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Probability Space

Probability theory arises from the problem of making predictions under uncertainty. Historically,
probability was developed to analyze games of chance, where one has basically to count the favorable
outcomes over the possible outcomes. Probability largely remained in that realm until the nineteenth
century. In 1827, R. Brown first described what is now called Brownian motion (hereafter, BM): the
irregular movement of small particles suspended in a fluid, caused by incessant collisions with the fluid’s
molecules. Typical trajectories are highly irregular, with apparently random changes of direction, which
makes them hard to model. In the early twentieth century, L. Bachelier proposed a model for stock
prices based on Brownian-like paths, drawing the attention of mathematicians. A rigorous mathematical
description of BM was later provided by N. Wiener, influenced by the then-recent measure theory
developed by H. Lebesgue. Wiener’s visionary idea was to build a probabilistic structure on path space,
that is on the space of continuous functions w = w(t). This shed new light on probability and paved the
way for N. Wiener’s construction Kolmogorov’s 1933 axiomatization of modern probability theory.

Since then, Probability has undergone tremendous development in many directions, becoming a
central branch of mathematics. It is no coincidence that this growth has occurred alongside advances in
science and technology. Indeed, probability has proved to be an effective tool for describing complex
phenomena, where deterministic predictions give way to probabilistic ones. This is perhaps why prob-
ability is viewed as a practical tool, and probabilistic modeling as a genuine skill rather than a merely
illustrative device.

1.1. Basic definitions

From the formal point of view, a probability space is a measure space with total measure = 1.

Definition 1.1.1

A probability space is a measure space (Q, %, P) such that P(Q) = 1.

e Set Q is called sample space,

e measurable sets are called events, their measure P(E) is called probability of E.

e An event is said certain if P(E) = 1, impossible if P(E) = 0.
If & contains all the subsets of an impossible event, we say that (Q, #, P) is a complete probability
space.
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1. PROBABILITY SPACE

Example 1.1.2

Let Q = RY, & := M4 (Lebesgue class) and f € L' (R) be such that f > 0 a.e. and IR" f=1
We define

P(E) = jE f(x)dx, E€ My =: puys(E)

Then (R4, My, u £) is a complete probability space.

Example 1.1.3

Let Q be a generic set, F := P(Q). Let wg € Q. We define

0, wo¢E,
P(E) = =: 8, (E)
1, wogekE

Then (R, P(Q), 6., ) is a probability space.

1.1.1. Discrete Probability Space. The classical Probability is described by the following setup:

Proposition 1.1.4

Let Q be a finite or countable set, say Q = {w, : n € N}. Let (p,) < [0, 1] be such that
(1.1.1) dipa=1.
n

We call such (p,) a probability mass distribution. On (2, ?(Q)) we define
P(E):= ). pn=),pnle(wn).
wn€E n

Space (Q, 2(Q), P) is a probability space called discrete probability space.

Proor. Clearly, by (1.1.1), P(E) is well defined for every E € 9(Q). We have also that P(E) > 0 for
every event E. To check that P is a probability measure we need to verify that

i) P(@) = 0 (trivial) and P(Q) = >, pnla(wn) = >, pn = L.
ii) P is countably additive. Assume E = | |, Ex. Notice that, since every w belongs at most a only

one of the Ey,
1g(w) = Y 1E, ()
k

P(E) = > pn ) 15 (wn) = D0 Pule, () = D P(E). O
n k k n

k

thus

Discrete Probability Space model solves basically any everyday probabilistic framework. It is the classical
ancient probabilistic setup. The sample space Q represents of set of all possible outcomes.



1.1. BASIC DEFINITIONS

Example 1.1.5: Coin Tossing

The tossing experiment can be described by two possible outcomes, H for head, T for tail. The

sample space is Q := {H, T}. For a fair coin, py = pr = 3.

w

If the coin is unfair, we may have py # %, in that case pr = 1 — pg. This is called Bernoulli
model.

Example 1.1.6: Rolling a die

In this case Q := {1, ..., 6} with p, = %fornz 1,...,6.

Example 1.1.7: Rolling two dice

Suppose we want to describe the set of possible outcomes when rolling two dice. We can represent

a single trial by a pair (i, j) where i, j € {1,..., 6} are, resp., the outcomes of the first and second
die. In this case Q = {1,..., 6}2 and, if the outcome of each die is independent of the outcome
of the other’s, p; ; = Gi = % for (i, j) € Q.

Example 1.1.8: Binomial model

In one single day, a stock price can go Up with probability p and Down with probability 1 — p.
Precisely, if w is the value at beginning of the day, at the end of the day it can be either (1 + r)w
(with rate r > 0) if it goes Up, or %7 if it goes Down. Assuming that the n—th day behavior
is independent of the past, describe the space of outcomes after N days together with their
probabilities.

Proor. We notice that, no matter which is the order of Ups and Downs, if the price goes Up n times
and Down N — n times, the day N value is

N—
n 1 " _ 2n—N
(1+r) T w=(14r) w.
r

Since r > 0, whenn = 0,...,N, (1 + r)Q"’N takes N + 1 different values. Therefore, there are N + 1
different final states. We can identify these states with the number of Ups, so Q = {0, ..., N}. The state n
is obtained exactly when tossing N times an unfair coin with Prob. Up=p. For a single trial this probability
is p"(1 — p)N=". The number of different trials is the number of N—ples of Up and Down with n Ups,
that is the binomial coefficient(”). Thus,

N
pn = Prob.(n Ups) = < )p"(l —p)N" ne{0,...,N} = Q.
n

Let’s check that this is indeed a probability distribution: we have p, > 0 for every n and
N

N
dira=> (Z)p"(lp)’v” =(p+1-p"N =1
n=0

n=0




4 1. PROBABILITY SPACE

1.1.2. Basic properties of Probability measures. Since a probability measure is a particular type
of measure, it fulfills all the basic properties of any measure. We notice that, by additivity, for any event
E € &, we have

1 =P(Q) =P(E L E) =P(E) + P(E°),

from which

P(EC) = 1 —P(E).|

As every measure, a probability measure is continuous from below. In addition, since the total measure
P(Q) = 1 < +o0, a probability measures is always also continuous from above. An interesting fact is
the following: continuity from above at @ is in fact equivalent to countable additivity.

Proposition 1.1.9

Let P be a finitely additive probability on (€, % ). Then, the following properties are equivalent:
i) P is countably additive on & .
i1) P is continuous from above at @, that is

(En) <&, : Ep | @, = lmP(E,) =0.
n

Proor. i) = ii). It follows from the continuity from above of any countably additive finite measure.
ii) = i) Let (E,) € & be such that E, N E,,, = @ forn # m, and let E := | |, E, € . Then, setting
F, := E\| ;¢ Ex | @, so by the assumption

lim P (E\ L] Ek> =0.

k=0
Now, since

by finite additivity of P we have

P(E) =P<E\|i|Ek) +P<|_| Ek> =P<E\|1|Ek> + ) P(Ex) — 0+ iP(Ek). o
k

=0 k=0

1.2. Space of Sequences

A rudimentary model for the BM is the random walk model. We assume that a particle starts at the
origin, then, at each second it moves left or right with equal probability. A random walk is described by
an infinite sequence of L and R, like LLRLRRLRLRLRRRL .... The set of all possible sequences of
this type,

Q:{w=(w,) : w,e{R, L}, VneN}={R,L}".

is the path space. Imagine now we aim to introduce a probabilistic structure on this 2. The problem is
that Q is not countable: {0, 1}!" are all possible binary sequences, it is in correspondence 1-1 with [0, 1].
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1.2.1. Sample space. Without no particular effort, we can extend this framework. Let § =
{s1,...,sn} be any finite set. This set will be called state space. We define, as sample space, the
set Q made of all possible sequences of states, that is

Q:={w=(wy) : W, €S, ¥neN}=Ss"

In some models N can be replaced by Z without any relevant change. Our goal is to define on Q a structure
of probability space in such a way that natural sets are events to which we can assign a probability. The
natural sets we consider are called cylinders. These are sets for which only a finite number of components
of w are constrained, while all the remaining are free to take any value of S. Formally, for k € N, and
Eq,...,Er < S we set
Clk;Egx -+ xEp)={weQ : wy€Ey, ..., wr € Ex},

or, more in general, for £ < § k+1

Ck;E) ={weQ : (wop,...,wk) € E}.

Sets C(k; E) are called cylinders (this because they remind of geometrical cylinders, where some of the
coordinates are constrained to some domain, e.g. a disk, and others are free). We also set € the family
of all the cylinders, for all possible choices of k, and E — S*. Notice that

i) Q,? € €: indeed, for example,
o =C(0;2), Q=C(0,S).
ii) if C € € then also C¢ € €. Indeed,
Ck;E) ={weQ : (wo,...,0k) ¢ E} ={weQ : (wo,...,wi) € E°}

= C(k; E°).

iii) & is closed wrt finite unions. Let’s check this for C; U Co, C; = C(k;; E;), j = 1,2, cylinders.
Let k := max{kq, k2}, then

C(kj;Ej) = C(k; E; x SK=Ki)
so we can always assume that C; = C(k; E;) with the same k. Then
CiuCr={weQ : (wg,...,wx) € Ey UEy} =C(k;E1 U E3).
Unfortunately, € is not a c—algebra. For example, if @ € E < §, then

UC(n;E") ={weQ :w;eE Vj}¢%.

Definition 1.2.1

We say that &/ is an algebra of sets if
e 2,Qe d;
o if A € o then also A€ €
o ifAy,...,A, € &ithenUZzlAk ed.

Thus, & is an algebra of sets. We know that a natural o-—algebra is always available: it is (%), the
o —algebra generated by €, which is also the smallest c—algebra containing .
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1.2.2. Probability structure. Let’s now introduce a probabilistic structure on Q = SY. Let p :
S — [0, 1] be a probability mass distribution, so

Zps =1
SES
‘We now define
P:%—[01].

The idea is simple: if for example we consider the cylinder C(0; {s}) = {w € Q : wg = s}. It would be
natural to say

P(C(0;{s})) = Prob(wg = s) = ps.
This yields the definition
(1.2.1) P(C(k;E)):= Y.  PsyPss---Psi-
(S() ..... Sk)EE

This quantity is well posed. We need to check this because we can represent any cylinder in infinitely
many ways. For instance

Ck;E)=C(k+1L;E xS).
According to the (1.2.1) we have

P(C(k + LE x S) = Z(so ..... Sk,Sk+1)EEXS PsiPsy -+ PsiPsiia

= Z(so ..... si)€E Ps1Psa - - - Py Z Psiia
Sk+1€S

S
=1

= Z(so,...,sk)eE PsiPss - - Ps. = P(C(k; E)).

Similarly, C(k; E) = C(k+m; ExS™)and P(C(k; E)) = P(C(k+m; E x S™)). Furthermore, P(@) = 0
and

P(Q) = P(C(0;S)) = > ps = 1.
P is also additive. Indeed, if C;,Cy are disjoint cylinders, since we can always represent them as
C1 = C(k; Eq) and Cy = C(k; E2) then, necessarily, E1 and E2 must be disjoint. In this case,
P(Cr uCy) =P(C(k;E1 U E)) = Z(Sl ..... sOCEL OB, Ps1 T P

= Z(s1 ...... sk )EE1 Ps1 " Psi + Z(sl ...... sk )EE2 Psi1 " Psi

— B(C(k: E1)) + B(C(k; E2)) = B(Cy) + P(Cy).

In general, as we said, € is not a o—algebra. So, a countable union of cylinders might not be a cylinder.
If however this happens and the union is disjoint, it turns out that P is countably additive. To show this,
we first state an equivalent condition for countable additivity that holds for probability measures:

So, we need to prove the
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Lemma 1.2.2

Let (C,,) < € be a sequence of cylinders such that C,, | @. Then
limP(C,) = 0.
n

Proor. Suppose, by contradiction, that P(C,) +— 0. Since C,, | and P is finitely additive, easily
P(Cy,) |. So, the contradiction means that

Je >0, : P(C,) =&, VneN.

Iwe()Ca
n

The goal is to prove that

Since P(C,) = & > 0,C,, # @, s0

Jwy = (“)1,1 w12 W13 .. ) e Cy,
Jwy = (“)2,1 w29 W23 .. ) e Cy
Jwz = (w31 w32 w3z ...)€C3
Jw, = (Wn1 Wn2 wWpns ...)EC,

Let’s focus on the sequence of first components (w, 1) < S. Since S is finite, there is at least one of the
element of the sequence that repeats infintely many times. In other words,

H(n}) c N : Wp,1 = 1.
Let’s now consider the subsequence w,,1 and, in particular, the second coordinates (w,: 5) < S. By the

e
same argument, at least one of the elements of the sequence repeats infinitely many times, that is,
2 1y . — 5
A(n}) < (n;) = Wy2,2 = @2.

Notice that (w,2 1) € (w1 1) SO W,2 | = @;. Iterating this procedure we have that
J’ J’ J’

Let finally

w = (0’31,0’32, oo )
We claim that & € (), Cy. Indeed, C,, = C(ky; E,) for some k,, € N, E,, Skn . So

wE

Q

n < (a~)1,...,u~)kn)€En.
Notice that (@1, .. ., &k”) = (wn;(",l’ R wnf", kﬂ) which are the first k,, components of wnjk;,, € an,»n.
For j large enough, n*n = n, so C,kn < Cy, 80

J

(&1, 000 ,(Dkn) = (wnf",l’wn;f",? 0oo ’w"j—(",kn) € En,

from which the conclusion follows. O
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Definition 1.2.3

Let of be an algebra of sets of Q. A set-function P : &/ — [0, 1] is a pre-probability if
i) P(@) =0, P(Q) = 1.
ii) if (A,) < o issuch that | |, A, € o then

P <|7| An> - ;P(An).

It can be proved that any pre-probability can be extended in a unique way to the o-—algebra generated by
Ko/

Theorem 1.2.4: Carathéodory’s extension theorem

Let o/ < 9(Q) be an algebra of subsets and P : &/ — [0, 1] be a pre-probability. Then P admits
a unique extension to o ().

1.3. Exercises

Exercise 1.3.1 (+ geometric distribution). Let Q = N, p, := (1 — p)p" with 0 < p < 1. Check that
(pn) is a probability mass distribution.

