑋𝑛

ÝÑ

∫
R
𝜑𝜀 𝑑𝜇𝑋 ě

∫
R
1s´8,𝑥´𝜀s 𝑑𝜇𝑋 “ 𝐹𝑋p𝑥 ´ 𝜀q.

So, for 𝑛 large (we can always say 𝑛 ě 𝑁) we have
𝐹𝑋𝑛

p𝑥q ě 𝐹𝑋p𝑥 ´ 𝜀q ´ 𝜀, @𝑛 ě 𝑁.
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Therefore
𝐹𝑋p𝑥 ´ 𝜀q ´ 𝐹𝑋p𝑥q ´ 𝜀 ď 𝐹𝑋𝑛

p𝑥q ´ 𝐹𝑋p𝑥q ď 𝐹𝑋p𝑥 ` 𝜀q ´ 𝐹𝑋p𝑥q ` 𝜀, @𝑛 ě 𝑁,

so if ℓ :“ lim𝑛 p𝐹𝑋𝑛
p𝑥q ´ 𝐹𝑋p𝑥qq we have

𝐹𝑋p𝑥 ´ 𝜀q ´ 𝐹𝑋p𝑥q ´ 𝜀 ď ℓ ď 𝐹𝑋p𝑥 ` 𝜀q ´ 𝐹𝑋p𝑥q ` 𝜀.

Since 𝜀 ą 0 is arbitrary, letting 𝜀 Ñ 0, and recalling that 𝑥 is a continuity point 𝐹𝑋p𝑥 ˘ 𝜀q ÝÑ 𝐹𝑋p𝑥q, we
get 0 ď ℓ ď 0, so ℓ “ 0 which is the conclusion.
ii) ùñ i). The proof is a bit technical and omitted here.

An useful equivalent characterization is provided by the following result.

Theorem 8.4.4: continuity theorem

𝑋𝑛
𝑑

ÝÑ 𝑋, ðñ 𝜙𝑋𝑛
p𝜉q ÝÑ 𝜙𝑋p𝜉q, @𝜉 P R.

Proof. ùñ Take 𝜑p𝑥q “ 𝑒𝑖 𝜉 𝑥 in (8.4.3) and we have the conclusion.
ðù The argument is similar to that one used in the proof of injectivity of FT for Borel probability 5.2. Let
𝜓 P 𝐿1pRq. By duality∫

R

p𝜓 𝑑𝜇𝑋𝑛
“

∫
R
𝜓p𝜉q𝜙𝑋𝑛

p𝜉q 𝑑𝜉 ÝÑ

∫
R
𝜓p𝜉q𝜙𝑋p𝜉q 𝑑𝜉 “

∫
R

p𝜓 𝑑𝜇,

by dominated convergence because i)𝜓p𝜉q𝜙𝑋𝑛
p𝜉q ÝÑ 𝜓p𝜉q𝜙𝑋p𝜉q a.e. 𝜉 P R and ii) |𝜓p𝜉q𝜙𝑋𝑛

p𝜉q| ď |𝜓p𝜉q|

a.e. 𝜉 P R. So (8.4.3) holds for 𝜑 “ p𝜓, with 𝜓 P 𝐿1pRq. Arguing as in the proof of Theorem 5.2, we get
that from this (8.4.3) extends to every 𝜑 P 𝒞𝑏pRq.

Example 8.4.5

Q. Let 𝑋𝑛 „ 𝒩p0, 1{𝑛q. Then 𝑋𝑛
𝑑

ÝÑ 0.

A. We have
𝜙𝑋𝑛

p𝜉q “ 𝑒´ 1
2

1
𝑛
𝜉2

ÝÑ 1 “ 𝜙0p𝜉q. □

Convergence in probability implies convergence in distribution.

Proposition 8.4.6

𝑋𝑛
P

ÝÑ 𝑋, ùñ 𝑋𝑛
𝑑

ÝÑ 𝑋.

Proof. We know
lim
𝑛
Pp|𝑋𝑛 ´ 𝑋| ě 𝜀q “ 0, @𝜀 ą 0.
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For simplicity, we prove (8.4.3) for 𝜑 P 𝒞
1
𝑏

pRq that is 𝜑, 𝜑1 P 𝒞𝑏pRq. We write

Er𝜑p𝑋𝑛qs ´ Er𝜑p𝑋qs “ E r𝜑p𝑋𝑛q ´ 𝜑p𝑋qs “

E
“

p𝜑p𝑋𝑛q ´ 𝜑p𝑋qq 1|𝑋𝑛´𝑋|ă𝜀 ` p𝜑p𝑋𝑛q ´ 𝜑p𝑋qq 1|𝑋𝑛´𝑋|ě𝜀

‰

.

Now,
ˇ

ˇE
“

p𝜑p𝑋𝑛q ´ 𝜑p𝑋qq 1|𝑋𝑛´𝑋|ě𝜀

‰
ˇ

ˇ ď E
“

|𝜑p𝑋𝑛q ´ 𝜑p𝑋q| 1|𝑋𝑛´𝑋|ě𝜀

‰

ď 2}𝜑}8P p|𝑋𝑛 ´ 𝑋| ě 𝜀q .

Notice also that |𝜑p𝑥q ´ 𝜑p𝑦q| ď }𝜑1}8|𝑥 ´ 𝑦| so
E
“

p𝜑p𝑋𝑛q ´ 𝜑p𝑋qq 1|𝑋𝑛´𝑋|ă𝜀

‰

ď E
“

}𝜑1}8|𝑋𝑛 ´ 𝑋|1|𝑋𝑛´𝑋|ă𝜀

‰

ď }𝜑1}8𝜀.

Therefore,
|Er𝜑p𝑋𝑛qs ´ Er𝜑p𝑋qs| ď 𝜀}𝜑1}8 ` 2}𝜑}8P p|𝑋𝑛 ´ 𝑋| ě 𝜀q .

Since Pp|𝑋𝑛 ´ 𝑋| ě 𝜀q ÝÑ 0, there exists 𝑁 such that Pp|𝑋𝑛 ´ 𝑋| ě 𝜀q ď 𝜀, @𝑛 ě 𝑁 , so
|Er𝜑p𝑋𝑛qs ´ Er𝜑p𝑋qs| ď 𝜀 p}𝜑1}8 ` 2}𝜑}8q , @𝑛 ě 𝑁,

and this means that
Er𝜑p𝑋𝑛qs ÝÑ Er𝜑p𝑋qs,

that is, 𝑋𝑛
𝑑

ÝÑ 𝑋 .

Warning 8.4.7

The vice versa is false. Take, as usual, pΩ,ℱ, Pq “ pr0, 1s,ℬr0,1s, 𝜆1q and define

𝑋𝑛p𝜔q “

$

&

%

p´1q𝑛, 𝜔 P r0, 1{2s,

´p´1q𝑛, 𝜔 Ps1{2, 1s.

It is clear that 𝜇𝑋𝑛
” 1

2 p𝛿´1`𝛿1q, therefore 𝑋𝑛
𝑑

ÝÑ 𝑋 „ 𝐵p´1, 1, 1{2q. However, p𝑋𝑛q is not convergent in
probability. Indeed: 𝑋2𝑘 ” 𝑋 “ 1r0,1{2s ´ 1s1{2,1s

P
ÝÑ 𝑋 while 𝑋2𝑘`1 ” 𝑌 “ ´1r0,1{2s ` 1s1{2,1s

P
ÝÑ 𝑌 .

However, if 𝑋𝑛
P

ÝÑ 𝑍 , then, necessarily, 𝑍 “ 𝑋 “ 𝑌 but Pp𝑋 “ 𝑌q “ 0. □

It is convenient to keep in mind the logical relations between various convergences:

𝑋𝑛
𝐿𝑝

ÝÑ 𝑋

u

ó p𝑝 “ `8q 𝑋𝑛
P

ÝÑ 𝑋 ùñ 𝑋𝑛
𝑑

ÝÑ 𝑋.

t

𝑋𝑛
𝑎.𝑠.
ÝÑ 𝑋

8.5. Exercises

Exercise 8.5.1 (**). Use Jensen’s inequality to prove the inequality

exp

ˆ∫
Ω

log 𝑋 𝑑P

˙

ď

∫
Ω

𝑋 𝑑P,
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for 𝑋 ě 0 P´a.s and deduce the classical inequality between geometric and arithmetic means:

𝑁
?
𝑥1 ¨ ¨ ¨ 𝑥𝑁 ď

1

𝑁

𝑁
ÿ

𝑛“1

𝑥𝑘 , @𝑥1, . . . , 𝑥𝑁 P r0,`8r.

Exercise 8.5.2 (˚). Let 𝑋𝑛 „ expp𝑛q, 𝑛 P N. Show that 𝑋𝑛
P

ÝÑ 0 for 𝑛 Ñ `8.

Exercise 8.5.3 (˚˚). Let p𝑋𝑛q be independent r.vs. with 𝑋𝑛 „ 𝐵p0, 1, 1 ´ 1
𝑛

q. Discuss 𝐿 𝑝, a.s., P and 𝑑
convergence of p𝑋𝑛q.

Exercise 8.5.4 (˚˚). Suppose that 𝜀𝑛 ą 0 are such that
ř

𝑛 𝜀𝑛 ă `8 and Pp|𝑋𝑛| ě 𝜀𝑛q ď 𝜀𝑛. Show
that the series

ř

𝑛 𝑋𝑛 is absolutely convergent with probability 1.

Exercise 8.5.5 (˚˚`). Let 𝑋𝑛
P

ÝÑ 𝑋 and 𝑌𝑛
P

ÝÑ 𝑌 . Show that also 𝑋𝑛 ` 𝑌𝑛
P

ÝÑ 𝑋 ` 𝑌 .

Exercise 8.5.6 (˚˚). Let p𝑋𝑛q be a sequence of random variables with densities

𝑓𝑋𝑛
p𝑥q “

1

𝜋

𝑛

1 ` 𝑛2𝑥2
, 𝑥 P R.

i) Is 𝑋𝑛
𝑑

ÝÑ 0?
ii) Is 𝑋𝑛

P
ÝÑ 0?

iii) Assuming the 𝑋𝑛 independent, is 𝑋𝑛
𝑎.𝑠.
ÝÑ 0?

Exercise 8.5.7 (˚˚`). Let p𝑈𝑛q „ 𝑈pr0, 1sq and 𝑋𝑛 :“ minp𝑈1, . . . ,𝑈𝑛q.
i) Determine 𝐹𝑋𝑛

.
ii) Discuss convergence of p𝑛𝑋𝑛q.

Exercise 8.5.8 (˚˚`). Let 𝑋𝑛 be i.i.d. random variables with

Pp𝑋𝑛 ą 𝑥q “
1

?
𝑥
, @𝑥 ě 1.

Let 𝑀𝑛 :“ maxp𝑋1, . . . , 𝑋𝑛q.
i) Determine the cdf of 𝑀𝑛.

ii) Discuss convergence in distribution of p𝑀𝑛q, identifying also its limit (if any).
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Limit Theorems

The law of large numbers (LLN) provides a mathematical foundation for the intuitive idea that, over
a large number of repeated independent experiments 𝑋𝑘 , the average outcome approximates the common
expected value:

𝑋𝑛 :“
1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘 ÝÑ 𝑚 ” Er𝑋𝑘s.

For example, in repeated coin tosses, the proportion of heads approaches 50% as the number of tosses
increases. The LLN is a cornerstone of statistics, underpinning concepts such as sampling and estimation,
and is widely applied in fields ranging from finance to physics and beyond.

If the 𝑋𝑘 are i.i.d. random variables with common mean 𝑚 ” Er𝑋𝑘s and variance 𝜎2 :“ Vr𝑋𝑘s, we
have that 𝑋𝑛 ´ 𝑚 has mean 0 and variance

Vr𝑋𝑛 ´𝑚s “ E

„

´

𝑋𝑛 ´ 𝑚

¯2
ȷ

“
1

𝑛2
E

»

–

˜

𝑛
ÿ

𝑘“1

p𝑋𝑘 ´ 𝑚q

¸2
fi

fl “
1

𝑛2

˜

𝑛
ÿ

𝑘“1

Vr𝑋𝑘s `
ÿ

𝑘‰ 𝑗

Covp𝑋𝑘 , 𝑋 𝑗q

¸

.

Since the 𝑋𝑘 are independent, Covp𝑋𝑘 , 𝑋 𝑗q “ 0 for 𝑘 ‰ 𝑗 . So

Vr𝑋𝑛 ´ 𝑚s “
1

𝑛2

𝑛
ÿ

𝑘“1

𝜎2 “
𝜎2

𝑛
, ðñ V

«

1

𝜎
?
𝑛

𝑛
ÿ

𝑘“1

p𝑋𝑘 ´ 𝑚q

ff

“ 1.

Therefore 1
𝜎

?
𝑛

ř𝑛
𝑘“1p𝑋𝑘 ´ 𝑚q is a r.v. with mean 0 and variance 1. It turns out that, for 𝑛 large, no

matter how the 𝑋𝑘 are distributed, 1
𝜎

?
𝑛

ř𝑛
𝑘“1p𝑋𝑘 ´ 𝑚q takes more and more the shape of a standard

Gaussian 𝒩p0, 1q. This happens, in general, in a very weak form as the convergence in distribution, that
is

1

𝜎
?
𝑛

𝑛
ÿ

𝑘“1

p𝑋𝑘 ´ 𝑚q
𝑑

ÝÑ 𝒩p0, 1q,

and this is known as the Central Limit Theorem (CLT), originally discovered by Bernoulli.