Exercise 1.3.2 (+ Poisson distribution). Let Q = N, p,, := e~* fl—': for 2 > 0 fixed. Check that (p,,) is a
probability mass distribution.

Exercise 1.3.3 (). Let (Q,F,P) be a probability space, E,F two events such that P(E) = % and
1

P(F) = 3. Show that P(E " F) > 1.
Exercise 1.3.4 (). Let (Q, F,P) be a probability space, (E,) < F be sure events, that is P(E,) = 1
for every n. Then, also (), E, is a sure event.

Exercise 1.3.5 (xx). Let Q = [0,1], F := {E c [0,1] : E countable or E€countable}, and

0, E countable,
P:F —[0,1], P(E) :=
1, E°€, countable.

Determine whether (Q, F,P) is a probability space or not.

Exercise 1.3.6 (). Let Q be a sample space, F a o—algebra of events, P, Q two probability measures
onF.
i) Check that, ifP(E) = Q(E) for every E € & withP(E) < 3, then P = Q (that is, P(E) = Q(E)
for every E € &).
ii) Is i) still true if P(E) = Q(E) for every E € F withP(E) < § ?
Exercise 1.3.7 (x%). Let Q = N, & = P(Q) and define
_BEN{0,...,n—1}
= - .

P,(E) :
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1) Prove that P, is finitely additive. Is also countably additive?
ii) Define the class F < F as follows:
F:={EcZ : 3 lim P,(E)=:P(E)}.
n—+0o0
Check that & is closed for finite unions and P is finitely additive.
iii) Is & a o—algebra? Is P countably additive?

Exercise 1.3.8 (). Letting N — +00 into the binomial model we may obtain the Poisson model.
Precisely, consider a binomial model with parameter p = ﬁ and set

N _
p,ﬁv = <n>p'1§,(1—pN)N " n=0,...,N.

Show that

lim pl¥ = e
N—+w n!

(hint: use Stirling’s formula k! ~ 27rk’e‘—,f.)

Exercise 1.3.9 (x%). Let Q = S. For each of the following sets K determine if it is a cylinder and if it
belongs to o (%).

A singleton K := {®}, where & € Q.

LetUc S,and K :={weQ : w, €U, Vn>= N},

Letse S, K :={weQ : wy =s, Vk}

Letse S, and K := {w e Q : wi = s, for infinitely many k}.

Let P be the probability that originates from (ps)ses with 0 < ps < 1 for every s and ), ,_s ps = 1 What
is the P of previous examples?






Random Variables

2.1. Basic definitions

Let (Q, #,P) be a probability space. A random variable (random variable) is just an & —measurable
function X : Q@ — R. Usually, r.vs. are denoted by uppercase letters as X,Y,.... Therefore, all
properties of measurable functions apply. In particular, sum, difference, product of r.vs. is a random
variable, as well as the point-wise limit of a sequence of random variable is a random variable. We say
that a property p = p(w) holds P—almost surely (shortening: P—a.s.) if it holds almost everywhere in
the ordinary language of measures. So, for example, if X is a random variable,

X>20,P—as, < PX<0)=0.
If X > 0 P—a.s. it is always defined

J X dP,
Q

possibly equal to +-00. If X € L1(Q), then it is well defined the expected value of X (or, also, expectation
of X)

B[X] i L X dPeR.

An important value is the variance of X. This is defined for X € L?(Q) as

2
V[X]:=E [(X - E[X])z] — E[x?] - E[X]? = J X2 dp — <J X dP> .
Q Q
Notice that, by the CS inequality,
[B[x]| = [E[1- X]| <E[1]'?E[X*]'/* = E[x*]'?,
soif X € L? then X € L'. In general, the quantity

E[X*] = L X% dp, (k € N),

is called k—th moment of X (to be defined we need X € L¥(Q)).
Given X, Y random variables we define the covariance of X and Y as the quantity

Cov(X,Y) := E[(X — E[X])(Y — E[Y])].
By the CS inequality, Cov(X,Y) is well defined for X,Y e L? and
| Cov(X,Y)| < E[(X — E[X])*]"*E[(Y — E[Y])*]"* = V[X]"*V[r]"*.

11
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The quantity V[X]'/? is also called standard deviation. The linear correlation (or Pearson’s correla-
tion) is
Cov(X,Y)
XY)i= ——————.

p( ) V[X]1/2V[Y]1/2
The linear correlation is well defined provided X,Y € L? are not a.e. constants and, because of CS
inequality

p(X.Y) < L.

2.2. Law of a random variable

A random variable induces a natural probability on R equipped with Borel o-—algebra %r. We recall
that this is the o-—algebra generated by open sets of R. The idea is to define

ux(E) :=P(X € E), E € Brg.

To be sure that this definition makes sense, we need first to verify that {X € E} € & for every E is a
Borel set. This is the content of the following Proposition.

Proposition 2.2.1

Let (Q, #,P) be a probability space, X : Q — R a function. Then, the following properties are
equivalent:

1) X is a random variable.
i) {XeE}e %, VE € Bg.
Proor. ii) = 1) is trivial: since 9B is generated by open sets, it contains, in particular, all intervals
I < R, so by ii) we have {X € I} € & for every I interval, and this means that X € L(Q), thatis X is a
random variable.
Let’s prove that i) = ii). To this aim, define the family of sets

& ={FecPBr : {X€E}eF} c Bg.
The goal is to prove that & = . To this aim we will verify that
i) & contains the open sets (of R);
ii) & is a o —algebra.
From this, it follows that € S o ({open sets}) = Bg, and since by definition & < Py the conclusion
follows.
i) Let E be an open interval. By definition of measurable function {X € E} € . Now, if E is a generic open

set, we know that for every x € E there exists I, open neighbourhood of x (something like Jx — &, x + &)
such that I, < E. In this way
E = le.
X

‘We need to refine this union to a countable union. By density of Q in R, for every x € E we can find ¢, € Q
and an open neighbourhood J, such that x € J, < I,. Thus

E:UJqX,
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and since the (g )yeg are at most a countable number, say (¢ )xee = (rn)nen, We have
E=| |,
n

Therefore, since {X € J,, } € F by the first part of the argument and & is a o—algebra, we have

{XeE}=|J{Xel,}eF

ii) We check that € is a o-—algebra of subsets of R. First {X € R} = Q € &, thus R € €. Similarly,
{(Xeol=0eF,so0e @ IfE e, then, since

{XeE‘}={X€eE}eZ,
we have E€ € @. Finally, if (E,) < & we have

{Xe UEn} = U{XG E,) € F,

thus | J, En € .

Definition 2.2.2

Let (Q,%,P) be a probability space, X a random variable. We call law of X the probability
measure ux on (R, %r) defined by

ux(E):=P(X€E), E € Bg.

Example 2.2.3: constant random variable

The simplest possible example of random variable is a constant one, namely X = xg a.s.. In this
case the law of X is
1, X0 € E,
ﬂX(E):P(XEE): :5x0(E)'
0, xo¢E,
the delta Dirac 6 .

Example 2.2.4: Bernoulli random variable

The simplest non constant random variable is that one who takes two values, say X = 1 with
probability p and X = 0 with prob. 1 — p. We write X ~ Ber(p). The law of X is

0, E 40,1,
By E>1,E$0, -
:uX(E)_ 1_[7, E 350, Eﬁél, _pél(E)+(1 P)50(E),

1, Es>0,1.
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Example 2.2.5: Uniform random variable
A uniform random variable is a random variable taking values in [a, b] with law

ux(E) = —

where A; is the one-dimensional Lebesgue measure. We write X ~ U([a, b]).

A1(E N [a, b]),

2.3. Change of measure

By definition of law we can write
E[1e(X)] = (X € E) = ux(E) = | 1 dux.
R
By linearity, if s = ZZ:O ck1g, is a simple Borel function (that is E,, € By for every n), we have

E[s(X)] = E [Z cklEk] = ) ckE[lg, (X)] = kZ—:OCk JR 1g, dux = fRs dux.

k=0 k=0

This formula extends to any function ¢(X) provided ¢ be a Borel measurable function.

Proposition 2.3.1

Let (Q, #,P) be a probability space, X a random variable. Let ¢ = ¢(x) : R —> R be a Borel
measurable function. We have ¢(X) € L'(Q, F,P) iff ¢ € L' (R, Bg, ux) and the following
identity holds:

23.1) E[(X)] = | ¢ dux.

In particular,

Proor. Let ¢ € L, (R, %) be a positive Borel-function. As we know for general positive measurable
functions, there exists a sequence (s,) < L (R, %) of simple Borel functions such that s,, T ¢ on R.
Then, by monotone convergence,

lim Sn d/JX = J (]5 dﬂx.
n R R
On the other hand, s, (X) 1 ¢(X) P—a.s. and. by monotone convergence,
i 2[5, (X)) = E[6(0)].

So, formula (2.3.1) holds for every ¢ € L (R, %Br).
Let now ¢ € L(R, %Br) be a generic Borel-measurable function. The, as well knonw,

pe LR jx) —> Lyiwx=Engn<+n — ¢(X)eLL@P).
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In this case,

‘&¢Wx=k¢+@x—Lf7Wu=EW+@ﬂ—EW4Xﬂ=Hﬂxﬂ .

Example 2.3.2

Let X ~ U([a, b]). Then

1
E[X] = J x dux, where u(E) =
R b—a

M (E A [a, b]).

Notice that
1

1 b
’uX(E) B b—a JEm[a,b] = b—a J;; IE(X) .

SO
b
[ o) duxtv) = 2 [ ot ax.
R —aJg
whence b
1 b 1 [x217 a+b
E|X] = dx = — =
[X] b—aLx * b—a[Q]x_a 2
Notice also that
b 3qx=>b 3 3 2 2
1 1b° — b+b
E[X?] = Jx2dx il == a_artab .
b—al, b—al3],_, 3 b-a 3
Therefore

V[X] = E[X?] — E[X]? =

a2+ab+b2_ a-+b 2_(b—a)2
3 2 12

2.4. Markowitz’s Optimal Portfolio selection

Markowitz’s Optimal Portfolio selection model was introduced in 1952 to describe the efficient
selection of a portfolio. An investor seeks for the most efficient allocation of a wealth w in a portfolio
made of N risky assets and 1 risk free asset. The assets have known values x; (k = 1,...,N + 1,
k = N + 1 represents the risk free asset) at moment when the decision on the allocation is made, and
uncertain values X; at moment when uncertainty is resolved.

Let (a1, ...,an+1) the array of the allocations. Because of wealth constraint,

24.1) w=aixy+ -+ aNxXNy + AN+1XN+1-

Final wealth is then
W=a1X1+ - +anXny +an+1XN+1

The rate of return of each asset is the quantity R; such that

X; = (1+Rj)x;.
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Notice that, for the risk free asset, Ry 1 = r is constant. The portfolio return rate is then

N

N
W = Z aj(l + Rj)xj —I-a]v+1(1 +r)xN+1 =w+ Z aij'Rj + anN1rXN+1
j=1 j=1

N
ajxj AN+1XN+1
(14—2 ;}JR]'—F +W +F>W
j=1

=: (1+§-ﬁ+8N+1r>w

where 6; := a’wﬁ Notice that, because of the budget constraint (2.4.1), we have

N

1
Z 0 +0Nnt+1 = ™ (arx1 + -+ +ans1xn+1) = 1.
j=1

This allows a one variable reduction setting O 11 = 1 — Zj.v:l 0;,
)r) w,

Hereafter we use the notation W for the previous value, and we denote by

-

W= (1+5-1€+(1—5-1

R(O):=6-R+(1—6-T)r

the portfolio return rate. Notice that the array g is now unconstrained in R".

The efficient investor problem consists in determining the optimal allocation that combines the highest
expected rate of return R(é) with the minimum possible risk. We assume an underlying probability space
(Q, F,P). Here P is also called physical probability and, in the model, it reflects the beliefs of the
investor. The return rates Ry, ..., Ry of risky assets are r.vs. We assume moreover that the investor
is risk averse. This means that the investor is disappointed when an investment yields a high risk. We
assume as measure of risk variance

V[R] =E[(R — E[R])*]

Of course, this is a very limited way of measuring risk. For example, V[R] does not distinguish between
good states — when the rate of return R > E[R] is above its expectation — from bad states, when the
opposite happens. Nonetheless, since pioneering work of Markowitz, it is a very popular measure of risk.
The basic idea is that V[(R — E[R])?] emphasizes large displacements from expected return E[R]
To cope expected return with risk, Markowitz proposed a mixed target functional
- - Q -
MV[R(6)] = E[R(6)] - 5 V[R(6)]-

Here, o > 0 it is called risk aversion parameter, it yields a way to weight risk respect to expected return.
We can now formalize Markowitz’s Optimal Portfolio Selection Problem:

max MV[R(8)].

feRn
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We can easily solve the problem now. First notice that
R(6)=6-(R—F)+r,
and since, as easily checked, MV[R(6)] = MV[6 - (R — 7)] + r. Now,
B[ (R—7)] = 6 BIR—7] = 6. (7i—7),
where [i = E[ﬁ] is the array of expected return rates. Notice also that

V[é-(ﬁ—m:}a[(é.(ﬁ—ﬁ)ﬂ —E Y 6:6,(R — i) (R — uy) | = €G-8,
i,j

where C is the N x N covariance matrix
C = [Cij]’ Cij = COV(R,' - ,u,-,Rj — /,lj) = COV(R,',RJ').
In particular, C is a positive definite matrix. Therefore
MV[R(G)] = - (i —F) — gcé- é.
Assuming the covariance matrix C strictly positive definite, the target function is negative quadratic,
hence it has a global maximum 6* that verifies the first order condition
VMV[R(6%)] = ji — F — 0C6* = 0,

from which we obtain the well known Markowitz formula:

_. 1
6% = Ec—l(ﬁ—f).

2.5. Exercises

Exercise 2.5.1 (x%). Let X,Y € L? be non constant r.vs.

i) Check that p(aX + b,cY + d) = +p(X,Y), for every a,b,c,d € R.
i) (+) True or false: is p(X,Y) = +1 if Y = aX + b for some a,b € R? (hint: think to
Cauchy-Schwarz inequality)

Exercise 2.5.2 (+#). Show with an example that we may have p(X,Y?) = +1 and p(X,Y) = 0.
Exercise 2.5.3 («x). Let X,Y be two random variable on (Q, F,P) such that ux(I) = uy(I) for every
I < R interval.

i) Let § :={E € Br : ux(E) = uy(E)}. Check that 8 is a o —algebra.

ii) Deduce ux = uy.