9.1. Weak Laws

There are many versions of the LLN, which differ in the way the sample average converges to the mean
𝑚. Broadly speaking, these results fall into two categories: strong laws (SLLN), where the convergence
is almost sure, and weak laws (WLLN), where the convergence is weaker, typically convergence in 𝐿1 or
in probability, or even just in distribution. In general, the stronger the mode of convergence, the harder
the proof. Here, for illustrative purposes, we will restrict attention to the proofs of the simplest cases.
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9.1.1. Chebishev’s WLLN. Let p𝑋𝑘q Ă 𝐿1pΩq be a sequence of independent random variables
with Er𝑋𝑘s ” 𝑚. We notice that, by replacing 𝑋𝑘 with 𝑋𝑘 ´ 𝑚 we may always assume that 𝑚 “ 0
because

1

𝑛

𝑛
ÿ

𝑘“1

p𝑋𝑘 ´ 𝑚q “
1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘 ´ 𝑚.

The Chebishev WLLN is a simple result that assumes, one one hand, the more restrictive requirement
p𝑋𝑛q Ă 𝐿2 but, on the other hand, it does not requires the p𝑋𝑛q are identically distributed.

Proposition 9.1.1: Chebyshev

Let p𝑋𝑘q Ă 𝐿2pΩq be independent r.vs. such that
‚ Er𝑋𝑛s ” 𝑚;
‚ Vr𝑋𝑛s ď 𝑀 .

Then

(9.1.1)
1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘
P

ÝÑ 𝑚.

In particular, Chebyshev’s bound holds:

(9.1.2) P
´

|𝑋𝑛 ´ 𝑚| ě 𝜀

¯

ď
1

𝜀2𝑛2

𝑛
ÿ

𝑘“1

Vr𝑋𝑘s.

Proof. Assuming 𝑚 “ 0 and setting

𝑋𝑛 “
1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘 ,

by Chebishev’s inequality,
P
´

|𝑋𝑛| ě 𝜀

¯

ď
1

𝜀2
Er|𝑋𝑛|2s.

Now,

Er|𝑋𝑛|2s “ E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl “
1

𝑛2

ÿ

𝑘, 𝑗

E
“

𝑋𝑘𝑋 𝑗

‰

“
1

𝑛2

˜

𝑛
ÿ

𝑘“1

Er𝑋2
𝑘 s `

ÿ

𝑘‰ 𝑗

Er𝑋𝑘sEr𝑋 𝑗s

¸

“
1

𝑛2

𝑛
ÿ

𝑘“1

Vr𝑋𝑘s ď
𝑀

𝑛
.

Thus,
P
´

|𝑋𝑛| ě 𝜀

¯

ď
𝑀

𝜀2𝑛
ÝÑ 0, ðñ 𝑋𝑛

P
ÝÑ 0.

Chebyshev’s bound is sometimes used to determine the number 𝑛 of observations of a random variable
such that the mismatch of the average 𝑋𝑛 to the mean value 𝑚 by an error 𝜀 has sufficiently small
probability.
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Example 9.1.2

Q. Let p𝑋𝑘q Ă 𝐿2pΩq with Er𝑋𝑘s ” 𝑚 ě 10 (unknown) and Vr𝑋𝑘s ” 2. Determine 𝑛 in such a
way that the probability that 𝑋𝑛 mismatch 𝑚 by more than 1% of 𝑚 be less than 1%.

A. We have to determine 𝑛 in such a way that

P
´

|𝑋𝑛 ´ 𝑚| ě
𝑚

100

¯

ď
1

100
.

By Chebyshev’s bound,

P
´

|𝑋𝑛 ´ 𝑚| ě
𝑚

100

¯

ď
1

`

𝑚
100

˘2
𝑛2

𝑛
ÿ

𝑘“1

Vr𝑋𝑘s “
104

𝑚2𝑛2
𝑛𝜎2 “

2 ˆ 104

𝑚2𝑛

𝑚ě10
ď

2 ˆ 104

102𝑛
“

2 ˆ 102

𝑛

Imposing
2 ˆ 102

𝑛
ď

1

102
, ðñ 𝑛 ě 2 ˆ 104,

we get that for 𝑛 “ 2 ˆ 104 “ 20.000 we have the desired bound.

Despite its weak form and simplicity, Chebishev 𝐿2-WLLN has some remarkable applications.

9.1.2. Monte-Carlo approximation method. Consider the problem of computing an integral as∫ 1

0
𝑓 p𝑥q 𝑑𝑥,

for a continuous function 𝑓 . We know that the definition is based on the idea that∫ 1

0
𝑓 p𝑥q 𝑑𝑥 «

𝑛
ÿ

𝑘“1

𝑓 p𝑥𝑘q𝑑 𝑑𝑥𝑘 ,

where t𝑥𝑘u Ă r0, 1s and 𝑑𝑥𝑘 “ 𝑥𝑘`1 ´ 𝑥𝑘 . If points 𝑥𝑘 divide r0, 1s in 𝑛 equal parts, 𝑥𝑘 “ 𝑘
𝑛

we have∫ 1

0
𝑓 p𝑥q 𝑑𝑥 «

𝑛
ÿ

𝑘“1

𝑓 p𝑥𝑘q
1

𝑛
“

1

𝑛

ÿ

𝑘

𝑓 p𝑥𝑘q.

Imagine now that 𝑥𝑘 are outcomes of 𝑛 independent random variables 𝑈𝑘 , 𝑘 “ 1, . . . , 𝑛 with uniform
distribution in r0, 1s. It seems reasonable that, for 𝑛 large,

1

𝑛

𝑛
ÿ

𝑘“1

𝑓 p𝑈𝑘q «

∫ 1

0
𝑓 p𝑥q 𝑑𝑥.

This is a consequence of Čebishev weak law. Indeed, if 𝑈𝑛 are independent, also 𝑋𝑛 :“ 𝑓 p𝑈𝑛q are
independent. Moreover,

Er𝑋𝑛s “ Er 𝑓 p𝑈𝑛qs “

∫
R
𝑓 p𝑢q1r0,1sp𝑢q 𝑑𝑢 “

∫ 1

0
𝑓 p𝑢q 𝑑𝑢,

while

Vr𝑋𝑛s “

∫ 1

0
𝑓 p𝑢q2 𝑑𝑢 ´

ˆ∫ 1

0
𝑓 p𝑢q 𝑑𝑢

˙2

ď } 𝑓 }28.
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Thus, weak law applies and

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

𝑛

𝑛
ÿ

𝑘“1

𝑓 p𝑈𝑘q ´

∫ 1

0
𝑓 p𝑥q 𝑑𝑢

ˇ

ˇ

ˇ

ˇ

ˇ

ě 𝜀

¸

ď
} 𝑓 }8

𝜀2𝑛

9.1.3. Weierstrass–Bernstein’s theorem. Another nice application of Chebishev WLLN is an orig-
inal proof of Weierstrass’ polynomial approximation theorem due to Bernstein.

Theorem 9.1.3: Weierstrass–Bernstein

Let 𝑓 P 𝒞pr0, 1sq and set

𝑝𝑛p𝑥q :“
𝑛
ÿ

𝑘“0

ˆ

𝑛

𝑘

˙

𝑓

ˆ

𝑘

𝑛

˙

𝑥𝑘p1 ´ 𝑥q𝑛´𝑘 .

Then
𝑝𝑛

}¨}8
ÝÑ 𝑓 .

Polynomials 𝑝𝑛 are called Bernstein’s polynomials of 𝑓 .

Proof. Let 𝑋𝑛 „ 𝐵p1, 0, 𝑥q be i.i.d. Bernoulli random variables that is
Pp𝑋𝑛 “ 0q “ 1 ´ 𝑥, Pp𝑋𝑛 “ 1q “ 𝑥.

If 𝑆𝑛 :“
ř𝑛

𝑗“1 𝑋 𝑗 then,

Pp𝑆𝑛 “ 𝑘q “

ˆ

𝑛

𝑘

˙

𝑥𝑘p1 ´ 𝑥q𝑛´𝑘 , 𝑘 “ 0, . . . , 𝑛.

Notice that

Er 𝑓 p𝑋𝑛qs “ E

„

𝑓

ˆ

𝑆𝑛

𝑛

˙ȷ

“

𝑛
ÿ

𝑘“0

𝑓

ˆ

𝑘

𝑛

˙

Pp𝑆𝑛 “ 𝑘q “

𝑛
ÿ

𝑘“0

𝑓

ˆ

𝑘

𝑛

˙ˆ

𝑛

𝑘

˙

𝑥𝑘p1 ´ 𝑥q𝑛´𝑘 “: 𝑝𝑛p𝑥q.

Since Er𝑋𝑛s “ 𝑥 and Vr𝑋𝑛s “ 𝑥p1 ´ 𝑥q, the assumptions of Chebishev’s WLLN are verified. Therefore

(9.1.3) @𝛿 ą 0, P
´

|𝑋𝑛 ´ 𝑥| ě 𝛿

¯

ď
𝑥p1 ´ 𝑥q

𝛿2𝑛
ď

1

4𝛿2𝑛
, @𝑥 P r0, 1s.

We now assess } 𝑓 ´ 𝑝𝑛}8. Let 𝑥 P r0, 1s and notice that

𝑓 p𝑥q ´ 𝑝𝑛p𝑥q “ 𝑓 p𝑥q ´ Er 𝑓 p𝑋𝑛qs “ E
”

𝑓 p𝑥q ´ 𝑓 p𝑋𝑛q

ı

“ E
”

p 𝑓 p𝑥q ´ 𝑓 p𝑋𝑛qq1
|𝑋𝑛´𝑥|ă𝛿

ı

` E
”

p 𝑓 p𝑥q ´ 𝑓 p𝑋𝑛qq1
|𝑋𝑛´𝑥|ě𝛿

ı

.

We now need a remarkable property of any 𝑓 P 𝒞pr0, 1sq (Heine–Cantor’s theorem): 𝑓 is uniformly
continuous, that is

@𝜀 ą 0, D𝛿 “ 𝛿p𝜀q ą 0, : | 𝑓 p𝜉q ´ 𝑓 p𝜂q| ď 𝜀, @𝜉, 𝜂 P r0, 1s, : |𝜉 ´ 𝜂| ď 𝛿.

From this,
ˇ

ˇ

ˇ
E
”

p 𝑓 p𝑥q ´ 𝑓 p𝑋𝑛qq1
|𝑋𝑛´𝑥|ă𝛿

ı
ˇ

ˇ

ˇ
ď 𝜀E

”

1
|𝑋𝑛´𝑥|ă𝛿

ı

ď 𝜀.
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while
ˇ

ˇ

ˇ
E
”

p 𝑓 p𝑥q ´ 𝑓 p𝑋𝑛qq1
|𝑋𝑛´𝑥|ě𝛿

ı
ˇ

ˇ

ˇ
ď 2} 𝑓 }8E

”

1
|𝑋𝑛´𝑥|ě𝛿

ı

“ 2} 𝑓 }8P
´

|𝑋𝑛 ´ 𝑥| ě 𝛿

¯

ď
} 𝑓 }8

2𝛿2𝑛
.

Therefore,

} 𝑓 ´ 𝑝𝑛}8 “ max
𝑥Pr0,1s

| 𝑓 p𝑥q ´ 𝑝𝑛p𝑥q| ď 𝜀 `
} 𝑓 }8

2𝛿2𝑛
.

Now, since } 𝑓 }8

2𝛿2𝑛
Ñ 0, there exists 𝑁 “ 𝑁p𝛿q “ 𝑁p𝜀q such that } 𝑓 }8

2𝛿2𝑛
ď 𝜀 for 𝑛 ě 𝑁 , so

} 𝑓 ´ 𝑝𝑛}8 ď 2𝜀, @𝑛 ě 𝑁,

and this precisely means the conclusion.

9.1.4. 𝐿1 WLLN. The natural hypothesis we might expect under which

1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘 ÝÑ 𝑚, with Er𝑋𝑘s ” 𝑚,

is p𝑋𝑛q Ă 𝐿1. In this case, the variance Vr𝑋𝑛s is generally not defined, so the Chebishev’s WLLN does
not apply. However, we have the following theorem:

Theorem 9.1.4: WLLN

Let p𝑋𝑛q Ă 𝐿1pΩq be i.i.d. r.vs. If 𝑚 :“ Er𝑋𝑘s (constant in 𝑘), then

1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘
𝐿1

ÝÑ 𝑚.

9.2. Strong laws

Let p𝑋𝑘q Ă 𝐿1pΩq be independent with Er𝑋𝑘s ” 𝑚. Replacing 𝑋𝑘 by 𝑋𝑘 ´𝑚 we can always assume
that 𝑚 “ 0. To ensure 𝑋𝑛

𝑎.𝑠.
ÝÑ 0, by (8.2.1) we need to check that

(9.2.1) P

ˆ

lim sup
𝑛

t|𝑋𝑛| ě 𝜀u

˙

“ P

˜

č

𝑁

ď

𝑛ě𝑁

|𝑋𝑛| ě 𝜀

¸

“ 0, @𝜀 ą 0.

A sufficient condition to make this true is provided by Borel–Cantelli’s Lemma 8.2.1: if
ÿ

𝑛

P
´

|𝑋𝑛| ě 𝜀

¯

ă `8,

then (9.2.1) holds true. Under the extra assumption p𝑋𝑘q Ă 𝐿2pΩq, from Chebishev’s bound (9.1.2) we
have

Pp|𝑋𝑛| ě 𝜀q ď
1

𝜀2𝑛2

𝑛
ÿ

𝑘“1

Vr𝑋𝑘s “
𝑛Vr𝑋1s

𝑛2𝜀
”
𝐶

𝑛
,

a bound which is essentially useless to prove convergence for
ř

𝑛 Pp|𝑋𝑛| ě 𝜀q.
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9.2.1. 𝐿4 SLLN. An appropriate bound for Pp|𝑋𝑛| ě 𝜀q can be obtained under stronger integrability
for the 𝑋𝑘 :

Proposition 9.2.1

Let p𝑋𝑘q Ă 𝐿4pΩq be independent random variables with Er𝑋𝑛s ” 𝑚 and Er𝑋4
𝑘
s ď 𝐾 . Then

1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘
𝑎.𝑠.
ÝÑ 𝑚.