Exercise 2.5.4 (xx). We consider an extension of the concept of measurable function. Let Q1 o two sets,
F1.2 two o —algebras of sets of, resp., Q1.2. We say thatamap T : Q1 — Qo is measurable wrt F1 o if
{T e E} € #1, VE € F».

We write T € L((Q1,F1); (Q2, F2)).

i) Check that T~1 (%) = {T"Y(E) : E € F2} is a sub o —algebra of .
ii) Check that by composing two measurable maps you get a measurable map.






Cumulative Distribution Function (cdf)

3.1. Definition and main properties

From the probabilistic point of view, a random variable X is fully described by its law. This is a
measure on R equipped with the Borel o —algebra. However, dealing with measures is not easy. It is
therefore natural to find some other mathematical tool to make the handling of a random variable a bit
easier. The cdf is a function associated to every random variable.

Definition 3.1.1

Let (Q,%,P) be a probability space, X a random variable. We call cumulative distribution
function of X the function Fx : R — [0, 1] defined as

Fx(x) :=P(X <x), (= ux(] —o0,x])), x e R.

The principal properties of cdf are listed in the following Proposition.

Proposition 3.1.2

Let (Q, #, P) be a probability space, Fx the cdf of the random variable X. The following properties
hold:
i) Fx is increasing, that is Fx(x) < Fx(y) for every x < y.
i) Fx(—o0) = limy_,_o Fx(x) = 0 and Fx(+00) = limy_, 1 Fx(x) = 1.
iii) Fyx is right continuous, that is

3 lim Fx(y) = Fx(x), Vx e R.
y—x+

iv) Fx has left limit, that is
3 lim Fx(y) < Fx(x), ¥x e R.

y—ox—
Proor. i) This is an easy consequence of monotonicity of probability measure P: if x < y then
{X < x} c {X < y}m thus

Fx(x) = B(X <x) <P(X <) = Fx(y).

ii) This follows from continuity properties of probability measure P. We first notice that, since by i)
Fx is monotonic, unilateral limits always exist. Thus, in particular, @ := limy_,_, Fx(x) and B :=
lim,_, o, Fx(x) exist. Now, for the first take n € Z and define E,, := {X < x,}. Notice that E,, | {X <
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—o0} = @ whenn | —oo. Since P is a finite measure, it is continuous from above, so

— = I <n)= li —
0 =P(2) nErPOOP(X\n) ”EIPCCFX(n) .

Similarly, E,, 1 {X < +00} = Q when n 1 +c0 thus, by continuity from below,
1=P(Q) nll)l}rloo P(X <n) nl—l>r4r—lac Fx(n) = B.

iii) By 1), left limit lim,_, Fx(y) exists, and since Fx 7, we have also limy_, ., Fx(y) > Fx(x). To
prove the equality, take y, | x and define E,, := {X < x,,}, in such a way that

En L[ )Ex =X <y}
K k

We claim this intersection is {X < x}. Indeed, since yx > x, {X < x} < {X < yi} for every kj thus
{X < x} < (W {X < yi}. Conversely, if w € [ {X < yi}, then X(w) < yi for every k. Letting
k —> +o0 we have X(w) < limy yx = x, thus w € {X < x}, and this proves [ |, {X < yx} < {X < x},
from which equality follows. Thus
E, | {X <x},

and by continuity from above the conclusion now follows.

iv) Existence of the left limit, once more, follows by the monotonic nature of Fx and since Fx(y) < Fx(x)
for every y < x, we deduce lim,_, . Fx(y) < Fx(x). mi

Example 3.1.3

Let X = xg a.s.. In this case the law of X is the delta Dirac 6,. The cdf is
Fx(x) = P(X < x) = px(] — 0,x]) = 6x,(] = 00, x]) = L, +o0[ (%)-

Fx(x)

1

Example 3.1.4

Let X ~ Ber(p) be a Bernoulli random variable of parameter p. The cdf is

0, x <0,
Fx(x) =ux(] —ow,x]) =% 1—-p, 0<x<1,
1, x=>1.
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Example 3.1.5

Let X ~ U(a, b). We have

0, x <a,
Fx(x) = px(] = o0,2]) = 7=~ oo,x] n [a, b)) = {32, a<x<bh,
1, x>b

Fx(x)

L~

‘ a b

To each random variable X it is associated a cdf Fx. The viceversa also holds:

Proposition 3.1.6

Assume that F = F(x) : R — [0, 1] verifies properties i)—iv) of Proposition 3.1. There exists
then a random variable X on a suitable probability space such that Fx = F.

Proor. For simplicity, we assume that F' be strictly increasing and continuous. Let (Q, F,P) :=
([0,1], %([0,1]), A1) where %([0, 1]) are the Borel sets of [0, 1]. Now, since we want

P(X <x)=41(X <x) = Fx(x),
the idea is to define, for w € [0, 1],

In this way we would have
PX <x)=Mt({wel01] : F(w) <x}) =ti({we[01] : w < F()}) = :([0, F(x)]) = F(x),

as desired.

3.2. Absolutely continuous random variable

Definition 3.2.1

Let (Q, #,P) be a probability space, X arandom variable. We say that X is absolutely continuous
(a.c.) with density fx € L'(R, B, 11) with respect to P if

dux = fx dx,
that is,

(3.2.1) ux(E) = J fx(x) dx, VE € B.
E

Clearly, a density fx is non negative and

JR fx(x)dx =ux(R) =P(XeR) =1.
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Moreover, if X is a.c. random variable with density f, we have
E[O(X)] = | ol0)futx) d.
This means that ¢(X) € L1(Q) iff ¢ € L1 (R, ux), iff

[ 161 fx(w) ax < 0.
So, in particular,
B[X] :J *fx(x) dv, B[X?] :J 2 f(x) d.
provided, respectively, ) -
JR x| fx (x) dx < +o0, JRXQfX(X) dx < +0.

If X is an a.c. random variable, then

Fx(x) :J

]=o0.x]

K a=[ e

From this we have the

Proposition 3.2.2

Let (Q, #,P) be a probability space, Fx the cdf of a random variable X. Then, X is absolutely
continuous with density fy iff

i) Fx € €(R);

i) Fx is a.e. differentiable and

Fy(x) = fx(x), a.e.x eR.

Proor. Necessity: let X be a.c. and let’s prove that i),ii),iii) hold. We already know that Fx is right
continuous with left limit. If x,, T x then, by monotone convergence,

Fn) = [ 1)) c) e — [ 1t fe) i = [ 1)y 5) o) e = Fx(e),

since singletons are null sets for the Lebesgue measure. This proves continuity. Differentiability is more
complex. We start noticing that if £ > 0,

B2 ) 2B L[ k) dy = [ Ot dy = £ = 6000),

£ € Jx

1
where 6, (1) = L1[o17(—%) is an approximate unit and f * & L, f. We want pointwise convergence.
We notice that the previous property implies that

Fx(x + &,,) — Fx(x)

(3.2.2) V(en), en — 0, I(en,) : — fx(x), a.e.

Eng
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Now,, pick an x for which the previous property is true and assume We claim that
. Fx(x+¢) — Fx(x)
3 lim
£—0 &
Indeed, if false, there would be &,, — 0 for which

= fx(x), a.e.x eR.

Fx(x +&,) — F
4 (lim x(x 88) x(x) fx(x)> > 0.
But then,
Fx(x + &n,) — F
4 <lim X+ em) — Fx() fX(x)) >0,
k Eny
that is

A1 (fx(x) # fx(x)) >0,

which is impossible!
Sufficiency: we assume i),ii) and iii) hold and we prove X is a.c. By ii) and the fundamental theorem of
integral calculus (weak form) we have

px(la.b]) =Pla <X <b) =P({X <b}\{X <a}) =P(X <b) —P(X < a)

b
= Fx(b) — Fx(a) = J Ix(y) dy,

and since Fy is continuous, from the continuity from above (valud for ux probability measure), we have

b
ux(fa.b)) = lm px(la.b]) = lim (Fx(b) ~ Fx(@)) = Fx(b) — Fx(a) = j fx(x) dx.

a—a—

In other words, ux(I) = L fx for every I interval, and since this extends to the o-—algebra generate by
intervals, that is to %R, we have that (3.2.1) holds, that is X is a.c.

Example 3.2.3

Constant and Bernoulli r.vs are not a.c. being their cdf not continuous. For X ~ U([a, b]) we
have

0, x,a, x > b, 1

b—a

a.

[

I} (x) -

, Lia,p (%) = fx(x).
—a @ <x<b.

a’

Density is also a practical way to introduce random variables. Here some remarkable examples.

3.2.1. Exponential. An exponential random variable, notation X ~ exp A, is a random variable
with density

fx(x) = e 1 o0 (%),

de™ dx = [—e W] F® = 0 — (—1) = 1). The cdf is

x=0

+00

with 4 > 0 (notice that JR fx = 0
0, x <0,

Fe) = [ st ay -

fg de W dy =[—e V]2 =1—e, x>0
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fx(x) Fx(x)

We have also
E[X] = fofx = IJOO Axe™ Y dx = %IOHO ue " du = %,
+00 _ 1 1 +00 _ 1
VIX] =], x%de ’lxdx—ﬁz/?(fo u’e ”du—l) = 3
Exponential random variable are used to model the distribution of random occurrence times.

3.2.2. Gaussian. A Gaussian (or normal) random variable, notation X ~ 4/ (m, 0'2) with m € R
and o2 > 0, is a random variable with density

1 ()cfm)2

fx(x) = e 20

v 2mo?

An X ~ (0, 1) is also called standard gaussian random variable. There is not an explicit formula for

the cdf . . ,
_(x=m) X—m
Fx(x) = J e 20?2 dx=® < ) ,
(x) —o0 V2ro? o

where @ is the cdf of the standard Gaussian
X 3 ﬁ dy
CD()C) = e 2 B

which is considered as an elementary function.

x(x) Fx(x)

The function

1 2
Erf(x) := —J e dy
VI )ox

D(x) = % (1 + Brf (\%))

E[X] = m, V[X]= o
Gaussian random variable are central in Probability Theory. Because of the Central Limit Theorem,
averages of independent random variable with the same distribution converge to gaussian distributions,
these last are used to model phenomena for which no particular information on the randomness is known.

is called error function and

We also have
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3.2.3. Gamma. This is a class of distributions that extends the exponentials. We recall that the
Euler’s I" function is defined by the integral

+00
Ia):= J u e " du.
0

It is not difficult to show that II'(e) € Riff @ — 1 > —1, that is @ > 0. We notice also that, if n € N,

'n+1) = 0+OO ue ™ du = (;roo w' (—e ) du = [—u"e " + 0+OO nu"le ¥ d¢
= nl'(n)
Then,
Fn)=m-DI'r-1)=nm—-1)n-2Tn—-2)=...=(n—-1)(n—2)---1I'(1),
and since

+00
ra) = J e $de =1,

0
we have I'(n) = (n — 1)!. Let now
faa(x) = Ca,/lx"_le_’lxl[o,Jroo[(x), (@ >1,2>0).

We determine C, , in such a way that f,, 4 be a probability density. Since

+00 +00
1 — Ax= 1 1 I'a
from which .
A9
dé =1, Cor= .
| foatrde =1, = Con= s

We say that a random variable X has gamma distribution X ~ I'(«a, 2) if it is a.c. with density

/la—l

fa.a(x) == mxaflefﬂxl[oaroo[(x)-

Notice that I'(1,1) = exp(4) and, for n € N,

fua(x) =

(n_ 1)')( e X[O,-l—CD[(x)'

— fipa(x)
f1,4(x)
f2.4(x)

It holds
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3.2.4. Cauchy. A Cauchy random variable X ~ C(xo,a) is a random variable with density

1 a

-_—. eR,a>0
ma?+ (x —xg)? (xo a>0)

fro.a(x) =

It is easy to verify that fx is a probability density. The cdf is

d _ y
Fypalx) = Ijoo Ix(y) dy = %ffoo W 2=1 [arctan 2 axo]

a

1

— L X—Xo 1
= narctan — + 3.

= % (arctan <=0 + Z)

_ o

X0 X0

If X ~ C(xg,a) then E[X] is not defined. Indeed,

_ _a Al _
E[|X]|] = JR x| fx (x) dx = - JR PR r— dx = 400,

being the intrgrand not integrable at +oo. Similarly, V[X] = +o0.

3.2.5. Log-Normal. A log-normal random variable, notation log X ~ ./ (m, c?) is a random vari-
able X = e¥ where Y ~ /(m,c?). We need a general result:

Proposition 3.2.4

Let X = ¢(Y) where ¢ is a regular 1 — 1 bijection and Y has density fy. Then
fx(x) = fr(¢71 ()67 (¥)].

Proor. Just notice that
px(E) =P(X€E)=P($(Y)€E) =P (Y € ¢ (E)) = pr(¢7"(E))

So, in particular, if X = ¢ with Y ~ 4 (m, o) we have ¢(y) = e¢” and ¢~ *(x) = log x, so

1 _ (logx—m)2

fx(x) = me 207 1o, yoo[(X)-
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For the cdf we have
g

Fx(x) = @ (k’gx—_’"> .

x(x)
Fx(x)

1
12 /__'

X m

‘We also have

o2
E[X] = ™7, V[X] = (e7 —1)e2mt7".

Log-normal distributions are used in Finance to model prices.
3.2.6. Piecewise regular cdfs. We now derive a representation formula for a regular cdf Fx with

a finite number of discontinuities. The conclusion holds under less demanding conditions, but this
representation is sufficient for many applied cases.

Theorem 3.2.5

Let Fx be the cdf of a random variable X. Assume that Fx € €' (R\{x1,...,xn}), where
X1 < x3 < ... < xp are the discontinuity points of Fx. Set

A = Fx(xk) — Fx(xk—) > 0. (k —1,... ,N)
There exists then f € L' (R) such that

N X
(3.2.3) Fx(x) = Z ArH(x — xi) +J f(y)dy, VxeR,
k=1 —®
=:F5(x) =Fge(x)

where H(u) = 1[g 4oo[(u) is the Heaviside function.