Proof. We assume 𝑚 “ 0. By Chebishev’s inequality

Pp|𝑋𝑛| ě 𝜀q “ P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

𝑛
ÿ

𝑘“1

𝑋𝑘

ˇ

ˇ

ˇ

ˇ

ˇ

ě 𝑛𝜀

¸

ď
1

𝑛4𝜀4
E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

𝑛
ÿ

𝑘“1

𝑋𝑘

ˇ

ˇ

ˇ

ˇ

ˇ

4
fi

fl “
1

𝑛4𝜀4

𝑛
ÿ

𝑘1 ,𝑘2 ,𝑘3 ,𝑘4“1

Er𝑋𝑘1𝑋𝑘2𝑋𝑘3𝑋𝑘4s.

Now, if one of the indexes 𝑘 is different from the other three, say 𝑘1 ‰ 𝑘2, 𝑘3, 𝑘4 then, by independence,
Er𝑋𝑘1𝑋𝑘2𝑋𝑘3𝑋𝑘4s “ Er𝑋𝑘1s ¨ Er𝑋𝑘2𝑋𝑘3𝑋𝑘4s “ 0.

So,
𝑛
ÿ

𝑘1 ,𝑘2 ,𝑘3 ,𝑘4“1

Er𝑋𝑘1𝑋𝑘2𝑋𝑘3𝑋𝑘4s “

𝑛
ÿ

𝑘“1

Er𝑋4
𝑘 s ` 3

𝑛
ÿ

𝑘1 ,𝑘2“1

Er𝑋2
𝑘1
𝑋2
𝑘2

s

𝐶𝑆
ď

𝑛
ÿ

𝑘“1

Er𝑋4
𝑘 s ` 3

𝑛
ÿ

𝑘1 ,𝑘2“1

Er𝑋4
𝑘1

s1{2Er𝑋4
𝑘2

s1{2 ď 𝑛𝐾 ` 3𝑛2𝐾.

Therefore,
P
´

|𝑋𝑛| ě 𝜀

¯

ď
1

𝑛4𝜀4
p3𝑛2 ` 𝑛q𝐾 ď

4𝐾

𝜀4𝑛2
.

From this,
ř

𝑛 P
´

|𝑋𝑛| ě 𝜀

¯

ă `8, so the Borel-Cantelli Lemma applies, and we conclude.

Example 9.2.2: empirical probability

Let pΩ,ℱ, Pq be a probability space and let 𝐸 P ℱ be an event. Let p𝑋𝑘q𝑘ě1 be a sequence of
independent Bernoulli random variables with parameter 𝑝 “ Pp𝐸q, i.e.

𝑋𝑘 „ Bernoullip𝑝q, 𝑝 “ Pp𝐸q.

Interpret 𝑋𝑘p𝜔q as the outcome of an experiment that equals 1 if 𝜔 P 𝐸 and 0 otherwise.
Clearly, 𝑋𝑘 P 𝐿4pΩq, therefore by the 𝐿4 SLLN we have

1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘
a.s.
ÝÝÑ Er𝑋1s “ 𝑝 “ Pp𝐸q.

In words: over a long sequence of independent trials, the empirical frequency of the event 𝐸
converges almost surely to its theoretical probability.
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9.2.2. Kolmogorov’s maximal inequality. The key ingredient to get a.s. convergence is to get a
good bound for

P
´

|𝑋𝑛| ě 𝜀

¯

“ P

˜ˇ

ˇ

ˇ

ˇ

ˇ

𝑛
ÿ

𝑘“1

𝑋𝑘

ˇ

ˇ

ˇ

ˇ

ˇ

ě 𝑛𝜀

¸

.

Let 𝑆𝑛 :“
ř𝑛

𝑘“1 𝑋𝑘

Theorem 9.2.3: Kolmogorov’s maximal inequality

Let p𝑋𝑘q Ă 𝐿2pΩq be independent random variables with Er𝑋𝑘s “ 0 for every 𝑘 . Then

(9.2.2) P

ˆ

max
𝑗Pt1,...,𝑛u

|𝑆 𝑗 | ě 𝛼

˙

ď
1

𝛼2
E
”

1max 𝑗“1,...,𝑛 |𝑆 𝑗 |ě𝛼𝑆
2
𝑛

ı

ˆ

ď
1

𝛼2
Er|𝑆𝑛|2s

˙

.

Proof. Notice that
tmax 𝑗“1,...,𝑛 |𝑆 𝑗 | ě 𝛼u “ t|𝑆1| ě 𝛼u \ t|𝑆1| ă 𝛼, |𝑆2| ě 𝛼u \ t|𝑆1|, |𝑆2| ă 𝛼, |𝑆3| ě 𝛼u \ . . .

“

𝑛
ğ

𝑗“1

␣

|𝑆𝑘 | ă 𝛼, @𝑘 “ 0, . . . , 𝑗 ´ 1, |𝑆 𝑗 | ě 𝛼
(

“:
𝑛
ğ

𝑗“1

𝐸 𝑗 ,

where we defined 𝑆0 :“ 0. Therefore,

P

ˆ

max
𝑗“1,...,𝑛

|𝑆 𝑗 | ě 𝛼

˙

“

𝑛
ÿ

𝑗“1

P
`

𝐸 𝑗

˘

.

Now, on 𝐸 𝑗 we have 1 ď
|𝑆 𝑗 |

2

𝛼2 , so

P
`

𝐸 𝑗

˘

“ E
“

1𝐸 𝑗

‰

ď
1

𝛼2
E
”

1𝐸 𝑗
𝑆2𝑗

ı

.

We show that
E
”

1𝐸 𝑗
𝑆2𝑗

ı

“ E
“

1𝐸 𝑗
𝑆2𝑛
‰

, @ 𝑗 “ 1, . . . , 𝑛.

Indeed,

𝑆2𝑛 “

˜

𝑆 𝑗 `

𝑛
ÿ

𝑘“ 𝑗`1

𝑋𝑘

¸2

“ 𝑆2𝑗 ` 2𝑆 𝑗

𝑛
ÿ

𝑘“ 𝑗`1

𝑋𝑘 `

˜

𝑛
ÿ

𝑘“ 𝑗`1

𝑋𝑘

¸2

“: 𝑆2𝑗 ` 2𝑆 𝑗𝑇𝑗 ` 𝑇2
𝑗 .

Now, since 𝑇𝑗 is independent of both 𝑆 𝑗 and 1𝐸 𝑗
, we have

E
“

1𝐸 𝑗
𝑆2𝑛
‰

“ E
”

1𝐸 𝑗
𝑆2𝑗

ı

` 2E
“

1𝐸 𝑗
𝑆 𝑗𝑇𝑗

‰

` E
”

1𝐸 𝑗
𝑇2
𝑗

ı

“ E
”

1𝐸 𝑗
𝑆2
𝑗

ı

` 2E
“

1𝐸 𝑗
𝑆 𝑗

‰

E
“

𝑇𝑗
‰

loomoon

“0

`E
”

1𝐸 𝑗
𝑇2
𝑗

ı

“ E
”

1𝐸 𝑗
𝑆2𝑗

ı

` E
”

1𝐸 𝑗
𝑇2
𝑗

ı

ě E
”

1𝐸 𝑗
𝑆2𝑗

ı

.
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Therefore,

P

ˆ

max
𝑗“1,...,𝑛

|𝑆 𝑗 | ě 𝛼

˙

ď
1

𝛼2

𝑛
ÿ

𝑗“1

E
“

1𝐸 𝑗
𝑆2𝑛
‰

“
1

𝛼2
E

«

𝑛
ÿ

𝑗“1

1𝐸 𝑗
𝑆2𝑛

ff

“
1

𝛼2
E
“

1max 𝑗 |𝑆 𝑗 |ě𝛼𝑆
2
𝑛

‰

.

Corollary 9.2.4: Kolmogorov SLLN

Let p𝑋𝑛q Ă 𝐿2pΩq be i.i.d. random variables, and let 𝑚 :“ Er𝑋𝑛s. Then

1

𝑛

𝑛
ÿ

𝑘“1

𝑎.𝑠.
ÝÑ 𝑚.

Proof. As usual, we assume 𝑚 “ 0. Let also 𝜎2 :“ Vr𝑋𝑘s (constant in 𝑘 because the 𝑋𝑘 are i.i.d.).
For 𝑘 P N we define

𝐴𝑘 :“

"

max
𝑛“2𝑘 ,...,2𝑘`1

|𝑋𝑛| ě 𝜀

*

Ă

"

max
𝑛“2𝑘 ,...,2𝑘`1

|𝑆𝑛| ě 𝜀2𝑘
*

.

By Kolomogorov’s maximal inequality (9.2.2), we have

Pp𝐴𝑘q ď
1

𝜀22𝑘
Er|𝑆2𝑘`1 |2s “

1

𝜀22𝑘

2𝑘`1
ÿ

𝑗“1

Vr𝑋 𝑗s “ 2
𝜎2

𝜀2
1

2𝑘
.

Therefore, by Borel-Cantelli’s Lemma 8.2.3
P plim sup 𝐴𝑘q “ 0,

that is

P

˜

ď

𝑁

č

𝑘ě𝑁

"

max
𝑛“2𝑘 ,...,2𝑘`1

|𝑋𝑛| ď 𝜀

*

¸

“ 1, @𝜀 ą 0.

Now, take 𝜀𝑚 Ó 0. For each 𝑚 there exists Pp𝐸𝑚q “ 0 event such that
ď

𝑁

č

𝑘ě𝑁

"

max
𝑛“2𝑘 ,...,2𝑘`1

|𝑋𝑛| ď 𝜀𝑚

*

“ Ωz𝐸𝑚.

So, if 𝐸 :“
Ť

𝑚 𝐸𝑚, Pp𝐸q “ 0 and
č

𝑚

ď

𝑁

č

𝑘ě𝑁

"

max
𝑛“2𝑘 ,...,2𝑘`1

|𝑋𝑛| ď 𝜀𝑚

*

“ Ωz𝐸.

From this it follows that 𝑋𝑛
𝑎.𝑠.
ÝÑ 0. Indeed: let 𝜔 P Ωz𝐸 . For 𝜀 ą 0, there exists 𝜀𝑚 ď 𝜀. Since

𝜔 P
ď

𝑁

č

𝑘ě𝑁

"

max
𝑛“2𝑘 ,...,2𝑘`1

|𝑋𝑛| ď 𝜀𝑚

*

, ùñ D𝑁, |𝑋𝑛| ď 𝜀𝑚 ď 𝜀, @𝑛 ě 2𝑁 .

From this the conclusion follows.

Refining further the proof of Kolmnogorov’s SLLN, it is possible to prove the
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Theorem 9.2.5: Khinchin SLLN

Let p𝑋𝑛q Ă 𝐿1pΩq be i.i.d. random variables, and let 𝑚 :“ Er𝑋𝑛s. Then

𝑋𝑛
𝑎.𝑠.
ÝÑ 𝑚.

9.3. Central Limit Theorem

We already noticed that if p𝑋𝑘q Ă 𝐿2pΩq are i.i.d. with mean 𝑚 and variance 𝜎2, then

1

𝜎
?
𝑛

𝑛
ÿ

𝑘“1

p𝑋𝑘 ´ 𝑚q

is a mean 0 and variance 1 random variable for every 𝑛 P N. For large 𝑛 and independently from the
specific distribution of the 𝑋𝑘 , the previous random variable approximates a standard Gaussian. This it
the celebrated Central Limit Theorem:

Theorem 9.3.1

Let p𝑋𝑘q Ă 𝐿2pΩq be i.i.d. random variables with Er𝑋𝑘s ” 𝑚 and Vr𝑋𝑘s “ 𝜎2. Then,

1

𝜎
?
𝑛

𝑛
ÿ

𝑘“1

p𝑋𝑘 ´ 𝑚q
𝑑

ÝÑ 𝒩p0, 1q.

Proof. Let 𝑍𝑛 :“ 1
𝜎

?
𝑛

ř𝑛
𝑘“1p𝑋𝑘 ´ 𝑚q, and let 𝜙p𝜉q “ 𝜙𝑋𝑘´𝑚p𝜉q (independent of 𝑛 because of the

i.i.d. assumption). Then

𝜙𝑍𝑛
p𝜉q “ E

”

𝑒
𝑖 𝜉 1

𝜎
?
𝑛

ř𝑛
𝑘“1p𝑋𝑘´𝑚q

ı

“ E

«

𝑛
ź

𝑘“1

𝑒
𝑖

𝜉

𝜎
?
𝑛

p𝑋𝑘´𝑚q

ff

𝑖𝑛𝑑𝑒𝑝.
“

𝑛
ź

𝑘“1

E
”

𝑒
𝑖

𝜉

𝜎
?
𝑛

p𝑋𝑘´𝑚q
ı

“ 𝜙

ˆ

𝜉

𝜎
?
𝑛

˙𝑛

.

Now,

𝜙p𝜂q “ 𝜙p0q ` 𝜙1p0q𝜂 `
𝜙2p0q

2
𝜂2 ` 𝑜p𝜂2q,

and since 𝜙p0q “ 1 and
𝜙1p𝜂q “ B𝜂Er𝑒𝑖𝜂p𝑋1´𝑚qs “ E

“

𝑖p𝑋1 ´ 𝑚q𝑒𝑖𝜂p𝑋1´𝑚q
‰

, ùñ 𝜙1p0q “ 𝑖Er𝑋1 ´ 𝑚s “ 0,

𝜙2p𝜂q “ ´Erp𝑋1 ´ 𝑚q2𝑒𝑖𝜂p𝑋1´𝑚qs, ùñ 𝜙2p0q “ ´Erp𝑋1 ´ 𝑚q2s “ ´𝜎2,

we have
𝜙p𝜂q “ 1 ´

𝜎2

2
𝜂2 ` 𝑜p𝜂2q.

Therefore

𝜙𝑍𝑛
p𝜉q “

ˆ

1 ´
𝜎2

2

𝜉2

𝑛𝜎2
` 𝑜

ˆ

𝜉2

𝑛𝜎2

˙˙𝑛

“

ˆ

1 ´
𝜉2

2𝑛
` 𝑜

ˆ

𝜉2

𝑛

˙˙𝑛

ÝÑ 𝑒´
𝜉2

2 “ 𝜙𝒩p𝜉q.

By the continuity theorem 8.4.4 the conclusion now follows.



84 9. LIMIT THEOREMS

Remark 9.3.2

In particular, since the standard normal cdf is continuous on R, we have that

lim
𝑛Ñ`8

P

˜

𝑎 ď
1

𝜎
?
𝑛

𝑛
ÿ

𝑘“1

p𝑋𝑘 ´ 𝑚q ď 𝑏

¸

“

∫ 𝑏

𝑎

𝑒´ 𝑥2

2
𝑑𝑥

?
2𝜋
, @𝑎 ă 𝑏.

Example 9.3.3

A polling company needs to estimate the probability 𝑝 of success for a certain candidate in an
election where there are, besides him, two other candidates. The task is to determine how many
people need to be surveyed so that, with at least 95% probability, the estimated percentage from
the sample differs from 𝑝 by less than 1%:

i) assuming 𝑝 is completely unknown;
ii) knowing that 𝑝 ă 30%.

Describe the survey using random variables 𝑋𝑛, which are identically distributed, with 𝑋𝑛 “ 0 if
the preference is not for the candidate, and 𝑋𝑛 “ 1 if it is and use the Čebishev bound.

9.4. Exercises

Exercise 9.4.1 (˚˚). Let p𝑋𝑛q Ă 𝐿1pΩq be independent random variables with Er𝑋𝑛s ” 𝑚. Use characteristic
functions to show that

𝑋𝑛
𝑑

ÝÑ 𝑚.

Exercise 9.4.2 (˚˚). Let p𝑋𝑛q be i.i.d. random variables, uniformly distributed on r´1, 1s. Show that

lim
𝑛
P

ˆ

p1 ´ 𝜀q

c

𝑛

3
ď |p𝑋1, . . . , 𝑋𝑛q| ď p1 ` 𝜀q

c

𝑛

3

˙

“ 1, @𝜀 ą 0.

(here |p𝑥1, . . . , 𝑥𝑛q| “

b

𝑥21 ` ¨ ¨ ¨ ` 𝑥2𝑛 is the Euclidean norm of R𝑛).

Exercise 9.4.3 (˚˚). Let p𝑋𝑛q be independent and such that

Pp𝑋𝑛 “ ˘𝑛q “
1

2𝑛 log 𝑛
, Pp𝑋𝑛 “ 0q “ 1 ´

1

2𝑛 log 𝑛
.

Show that
i) 𝑋𝑛

P
ÝÑ 0 (use Chebishev’s lemma)

ii) 𝑋𝑛 does not converge a.s. (use the second Borel-Cantelli statement).

Exercise 9.4.4 (˚˚`). Let p𝑋𝑛q Ă 𝐿1pΩq be i.i.d. random variables with 𝑚 “ Er𝑋𝑛s. Discuss a.s. convergence
for

1

𝑛

𝑛
ÿ

𝑘“1

𝑋𝑘𝑋𝑘`1.

Exercise 9.4.5 (˚˚`). Compute

lim
𝑛Ñ`8

∫
r0,1s𝑛

𝑥21 ` ¨ ¨ ¨ ` 𝑥2𝑛

𝑥1 ` ¨ ¨ ¨ ` 𝑥𝑛
𝑑𝑥1 ¨ ¨ ¨ 𝑑𝑥𝑛.

(hint: 𝑑𝑥1 ¨ ¨ ¨ 𝑑𝑥𝑛 “ 𝜇p𝑋1 ,...,𝑋𝑛q with 𝑋𝑘 i.i.d., 𝑋𝑘 „ 𝑈pr0, 1sq . . .)
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Exercise 9.4.6 (˚˚). Let p𝑋𝑛q Ă 𝐿pΩq be i.i.d. random variables with common Cauchy distribution with density

𝑓 p𝑥q “
1

𝜋

𝑎

𝑎2 ` 𝑥2
,

for some 𝑎 ‰ 0. Notice that
i) Is p𝑋𝑛q Ă 𝐿1?

ii) By using the characteristic function, compute the distribution of 𝑋𝑛.
iii) Discuss convergence of 𝑋𝑛 in distribution.

Exercise 9.4.7 (˚˚`). Let p𝑋𝑛q be i.i.d. random variables, 𝑋𝑛 „ 𝑈r0, 1s. Use Central Limit Theorem to determine
the limit

lim
𝑛Ñ8

P

˜

𝑎 ď

ˆ

𝑒´𝑛

𝑋1 ¨ 𝑋2 ¨ ¨ ¨ 𝑋𝑛

˙1{
?
𝑛

ď 𝑏

¸

, 0 ă 𝑎 ă 𝑏

Exercise 9.4.8 (˚˚`). Let p𝑋𝑛q be i.i.d. with Er𝑋𝑘s ” 0 and Er𝑋2
𝑘
s ” 1. Show that

ř𝑛
𝑘“1 𝑋𝑘

b

ř𝑛
𝑘“1 𝑋

2
𝑘

𝑑
ÝÑ 𝒩p0, 1q.

To conclude you need to use the following fact: if 𝑌𝑛
𝑑

ÝÑ 𝑌 and 𝑍𝑛
𝑎.𝑠.
ÝÑ 𝑐 P R (constant) then 𝑍𝑛𝑌𝑛

𝑑
ÝÑ 𝑌 . (you

can prove this as non trivial exercise).

Exercise 9.4.9 (˚˚`). Let p𝑋𝑛q be i.i.d. random variables, each with Poisson distribution

Pp𝑋𝑛 “ 𝑗q “
1

𝑗 !
𝑒´1.

i) Determine the distribution of 𝑆𝑛 :“
ř𝑛

𝑘“1 𝑋𝑘 . In particular, determine Pp𝑆𝑛 ď 𝑛q.
ii) Use the CLT to show that

lim
𝑛
𝑒´𝑛

𝑛
ÿ

𝑗“0

𝑛 𝑗

𝑗 !
“

1

2
.
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Martingales

10.1. Definitions

A martingale is a ”time dependent” random variable for which the best prediction of the future value
is the present value. Here, time can be either a discrete time, represented by 𝑛 P N or a continuous time
𝑡 P R. For simplicity, here we will focus on the discrete time case.

Before we can dive into the definition of martingale, we have to introduce the definition of filtration.
Informally, this is a time dependent family of 𝜎´algebras that represent the ”information” available up
to a certain time. As time goes by, the information increases, this meaning that the 𝜎´algebras of the
filtration are nested:

Definition 10.1.1: filtration

A family pℱ𝑛q𝑛PN of 𝜎´algebras of Ω is called filtration if
ℱ𝑚 Ă ℱ𝑛, @𝑚 ď 𝑛.

A fundamental case of filtration is that one generated by a one-parameter family of random variables:

Definition 10.1.2: natural filtration

Let p𝑋𝑛q𝑛 ě 0 be a one-parameter family of random variables on a probability space pΩ,ℱ, Pq.
The natural filtration generated by p𝑋𝑛q is

ℱ𝑛 :“ 𝜎 p𝑋𝑚 : 𝑚 ď 𝑛q .

We are now ready to introduce the main definition of this Chapter:

Definition 10.1.3: martingale

Let pΩ,ℱ, Pq be a probability space, p𝑀𝑛q𝑛ě0 Ă 𝐿1pΩq be a one parameter family of 𝐿1 random
variables, and pℱ𝑛q𝑛ě0 a filtration. We say that p𝑀𝑛q is a martingale w.r.t. pℱ𝑛q if
(10.1.1) E r𝑀𝑛 | ℱ𝑚s “ 𝑀𝑚, @𝑛 ě 𝑚.

87
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Proposition 10.1.4

The condition (10.1.1) is equivalent to
(10.1.2) E r𝑀𝑛`1 | ℱ𝑛s “ 𝑀𝑛, @𝑛.

Proof. Indeed, it is clear that (10.1.2) is a particular case of (10.1.1). Vice versa, if (10.1.2) holds then,
by the sub-conditioning property of the conditional expectation (property v) of Prop. 7.2.2), for 𝑛 ą 𝑚 we
have

E r𝑀𝑛 | ℱ𝑚s “ E
”

Er𝑀𝑛 | ℱ𝑛´1s | ℱ𝑚

ı

“ E r𝑀𝑛´1 | ℱ𝑚s “ ¨ ¨ ¨ “ E r𝑀𝑚`1 | ℱ𝑚s “ 𝑀𝑚.

Example 10.1.5: Doob martingale

Let pΩ,ℱ, Pq be a probability space, 𝑋 P 𝐿1pΩq. Let pℱ𝑛q𝑛 be a filtration and define
𝑀𝑛 :“ Er𝑋 | ℱ𝑛s.

Then p𝑀𝑛q𝑛 is a martingale w.r.t. pℱ𝑛q.

Proof. Since ℱ𝑛 Ă ℱ𝑛`1, by sub-conditioning we have
Er𝑀𝑛`1 | ℱ𝑛s “ E

“

Er𝑋 | ℱ𝑛`1s | ℱ𝑛

‰

“ Er𝑋 | ℱ𝑛s “ 𝑀𝑛.

Example 10.1.6

Let pΩ,ℱ, Pq, p𝑋𝑘q Ă 𝐿1pΩq be independent random variables. Define

𝑀𝑛 :“
𝑛
ÿ

𝑘“0

p𝑋𝑘 ´ Er𝑋𝑘sq .

Then p𝑀𝑛q is a martingale w.r.t. the natural filtration of p𝑋𝑛q.

Proof. Let ℱ𝑛 :“ 𝜎p𝑋1, . . . , 𝑋𝑛q. Since
𝑀𝑛`1 “ 𝑀𝑛

loomoon

Pℱ𝑛

`p𝑋𝑛`1 ´ Er𝑋𝑛`1sq,

we have
Er𝑀𝑛`1 | ℱ𝑛s “ 𝑀𝑛 ` E rp𝑋𝑛`1 ´ Er𝑋𝑛`1sq | ℱ𝑛s .

Since the 𝑋𝑘 are independent, in particular 𝑋𝑛`1 ´ Er𝑋𝑛`1s is independent of ℱ𝑛 so
E rp𝑋𝑛`1 ´ Er𝑋𝑛`1sq | ℱ𝑛s “ E rp𝑋𝑛`1 ´ Er𝑋𝑛`1sqs “ 0,

from which Er𝑀𝑛`1 | ℱ𝑛s “ 𝑀𝑛.

10.2. Super and sub martingales

We start with the following
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Example 10.2.1: Gambler’s wins process

We model a gambler who puts wages on an hazardous game. At 𝑘´th game, 𝑋𝑘 represents the
payoff for a unitary bet. For simplicity, we assume that 𝑋𝑘 is a Bernoulli random variable with
Pp𝑋𝑘 “ 1q “ 𝑝 (win), Pp𝑋𝑘 “ ´1q “ 1 ´ 𝑝 (loss). We assume also that 𝑘´th game win is
independent of the previous wins, that is 𝑋𝑘 is independent of 𝑋 𝑗 𝑗 “ 1, . . . , 𝑘 ´ 1. We call
𝑌𝑘 ě 0 the wage on the 𝑘´th game. This is assumed to be random and non anticipative, that is
𝑌𝑘 , which is the wage put for the 𝑘´th game depends on what happened until the 𝑘 ´ 1-th game.
In other words 𝑌𝑘 P 𝜎p𝑋1, . . . , 𝑋𝑘´1q. If 𝑤 is the gambler’s initial fortune, the total win after 𝑛
games is

𝐺𝑛 :“ 𝑤 ` 𝑌1𝑋1 ` . . . ` 𝑌𝑛𝑋𝑛.

Let us consider an example that illustrates why it is convenient to allow the wager process to be
random. We start by betting the entire initial wealth 𝑤 on the first game. After the first game
we may either win 𝑤 (in which case 𝐺1 “ 2𝑤) or lose everything (so 𝐺1 “ 0). In the latter
case, 𝑌2 “ 0 (and consequently 𝑌3 “ 𝑌4 “ ¨ ¨ ¨ “ 0), meaning that we effectively stop playing. If
instead we win the first game, we may choose to bet 𝑌2 “ 2𝑤 in the second round. In other words,

𝑌2 “

#

0, if 𝑋1 “ ´1,

2𝑤, if 𝑋1 “ 1.

After the second game, we might have 𝐺2 “ 4𝑤 if we win again, or 𝐺2 “ 0 if we lose. For the
next game, we could then decide:

𝑌3 “

#

0, if 𝑋1 “ ´1, or p𝑋1 “ 1, 𝑋2 “ ´1q,

4𝑤, if 𝑋1 “ 𝑋2 “ 1.

We observe that, in this construction, 𝑌𝑘 depends on 𝑋1, . . . , 𝑋𝑘´1.
Then

Er𝐺𝑛`1 | ℱ𝑛s “ 𝐺𝑛 ` E

»

—

–
𝑌𝑛`1
loomoon

Pℱ𝑛

𝑋𝑛`1 | ℱ𝑛

fi

ffi

fl
“ 𝐺𝑛 ` 𝑌𝑛`1Er𝑋𝑛`1 | ℱ𝑛s

Since 𝑋𝑛`1 is independent of 𝑋1, . . . , 𝑋𝑛 we have
Er𝑋𝑛`1 | ℱ𝑛s “ Er𝑋𝑛`1s “ `1 ¨Pp𝑋𝑛`1 “ 1q ` p´1q ¨Pp𝑋𝑛`1 “ ´1q “ 𝑝´ p1´ 𝑝q “ 2𝑝´1.

In particular, for a fair game 𝑝 “ 1{2 (same probability to win and to loose) we have that
Er𝑋𝑛`1 | ℱ𝑛s “ 0,

so p𝐺𝑛q is a martingale. In the more realistic case of an unfair game, that is 𝑝 ă 1
2 , we have

Er𝐺𝑛`1 | ℱ𝑛s “ 𝐺𝑛 ` 𝑌𝑛`1
loomoon

ě0

p2𝑝 ´ 1q ď 𝐺𝑛,

that is the best prediction on future wins is always worst than actual win.