F5 is called singular component and Fy¢ is called absolutely continuous component.

Proor. For simplicity, we assume that Fx € €1 (R\{x*}). Let
fx(x) := Fy(x), xeR\{x*}
By the fundamental thm of Integral Calculus, if x < x* we have
Fx(x) — Fx(—o0 J fx(y)dy, <= Fx(x f fx(u) du, VYx < x*.

In particular,

Fx(x*—) = hm Fx(x J fx(u

x—x*—
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Setting A* := F(x*) — F(x*—) > 0, we have
Fx(x) = A*H(x —x™) + J fu) du, Vx <x*.
—
This formula holds also for x > x*. Indeed, if x* < y < x we have
X
Fx) = Fx() = [ fetw) du
y
and letting y —> x*+ we have
x 53 52 x
Fx(x) = FX(x*)—i-j fx(u) du = /l*—i—f Sfx(u) du—&-f Sfx(u) du =/l*H(x—x*)+J fx(u) du,
x# —0 x¥ -0

as claimed.

3.3. The classical Newsvendor model

The newsvendor model is a mathematical model in Operations Management used to determine optimal
inventory levels. A firm produces a certain quantity g of a good at unit cost ¢ > 0 selling at unit price
p > c and facing an uncertain demand D > 0. The origin of the name comes by analogy with the
situation faced by a newspaper vendor who must decide how many copies of the day’s paper to stock in
the face of uncertain demand and knowing that unsold copies will be worthless at the end of the day. It
is one of the most ancient inventory models dating back to XIX century.

Let us give a mathematical form to this problem. The key ingredient is the profit and loss statement
(P&L). Let g be the number of units produced/ordered at unit cost ¢. This quantity g is assumed to
be positive and determined by the firm. In particular, it is not uncertain. The total cost of production
is C(q) := —cq and it has a deterministic nature. Revenues come from the sale of goods at a future
time, when the demand D is uncertain and described by a random variable. The firm can sell only what
produced until the demand is satisfied at unit price p. Therefore, the revenues are

rq. D >gq, .
R(q) = = pmin(g, D).
pD, D <gq.

The P&L is then the business position
P(q) := R(q) — C(q) = pmin(g, D) — cq.
The P&L is then uncertain. We assume the firm aims to maximize the expected P&L, that is solving

maxE[P(q)].

Notice that, if D is a.c. with density fp and cdf Fp, we have
E[P(q)] = pE[min(q,D)] —cq = pE[q 1p>4 +Dlp<4] —cq
——

1-1p<qg

=p (q(l — Fp(q) + [ xfp(x) dX> —cq
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Now, being fp = F,, we have

Lq xfp(x) dx = Lq XF/D (x) dx = [xFp (x)]j

g - L‘] Fp(x) dx = qFp(q) — J Fp(x) dx,
)

Now,

Therefore, the optimal ¢ is

* —1 c
q =F (1——).
b p

For example, assume D has a uniform distribution in the range [0, c/l\] Then

0, x<O0,
Fp(x) =4 % 0<x<d,
1, x>d.
We have .
FD(q*)zl—E, — L1 ° = q*z(l—i)é\.
p d p p

3.4. Exercises
Exercise 3.4.1 (). Let Fx be the cdf of X. Use Fx to express the following probabilities:
Pla<X<bh), Pla<X<b), P(X=D), P(X =a).
Exercise 3.4.2 (). For each of the following F say if they are cdf of some random variable:

D) F(x) = (1= S )10 (x)
ii) F(x) = < arctanx + 3.
iii) F(x) := 3 + < arctan(x® — x)

Exercise 3.4.3 (). Let
0, x <0,

1-3 I x>o.
Is F the cdf of a random variable X ? If yes, what is the probability P(X > 3) and of P(X = 2)?

Exercise 3.4.4 (xx). Let X be a random variable with cdf Fx. What is the cdf of | X|?

29

Exercise 3.4.5 (xx). Let X be an absolutely continuous random variable with density fx. Show that also

X2 is a.c., and determine its density in terms of fx.
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Exercise 3.4.6 (+%). Let X ~ N (m, 02).

i) Determine if Y := +/|X| is a.c. and, in this case, compute its density fy.
ii) Determine if Y := Hﬁ is a.c. and, in this case, compute its density fy.

Exercise 3.4.7 (xx). Let X ~ exp(A). Determine the cdf of Y = [X] (the integer part of X).

Exercise 3.4.8 (). Let Py := (xq, yo) be a fixed point in the Cartesian plane with yo > 0. Consider the
straight line rg passing through point Py, where 0 is the angle formed with the vertical line through Py.
Assume that 0 is a uniformly distributed random variable taking values in the open interval (—%, %)
Determine the distribution of X, where X is the abscissa of the point where r g intersects the x-axis.

Exercise 3.4.9 (x#x). Let Fx be the cdf of a random variable X. For each x* discontinuity of Fx, we
define
Low :=]Fx (x* =), Fx (x™)[.
i) Check that, if x* # y* then Lix N Iyx = @.
ii) Deduce, from i), that the set D of discontinuity points of Fx is, at most, countable.



Multivariate random variables

4.1. Definitions

Together with scalar random variables, we consider also vector valued random variables. Let
X=(X,....,Xny) : Q — RY. We call X a random vector (or, multivariate random variable) if
each X; is a random variable (notation: X € L(Q) iff X; € L(Q) forall j = 1,...,N). If N = 2,
X = (X1, X2) is also called bi-variate random variable. We define the expected value of X as

E[X] := (E[X1],....E[XNn]) e RV,

provided X; € L! for j = 1,..., N (in this case we write X € L (Q)). If X; € L*(Q), j = 1,..., N (we
write X € L?(Q)) the covariance matrix is defined: this is the matrix C := [c;;] where

cij == Cov(X:, X;) = E[(X; — E[X;])(X; — E[X;])] = E[X:X;] — E[X;]E[X;].
In general, the covariance matrix is a symmetric and positive definite matrix (notation C > 0), that is
Cv-v=0,VYveRN

Indeed, clearly ¢;; = cj;. Moreover,

Cv-v =) E[(Xi —E[X])vi(X; —E[X,])v;] = E [Z (Xi — E[X:])vi(X; — B[X;])v;
i

i,j

2
=E (Z(Xi - E[X,-])v,-) > 0.

i
It is sometimes useful to represent the entries of the covariance matrix in the form
cij = Cov(X;, Xj) = pijoio;
where p;; = p(X;, X;) is the linear correlation of X; and X/, oy = V[Xi]l/ 2 is the standard deviation of
X;.
4.1.1. Law. Similarly to the scalar case, for random arrays we also have a definition of the law of X,
ux(E):=P(X € E), VE € %Bn.

The well posedness of ux follows by an argument similar to the one-dimensional case. Given ¢ :
RN — R we say that ¢ is Borel-measurable (or ¢ is a Borel function) if ¢ is measurable w.r.t. the
Borel o—algebra %y~ . It turns out that

o(X)e LNQ, F) «— peL'(RN, Bn, An)

31
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and the change of variable formula holds:
Ele(X)] = JRN o(x1, ..., xn) dux(x1, ..., xN).

4.1.2. Cdf. The cdf of ar.vect. X : Q — RY is a function Fx : RN — [0, 1] defined by
Fx(x1,...,xn) :=P(X1 <x1,..., XNy < xn).
The cdf of a r.vect. fulfils properties similar to the cdfs of scalar (or univariate) r.vs. For example,
D) WMy ey) o (con—ao) Fx (X150 xn) = 0, imey ey)— (400, to0) Fx (X1, .00 XN) =

ii) Fx is monotonic increasing in each of its variables (the others remaining fixed).
iii) Fyx is right continuous with left limits in each of its coordinates.

It is a straightforward exercise to prove these properties.

4.1.3. A.c. r.vects. Wesay that X is absolutely continuous (notation a.c.) if there exists fx(x1,...,xn)
such that

,llx(E) = fo(xl,...,xN) dxl---de,
R

where the last integral is w.r.t. the Lebesgue measure. In this case, fx > 0 a.e. and

fo(xl,. . .,xN) dx1 B 'de = 1,
R

and the change of variable formula takes the form

E[lp(X)] = J;M o(x1, .. xn) fx(x, ..o xn) dxg - - dxy,

The density fx is also called joint density. Having this, we automatically have that each of the components
of X is an a.c. random variable. Indeed,

P(X € Bj) = P(X e R x B x RN - | Felets. o) diy - diy

RI“IxEjxRN—/—1

Since fx € L'(RY), Fubini-Tonelli theorem applies, so

P(Xj € Ej) = J <J‘ fx(xl, . ,XN) dX1 . ~de_1de+1 . ~de> dx]'.
Ej RN-1

-

"

=:fx; (x))

Functions

fX_,- (Xj) = J fx(xl, e ,XN) d)C1 e dxj_ldxjH e de

RN-1

are called marginal densities. So, from the joint density it is possible to derive the marginal densities.
The vice versa is more complex and we will return on later.
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4.1.4. Multivariate Gaussian. A very important class of multivariate random variables are multi-
variate Gaussian distributions.

Definition 4.1.1

We say that X is Gaussian with mean m € RY and covariance C, with C a symmetric positive

definite N x N matrix if X is absolutely continuous with density
fx(x) = ;efécil()‘*m)'(x*m), Vx e RN,
(2m)N det C

Remark 4.1.2

Since C > 0, it is invertible: indeed, C is injective because Cx = 0 implies Cx - x = 0 which
is possible iff x = 0. Since C is an N x N matrix, injectivity implies surjectivity, that is C is
invertible. Thus, det C # 0. Actually, since C is symmetric it is diagonalizable, that is there
exists an orthogonal matrix 7 (thatis, 7~! =T T the transposed matrix of 7') such that

ol 0 ... 0
TCT' = diag(c2,...,03) = ? 022 (?
00 e
where the (712 are the eigenvalues of C, which are positive being C > 0. O

Example 4.1.3: (xx)

Q.If X ~ //(m,C) is a multivariate Gaussian, then E[X| = m while the covariance matrix is C.

A If X ~ N (m,C), we have

E[X] =E[X—m]+m= J (x — m)—( e~ 3C T x=m)-(x—m) .
RN

1 11
=m+—f ye 2C YV dy =m
v/ (27)N det C Jr¥
being y — yefécfly‘y even. We also notice that
1 101
Cov(X;, X;) =EB[(X; —m)(X; —m; =J xi —mp)(x; —mj)———————e 3 ) x=m)
(3.X5) =BG = mo) (3 = my)] = |G = mlay =) e

_1lc0—-1,.
yiyje 2¢ VY dy

1
N A/ (27)N det C JRN
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Since C > 0 is diagonalizable, C = TDT " where D = diag(a'f, cees a'I%,), changing variable u = T "y,
that is y = Tu, and since T orthogonal implies, in particular, that | det T| = 1, we have

—_ilc-1y.
e 3CTITuTu g,

1
COV(Xi,Xj) = WJ‘RN (Tu)i(Tu)je

~u)(Tj - u)eiéDilu'“ du

1
S S ¥
A/ (2m)N det C JrN
where 7; is the i —th line of the matrix 7. Now,

J (’Tl . M)(TJ . u)e—%Dflu-u du = Zt[htjkj uhukei%D—lu.M du
o h.k RN

_ i -l
e 2om du,, | upuge *°
R2

]

= Z linljk
h.k m#h,k VR

u2
— 9
J e 29m duy,, =A/2rn0;,
R

2 2 2 2
A Mg uy, uy

k
- 2 2 - 2 - 2
‘[ upure >“ne 7k dupduy :J upe % duh‘[ uge 7% duy =0,
R2 R R

Now,

and, for h # k,

u

while, for h = k,

2
_ uy
J uie 2% duy, = A /27r0']f . 0',?.
R2
Therefore, since det C = det(TDT ") = det(TT ") det D = det D, we have

A/ (2m)N det D
COV(X[,XJ') = LE[%Z}%O’E = DT; - Tj = (TTDT)l'j = Cji = Cij.
(2m)N det C

4.2. Mapping multivariate random variables

Suppose X is a multivariate random variable on (Q, #,P). Let ® : RY — RY be a map and
Y := ®(X). We notice that Y is a multivariate random variable iff

(YeEE} ={®(X)eE} ={Xec® YE)} € Byn, VE € Byn.

If X is a multivariate random variable, what we need is that ® verifies the following definition:

Definition 4.2.1

A map ® : RV — R¥ is a Borel map if
O Y(E) e Byn, VE € Byn.




4.2. MAPPING MULTIVARIATE RANDOM VARIABLES 35

So, if @ is a Borel map
py (E) = ux(®(E)), VE € Bpn .

When X is absolutely continuous, a natural question is whether ¥ = ®(X) is also absolutely continuous
and, in that case, what relation holds between the density of X and that of Y. Clearly, this is not true in
general: if @(x) = ¢, thenY = ®(X) = ¢, so uy = &, which does not admit a density. However, if ®
is regular enough, absolute continuity of ¥ may hold.

Definition 4.2.2

A map ® = ®(x) : RV — R¥ is a diffeomorphism if
i) @ is a bijection;
ii) Both ®, ®~! are differentiable with @', (®~!)’ continuous mappings.

Proposition 4.2.3

Let X be absolutely continuous, ® be a diffeomeorphism on RN. Then, if Y = d(X), Y is
absolutely continuous and

Proor. Let E € %Bpn~. By the change of variable formula,

r

py (E) = pux (@71 (E)) = Jos e fx(x) dx

y=0(x), x=0~(

) j Fx(@1())| det(@1) (3)] dy
E

from which the conclusion follows.

Example 4.2.4: (s:x)

Q.Let X ~ N (m,C), where m € RN,and C > Oisa symmetric N x N matrix. Show that there
exists a matrix M such that M~1(X —m) ~ #(0,Iy).