The last case of the example yields to the
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Definition 10.2.2

Let pΩ,ℱ, Pq be a probability space, p𝑀𝑛q𝑛ě0 Ă 𝐿1pΩq be a one parameter family of 𝐿1 random
variables, and pℱ𝑛q𝑛ě0 a filtration. We say that p𝑀𝑛q is

‚ a super-martingale w.r.t. pℱ𝑛q if
E r𝑀𝑛`1 | ℱ𝑛s ď 𝑀𝑛, @𝑛.

‚ a sub-martingale w.r.t. pℱ𝑛q if
E r𝑀𝑛`1 | ℱ𝑛s ě 𝑀𝑛, @𝑛.

Proposition 10.2.3: Jensen’s inequality

Let pΩ,ℱ, Pq be a probability space, 𝒢 Ă ℱ a sub-𝜎´algebra of ℱ. Then, for 𝑋 P 𝐿1,
‚ if 𝜑 is convex, we have

𝜑 pEr𝑋 | 𝒢sq ď E r𝜑p𝑋q | 𝒢s

‚ if 𝜑 is concave, we have
𝜑 pEr𝑋 | 𝒢sq ě E r𝜑p𝑋q | 𝒢s

Proof. For simplicity we assume 𝜑 P 𝒞
1pRq. If 𝜑 is convex we have

𝜑p𝑦q ě 𝜑p𝑥q ` 𝜑1p𝑥qp𝑦 ´ 𝑥q, @𝑥, 𝑦 P R.

Applying this with 𝑥 “ Er𝑋 | 𝒢s and 𝑦 “ 𝑋 we get
𝜑 p𝑋q ě 𝜑pEr𝑋 | 𝒢sq ` 𝜑1pEr𝑋 | 𝒢sq p𝑋 ´ Er𝑋 | 𝒢sq .

and taking the conditional expectation we have

Er𝜑p𝑋q | 𝒢s ě E

»

–𝜑 pEr𝑋 | 𝒢sq
loooooomoooooon

P𝒢

| 𝒢

fi

fl ` E

»

–𝜑1pEr𝑋 | 𝒢sq
loooooomoooooon

P𝒢

p𝑋 ´ Er𝑋 | 𝒢sq | 𝒢

fi

fl .

“ 𝜑 pEr𝑋 | 𝒢sq ` 𝜑1 pEr𝑋 | 𝒢sqE r𝑋 ´ Er𝑋 | 𝒢s | 𝒢s
looooooooooomooooooooooon

“0

“ 𝜑 pEr𝑋 | 𝒢sq .

For the case of 𝜑 concave, 𝜑 is convex and the conclusion follows.

Corollary 10.2.4

Let p𝑀𝑛q be a martingale w.r.t. pℱ𝑛q. Then
‚ if 𝜑 is convex, then p𝜑p𝑀𝑛qq is a sub-martingale.
‚ if 𝜑 is concave, then p𝜑p𝑀𝑛qq is a super-martingale.
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Proof. If 𝜑 is convex we have

E r𝜑p𝑀𝑛`1q | ℱ𝑛s
𝐽𝑒𝑛𝑠𝑒𝑛

ě 𝜑 pEr𝑀𝑛`1 | ℱ𝑛sq “ 𝜑p𝑀𝑛q,

from which we deduce that p𝜑p𝑀𝑛qq is a sub-martingale.

So, for instance, if p𝑀𝑛q is a martingale, p𝑀2
𝑛q, p𝑒𝑀𝑛q are sub-martingales (provided they make sense).

The concept of martingale can be extended to the case of continuous time dependent random variables.
Here, we will limit to few definitions.

Definition 10.2.5: filtration

A family pℱ𝑡q𝑡ě0 of 𝜎´algebras of Ω is called filtration if
ℱ𝑠 Ă ℱ𝑡 , @𝑠 ď 𝑡.

Definition 10.2.6: natural filtration

Let p𝑋𝑡q𝑡 ě 0 be a one-parameter family of random variables on a probability space pΩ,ℱ, Pq.
The natural filtration generated by p𝑋𝑡q is

ℱ𝑡 :“ 𝜎 p𝑋𝑠 : 𝑠 ď 𝑡q .

Definition 10.2.7: (super/sub)martingale

Let pΩ,ℱ, Pq be a probability space, p𝑀𝑡q𝑡ě0 Ă 𝐿1pΩq be a one parameter family of 𝐿1 random
variables, and pℱ𝑡q𝑡ě0 a filtration. We say that p𝑀𝑡q is a

‚ martingale w.r.t. pℱ𝑡q if
E r𝑀𝑡 | ℱ𝑠s “ 𝑀𝑠, @𝑡 ě 𝑠.

‚ super-martingale w.r.t. pℱ𝑡q if
E r𝑀𝑡 | ℱ𝑠s ď 𝑀𝑠, @𝑡 ě 𝑠.

‚ sub-martingale w.r.t. pℱ𝑡q if
E r𝑀𝑡 | ℱ𝑠s ě 𝑀𝑠, @𝑡 ě 𝑠.

10.3. Martingale transform

The example of gambler’s wins process can be extended as follows. We start from the following

Definition 10.3.1

Let pΩ,ℱ, Pq be a probability space, and pℱ𝑛q be a filtration. We say that p𝑋𝑛q Ă 𝐿pΩq is
non-anticipative (or adapted) w.r.t. (to) pℱ𝑛q if 𝑋𝑛 P ℱ𝑛 for every 𝑛 P N.
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If we think pℱ𝑛q as the information available at time 𝑛, saying that p𝑋𝑛q is non anticipative means that
events like t𝑋𝑛 P 𝐸u do not depend on the future. We now introduce a general way to generate martingales
based on a given one.

Proposition 10.3.2

Let p𝑀𝑛q Ă 𝐿2 is be a martingale w.r.t. the filtration ℱ𝑛 and p𝑋𝑛q Ă 𝐿2 be non anticipative w.r.t.
pℱ𝑛q. Let

𝑌𝑛 :“
𝑛´1
ÿ

𝑘“0

𝑋𝑘𝑑𝑀𝑘 , 𝑑𝑀𝑘 “ 𝑀𝑘`1 ´ 𝑀𝑘 .

Then, p𝑌𝑛q Ă 𝐿1 is a martingale w.r.t. pℱ𝑛q, also called martingale transform of 𝑋 w.r.t. 𝑀 .

Proof. Since 𝑋𝑘 , 𝑑𝑀𝑘 P 𝐿2, by the Cauchy-Schwarz inequality 𝑋𝑘𝑑𝑀𝑘 P 𝐿1, so 𝑌𝑛 P 𝐿1. We check
that p𝑌𝑛q is a martingale w.r.t. pℱ𝑛q. Since 𝑋𝑛 P ℱ𝑛, we have

Er𝑌𝑛`1 | ℱ𝑛s “ Er𝑌𝑛 ` 𝑋𝑛𝑑𝑀𝑛 | ℱ𝑛s “ 𝑌𝑛 ` 𝑋𝑛Er𝑑𝑀𝑛 | ℱ𝑛s,

and since p𝑀𝑛q is a martingale w.r.t. pℱ𝑛q,
Er𝑑𝑀𝑛 | ℱ𝑛s “ Er𝑀𝑛`1 ´ 𝑀𝑛 | ℱ𝑛s “ Er𝑀𝑛`1 | ℱ𝑛s ´ 𝑀𝑛 “ 0,

so Er𝑌𝑛`1 | ℱ𝑛s “ 𝑌𝑛, that is p𝑌𝑛q is a martingale w.r.t. pℱ𝑛q.

Under suitable conditions, a vice-versa also holds. Let 𝜀𝑘 be i.i.d. Bernoulli random variables with
Pp𝜀𝑘 “ 1q “ 𝑝, Pp𝜀𝑘 “ ´1q “ 1 ´ 𝑝 (here 0 ă 𝑝 ă 1). Let 𝜂𝑘 :“ 𝜀𝑘 ´ 2𝑝 ` 1, in such a way that
Er𝜂𝑘 “ 0. We define 𝑀0 “ 0,

𝑀𝑛 :“
𝑛
ÿ

𝑘“1

𝜂𝑘 .

Let ℱ𝑛 :“ 𝜎p𝜀1, . . . , 𝜀𝑛q “ 𝜎p𝜂1, . . . , 𝜂𝑛q. Since the 𝜂𝑘 are independent, p𝑀𝑛q is a martingale.

Theorem 10.3.3

Let p𝑌𝑛q Ă 𝐿1 be a martingale w.r.t. pℱ𝑛q. Then, there exists a non anticipative p𝑋𝑛q Ă 𝐿1 such
that

𝑌𝑛 :“ 𝑌0 `

𝑛´1
ÿ

𝑘“0

𝑋𝑘𝑑𝑀𝑘 .

Proof. Since 𝑌𝑘 P ℱ𝑘 , we have
𝑌𝑘 “ 𝜑𝑘p𝜀1, . . . , 𝜀𝑘q,
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for some Borel function 𝜑𝑘 . Since 𝑌𝑘 “ Er𝑌𝑘`1 | ℱ𝑘s, we have
𝜑𝑘p𝜀1, . . . , 𝜀𝑘q “ Er𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘`1q | 𝜀1, . . . 𝜀𝑘s

“ Er𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 , 1q1𝜀𝑘`1“1 | 𝜀1, . . . , 𝜀𝑘s ` Er𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 ,´1q1𝜀𝑘`1“´1 | 𝜀1, . . . , 𝜀𝑘s

“ 𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 , 1q Er1𝜀𝑘`1“1 | 𝜀1, . . . , 𝜀𝑘s
looooooooooooomooooooooooooon

𝑖𝑛𝑑𝑒𝑝
“ Er1𝜀𝑘`1“1s“Pp𝜀𝑘`1“1q“𝑝

`𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 ,´1qEr1𝜀𝑘`1“´1 | 𝜀1, . . . , 𝜀𝑘s
loooooooooooooomoooooooooooooon

“Er1𝜀𝑘`1“´1s“1´𝑝

“ 𝑝𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 , 1q ` p1 ´ 𝑝q𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 ,´1q.

Now,
𝑌𝑘`1 ´ 𝑌𝑘 “ 𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘`1q ´ 𝜑𝑘p𝜀1, . . . , 𝜀𝑘q.

For 𝜀𝑘`1 “ 1,
𝑑𝑌𝑘 “ 𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 , 1q ´ 𝜑𝑘p𝜀1, . . . , 𝜀𝑘q “ p1 ´ 𝑝q p𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 , 1q ´ 𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 ,´1qq

while, for 𝜀𝑘`1 “ ´1,
𝑑𝑌𝑘 “ 𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 ,´1q ´ 𝜑𝑘p𝜀1, . . . , 𝜀𝑘q “ ´𝑝 p𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 , 1q ´ 𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 ,´1qq .

Therefore, defining

𝑋𝑘 :“
𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 , 1q ´ 𝜑𝑘`1p𝜀1, . . . , 𝜀𝑘 ,´1q

2
P ℱ𝑘 ,

and recalling that 𝜂𝑘`1 “ 𝜀𝑘`1 ´ 2𝑝 ` 1 “ 2p1 ´ 𝑝q if 𝜀𝑘`1 “ 1 and “ ´2𝑝 if 𝜀𝑘`1 “ ´1, we just have
𝑑𝑌𝑘 “ 𝑋𝑘𝜂𝑘`1 “ 𝑋𝑘𝑑𝑀𝑘 .

From this,

𝑌𝑛 ´ 𝑌0 “

𝑛´1
ÿ

𝑘“0

𝑑𝑌𝑘 “

𝑛´1
ÿ

𝑘“0

𝑋𝑘𝑑𝑀𝑘 ,

as stated.

10.4. Exercises

Exercise 10.4.1 (˚). Let p𝑋𝑘q Ă 𝐿1 be independent with Er𝑋𝑘s “ 1. Let ℱ𝑛 :“ 𝜎p𝑋1, . . . , 𝑋𝑛q,
ℱ0 “ t∅,Ωu and define

𝑀0 :“ 1, 𝑀𝑛 :“
𝑛
ź

𝑘“1

𝑋𝑘 .

i) Check that p𝑀𝑛q Ă 𝐿1 is a martingale w.r.t. pℱ𝑛q.
ii) Is it true that if Er𝑋𝑘s ą 1, then p𝑀𝑛q is a sub-martingale?

Exercise 10.4.2 (˚). Let p𝑋𝑛q be a sub-martingale w.r.t. pℱ𝑛q. Define
𝑌𝑛 :“ maxp𝑋𝑛, 𝑎q.

Show that also p𝑌𝑛q is a sub-martingale w.r.t pℱ𝑛q.

Exercise 10.4.3 (˚˚). Let p𝑋𝑘q Ă 𝐿2pΩq be such that p𝑆𝑛q, 𝑆𝑛 “
ř𝑛

𝑘“1 𝑋𝑘 is a martingale w.r.t.
ℱ𝑛 :“ 𝜎p𝑋1, . . . , 𝑋𝑛q. Show that

Er𝑋𝑖𝑋 𝑗s “ 0, @𝑖 ‰ 𝑗 .
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Exercise 10.4.4 (˚˚). Let p𝑋𝑛q Ă 𝐿1pΩq be such that
Er𝑋𝑛`1 | ℱ𝑛s “ 𝑎𝑋𝑛 ` 𝑏𝑋𝑛´1,

with 0 ă 𝑎, 𝑏 ă 1 and 𝑎`𝑏 “ 1 andℱ𝑛 “ 𝜎p𝑋1, . . . , 𝑋𝑛q. Determine 𝛼 in such a way that p𝛼𝑋𝑛`𝑋𝑛´1q

be a martingale

Exercise 10.4.5 (˚˚). Let 𝑋𝑛 be Bernoulli with Pp𝑋𝑛 “ 1q “ 𝑝, Pp𝑋𝑛 “ ´1q “ 1 ´ 𝑝 and 𝑝 ‰ 1
2 .