A. Since C > 0 is symmetric, it can be diagonalized: there exists an orthogonal matrix 7 (TT" = I
such that TCT" = diag(o?,...,0%) := D. Then, the density of Z = T(X —m) =: ®(X) (@ !(z) =
m+T lz=m+T'7)is

_ 1 —32CIT 12T 1z -1
fZ(Z) = WG 2 |detT |,

and since T is orthogonal, 7~' = T and det(TTT) = det(Iy) = 1, from which det(T)? = 1, that is
|det T| = | det T~!| = 1. Moreover,
C Mz T7e=C T 2. Tz =TC T 2.z = (") Cc T 2.z = (TCTT) "Ly - 2,
$0
1

1p—1 —
fZ 7) = 675D zZ _ e 2 zz
) (2m)N det C (2m)N det D
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beingdet D = det(TCT") = det(TTTC) = det C. Setnow /D := diag(o,...,on),andsetz = /Dy,
thatis y = (v/D)"'z. ThenY = (v/D)~'Z = (v/D)~'T(X — m) has density
1 151
Fr(y) = ——————=e" 2?7 VP VD] det VD)
(27)N det D

Since D is diagonal as well as D1 = diag (#, R ) and v/D, we easily have
1

_1
o

D 'WDy-vVDy = |y|> = yi + - + %>
and v/det D = det /D, so

fr(y) =

\/We*%\\yl\z, — Y = (\FD)flT(X—m) ~ H(0,Ty).

4.3. Exercises

Exercise 4.3.1 (+x). Let (X,Y) have density fx y(x,y) = 4xyl[g 1)2(x, y).
1) Determine the cdf Fxy.
ii) Compute P(X +Y < 1).
Exercise 4.3.2 (xx). Let (X,Y) have density fx,y(x,y) = c(x* + 3)1[0.17x[0,2] (%, ¥).

1) Determine the value of the constant c in such a way that fxy be a probability density.
ii) Determine fx.
iii) Compute P(X >Y).

Exercise 4.3.3 (+%). Let (X,Y) be a bivariate random variable with fx y(x,y) = e~(*+¥) Lo, 4002 (X, ¥)-
Determine the density of X /Y. (hint: start computing Fxy...)

Exercise 4.3.4 (+x). In a circular target with radius R > 0, the density of impact points (X,Y) is given
by the formula

Sxy(x,y) = (R —/x% + y?)1p(o,r) (¥, ¥),
where B(0, R] := {(x,y) € R? : x2 + y? < R?}. Determine the value of ¢ that makes f a probability den-
sity function and calculate the probability that the impact point falls in B(0, a] with a < R. Additionally,

compute the distribution of the distance from the center of the target and determine the mean distance of
the impact point from the center.

Exercise4.3.5 (xx). Let (X,Y) be a bivariate randomvariable with density fx y(x,y) = ie_(x+y)/21[0’+oo[2 (x,y).
Let (Z,W) := ()%Y) Determine fz.w, fz and fw.

Exercise 4.3.6 (xx). Let (X,Y) be a bivariate random variable with joint density

fry (e,y) = e 201 4o (x).
i) Check that fxy is a true probability density.
ii) Define Z := X2 +Y and W := 3X? —Y. Show that (Z,W) is a.c. determining its density fz w.
iii) Calculate P(Z +W > 0).
iv) Compute the marginal densities fz and fw.
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Exercise 4.3.7 (+%). Let (X,Y) be a random vector on R? with joint density
fxy(x,y) = e 1[011(x) 1[0, +o0[ (V)

1) Determine the joint density of Z := XY and W := %
ii) Compute P(ZW > 1).

Exercise 4.3.8 («x). A point (X,Y) is picked at random uniformly in the unit circle. This means that

P(X.Y) € E) %AQ(E ~ B(0,1]).

Find the joint density of (X, R) where R = v/X? + Y2,
Exercise 4.3.9. Let

x2 —2pxy+y2

flx,y):=ce 2029 | (x,y)€ R2,

i) Determine the value of c in such a way f be a probability density. Is such f a Gaussian density?
i) For the value c of i), let (X,Y) be such that fxy = f. Determine the joint density of (X, Z)
. _ Y—pX .

with Z = Wi Deduce the density of Z.
iii) Determine P(X > 0, Y > 0).






Characteristic function

5.1. Fourier Transform of a Borel probability

A random variable X is characterized by its law, a probability measure on (R, %) (or (RY, Bgn ) for
the multivariate case). All important quantities (probabilities, expectations) can be calculated in terms of
the law of X and two random variable with same law identical form the probabilistic point of view. As a
measure, the law of X is not an easy tool to handle. A more convenient tool is the cdf Fx or, even better,
for absolutely continuous random variables its density fy.

If X is a.c. with density fx, being this an Lt (R) function with JR fxdx =1,its L' FT is well defined,

f);(f) = JR eI fx(x) dx = J e I dux(x).

R

This last integral makes sense whatever is X. This because, being ux a probability measure, e “/¢* is an
L(R, ux) function:

J le "% dux = J ldux =1, ¥¢ eR.
R R
This yields to the following extension of the FT to probability measures:

Definition 5.1.1

Let ux be a Borel-probability measure on (R, %g). We define FT of uy the function
AX(©) 1= | e dux(o). R,
R
Similarly, if ux is a Borel probability measure on (RN, Bgn ), we set

f(@) = [ e dux(o), e RY,

We notice that
fix(€) = E[e™"¢X],
for a random variable, and
ix(¢) = Ele™'¢%],
for a multivariate random variable The function
(5.1.1) ¢x(&) :==E[e'¥] = ix(—¢é),
is called characteristic function of X.

39
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Example 5.1.2: Gaussian distribution

If X ~ N (m,02),meR,0? >0, then
Ox(€) = "2 Ve R,
More in general, if X ~ A (m,C) withm € RNandC >0a symmetric matrix, then

ox(&) = 1 EMECEE g e RN,

Proor. We check the formula for the scalar case, the vector case being similar and left as exercise. We

have
2

; 1 _Geom? yxm | _>2
¢X($) = ‘[ el‘fx 202 dx~ = gl‘fmJ eilf) ——e 202 dy
R R vV 2

e
\V2no? 2no

1 67%(—(‘3) _ ei.ﬁ-‘me—%oj(—f)2 _ eifm—%o-%,ﬂ. O

iEém

=e
2no2

Example 5.1.3: uniform distribution

Let X ~ U(a, b). Then

Now, since 1[4 p](x) = 1 _boa u](x + “tP) we have
2 2
a+b a+b . Sin (h;af)
ox(&) = b_areﬂb—a/z(ﬁ‘F 5 J(—€)=e"7 ¢ b,jg ;
2
and, by Euler formulas sin § = emgfﬂﬂ , we get the conclusion.

Example 5.1.4: exponential

Let X ~ expA. Then

A
Proor. Here fx(x) = de™*1jg 1oo[(X), 5O
i —Ax i&x el Hio e A
oxl6) = a6 = [ e e a—a || -
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In general, the characteristic function is continuous. This follows from the continuity of integrals
depending on parameters because

o £ e e B(R), Vx e R;
o [ei¢¥| =1€eLY(Q),VéeR, VxeR.

Therefore ¢x(£) = JR e'¢~ dux(x) € €(R). Differently from usual properties of the FT, in general
Riemann-Lebesgue’s lemma does not hold.

Example 5.1.5: (x)

Let X ~ xq (constant random variable). Then ux = d,, and

¢x(£) = J X ds, (x) = eié¥,

R
so in particular [¢px (£)| = 1 so ¢x (&) +— 0 for ¢ —> +o0.

Proposition 5.1.6

Let X be a random variable and assume that X has moment of order n, that is E[|X"|] < +o0.
Then ¢x € €"(R) and

Okpx(£) = B[(iX) e'*X], V€ eR, k =0,1,...,n.

In particular:

Proor. Notice that X € L"(Q) «— LK(Q) for every k = 1,...,n — 1. In particular, all moments
E[X*] of order k are finite for k = 1,...,n. To compute the derivatives of ¢x, we apply the differentiation
under integral sign theorem. We get

ok ax(¢) = Bl(iX)keiX],

because |(iX)*e'¢X| = |X|¥ € LY(Q) for every ¢ € R. So, differentiation theorem applies and the
conclusion follows.

In particular, if V[X] < +c0 then by the McLaurin formula we have
1 1
Ox(£) = ¢x(0) + 05 0x(0)¢ + 50 4x(0)6" + 0(£7) = 1+ i£B[X] — SE°E[X°] + 0(¢7).

5.2. Uniqueness of the characteristic function
The characteristic function characterizes uniquely a random variable X. This because
¢x = ¢y, = HUx = My.

To show this is the goal of this section. Notice that, if X and Y are absolutely continuous, this is a
consequence of injectivity of the L' FT: indeed

dx =y, = J/C)\((—ﬂ)ff;(—ﬂ)’ — fx=fr, — fx=f, — ux=uy.
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The general case is based on uniqueness for the FT of Borel probabilities. To show this we need a couple
of auxiliary results. The first is the extension of the duality lemma:

Lemma 5.2.1: duality

f 7 — J Wi dé, Yy € L'(R).
R R

Proor. First, notice that i/ € L*(R), so Ve L*(R, i) so IR ¥ du makes sense. We have
[oau=[ [ ene deaun ™ [ | e auevie e = | aewe) de

So, if u, v are two Borel probabilities such that z = v, then

(5.2.1) J@duzjﬁdmvweL%w.
R R

Now, if we could apply the previous identity with ¢ = 1{4,p]» We would have that u([a, b]) = v([a, b])
for every [a, b], then easily for every intervals, whence u = v. Unfortunately, 1, ;) cannot be a FT,
because it is discontinuous. The next proof shows how to circumvent this issue.

Theorem 5.2.2: uniqueness

If i = vthen u = v.

Proor. Let ¢ € S(R) < L'(R) (Schwarz’s space). Then ¢ € S(R) < L'(R), so, in particular,
inversion formula applies, and

Therefore, by identity (5.2.1), we get

(5.2.2) J @ du = I e dv, Vo € S(R).
R R

We not build an & (R) approximation of 1, ;). We start with a particular case: define

1, —-1<x<1,
5n(x) = exp ((1+;)2_1 - (1+%§2—x2) , 1< |)C| <1+ %7
0, x| =1+ £
We can check that
e 5, € €”°(R)
_ 1 1
e §,=1on[-1,1]and 6, =0off [-1 — -, 1 + -]
e 0<d,(x) <1 VxeR
o S(x) 5 1p_11)(x)
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In particular, §, € §(R). Define now

2x — (a +b)
5n,[u,b](x> = 0n (?) .

Then 6, (4,51 € S(R), 0 < 8y [a,5](x) < 1 and 6y, [q,](x) P, 1[a,p](x). Therefore, from (5.2.2) we have

J;R 6n,[a,b] d/‘ = J 5n,[a,b] dv,

and by dominated convergence we get

J La,p) du = J ljap) dv, <= u([a,b]) = v([a,b]),
R R

this for every [a, b]. The conclusion now follows.

So, for example,
X ~ N (m, 0'2), — ¢x(&) = piém—502¢?

In certain circumstances, this is an important characterization that simplifies calculations.

Example 5.2.3: (xx)

Q. Let X ~ ¥/ (m, C) be a multivariate Gaussian, m € R and C symmetric and positive definite
covariance matrix. Use the characteristic function to determine the distribution of a - X, where
aeRN,

A. We have
bax(£) =E[e$9X] = E [ei(fa)X] = eiléaym=3C(£a)(£a) _ jig(am)~5(Caa)é?

from which we deduce thata - X ~ A (a - m,Ca - a).

5.3. Exercises

Exercise 5.3.1 (x). Compute the characteristic functions of a Bernoulli, binomial and Poisson random
variable

Exercise 5.3.2 (). Determine the characteristic function of a Cauchy random variable X, that is, such
that fx(x) = + —9—

X T a?+(x—m)?
Exercise 5.3.3 (x%). Determine the characteristic function of a Gamma random variable X, that is, such

that fx(x) = ’%lz;;xa_le_’lxl[o’+oo[(x) (here @« > 0 and A > 0).

Exercise 5.3.4 (xx). For each of the following functions say if i) they are characteristic functions of some
random variable X, and (if yes), ii) what is the distribution of X.
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e 4(§) = 1 —siné.

Exercise 5.3.5 (x%). Let X,Y be absolutely continuous random variables. Prove the identity

J Ox(E) fr (€)Y de =j o (x — ¥) fx(x) d.
R R

Exercise 5.3.6 (xx+). Let X,Y be random variables on (Q, F,P) for which
E[e'**Y] =0, V&€ e R.
Define u(E) = E[Y1g] for E € Bgr. Check that i = 0. Deduce thatY = 0 a.s.
Exercise 5.3.7 (xx+). Let y be a probability on (R, Br). Then:
i) |fi(€)] < 1= fi(0), for every € R.
i) fi(=¢) = [(8).
iii) [ is positive definite in the sense that
DA — )2z = 0, VEr,... . En€R, Va1, zn € C.
ok
iv) g e €(R).
Exercise 5.3.8 (xx+). Let ¢px be the characteristic function of an absolutely continuous random variable
X. Show that |px|? is still a characteristic function of a random variable Y, determining also its density

Jr-

Exercise 5.3.9 (+#x). Let ix € L'(R). Show that dux = fx(x) dx for some fx € L*(R), fx = 0 and
IR fx(x) dx = 1. (hint: use the duality Lemma with ¢ € §(R)...)



Independence

6.1. Independent Events

Independence is a key concept of Probability. Independence is a concept ranging from events, to
o —algebras to random variable, for a finite number of objects to infinitely many. We start by the simplest
of the definitions: independence of events.

Definition 6.1.1

Let (Q, #,P) be a probability space. Two events E, F € & are said to be independent if
P(E n F) = P(E)P(F).
More in general, n events Eq, ..., E, € & are independent iff
P(Eyn---nE,) =P(E1) - -P(E,).

Warning 6.1.2

Events might be pairwise independent but not jointly independent.

Proor. Consider the probability space of a rolling of two dices: Q{(i,j) : i,j € {1...,6}},
F = P(Q), pij = 5. Take the events E := {firstrollis 1}, F := {secondrollis 6} and G :=
{sum of rolls is 7}. Notice that

P(E) = é B(F) = =, P(G) = % - %

Clearly, En F = {(1,6)} soP(E N F) = = = - & = P(E)P(F). Moreover, E n G = {(1,6)} so,

36
again P(E n G) = = P(E)P(G) and, in the same manner P(F n G) = P(F)P(G). However,
EnFnG=1{(1,6)}so

o=

Remark 6.1.3

The previous example also shows that an event might be independent of two others, but not of
their intersection.