Define

𝑌𝑛 :“

ˆ

𝑝

1 ´ 𝑝

˙𝑋𝑛

Check that p𝑌𝑛q is a martingale w.r.t. the natural filtration ℱ𝑛 :“ 𝜎p𝑋1, . . . , 𝑋𝑛q.

Exercise 10.4.6 (˚˚). Let p𝑋𝑘q be i.i.d. random variables with Er𝑋𝑘s ” 0 and Vr𝑋𝑘s ” 𝜎2. Check that

𝑀𝑛 :“

˜

𝑛
ÿ

𝑘“1

𝑋𝑘

¸2

´ 𝑛𝜎2

is a martingale w.r.t. the natural filtration of p𝑋𝑘q.

Exercise 10.4.7 (˚˚`). Let p𝑀𝑛q Ă 𝐿2 be a martingale w.r.t. pℱ𝑛q.
i) Check that if 𝑘 ă 𝑚 ă 𝑛 then Erp𝑀𝑛 ´ 𝑀𝑚q𝑀𝑘s “ 0.

ii) Check that Erp𝑀𝑛 ´ 𝑀𝑛q2 | ℱ𝑘s “ Er𝑀2
𝑛 | ℱ𝑘s ´ Er𝑀2

𝑚 | ℱ𝑘s.
iii) Check that D lim𝑛 Er𝑀2

𝑛s ď `8.
iv) Show that if Er𝑀2

𝑛s ď 𝐾 ă `8 for every 𝑛 P N, then necessarily p𝑀𝑛q is convergent in 𝐿2
norm when 𝑛 Ñ `8.

Exercise 10.4.8 (˚˚`). Let p𝑍𝑘q be independent random variables with

Pp𝑍𝑛 “ ˘𝑎𝑛q “
1

2𝑛2
, Pp𝑍𝑛 “ 0q “ 1 ´

1

𝑛2
,

where 𝑎1 “ 2, 𝑎𝑛 “ 4
ř𝑛´1

𝑘“1 𝑎𝑘 , 𝑛 ě 2.
i) Check that 𝑀𝑛 :“

ř𝑛
𝑘“1 𝑍𝑘 is a martingale w.r.t. ℱ𝑛 :“ 𝜎p𝑍1, . . . , 𝑍𝑛q.

ii) Discuss a.s. limit of p𝑀𝑛q.
iii) What about 𝐿1 convergence of 𝑀𝑛?

Exercise 10.4.9 (˚˚). At time 𝑛 “ 0, a nonempty urn contains 𝑏 black and 𝑤 white balls. On each
subsequent day, a ball is chosen at random from the urn (each ball in the urn has the same probability of
being picked) and then put back together with another ball of the same color. Therefore, at the end of day
𝑛, here are 𝑛` 𝑏`𝑤 balls in the urn. Let 𝐵𝑛 denote the number of black balls in the urn at day 𝑛, and let

𝑋𝑛 :“
𝐵𝑛

𝑏 ` 𝑤 ` 𝑛
.

Check that p𝑋𝑛q is a martingale w.r.t. to its natural filtration.
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Brownian Motion

11.1. Definition

The Brownian Motion (hereafter just BM) – equivalently, the Wiener process –, arises to describe
the irregular movement of small particles suspended in a fluid, caused by incessant collisions with the
fluid’s molecules. Despite continuity, typical trajectories are highly irregular, with apparently random
changes of direction, which makes them non differentiable. Empirical observations of the BM enlighten
a number of main features:

‚ trajectories 𝛾 “ 𝛾p𝑡q are continuous function of 𝑡;
‚ increments 𝛾p𝑡q ´ 𝛾p𝑠q are Gaussian, with mean 0 and variance proportional to 𝑡 ´ 𝑠;
‚ consecutive increments, that is 𝛾p𝑡q ´ 𝛾p𝑠q and 𝛾p𝑠q ´ 𝛾p𝑟q with 𝑟 ă 𝑠 ă 𝑡 are independent.

A natural model is to look at trajectories as outcomes of some time-dependent random variable,

𝑊 “ 𝑊p𝑡, 𝜔q : r0,`8rˆΩ ÝÑ R𝑑 .

with the agreement that
‚ for 𝜔 P Ω fixed, 𝑡 ÞÝÑ 𝑊p𝑡, 𝜔q is the trajectory;
‚ for 𝑡 P r0,`8r fixed, 𝜔 ÞÝÑ 𝑊p𝑡, 𝜔q is the time 𝑡 position. The notation𝑊𝑡 or𝑊p𝑡q is used for

the random variable𝑊p𝑡, 7q.
Such type of functions, depending on a scalar (usually interpreted as ”time”) and on a random parameter
𝜔 are called stochastic processes. For technical simplicity, we will focus on 𝑑 “ 1, the one-dimensional
BM.

Definition 11.1.1

Let pΩ,ℱ, Pq be a probability space. A function𝑊 : r0,`8rˆΩ ÝÑ R is called BM if
i) 𝑊0 “ 0 P´a.s.

ii) if 0 ă 𝑡1 ă . . . ă 𝑡𝑛,
p𝑊𝑡1 ,𝑊𝑡2 ´𝑊𝑡1 , . . . ,𝑊𝑡𝑛 ´𝑊𝑡𝑛´1q „ 𝒩p0, diagp𝑡1, 𝑡2 ´ 𝑡1, . . . , 𝑡𝑛 ´ 𝑡𝑛´1qq

iii) 𝑊7p𝜔q P 𝒞pr0,8rq P´a.s.

11.2. Lévy-Ciesielski construction

The original Wiener’s construction of the BM was based on a Fourier representation for the time
derivative of𝑊𝑡 :

B𝑡𝑊𝑡 “
ÿ

𝑛

xB𝑡𝑊𝑡 , 𝑒𝑛y𝑒𝑛,

95
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with p𝑒𝑛q the classic trigonometric basis. The proof is complicate, but Lévy and Ciesielsky found a much
easier way to do this by using the Haar basis. Let us recall that this is a basis for 𝐿2pr0, 1sq made of
functions

𝑒0p𝑡q ” 1, 𝑒𝑘,𝑛p𝑡q “

$

&

%

2
𝑛´1
2 , 𝑘´1

2𝑛 ď 𝑡 ă 𝑘
2𝑛 ,

´2
𝑛´1
2 , 𝑘

2𝑛 ď 𝑡 ă 𝑘`1
2𝑛 ,

0, otherwise.
𝑘 “ 1, . . . , 2𝑛 ´ 1, 𝑘 odd, 𝑛 P N,

We set ℐ :“ tp𝑘, 𝑛q : 𝑛 P N, 𝑘 “ 1, . . . , 2𝑛 ´ 1 oddu.

k-1

2n

k
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Figure 1. Haar’s functions (left), Schauder’s functions (right)

Now, if

(11.2.1) B𝑡𝑊𝑡 “ 𝑋0𝑒0p𝑡q `
ÿ

p𝑘,𝑛qPℐ

𝑋𝑘,𝑛𝑒𝑘,𝑛p𝑡q

the Fourier coefficients 𝑋0 and 𝑋𝑘,𝑛 are

𝑋0 “ xB𝑡𝑊𝑡 , 𝑒0y2 “

ż 1

0
B𝑡𝑊 𝑑𝑡 “ 𝑊1 ´𝑊0 “ 𝑊1,

𝑋𝑘,𝑛 “ xB𝑡𝑊𝑡 , 𝑒𝑘,𝑛y2 “ 2
𝑛´1
2

˜

ż 𝑘
2𝑛

𝑘´1
2𝑛

B𝑡𝑊𝑡 𝑑𝑡 ´

ż
𝑘`1
2𝑛

𝑘
2𝑛

B𝑡𝑊𝑡 𝑑𝑡

¸

“ 2
𝑛´1
2

“

𝑊𝑘{2𝑛 ´𝑊p𝑘´1q{2𝑛 ´
`

𝑊p𝑘`1q{2𝑛 ´𝑊𝑘{2𝑛
˘‰

.

Now, assuming 𝑊𝑡 is already defined, it is not difficult to check that the 𝑋𝑘,𝑛 are independent r.vs.
𝑋𝑘,𝑛 „ 𝒩p0, 1q. So, integrating the (11.2.1), we may expect that

(11.2.2) 𝑊𝑡p𝜔q “ 𝑋0p𝜔q

ż 𝑡

0
𝑒0p𝑠q 𝑑𝑠 `

ÿ

p𝑘,𝑛qPℐ

𝑋𝑘,𝑛p𝜔q

ż 𝑡

0
𝑒𝑘,𝑛p𝑠q 𝑑𝑠

It is conventient to introduce the so-called Schauder functions

𝑠0p𝑡q :“

ż 𝑡

0
𝑒0 “

ż 𝑡

0
1 “ 𝑡, 𝑠𝑘,𝑛p𝑡q :“

ż 𝑡

0
𝑒𝑘,𝑛 “

$

’

&

’

%

0, 𝑡 R r 𝑘´1
2𝑛 ,

𝑘`1
2𝑛 s,

2
𝑛´1
2 p𝑡 ´ 𝑘´1

2𝑛 q, 𝑡 P r 𝑘´1
2𝑛 ,

𝑘
2𝑛 s,

´2
𝑛´1
2 p𝑡 ´ 𝑘

2𝑛 q ` 1

2
𝑛`1
2

, 𝑡 P r 𝑘
2𝑛 ,

𝑘`1
2𝑛 s.
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Clearly, Schauder-s functions are continuous on r0, 1s so the series in (11.2.2) is made of continuous
functions. We prove now that the series is convergent in uniform norm (of 𝒞pr0, 1sq) with probability 1.

Theorem 11.2.1: Lévy–Ciesielski, 1961

Let 𝑋0, 𝑋𝑘,𝑛, p𝑘, 𝑛q P ℐ be i.i.d. random variables 𝒩p0, 1q on some pΩ,ℱ, Pq. Let 𝑠0, 𝑠𝑘,𝑛,
p𝑘, 𝑛q P ℐ be the Schauder functions on r0, 1s. Then,

(11.2.3) 𝑊𝑡p𝜔q :“ 𝑋0p𝜔q𝑠0p𝑡q `
ÿ

p𝑘,𝑛qPℐ

𝑋𝑘,𝑛p𝜔q𝑠𝑘,𝑛p𝑡q, 𝑡 P r0, 1s, 𝜔 P Ω,

is uniformly convergent with probability 1 and p𝑊𝑡q0ď𝑡ď1 fulfills the definition 11.1 in r0, 1s.

t t t

Proof. Let’s start introducing the notation

𝑆𝑛 :“
ÿ

𝑘ă2𝑛 , 𝑘 𝑜𝑑𝑑

𝑋𝑘,𝑛𝑠𝑘,𝑛, ùñ 𝑊 “ 𝑋0𝑠0 `

8
ÿ

𝑛“0

𝑆𝑛.

Notice that every Schauder function is 𝒞, therefore 𝑆𝑛 P 𝒞. Our goal is to prove uniform convergence with
probability 1, that is

ÿ

𝑛

}𝑆𝑛}8 ă `8, P´ 𝑎.𝑠.

The idea is to prove that

P

ˆ

D𝑁 : }𝑆𝑛}8 ď
1

𝑛2
, @𝑛 ě 𝑁

˙

“ 1,

or, equivalently

P

˜

č

𝑁

ď

𝑛ě𝑁

}𝑆𝑛}8 ą
1

𝑛2

¸

“ 0.

Applying Borel-Cantelli’s Lemma, we are led to estimate Pp}𝑆𝑛}8 ą 𝛼q. Now since 𝑠ℎ,𝑛 and 𝑠𝑘,𝑛 have
disjoint supports for ℎ ‰ 𝑘 (ℎ, 𝑘 odd), we have

}𝑆𝑛}8 “
1

2
𝑛`1
2

max
𝑘ă2𝑛 , 𝑘 𝑜𝑑𝑑

|𝑋𝑘,𝑛|.

Hence
Pp}𝑆𝑛}8 ą 𝛼q “ P

ˆ

max
𝑘ă2𝑛 , 𝑘 𝑜𝑑𝑑

|𝑋𝑘,𝑛| ą 2
𝑛`1
2 𝛼

˙

ď
ÿ

𝑘

P
´

|𝑋𝑘,𝑛| ą 2
𝑛`1
2 𝛼

¯

.
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Since 𝑋𝑘,𝑛 are all 𝒩p0, 1q, we have

Pp}𝑆𝑛}8 ą 𝛼q ď 2 ¨ 2𝑛´1

ż `8

2
𝑛`1
2 𝛼

𝑒´
𝑦2

2

?
2𝜋

𝑑𝑦.

Notice now that,
ż `8

𝑎

𝑒´
𝑦2

2 𝑑𝑦 ď

∫ `8

𝑎

𝑦

𝑎
𝑒´

𝑦2

2 𝑑𝑦 “
1

𝑎

„

´𝑒´
𝑦2

2

ȷ𝑦“`8

𝑦“𝑎

“
𝑒´ 𝑎2

2

𝑎
, @𝑎 ą 0.

so,

Pp}𝑆𝑛}8 ą 𝛼q ď
2𝑛

?
2𝜋

1

2
𝑛`1
2 𝛼

𝑒´ 2𝑛`1𝛼2

2 “
1

?
2𝜋

2
𝑛
2

𝛼
𝑒´2𝑛𝛼2

.

We can now conclude: taking 𝛼 “ 1
𝑛2 in the previous estimate

ÿ

𝑛

P

ˆ

}𝑆𝑛}8 ą
1

𝑛2

˙

ď
1

?
2𝜋

ÿ

𝑛

𝑛22𝑛{2𝑒
´ 2𝑛

𝑛4

being the series clearly convergent (for instance, by root test we have
´

𝑛22𝑛{2𝑒
´ 2𝑛

𝑛4

¯1{𝑛

“ 𝑛2{𝑛
?
2𝑒´ 2𝑛

𝑛5 ÝÑ

0). Therefore, Borel-Cantelli Lemma applies and the conclusion follows.
It remains to prove that 𝑊 fulfills Def. 11.1 for 𝑡 P r0, 1s. i) it is evident, ii) it follows by uniform
convergence. For simplicity, we just prove that𝑊𝑡 „ 𝒩p0, 𝑡q. To check this we compute the characteristic
function of𝑊𝑡 :

Er𝑒𝑖 𝜉𝑊p𝑡qs “ 𝑒´
𝜉2

2𝑡 .