45
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Proor. In notations of the previous example, E is independent of F and G. Notice that P(E n (F N
G)) = 3= while, being F n G = {(1,6)} so P(F n G) = 3= from which

PEN(FNnG)#PE)nP(FNnG). O

We now extend independence to o-—algebras.

Definition 6.1.4

Let (Q, #,P) be a probability space. We say that two sub o-—algebras &; and & of F are
independent if £, and E5 are independent for every E; € &) and E3 € Gs.

More in general, given a family of o-—algebras (¥;) je; — & we say that they are independent if

E\,Es, ..., E, areindependent VE, € &} ,...,VE, € G}, , Vji1,...,jn€J, Vn e N.

Jis

In general, it is very difficult to characterize all the events of a o-—algebra. Fortunately, to check the
independence of two o —algebras it is sufficient to check that some generator families are independent:

Proposition 6.1.5

Let &; := o (4/;) be the o —algebra generated by a multiplicative class o/; — &, j = 1,2 (that
is,if A, B € o/ then also A n B € &/}). The following facts are equivalent:

1) &) and &5 are independent.

ii) E and F are independent, VE € &1, VF € .

6.2. Independent random variable

Independence extends in a natural way to random variable. Here, for simplicity we refer to the case
of random variables, the definitions and properties for the multivariate case are similar.

Definition 6.2.1

Let X,Y € L(Q) be two random variables. We say that X and ¥ are independent if
P(XeE,YeF)=P(XeE)P(YEF), VE,F € Bg.

We call o-—algebra generated by a random variable X (sometimes also called information generated by
X) the family

o(X):={{XeE} : EcRBr}.

It is easy to check that this is a o-—algebra (exercise). This o-—algebra represents the minimal family of
events such that X is measurable.
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Proposition 6.2.2

X,Y independent <= o (X), o(Y) independent.

An extension of the definition if provided by the following

Proposition 6.2.3

Let X,Y € L(Q). Then, X and Y are independent if and only if

(6.2.1) Ele(X)y (Y)] = E[p(X)JE[¢ (Y)], Vg e L'(R, ux), ¥y € L'(R, py).
In particular: if X,Y € L'(Q) are independent, then also XY € L(Q) and
E[XY] = E[X]E[Y].
PrOOF. <= X and Y are independent iff

P(XeE,YeF)=P(XeE)P(Y€F), VE,F € By.

Now,
P(X€E,YeF)=P((X,Y)€E x F) = E[lgxr(X,Y)] = E[1g(X)1r(Y)],
while,
P(X € E)P(Y € F) = E[1g(X)]E[1r(Y)].

So independence follows by the identity (6.2.1) taking ¢ = 1g and ¢ = 1 we get In particular.
—. The first part shows that independence is equivalent to (6.2.1) for ¢ = 1g, ¥ = 1, E, F € Bg.
By linearity we extend this to simple functions s(X) = Z}\;l 1g,(X) and similarly for 5(Y). If now, ¢,y

are two positive Borel-measurable functions, there exist sequences (s;), (5,) of simple functions such that
sp T wand 5, T ¢ point-wise everywhere. By monotone convergence, then,

E[p(X)y (Y)] < E[sn(X)$n(Y)] = El[sa(X)]E[Sx(Y)] — E[o(X)]E[y (Y)].

Thus (6.2.1) now holds for ¢ € L, (R, ux) and ¢ € L, (R,uy). Finally, let ¢ € L'(R, ux) and ¢ €
LY (R, uy). Writing ¢ = ¢, — ¢_ and doing the same for i, we have

o =(pr =)W =) = (o ¥i + oY) — (14— + 9 ¥y)
=(¢¥)+ =(oy)-

Therefore,

E[(¢(X)¢(Y))+] = Elp+ (X1 (V) +o- (X)p— (V)] = E[p4 (X)E[¢+ (Y)]+E[p— (X)]E[y - (¥Y)] < +o0,
and, similarly,

E[(¢(X)y(¥))-] < +oo,
from which we conclude that ¢(X)y (Y) € L'(Q) and, easily, formula (6.2.1) holds.

Remark 6.2.4

In particular, if X and Y are independent, then also ¢(X) and ¥ (Y) are independent, for any Borel
functions ¢, .
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Independence of random variables reflects on their cdf and densities (if any).

Proposition 6.2.5

Let X,Y € L(Q). The following properties are equivalent:

i) X and Y are independent.

i) Fxy(x,y) = Fx(x)Fy(y), Vx,y € R.
iii) If (X,Y) is absolutely continuous, then fxy = fx fy a.e.

Proor. i) = ii). If X, Y are independent, then

Fxy(x,y) =P(X <x,Y<y)=PX <x)PY <y) = Fx(x)Fy(y), Vx,y e R.

ii) = i). Assume Fxy = FxFy. Consider a rectangle R :=]a, b]x]c, d]. Since

R =] — o0, b]x] — o0, d]\ ]—oo,a]x]—oo,d]u]a,b]xL— w,c] |,

=:R; =:Ro

from which
P(X,Y)eR) =PX<b,Y<d)—P(X<a,Y<d)— Pla<X<b Y<c)

_

=P(X<b, Y<c)-P(X<a, Y<c)
= ny(b,d) — ny(a,d) — (ny(b,c) — ny(a,c))
= Fx(b)Fy(d) — Fx(a)Fy(d) — (Fx(b)Fy(c) — Fx(a)Fy(c))

= (Fx(b) — Fx(a)) Fr(d) — (Fx(b) — Fx(a)) Fy(c)
—_—

=P(a<X<b)

= P(X €la, b])P(Y €]c, d]).
So, if Bx := {X €la,b] : a<b}and By := {Y €]c,d] : ¢ < d}, then Zx and Ry are independent
algebras of sets. Therefore 0-(Zx) = o (X) and o(Ry) = o (Y) are independent, which is the conclusion.

iii) <= 1). Assume (X,Y) a.c., and let fx y be its density. Then

P(XeE,Y€eF) :J fxy(x,y) dxdy
ExF

On the other hand,
P(XeE, YeF)=P(XeE)P(Y € F) = J fx(x) dxf fr(y) dy T2 J Fx(x) fr () dxdy.
E F ExF

So X, Y are independent iff
J fxy(x,y) dxdy = J fx(x)fr(y) dxdy, <= (fxy — fxfr) =0, VE,F € Bg.
ExF ExF ExF

Now, since o (Br x Br) = RBre the previous relation holds for every Borel set of R2. Therefore,
fxy = fxfr a.e. (w.r.t. the Lebesgue measure).
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Example 6.2.6
Q. Let X and Y be independent random variables with densities given by

1 plt
fr(y) = %e 27 X[0,400[ ()

fx(x) = ﬁ)(]—l,l[(x)’

Show that XY ~ A4/(0, o).
A. First, we note that since fy = 0 for y < 0, it follows that P(Y < 0) = 0, or equivalently P(Y > 0) = 1.

) = fxy(x,y) dxdy,

xé%

Thus, letting Z = XY and denoting the c.d.f. of Z by Fz, we have:

Fz(z) = P(XY < 2) =P(X< %) =P<(X,Y)e{(x,y) x < %}

By the independence of X and Y, we have fx y(x,y) = fx(x)fy(y), so
+00 z/y +o0 z/y

P = (| s ) av= [ s [ s avay.
0 — 0 —o0

Therefore,
y +00 1 z
f2(z) = F,(2) = fY(y);fX (;) dy.

In our case,
+0 2 +0 2
y _Lll 1 Z 1 il 1 Z
fz(z)—J e W o——————y () dy=— e ———x1 14| < ) dy.
ym o122 y o Jo /1_% y

0 ag
2

~
~

S 1, which implies y > |z]; otherwise, it is 0.

Now, note that yj_; i[ (%) = 1 if and only if § 5
Thus,
—+00 2 +00 2
fZ(Z) = i 87;7"'—1 dy = i 6757"'—)] dy
o 2 no 2 _ .2
Iz 1- ;—2 |zl ye—z
Setting w = 1/y2 — 72, so that dw = —2— dy, we have
1 (TP w2 122 (T e 1 21 w2
fz(z2) = — e T dw = —e‘ﬁf e 20 dw = —e 27 -—J e 27 dw.
2o Jo no 0 no 2 Jr
The integral evaluates to v/2mo, so
1 22 1 22
fz(2) = e 204/ 210 = e 27,
2 o
O

which is the conclusion.

Independence of random variables reflects also on their characteristic functions.

Proposition 6.2.7: Kac theorem

Let X,Y € L(Q). The following properties are equivalent:
e X and Y are independent.
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Proor. i) = ii). Let X, Y be independent. Then
bx.y(£.1) = B[/ 6 XN ] = B €X+inY] — BloieX i | OZV Bl ieX B[] = gy (¢) gy ().

ii) = 1i). Define the function
V(E x F) = ux(E)uy(F), VE,F € Bg.

This v is well defined on the product class & := {E x F : E,F € %} < PBr2 which is not a c—algebra,
nonetheless it contains rectangles I x J with I and J intervals. Therefore, o-(%) = PBp=. It is not difficult
to check that v is a pre-probability, so by Caratheodory’s extension theorem, v extends to a probability
measure. By its definition, it is clear that

j o()(3) dv(x,y) :f o (%) dux<x>j () duy ().
R2 R R

From this,

e = [ e M dvlay) = [ e dux(o) [ e duy () = o300 (0)

Since v = ¢x¢y = dx.y = lx.y, by the uniqueness of FT of Borel measures (thm 5.2) we conclude that
px.y = v. In particular,
pxy(E x F) =v(E x F) = ux(E)uy (F),
that is
P(XeE,YeF)=P(XeE)P(YeF),
which is the independence of X and Y.

Here is a nice (and important) application of the characterization of independent r.vs.

Proposition 6.2.8

Let X, Y be absolutely continuous, independent random variables with densities fx and fy. Then
X + Y is absolutely continuous with density

Sx+y = fx * fr.

Proor. We use the characteristic function: we have
dxiy(£) = E[e€XFV)] = E[e?$Xei¢Y] = E[e"¢X]E['¢Y] = ¢x(£) ¢y (¢)

= x(=6)fr (=€) = fix* fy (=¢).
Now, by the injectivity of FT, we conclude that
fx+y = fx * fr.

These properties extend in a straightforward way to the case of any finite number of random variables.
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6.3. i.i.d.

Modeling a random experiment repeated infinitely many times, we need to be able to work with
infinitely many independent random variables, all with the same distribution.

Definition 6.3.1

Let (X,)nen © L(€2). We say that the (X,,) are independent, identically distributed if

e (0(Xp,)) is a family of independent o-—algebras
o Fx, = Fx, foralln,m e N.

We use the shortening (X,,) i.i.d. random variables.

We have seen that it is always possible to build a random variable with an assigned cdf (proposition 3.1).
If, for example F is continuous, we take

(Q, #,P) = ([0,1], Br, A1), X(w):=F '(w), = Fx=F.

Extending this idea, we can build any finite number of i.i.d. random variables X, ..., Xy all with a
given cdf F. For example, if F are continuous, we take

(Q,F,P) = ([0,1]", Ben, AN), Xj(w1,...,0N) = F Hw;).

The X; are i.i.d. random variables. Indeed:
P(X; <x)=Ay {we 0, 1]V : Fl(w;) <x}) =ay {we[0,1]" : w; <F(x)}) = F(x),
so Fx; = F, s0 the X; have the same cdf F. Moreover, if 1 <i; <ip <...<i, <N

X,.n(xil, .. .,Xin) = P(Xil < Xigs - -,Xin

<X,‘n)
< Ay ({(wl,.. .,LL)N) (S [0, 1]N : F_l(a)il) < Xigs- ..,F_l(a),-n) <x,~n})
<An ({(01,. . on) € [0,1]Y : wiy < Flxi), ..., wi, < F(x;,)})

=F(x;,) - Flx, = FXil (xi;) - Fx, (xi,),

thatis X;,, ..., X;, are also independent.

This construction becomes complicate when we set N = +o00. This because, we do not have an
infinite dimensional version of the Lebesgue’s measure. The proof of the existence of infinitely many
i.i.d. random variables is more sophisticated.

Theorem 6.3.2

Given a cdf F, there exists a probability space (Q, %, P) and a sequence (X}, ),en of i.i.d. random
variables such that Fly, = F for every n € N.

Proor. We divide the proof in two steps. The first step proves the conclusion assuming F being the
cdf of a uniform distribution on the interval [0, 1]. In the second step we will remove this restriction.




52

6. INDEPENDENCE

First step. Let (Q, #,P) = ([0, 1], Br, 11). Forx € [0, ] its binary expansion is uniquely defined as
(e'¢]

>

choosing, by convention, the representation that eventually consists of the digit 1. Welook at Cy : [0,1] —>
{0,1} = R as random variables. Notice that {C; = 0} and {C = 1} are unions of 2¥~! intervals of length
zik each, so they are Borel sets and Cy, is a random variable for every k. They are also independent. Indeed,
if k < j,

{Cxk=a, C; = b}
where a, b € {0, 1} is made of 2/~ /2 = 2/=2 intervals each of length 5 so,

P(Ck =a, C; =b) =41(Cx =a, Cj =b) =2/2=

while 1
P(Ck = (l)P(CJ = b) = /ll(Ck = a)/ll(Cj = b) = 5 .

Let now r : N2 — N be a bijection, and define

[e0] C k
Cok = Crnk) and U, := Z ;I; .
k=1
We notice that U, is well-defined (the series converges) and measurable (as it is a pointwise limit of
measurable functions). To show that U,, is uniformly distributed, we compute its cdf. Since 0 < U, (x) < 1
for all x, we have
PU, <x)=0,VYx <0, P(U, <x) =1, Vx > 1.
Let0 <x < 1. We have

(e0] [e 0] Ck(.x)
(Un < x} ={y601 <2 oF }
k=1 k=1
[e 6]
|_| w1 = C1(x), .oy Gkt = ck—1(x), Cuk(y) < ck(x)} U {Cuk = ck(x), Vk}.
Noticed that
P(Cn,lzcl(x)»--"cn, HP nj_cl H_:_

by the continuity from above we have

P({Cnx = ck(x), Vk}) = kh_)m 1 0.

o 2k

Moreover,
1
P(Cpi =c1(x),...,Cpnik—1 = Ck—1(x),Cpk < ci(x)) = WP(C&;{ < ck(x)),

and since,

0, ck(x)=0,

cr(x
P(Cu < ck(x)) = = "2( )

=
o
x~

G
=

S~—
Il

—
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we conclude that

P(U, < S i)
(n\x)—kzzzl TR
Therefore,
0, x<0,
PU,<x)=< x, 0<x<1,
1, x=>1,

and this shows that U, is a uniform random variable. Finally, we verify that the U,, are independent. Now,
denote by F, := 0(Chx : k € N). Itis clear that U, is %, measurable and that &, are independent
o —algebras, so also the U,, are independent.