By construction

Er𝑒𝑖 𝜉𝑊p𝑡qs “ E

„

lim
𝑁
𝑒𝑖 𝜉p𝑋0𝑠0`

ř𝑁
𝑛“0 𝑆𝑛q

ȷ

𝐿𝑒𝑏.
“ lim

𝑁
E
”

𝑒𝑖 𝜉p𝑋0𝑠0p𝑡q`
ř𝑁

𝑛“0 𝑆𝑛p𝑡qq
ı

.

By independence

E
”

𝑒𝑖 𝜉p𝑋0𝑠0p𝑡q`
ř𝑁

𝑛“0 𝑆𝑛p𝑡qq
ı

“ Er𝑒𝑖 𝜉 𝑠0p𝑡q𝑋0s

𝑁
ź

𝑛“0

ź

𝑘

Er𝑒𝑖 𝜉 𝑠𝑘,𝑛p𝑡q𝑋𝑘,𝑛 s,

and because every 𝑋0 and 𝑋𝑘,𝑛 is a standard gaussian 𝒩p0, 1q we have

Er𝑒𝑖 𝜉 𝑠0p𝑡q𝑋0s “ 𝑒´
𝜉2𝑠0p𝑡q2

2 , Er𝑒𝑖 𝜉 𝑠𝑘,𝑛p𝑡q𝑋𝑘,𝑛 s “ 𝑒´
𝜉2𝑠𝑘,𝑛p𝑡q2

2 ,

so
Er𝑒𝑖 𝜉𝑊p𝑡qs “ lim

𝑁
𝑒´

𝜉2

2 p𝑠0p𝑡q2`
ř𝑁

𝑛“0

ř

𝑘 𝑠𝑘,𝑛p𝑡q2q.

To finish just notice that

𝑠𝑘,𝑛p𝑡q2 “

ˆ
ż 𝑡

0

𝑒𝑘,𝑛p𝑠q 𝑑𝑠

˙2

“ x𝜒r0,𝑡s, 𝑒𝑘,𝑛y22,
𝑃𝑎𝑟𝑠𝑒𝑣𝑎𝑙

ùñ lim
𝑁

˜

𝑠0p𝑡q2 `

𝑁
ÿ

𝑛“0

ÿ

𝑘

𝑠𝑘,𝑛p𝑡q2

¸

“ }𝜒r0,𝑡s}
2
2 “ 𝑡,

and by this, finally, we get Er𝑒𝑖 𝜉𝑊p𝑡qs “ 𝑒´
𝑡 𝜉2

2 , that is𝑊p𝑡q „ 𝒩p0, 𝑡q.

To complete the construction of the BM we need to show that it can be defined on 𝑡 ě 0 and not
only for 𝑡 P r0, 1s. This can be done in the following way. Let p𝑊𝑛q independent BMs on r0, 1s (this
can be done by choosing countable copies of coefficients 𝑋 for the series (11.2.3) in such a way they are
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independent). We define

𝑊p𝑡q :“

$

’

’

’

&

’

’

’

%

𝑊0p𝑡q, 𝑡 P r0, 1s,

𝑊0p1q `𝑊1p𝑡 ´ 1q, 𝑡 P r1, 2s,

𝑊0p1q `𝑊1p1q `𝑊2p𝑡 ´ 2q, 𝑡 P r2, 3s,
...

It is easy to check that𝑊 is now a BM.

11.3. Exercises

Exercise 11.3.1 (˚). Let𝑊 be a BM. Show that, for 𝜆 ‰ 0, r𝑊p𝑡q :“ 𝜆𝑊p𝑡{𝜆2q is a BM.

Exercise 11.3.2 (˚˚). Let𝑊 and r𝑊 be two independent BMs and 𝜌 Ps ´ 1, 1r a constant. Define

𝑋𝑡 “ 𝜌𝑊𝑡 `
a

1 ´ 𝜌2 r𝑊𝑡 , 𝑡 ě 0.

i) Check that 𝑋𝑡 is a BM.
ii) More in general, for which values 𝑎, 𝑏 is 𝑋𝑡 “ 𝑎𝑊𝑡 ` 𝑏 r𝑊𝑡 a BM?

Exercise 11.3.3 (˚˚). Let p𝑊𝑡q be a BM. Which of the following processes are still BM?
i) ´𝑊𝑡

ii)
?
𝑡𝑊1

iii) 𝑊2𝑡 ´𝑊𝑡

Exercise 11.3.4 (˚˚). Let p𝑊𝑡q be a BM, ℱ𝑡 its natural filtration.
i) Check that p𝑊𝑡q is a martingale w.r.t. pℱ𝑡q.

ii) Determine if p𝑊2
𝑡 q is a martingale/sub-martingale/super-martingale.

iii) Determine 𝑓 p𝑡q in such a way that𝑊2
𝑡 ´ 𝑓 p𝑡q be a martingale.

Exercise 11.3.5 (˚˚`). Show that, for 0 ă 𝑠 ă 𝑡,

P p𝑊𝑠 ą 0,𝑊𝑡 ą 0q “
1

4
`

1

2𝜋
arcsin

c

𝑠

𝑡
.

Exercise 11.3.6 (˚˚). Let 𝑋 :“
∫ 𝑏
0
𝑊p𝑡q2 𝑑𝑡. Compute Er𝑋s and Er𝑋2s. (hint: you can use Fubini’s

theorem to exchange E with
∫

if required).

Exercise 11.3.7 (˚˚`). Let 𝑋 “
∫ 𝑏
0
𝑊p𝑡q 𝑑𝑡. Determine the distribution of 𝑋 . (hint: compute the

characteristic function of 𝑋; you can use the approximation∫ 𝑏

0
𝑓 p𝑡q 𝑑𝑡 “ lim

𝑛

1

𝑛

ÿ

𝑘

𝑓

ˆ

𝑘
𝑏

𝑛

˙

.

Exercise 11.3.8 (˚˚`). Let𝑊 be a BM. Show that r𝑊p𝑡q :“ 𝑡𝑊p1{𝑡q if 𝑡 ą 0 and r𝑊p0q “ 0 is still a BM
(the difficult part is the continuity at 𝑡 “ 0`).
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Brownian Paths

We explore some properties of brownian paths that emphasize their irregular character.

12.1. Length

An important feature of Brownian paths is that they have infinite lengths. We start recalling the
concept of length of a curve 𝛾 “ 𝛾𝑡 : r𝑎, 𝑏s ÝÑ R𝑑:

ℒr𝑎,𝑏sp𝛾q :“ sup
𝜋

ÿ

𝑘

|𝛾𝑡𝑘`1 ´ 𝛾𝑡𝑘 | “: sup
𝜋
𝑆1p𝛾; 𝜋q,

where 𝜋 “ t𝑡0 “ 𝑎 ă 𝑡1 ă . . . ă 𝑡𝑛 “ 𝑏u is a subdivision of r𝑎, 𝑏s. We define

|𝜋| :“ max
𝑘

t|𝑡𝑘`1 ´ 𝑡𝑘 |u.

It is an easy exercise to prove that if 𝛾 P 𝒞pr𝑎, 𝑏sq then

ℒr𝑎,𝑏sp𝛾q “ lim
|𝜋|Ñ0

𝑆1p𝛾; 𝜋q.

It is convenient to introduce also the quadratic variation

𝑆2p𝛾; 𝜋q :“
ÿ

𝑘

|𝛾𝑡𝑘`1 ´ 𝛾𝑡𝑘 |2.

We start by proving the following

Lemma 12.1.1

𝑆2p𝑊, 𝜋q
𝐿2pΩq
ÝÑ 𝑏 ´ 𝑎 p|𝜋| ÝÑ 0q

Proof. Notice that

}𝑆2p𝑊 ; 𝜋q ´ p𝑏 ´ 𝑎q}22 “ E
”

p𝑆2p𝑊 ; 𝜋q ´ p𝑏 ´ 𝑎qq
2
ı

“ E
“

𝑆2p𝑊 ; 𝜋q2 ´ 2p𝑏 ´ 𝑎q𝑆2p𝑊 ; 𝜋q ` p𝑏 ´ 𝑎q2
‰

“ Er𝑆2p𝑊 ; 𝜋q2s ´ 2p𝑏 ´ 𝑎qEr𝑆2p𝑊 ; 𝜋qs ` p𝑏 ´ 𝑎q2.

101
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Now, by definition

Er𝑆2p𝑊 ; 𝜋q2s “ E

»

–

˜

ÿ

𝑘

p𝑊𝑡𝑘`1
´𝑊𝑡𝑘 q2

¸2
fi

fl

“
ÿ

𝑘

E
“

p𝑊𝑡𝑘`1
´𝑊𝑡𝑘 q4

‰

`
ÿ

ℎ‰𝑘

E
“

p𝑊𝑡𝑘`1
´𝑊𝑡𝑘 q2p𝑊𝑡ℎ`1

´𝑊𝑡ℎq2
‰

“ 3
ÿ

𝑘

p𝑡𝑘`1 ´ 𝑡𝑘q2 `
ÿ

ℎ‰𝑘

Erp𝑊𝑡𝑘`1
´𝑊𝑡𝑘 q2sErp𝑊𝑡ℎ`1

´𝑊𝑡ℎq2s

“ 3
ÿ

𝑘

p𝑡𝑘`1 ´ 𝑡𝑘q2 `
ÿ

ℎ‰𝑘

p𝑡𝑘`1 ´ 𝑡𝑘qp𝑡ℎ`1 ´ 𝑡ℎq

“ 3
ÿ

𝑘

p𝑡𝑘`1 ´ 𝑡𝑘q2 `
ÿ

ℎ

p𝑇 ´ p𝑡ℎ`1 ´ 𝑡ℎqqp𝑡ℎ`1 ´ 𝑡ℎq

“ 2
ÿ

𝑘

p𝑡𝑘`1 ´ 𝑡𝑘q2 ` p𝑏 ´ 𝑎q2.

Moreover

Er𝑆2p𝑊 ; 𝜋qs “ E

«

ÿ

𝑘

p𝑊𝑡𝑘`1
´𝑊𝑡𝑘 q2

ff

“
ÿ

𝑘

p𝑡𝑘`1 ´ 𝑡𝑘q “ 𝑏 ´ 𝑎,

so

E
”

p𝑆2p𝑊 ; 𝜋q ´ p𝑏 ´ 𝑎qq
2
ı

“ 2
ÿ

𝑘

p𝑡𝑘`1 ´ 𝑡𝑘q2 ` p𝑏 ´ 𝑎q2 ´ 2p𝑏 ´ 𝑎q2 ` p𝑏 ´ 𝑎q2 “ 2
ÿ

𝑘

p𝑡𝑘`1 ´ 𝑡𝑘q2

ď |𝜋|
ÿ

𝑘

p𝑡𝑘`1 ´ 𝑡𝑘q “ p𝑏 ´ 𝑎q|𝜋|.

Therefore, if |𝜋| ÝÑ 0 then
E
”

p𝑆2p𝜋q ´ p𝑏 ´ 𝑎qq
2
ı

ď p𝑏 ´ 𝑎q|𝜋| ÝÑ 0,

from which the conclusion follows. □

Proposition 12.1.2

(12.1.1) P
`

ℒr𝑎,𝑏sp𝑊q “ `8
˘

“ 1.

Proof. Notice that

𝑆2p𝑊 ; 𝜋q “

𝑛
ÿ

𝑘“1

p𝑊𝑡𝑘`1
´𝑊𝑡𝑘 q2 ď max

𝑘
|𝑊𝑡𝑘`1

´𝑊𝑡𝑘 |

𝑛
ÿ

𝑘“1

|𝑊𝑡𝑘`1
´𝑊𝑡𝑘 |

ď max𝑘 |𝑊𝑡𝑘`1
´𝑊𝑡𝑘 |ℒr𝑎,𝑏sp𝑊q.

Since𝑊7 P 𝒞pr𝑎, 𝑏sq it is uniformly continuous (Heine-Cantor theorem), it means that
@𝜀 ą 0, D𝛿p𝜀q ą 0, : |𝑡 ´ 𝑠| ď 𝛿p𝜀q, ùñ |𝑊𝑡 ´𝑊𝑠| ď 𝜀,
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so, in particular,
|𝜋| ď 𝛿p𝜀q, ùñ max

𝑘
|𝑊𝑡𝑘`1

´𝑊𝑡𝑘 | ď 𝜀.

Thus, if ℒr𝑎,𝑏sp𝑊q ă `8, we would deduce that

𝑆2p𝑊 ; 𝜋q ď ℒr𝑎,𝑏sp𝑊q𝜀,

and in particular,
lim

|𝜋|Ñ0
𝑆2p𝑊 ; 𝜋q “ 0.

However, from the Lemma we proved that 𝑆2p𝑊 ; 𝜋q
𝐿2

ÝÑ 𝑏 ´ 𝑎, hence, extracting a subsequence, 𝑆2p𝑊 ; 𝜋q ÝÑ

𝑏 ´ 𝑎 ą 0 P´a.s.: in particular 𝑆2p𝑊 ; 𝜋q ÝÑ 0 with P “ 0, hence, necessarily ℒp𝑊q ă `8 with P “ 0. □

12.2. Regularity

We know that𝑊𝑡 ´𝑊𝑠 „ 𝒩p0, 𝑡 ´ 𝑠q, so, in particular

Erp𝑊𝑡 ´𝑊𝑠q
2s “ 𝑡 ´ 𝑠.