Second step. Let F be a generic cfd. By the first step, ([0, 1], Bgr, A1) there is a sequence of i.i.d. (U,),
that is
AUy <u)=u, uel0,1].
So, in particular,
F(x) = 41 (Un < F(x)).
If F is continuous and strictly increasing, we can write previous relation as
Fu(x) =1 (F_l(Un) < X) )

so defining X,, := F~1(U, ) we have the desired sequence.
For a general cdf F, this is not necessarily continuous and strictly increasing. However, if we define

G:[0,1] » [0, +®], G(y):=inf{xeR: F(x) = y},
and we set X, := G(U,). Then,
X, =GU,) <x — U, < F(x),

SO

from which the conclusion follows.

6.4. Exercises
Exercise 6.4.1 («). Let X and Y be random variables such that
P(X>x,Y>y)=P(X >x)PY >y), Vx,yeR.
Does it follow from this that X and Y are independent?

Exercise 6.4.2 (). Let X,Y be independent random variables.

i) Check that p(X,Y) = 0.
ii) Check that if (X,Y) is Gaussian, then also the vice versa of i) holds.
iii) Show, with an example, that it is possible to have p(X,Y) = 0 but X, Y are not independent.

Exercise 6.4.3 (xx). Random variables with the density f(x) = %e‘a"d, where @ > 0, are called
Laplace random variables with parameter a. Let X and Y be independent exponential random variables
with parameter 2, and let Z = X — Y.

i) Find the density and the characteristic function of the random variable —Y .
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ii) Prove that Z is a Laplace random variable, determine its parameter, and compute its charac-
teristic function.

Exercise 6.4.4 (xx). Let X,Y ~ exp A. Show that if X and Y are independent, then the random variables
X +Y and ;—( are also independent.

Exercise 6.4.5 (xx). Consider a rectangle R := [0,a] x [0,b]. On each side of the rectangle, points
(X,0) and (0,Y) are chosen randomly, uniformly in their respective intervals, and independently. Let
Tx.y denote the triangle with vertices (0,0), (X,0), and (0,Y). What is the probability that the area of
Tx.y is less than one-quarter of the area of the rectangle R?

Exercise 6.4.6 (+%). Let A and B be independent random variables uniformly distributed on |0, 1].
Consider the quadratic equation
x* +2Ax + B =0.

What is the probability that its solutions are real?
Exercise 6.4.7 (xx). Let X,Y ~ U([0, 1]) be independent random variables and let
U:=min(X,Y), V:=max(X,Y).
Determine E[U],E[V] and Cov (U, V).
Exercise 6.4.8 («x). We denote by T,, the best time recorded in the 100m of the n-th race. Since the

temporal dimensions are not of interest to us, we assume T, ~ U(0, 1), and we also assume that the T,
are independent random variables. Let A,, be the event ”a new 100m record is set in the n-th race.”

i) Compute the c.d.f. of the random variable S,, :== min{Ty,...,T,_1}.
ii) Prove that P(S, > t, T,, > s) = P(S, > 1)P(T,, > s).

iii) Describe A, in terms of the random variables Ty, k = 1, ..., n, and show that P(A,) = %
iv) Assuming that the A, are independent, what is the probability that a record remains unbroken
forever?

Exercise 6.4.9 (xx). On the segment |a, b], let ¢ €]a, b (i.e., a < ¢ < b, with a, b, ¢ fixed). Two points
X € [a,c] and Y € [c,b] are chosen randomly with a uniform distribution. Compute the probability
that the lengths of the segments [a, X|, [X,Y], and [Y, b] can form the sides of a triangle. (Recall that
a, B,y = 0 can be the lengths of the sides of a triangle if and only if « < B+ 7y, B < a + vy, and
vy < a+p)



Conditioning

7.1. L? conditional expectation

Let (Q,#,P) be a probability space, & be a sub o—algebra of events, that is & < F. A
€ —measurable random variable Y is a random variable for which

{YeE}e ¥, VE e Bg.
Equivalently,
Y is ¥—measurable <= o(Y)c g.

With a little abuse of notations, we will sometimes write Y € & to represent this situation.

Given a random variable X, we consider the problem of determining the “best approximation” of
X through a ¥ —measurable random variable. A natural setup for this problem is the following. Let
H := L?*(Q, F,P) be the Hilbert space of L? random variables equipped by the scalar product

(X,Y) = B[XY] = L XY dP.

Let also
G:= L*(Q,%,P),
be the subspace of H made of & —measurable random variables. Clearly, § is a closed subspace of K.

2
This because if (¥,,) < G is such that Y, L Y, then Y € L? and since the limit of & —measurable
functions is a & —measurable function, we conclude that Y € G. These facts suggest a proper set up of
the approximation problem posed above: defermine Y € G such that

IX = Y2 = min [X — Z].
Ze§

In this setup, the solution is provided by the orthogonal projection of X on G, that is
Y =TIIgX.
It is convenient to recall that [IgX is characterized to be the unique Y € G such that
(X-Y,Z)=0,Y¥Z€g,
that is,
(7.1.1) E[XZ] =E[YZ], VZ € §.

The orthogonal projection verifies some simple properties:

55



56 7. CONDITIONING

Proposition 7.1.1

The following properties hold:
i) (linearity): Ilg(aX + BY) = allgX + BIIgY
ii) (monotonicity) X <Y a.s., then IIgX < IIgY a.s.
iii) If X is & —measurable, then [IgX = X.
iv) If X is independent of &, then IIgX = E[X].
v) f # < & < F then [y (IIgX) = [y X.
vi) If X € L2 and Y € L™, with Y € &, then [Ig(XY) = YTIgX.

Proor. All the properties follow from the orthogonality characterization (7.1.1). For i) we have
E[(aX + BY)Z] = «E[XZ] + BE[YZ] = aE[(IIgX)Z] + BE[(IIgY)Z] = E [(allgX + BIIgY) Z],
VZ € G. And since allgX + SIIgY € G we conclude that
Ig(aX + BY) = allgX + BIIgY.
i) Let Z€ G, Z > 0. We have
E[llgXZ] = E[XZ] < E[YZ] = E[lIgYZ], = E[(IlgY —IgX)Z] > 0.
Let G := {[IgY —IgX < —&} (with e > 0) and Z := 1g € G. Then, the previous says
0<E[(IIgY —NIgX)lg] < E[-¢elg] = —eP(G), = P(G) <0,
which possible iff P(G) = 0. Since ¢ is arbitrary, we conclude that P (Hg)r(v —IgX < O) =0.
iii) If X € &, then X € G, s0llgX = X.
iv) If X is independent of & we notice that
E[XZ] = E[X]E[Z] = E[E[X]Z],

and since constants are & —measurable we conclude.
v), vi) Straightforward.

. J

Example 7.1.2

Let% = o(E,...,E,) where (Ey) are a partition of Q, thatis Q = | [} _; Ex, with0 < P(Ey) <
1,k=1,...,n Then

Proor. It is easy to check that o(Eq, ..., E,) is made of finite unions of the sets E;. From this it
follows that the € measurable functions are the simple functions with bases the Ey, that is function of type

Z’;Zl clekj. Thus, § = Span(1g,,...,1g,). In this case, setting ey := Hllgiuz’ (ex) is an orthonormal
“ k
basis for G. we have
n n
1
X = Y (X.exyer = Y, ——B[X1g,|1g,.
k=1 k=1 HlEkHZ
and since [[1g. |35 = E[13, | = E[1g,] = P(Ex), the conclusion follows.
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In previous example, we have that

H9X(w) = E[XlEk] = J‘E X dP, w € Ek
k

P(Ek)
This motivates the notation
E[X | ¢] :=gX,

57

called the conditional expectation of X given ©. With this notation, the properties i),...,vi) of the

Proposition 7.1.1 acquire a new flavor:
i) (linearity): E[(aX + BY) | €] = ¢E[X | €] + BE[Y | €], Va,B € R.
ii) (monotonicity) X <Y P—a.s., then E[X | €] < E[Y | ] P—a.s.
iii) If X is & —measurable, then E[X | €] = X.
iv) If X is independent of &, then E[X | €] = E[X].
v) (sub-conditioning) If # — € c F thenE[E[X | €] | #]| = E[X | #Z].
vi) If X e L2and Y € L™, with Y € @, then E[XY | €] = YE[X | &].

This is the bridge to the next section topic.

7.2. L' conditional expectation

The properties of the L? conditional expectation enlighten the nature of an “expectation” of the

orthogonal projection on § = L?(Q, %, P). As such, we could expect that

E[X | @],

should be well defined for X € LI(Q, ¢,P). However, since Lt & L2 (but rather, by the Cauchy-
Schwarz’s inequality, L? — L), and the definition of the L? conditional expectation is a typical Hilbert
spaces story (something which is not L') the definition of this conditional expectation is not automatic.

We will now show the way to do this.

Theorem 7.2.1

Let (Q, #,P) be a Probability space, & — F a sub o—algebra of . If X € L'(Q, #,P), there
exists then a unique (modulo probability null sets) ¥ € L!(Q, €, P) such that

(7.2.1) E[XZ] = E[YZ], YZ € L®(Q, %, P).

Y is called conditional expectation of X given € and we denote it by E[X | &].

Proor. Step 1. Let X > 0 a.s.. Recall that there exists a sequence (S,) of positive simple random
variables such that
Su /' Su £ X.
Since (S,) © L® < L2, the conditional expectation E[S,, | €] is well defined and, by monotonicity of the
cond. exp., we have E[S,, | €] /. This authorizes to set

Y :=lmE[S, | Z].




58 7. CONDITIONING

Being Y the point wise limit of € measurable random variables, ¥ € €. Therefore, if Z € L*(Q, &, P) is
positive, by monotone convergence,

E[XZ] = limE[$,Z] (LS lim B B[S, | 7] = E[YZ].
Now, for a generic Z € L*(Q, €, P), writing Z = Z, — Z_ we have
E[XZ,] =E[YZy], = EB[XZ] =E[X(Z, — Z_)] =E[¥(Z; — Z_)] = E[rZ],
from which the conclusion follows.
Step 2. Let X € L'. Writing X = X, — X_, we have
(71.2.2) E[X.Z] = E[Y4Z], VZ € L®(Q, %, P).
Setting Z4 = ly, ~0 € L*(Q, %, P) then
E[V:] = E[Y+Z4] = E[X+ 1y, 0] < E[X+] < +00

because X € L'. Therefore, Y4 € L1(Q, €, P), then also Y € L}(Q, %, P). Now, by subtracting the two +
identities (7.2.2) we get

E[XZ] = E[(X; — X_)Z] = E[(Yy — Y_)Z] = E[YZ], VZ € L®(Q, %, P),
which is the (7.2.1).
Step 3. Uniqueness. If Y, Y veirfy the (7.2.1), then
E[(Y —Y)Z] =0, VZe L®, Z€ ©.
Since Y, Y € €, we have sgn(¥ — )7) € € and
0= E[(y - )Z] = E[)Y - 7]
from which ¥ = ¥ with probability 1.

L' conditional expectation verifies similar properties as for the L? conditional expectation.

Proposition 7.2.2

The following properties hold:
i) (linearity): E[aX + BY | €] = aE[X |€] + BE[Y |€]
ii) (monotonicity) X <Y P—a.s., then E[X | €] < E[Y | €] P—a.s.
iii) If X is ¥—measurable, then E[X | €] = X.
iv) If X is independent of &, then E[X | €] = E[X].
v) (sub-conditioning) If # < & c ¥ thenE [E[X | €] |#] = E[X | Z].
vi) If X e L' and Y € L™, with Y € @, then E[XY | €] = YE[X | &].

\. J

The proof is left as an exercise.

7.2.1. Conditional density. A particular case of conditional expectation is the following: given any
two random variables X, Y, determine

E[X | o(Y)] = E[X | Y]
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Proposition 7.2.3

Assume that (X,Y) is absolutely continuous bivariate random variable with density fx y. Then,
E[X [Y] = ¢(Y),

where
(7.2.3) w@%=Lx&WQWM%
with
(7.2.4) Fpaly) = L) X};({;’)y )

The function fy)y is called conditional density of X given Y.

Proor. 1Itis clear that ¢(Y) € o-(Y). We verify the characterizing condition (7.2.1) for ¢(Y), that is
E[XZ] = E[¢(Y)Z], VZ € L*(Q, %, P).
LetZ = 1g where G € o(Y) = {{Y € E} : E € By}, that s, let us show that
E[X1lyee] = Elo(Y)lyee]

If this happens, we get (7.2.1) for every simple function, then the conclusion follows by a standard
approximation argument. We have

Blor)ivee] = [ w011y = | (jR *fa 1) dx) R 0)d

- JE (JR xf(x,y) dx) dy = JRxRxlE(y)f(x, y) dy dx

— B[X15(Y)].

With this the conclusion follows.

Since
E[X Y] = oY),
the notation
o(y) =E[X[Y =y]
is often used.

Example 7.2.4

Q. Let X ~ N (m,0?), and Y ~ W (0,0?%) be independent random variables. Determine
E[X 4+ Y|X] and E[X|X +Y].

A. Wehave E[X + Y | X] =E[X | X] + E[Y | X] = X + E[Y] because of the assumptions. More involved
is the calculation of E[X | X + Y]. We need first to determine the conditional density fx|xy(x|y), and
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this means that we need to determine first the joint density fx xt+y. Set Z = X + Y in such a way that
(X,X+Y)=(X,Z) =T(X,Y) where

T(x,y) = (ox +) = 1? ()

As well known

fxz(x,2) = fxy(T7 (x,2)) |det T = fxy(x,z —x)
=1

indep.

fx(x) fr(z—x).