This could suggest that p𝑊𝑡 ´𝑊𝑠q
2 « 𝑡 ´ 𝑠, that is |𝑊𝑡 ´𝑊𝑠| « |𝑡 ´ 𝑠|1{2. So, brownian paths would

be more than continuous, but still non differentiable.

Definition 12.2.1

We say that 𝑓 P 𝒞pr𝑎, 𝑏sq is 0 ă 𝛼 ď 1 Hölder continuous (and we write 𝑓 P 𝒞
𝛼pr𝑎, 𝑏sq) on

r𝑎, 𝑏s if

r 𝑓 s𝛼,r𝑎,𝑏s “ sup
𝑡‰𝑠Pr𝑎,𝑏s

| 𝑓𝑡 ´ 𝑓𝑠|

|𝑡 ´ 𝑠|𝛼
ă `8.

Case 𝛼 “ 1 corresponds to Lipschitz continuous functions that, as known, are almost everywhere
differentiable. If we expect that brownian paths are 1{2 Hölder continuous, the following results won’t
be surprising.

Proposition 12.2.2

P p𝑊 P 𝒞
𝛼q “ 0, @ 𝛼 ą

1

2
.

Proof. We notice that

𝑆2p𝑊 ; 𝜋q “
ÿ

𝑘

ˆ

|𝑊𝑡𝑘`1
´𝑊𝑡𝑘 |

|𝑡𝑘`1 ´ 𝑡𝑘 |𝛼

˙2

|𝑡𝑘`1 ´ 𝑡𝑘 |2𝛼 ď r𝑊7s2
𝛼,r𝑎,𝑏s

ÿ

𝑘

|𝑡𝑘`1 ´ 𝑡𝑘 |2𝛼

“ r𝑊7s2
𝛼,r𝑎,𝑏s

ÿ

𝑘

|𝑡𝑘`1 ´ 𝑡𝑘 ||𝑡𝑘`1 ´ 𝑡𝑘 |2𝛼´1
𝛼ą1{2

ď r𝑊7s2
𝛼,r𝑎,𝑏s

|𝜋|2𝛼´1
ÿ

𝑘

|𝑡𝑘`1 ´ 𝑡𝑘 |

ď r𝑊7s2
𝛼,r𝑎,𝑏s

|𝜋|2𝛼´1|𝑏 ´ 𝑎|.
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So, if r𝑊7s𝛼,r𝑎,𝑏s ă `8 then 𝑆2p𝑊 ; 𝜋q ÝÑ 0. But we know that this happens almost never, so we conclude that
Pp𝑊 P 𝒞

𝛼q “ Ppr𝑊p¨qs𝛼,r𝑎,𝑏s ă `8q “ 0. □

The same conclusion holds for 𝛼 “ 1
2 (see exercises) but the previous proof does not work. It is however

true that paths are 𝛼 ă 1
2 Hölder continuous. To achieve this is much more complex. We will limit to

sketch the argument.
The starting point is a remarkable inequality:

Lemma 12.2.3: Besov’s inequality

Let 𝑓 P 𝒞pr𝑎, 𝑏sq, 𝑝 ě 1 and 𝛽 ą 1
𝑝

. Then, there exists a constant 𝐶 “ 𝐶p𝑎, 𝑏, 𝛽, 𝑝q such that

(12.2.1) | 𝑓 p𝑡q ´ 𝑓 p𝑠q| ď 𝐶|𝑡 ´ 𝑠|𝛽´1{𝑝

ˆ
ż 𝑏

𝑎

ż 𝑏

𝑎

| 𝑓 p𝑢q ´ 𝑓 p𝑣q|𝑝

|𝑢 ´ 𝑣|1`𝛽𝑝
𝑑𝑢 𝑑𝑣

˙1{𝑝

.

Accepting this inequality we have the

Theorem 12.2.4

P p𝒞𝛼pr𝑎, 𝑏sqq “ 1, @𝛼 ă
1

2
.

Proof. Let 𝛼 ă 1
2 . The goal is to prove that

P
`

r𝑊s𝛼,r𝑎,𝑏s ă `8
˘

“ 1.

To this aim notice that, from (12.2.1), we have

|𝑊𝑡 ´𝑊𝑠|

|𝑡 ´ 𝑠|𝛽´1{𝑝
ď 𝐶

ˆ∫ 𝑏

𝑎

∫ 𝑏

𝑎

|𝑊𝑢 ´𝑊𝑣|𝑝

|𝑢 ´ 𝑣|1`𝛽𝑝
𝑑𝑢𝑑𝑣

˙1{𝑝

so,

r𝑊s𝛽´1{𝑝 ď 𝐶

ˆ∫ 𝑏

𝑎

∫ 𝑏

𝑎

|𝑊𝑢 ´𝑊𝑣|𝑝

|𝑢 ´ 𝑣|1`𝛽𝑝
𝑑𝑢𝑑𝑣

˙1{𝑝

Now, take 𝑝 “ 2𝑛 (here 𝑛 P N, 𝑛 ě 1): we have

r𝑊s2𝑛
𝛽´1{2𝑛 ď 𝐶

∫ 𝑏

𝑎

∫ 𝑏

𝑎

|𝑊𝑢 ´𝑊𝑣|2𝑛

|𝑢 ´ 𝑣|1`𝛽2𝑛
𝑑𝑢𝑑𝑣.

Taking expectations, and recalling that𝑊𝑢 ´𝑊𝑣 „ 𝒩p0, 𝑢 ´ 𝑣q so, in particular,

Er|𝑊𝑢 ´𝑊𝑣|2𝑛s “ 𝐾𝑛|𝑢 ´ 𝑣|𝑛,
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for some constant 𝐾𝑛, we have

E
”

r𝑊s2𝑛
𝛽´1{2𝑛

ı

ď 𝐶E

„∫ 𝑏

𝑎

∫ 𝑏

𝑎

|𝑊𝑢 ´𝑊𝑣|2𝑛

|𝑢 ´ 𝑣|1`2𝛽𝑛
𝑑𝑢𝑑𝑣

ȷ

“ 𝐶

∫ 𝑏

𝑎

∫ 𝑏

𝑎

E

„

|𝑊𝑢 ´𝑊𝑣|2𝑛

|𝑢 ´ 𝑣|1`2𝛽𝑛

ȷ

𝑑𝑢𝑑𝑣

“ 𝐶

∫ 𝑏

𝑎

∫ 𝑏

𝑎

E
“

|𝑊𝑢 ´𝑊𝑣|2𝑛
‰

|𝑢 ´ 𝑣|1`2𝛽𝑛
𝑑𝑢𝑑𝑣 “ 𝐶

∫ 𝑏

𝑎

∫ 𝑏

𝑎

𝐾𝑛|𝑢 ´ 𝑣|𝑛

|𝑢 ´ 𝑣|1`2𝛽𝑛
𝑑𝑢𝑑𝑣

“ 𝐶𝐾𝑛

∫ 𝑏

𝑎

∫ 𝑏

𝑎

1

|𝑢 ´ 𝑣|1`2𝛽𝑛´𝑛
𝑑𝑢𝑑𝑣 ă `8 ðñ 1 ` 2𝛽𝑛 ´ 𝑛 ă 1, ðñ 𝛽 ă

1

2

So, in particular,

P
`

r𝑊s𝛽´1{2𝑛 ă `8
˘

“ 1, @𝛽 ă
1

2
, 𝑛 ě 1.

In conclusion, if 𝛼 ă 1
2 is fixed, piking 𝛽 in such a way that 𝛼 ă 𝛽 ă 1

2 and 𝑛 large enough such that 𝛽 ´ 1
2𝑛 ą 𝛼

(well possible because 1
2𝑛 ÝÑ 0), we have r𝑊s𝛼 ď r𝑊s𝛽´1{2𝑛, so

P pr𝑊s𝛼 ă `8q ě P
`

r𝑊s𝛽´1{2𝑛 ă `8
˘

“ 1,

from which the conclusion finally follows. □

12.3. Differentiability

Since𝒞1 functions (that is, continuous function together with their derivative) are easily𝒞𝛼 functions
for every 𝛼 ă 1, it follows that

P
`

𝑊7 P 𝒞
1pr𝑎, 𝑏sq

˘

ď P p𝑊7 P 𝒞
𝛼pr𝑎, 𝑏sqq “ 0, @

1

2
ă 𝛼 ă 1.

A slightly more general result can be easily achieved concerning the regularity of paths: paths are never
differentiable with probability 1!

Proposition 12.3.1

P pt𝜔 P Ω : DB𝑡𝑊𝑡p𝜔quq “ 0, @𝑡 ě 0.

Proof. We start recalling that

B𝑡𝑊𝑡p𝜔q “ lim
ℎÑ0

𝑊𝑡`ℎp𝜔q ´𝑊𝑡p𝜔q

ℎ
P R,

so, in particular,

DB𝑡𝑊p𝜔q, ùñ D𝐿 “ 𝐿p𝜔q, D𝛿0 “ 𝛿0p𝜔q :

ˇ

ˇ

ˇ

ˇ

𝑊𝑡`ℎp𝜔q ´𝑊𝑡p𝜔q

ℎ

ˇ

ˇ

ˇ

ˇ

ď 𝐿, @|ℎ| ď 𝛿0.

In other words,

tDB𝑡𝑊𝑡u Ă
ď

𝐿ą0

ď

𝛿0ą0

č

|ℎ|ď𝛿0

"
ˇ

ˇ

ˇ

ˇ

𝑊𝑡`ℎ ´𝑊𝑡

ℎ

ˇ

ˇ

ˇ

ˇ

ď 𝐿

*
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The goal is to prove that, for 𝐿 ą 0 and 𝛿0 ą 0 fixed,

P

¨

˝

č

|ℎ|ď𝛿0

"
ˇ

ˇ

ˇ

ˇ

𝑊𝑡`ℎ ´𝑊𝑡

ℎ

ˇ

ˇ

ˇ

ˇ

ď 𝐿

*

˛

‚“ 0.

To make this a countable calculation, without loss of generality, we will actually show

P

˜

č

𝑛ě𝑁

"
ˇ

ˇ

ˇ

ˇ

𝑊𝑡`1{𝑛 ´𝑊𝑡

1{𝑛

ˇ

ˇ

ˇ

ˇ

ď 𝐿

*

¸

“ P

˜

č

𝑛ě𝑁

"

ˇ

ˇ𝑊𝑡`1{𝑛 ´𝑊𝑡

ˇ

ˇ ď
𝐿

𝑛

*

¸

“ 0.

Now,𝑊𝑡`1{𝑛 ´𝑊𝑡 „ 𝒩p0, 1
𝑛

q so

P

ˆ

ˇ

ˇ𝑊𝑡`1{𝑛 ´𝑊𝑡

ˇ

ˇ ď
𝐿

𝑛

˙

“

?
2𝑛

?
𝜋

ż 𝐿
𝑛

0

𝑒
´

𝑦2

2 1
𝑛 𝑑𝑦

“

c

2𝑛

𝜋

ż 𝐿
𝑛

0

𝑒´
p

?
𝑛𝑦q2

2 𝑑𝑦

?
𝑛𝑦“𝑧
“

c

2

𝜋

ż 𝐿?
𝑛

0

𝑒´ 𝑧2

2 𝑑𝑧,

so

P

˜

č

𝑛ě𝑁

"

ˇ

ˇ𝑊𝑡`1{𝑛 ´𝑊𝑡

ˇ

ˇ ď
𝐿

𝑛

*

¸

ď

c

2

𝜋

ż 𝐿?
𝑛

0

𝑒´ 𝑧2

2 𝑑𝑧, @𝑛 ě 𝑁.

Letting 𝑛 Ñ `8 we have the conclusion. □

Remark 12.3.2. What actually the previous proof shows is that the event t𝜔 P Ω : DB𝑡𝑊𝑡p𝜔qu is a
subset of a probability 0 set. If the probability P is complete (that is, a subset of a null event is a (null)
event), then we conclude. □

12.4. Exercises

Exercise 12.4.1 (˚˚`). Let 𝜋𝑛 :“ t 𝑘
𝑛

: 𝑘 “ 0, . . . , 𝑛u be the subdivision on r0, 1s in 𝑛 equal parts.
Check that

𝑛´1
ÿ

𝑘“0

𝑊𝑘{𝑛p𝑊p𝑘`1q{𝑛 ´𝑊𝑘{𝑛q
𝐿2

ÝÑ
1

2

`

𝑊2
1 ´ 1

˘

.

Exercise 12.4.2 (˚˚˚). Let 𝜋𝑛 be a dyadic subdivision of r𝑎, 𝑏s, that is

𝜋𝑛 :“

"

𝑎 `
𝑘

2𝑛
p𝑏 ´ 𝑎q : 𝑘 “ 0, . . . 2𝑛

*

.

Then
𝑆2p𝑊 ; 𝜋𝑛q

𝑎.𝑠.
ÝÑ 𝑏 ´ 𝑎.

Warning: we proved that that 𝑆2p𝑊 ; 𝜋q
𝐿2p𝜔q
ÝÑ 𝑏 ´ 𝑎, so there is an a.s. convergent subsequence. Here,

one has to prove directly that p𝑆2p𝑊 ; 𝜋𝑛qq converges pointwise a.s. (hint: try to express the set where
𝑆2p𝑊 ; 𝜋𝑛q ­ÝÑ 𝑏 ´ 𝑎). □

Exercise 12.4.3. The goal is to prove that

P
´

𝑊 P 𝒞
1{2

¯

“ 0.



12.4. EXERCISES 107

Let 𝜋 be a subdivision of r𝑎, 𝑏s and set 𝑋𝑘 :“
𝑊p𝑡𝑘q´𝑊p𝑡𝑘´1q

?
𝑡𝑘´𝑡𝑘´1

. What kind of r.vs are the 𝑋𝑘? Hence, noticed that

r𝑊s 1
2
,r𝑎,𝑏s ě max𝑘 |𝑋𝑘 |, show that

P
´

r𝑊s 1
2
,r𝑎,𝑏s ď 𝜆

¯

“ 0, @𝜆 ą 0

and conclude. □
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