Therefore,
fxz(x,z2) _ fx(x) fr(z —x)
fz(2) fz(2) -

Ix|z(x[z) =
Since Z = X + Y and X, Y are independent,
fz(2) = fx * fr(2).

We have P Py — . 1 242 1,242 i 1 2y g2

f2(8) = fx(é)fy (&) = ' 6MT20 6 30787 _ pimE—5(207)67
from which

1 (z=m)?
f2(2) = e io?
4no?
Therefore,
X Z—X
E[X|Z=2z] = I X fxz(x]z) dx = J S =x)
R R fz(2)
Now,
C=m? (=02 _ xZ—amxym?4x2—2xz4z?
fX(x)fy(z—x) = —2ﬂ10_2e 202 ¢ 202 = 2”10_26 202
1 _)cz—(erz)x'Jr(%Jr—z)2 _72(%3)%+1n2+22
= 2xo2¢ o2 e 202
() e _emE)”
= ﬁe o2 e 40?2 = nlo-Ze o? fZ(Z),
SO
m4z\2 m+z 2
1 () 1 =2E) 4 +
E[X|Z=2z]= Jxe o2 dx=—Jue 202 £ 2 Z~
Vo2 Jr V2 Jr 2mo? 2

We conclude that E[X | X + Y] = 254

7.3. Exercises

Exercise 7.3.1 (xx). For each of the following cases, determine E[Y | X| known the joint distribution of
(X,Y):

D) fxy(x,y) = 22 P ().
i) fxy(x,y) = xe—x(y+1)1[0’+oo[2 (x,y).
Exercise 7.3.2 («x). Let Y be a random variable with density ;%1[1,2] (), where a > 0 is a constant to

be determined. Let also X be a random variable such that fxy (§y) is a Gaussian distribution ¥ (0, y?).
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i) Compute the density of XY, E[X | Y], E[X] and P(X > 0).
ii) Compute fx and V[X]. Is X normal?
iii) Are X andY independent?

Exercise 7.3.3 (xx). Let X and Y be independent random variables having Poisson distribution with
parameter A1 and Ay respectively. Determine E[X | X + Y.

Exercise 7.3.4 («x). Let (X,Y) ~ N (m,C). Determine E[X | Y].
Exercise 7.3.5 (xx). Let X,Y i.i.d. random variables with common density f. Determine E[X —Y | X +Y].

Exercise 7.3.6 (). Let X,Y € L'. Prove the formula
E[X |E[X |Y]] = E[X | Y].
Do the proof for both cases, assuming XY is absolutely continuous and in general.

Exercise 7.3.7 (+#+4). Prove the monotone convergence for the L' conditional expectation. That is: let
(X,) < LY be such that 0 < X,, < Xp41 a.s., Yn € N. Then,

lim E[X, | €] = E[lim X, | ).

Exercise 7.3.8 (+++). Prove the dominated convergence property for the L' conditional expectation: let
(Xn) < L(Q) be such that:
i X, &5 X
ii) there exists Y € L' such that |X,,| <Y a.s. ¥n e N.
Then
E[X,|%] =5 E[X|Z].

Exercise 7.3.9 (xx+). Let (Q, F,P) be a probability space, &€ < F be a sub o—algebra of . We
define the conditional probability
P(E|%):=E[lg | ¥].
Check that:
) P(@|%)=0(as.)P(Q|%) =1(as.).
i) 0OSPE| ¢)<las,VEeZF.
iii) P(L,En | %) =24 P(E, | ©) (as.).






Convergence

In this chapter we consider sequences of random variable (X,,) and discuss their convergence. Since
the X,, are measurable functions, natural options for convergence are the L? convergence and almost sure
pointwise convergence or, as preferred in Probability Theory, convergence with probability 1. Other and
weaker difinitions of convergence can be introduced, as convergence in probability and weak convergence.
We introduce all these concepts exploring what are their relations.

8.1. LP? convergence

Let us recall that L”(Q), 1 < p < 400 is a normed space equipped with || - |, norm. This is defined

as
1/p
Xl = ([ Ixir ap) " =BOXPPP, (1< p < )
Q
and
[Xlloo := ess sup|X|, (p = +o0).
We say that

Lr
X, — X, < HXn—X”p — 0.

The p—norms are ordered in the sense, as we will prove now,

1], < X

g 1< p<g<+oo.
If ¢ = 400 the inequality is trivial:
1X1, = BOXIP1Y? <E[IXIZ]Y7 = [X[B1]"7 = X o

If 1 < p < g < +0o0 the inequality is non trivial. It can be proved as a consequence of Holder inequality
or, in alternative, as a consequence of the following remarkable inequality:

Theorem 8.1.1: Jensen inequality

Let (Q, #,P) be a probability space. Let ¢ : R — R be a convex function, that is
p(Ax + (1 = )y) < Ap(x) + (1 = g(y), VA€ [0,1], Vx,y € R,
Then, if X € L'(Q), it holds

63
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Proor. , For simplicity, we do the proof in the case of a differentiable function ¢. In this case, being
convex

o(y) = ¢(x) + ¢'(x)(y —x), Vx,y €R,
$O
o(X) = o(x) + ¢’ (x)(X = x),
and, taking the expectation, we would have
E[¢(X)] = ¢(x) + ¢'(x) (B[X] — x) .
Choosing X = E[X] we get E[¢(X)] > ¢(x) = ¢(E[X]) which is the conclusion.

J

Corollary 8.1.2

[Xlp < 1Xlg, V1 < p < g < +c0.

Proor. Let ¢(x) = x4/P_ Since a > 1, ¢ is convex. Therefore,
|X1% = B[|IX[?]9" = ¢ (E[|X|"]) < E[e(IX|”)] = B[IX|9] = | X2,

from which the conclusion follows.

J

Thus, in particular, among the L” convergences, the L! convergence is the weakest, the L* the strongest.

8.2. Almost sure convergence

Almost sure convergence or, in probabilistic jargoon, convergence with probability I:
X, 5 X, = P ({w €Q : limX,(w) = X(w)}) =1
n

We already know that this convergence is, in general, weaker than L? convergence and, at the same time,
it is not implied by L? convergence when p < +00. The following fact provides a mild relation between
the two convergences:

Xo 25 X, = (X)) < (Xa) @ X, &5 X.

A possible strategy for proving X,, < X is to prove that the event of w where convergence fails has
probability 0. Let’s describe this event. We may notice that

Xo(@) — X(w), <= [¥e>0,IN = N(e) : |[Xu(w) — X(w)| <&, ¥n>N.|

So

X, S xp= Y Nix-xi<s=U
k N

e>0 N n=N

Therefore,

x = x =N
k N
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from which we obtain

(8.2.1) X, 25X, < P (ﬂ U {1X, — X| 28}) =0, Ve > 0.

N n=N

In general, given a sequence (X,,) we might not be able to identify a possible limit X to test convergence.
Since (X,(w)) < R and R is a complete space (that is convergence is the same of fulfilling the Cauchy

property), we have
1
{(X,) Cauchy} = ﬂU ﬂ {|X,l — Xm| < %},

k N nm=N
SO,
1
{(X,) not Cauchy} = Uﬂ U {|Xn — Xm| = E}
k N nm=N
Therefore,

(8.2.2) (X,) converges withP =1, <= P (ﬂ U {1Xn — Xm| = s}) =0, Ye>0.

N n.m=N

The two conditions (8.2.1) and (8.2.2) emphasize the role of the set
limsup E,, := ﬂ U E,,
n N n=N

which is the event of w that belong to infinitely many E,,. The following result provides a condition to
ensure that this is a probability 0 — 1 event:

Lemma 8.2.1: Borel-Cantelli

Let (E,) € &. Then
(8.2.3) Y P(E,) < +o0, = P(limsup E,) = 0.

n
Moreover, if the event E,, are independent,

(8.2.4) ZP(En) =40, = P(limsupE,) = 1.

Proor. For (8.2.3), notice that

P ( U E”> < ). P(Ew),
n=N n=N
and since | J,,~ y En | [y Up=n En- by the continuity from above,

. _ <1 =0,
P (hrnnsupEn> llj\r]nP ( U En> h]{/n 2 P(E,) =0

n=N
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For the (8.2.4) notice that

P ((limnsup E,,)C> =P <U N E;) < ;P ( N E;> .

N n=N n=N
Now, by independence

¥ ( M Eﬁ) = JTBES) = [T (1 —P(En) = [ eloeFED,
n=N n=N n=N n=N

and since log(1 + x) < x for every x > 0, we have

P < M E) < T e = = TuanFEm) = = — g,

n=N n=N

from which the conclusion follows.

Warning 8.2.2

The (8.2.4) is false, in general, if the events E, are not independent. Take E,, = E with
0 < P(E) < 1. Notice that, in order E, = E be independent of E,, = E we must have
P(E n E) = P(E)P(E) that is, P(E) = P(E)?, which is true iff P(E) = 0, 1. In this case

S B(E,) = Y\ P(E) = +,

but

P(limsup E,,) = P <ﬂ g E,,) —P(E)<1. O

N n=N

Example 8.2.3

Q. Let (X,,) be a sequence of Bernoulli r.vs. with
P(Xp=1)=pn, P(X,,=0)=1-p,.
Check that if ., pn < +o0 then X,, < 0.

A. Notice that
P(|Xn| = &) = P(Xu = 1) = pa.
So, since Y, pn < 400, by the Borel-Cantelli lemma se have

P(ﬂ U (1%l >s}> =0, Ve > 0,

N n=N

and, from (8.2.1), the conclusion follows.
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Example 8.2.4: The monkey paradox

A monkey types randomly on a typewriter for an indefinite amount of time. As improbable as it
may seem, given enough time this monkey should be able to reproduce any predefined text, such
as the complete works of Shakespeare. The probability of this happening within a reasonable time
frame is practically zero, but theoretically, given infinite time, the event becomes certain!

Proor. We may represent the predefined text as a suitable binary sequence x1,...,xy € {0,1}V.
So we assume the typewriter has just two keys, 0 and 1. Let X, the n—th key typed. We assume
P(X, =0) =P(X, =1) = 3.

The event ”the monkey reproduces the sequence x1, . ..,x N at time n”’ can be written as
E, = {Xn =x1, Xnt1 =X2,..., XpntN-1 = XN}'
Notice that, since the X; are independent
1
P(E,) = N

In general, E, and E,, are not independent, but F,, := E,y are independent and P(F,,) = QLN so, trivially,
D IB(F,) = 4.
n

According to the second Borel-Cantelli’s Lemma, P(lim sup,, F,,) = 1, this meaning that the event "the
monkey types the sequence x1, . . . , X infinitely many times” is a sure event!

Define now the “random time” T as the first time the monkey types the right sequence:
n—1
T(w) =n, we F,\ U Fj.
j=1

Since

1 =P(limsupF,) =P (ﬂ U Fn) )

N n=N
the random time 7 is well defined and finite for almost every w. We have

E[T] = i nP (Fn\nU1 E,-) .
n=0 j=1

Now,

n—1 n—1 n—1 1 n—1 1 1 1 n—1
P (F,,\ U Fj> —P (Fn A Fj) =P(F,) | [B(F§) = o (1 - Q—N) = o (1 - 2—N> :
j=1 J

Therefore

where g = 1 — 2%\, Now, recall that Zf:o q* = ﬁ. Differentiating w.r.t g we get

= 1
Z nq”fl _ 3
= (1-4q)
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(this formula holds for |¢| < 1). Therefore,

E[T]li"’llll L oV (1 L) oV
=2 =\l ow ) ov e —ov) =2 L
e ) (1= ) 2

So imagine that the donkey has to write a text made of N = 60 binary digits, typing 1 key each a second.
According to the previous calculation, it will take an expected time 2V — 1 = 259 — 1 seconds for the
monkey to reproduce the sequence, a time far beyond the time life of the Universe. . . O

8.3. Convergence in Probability

Definition 8.3.1

Let (X,,) < L(Q). We say that
X, —» X, « lim P(|X,— X|>¢&) =0, Ve > 0.

n—+0o0

The convergence in probability is weaker than both the LP convergence and the convergence with
probability 1.

Proposition 8.3.2

x, 2x, — x,-5 x.

Proor. By Chebishev’s inequality,

1 1
P(|Xn - X| = ‘9) < E_PE [|Xn - X|])1|Xn—X\>e] < EHXn - X|P] = a,_PHXn - XHﬁ = (I d

Warning 8.3.3

The vice versa is false. Take (Q, #,P) = ([0, 1], Bjo,1], 41) and define
Xn(w) = n21[0,1/n] (w)

Then,

all
[Xn]1 =n“= =n— 400,
n
so in particular (X,,) cannot converge in L. However, for ¢ > 0 fixed

1
P(|X,| =€) =P(X, > 0) = - — 0.

From this it follows that X, P, 0. O
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Proposition 8.3.4

X, &5 x, — X, 2 x.

Proor. Recalling of (8.2.1), we have that

P(|Xn—X|>8)<P<U Xk—X|>£>.

k>=n

Therefore

OghrrlnP(|X,,—X|>8)<h£nP(U|X,,—X|>8> —P(ﬂU Xn—X>8> =0.

k=n n k=n

Warning 8.3.5

The vice versa is false. Take (Q, F,P) = ([0, 1], Bjo,1],41). We already shown that there exists a

sequence (X,) < L'([0,1]) such that X,, 50 (whence X,, — 0) but X,, (w) is pw convergent for no
we [0,1].

As we can see from the examples, convergence in probability is a very weak form of convergence.

8.4. Convergence in distribution

All types of convergence examined so far, namely, L” convergence, convergence in probability, and
almost sure convergence, involve directly the random variables X, as functions on some probability space
(Q, F,P). As we know, random variables are perfectly known through their laws or, more practically,
through their associated functions like cdfs and characteristic functions. For example, one could say that
X, —> X in some weak sense if

(841) /JX,L(E) — /,tx(E), VE € %R’

or

(8.4.2) j o dux, — J ¢ dux, Vo € L*.
R R

The problem with such a definition is that, even a trivial sequence, as X, = x,, with x, — x* in R,
wouldn’t be convergent to X* = x*: assuming x* # x,, for every n, and taking E = {x*}, we would have

px, ({x*}) = P(X, = x¥) =0 —> 0, but ux=({x*}) = 1.
Similarly, if x < x*, then being x, — x*, x < x,, for n large, so Fx, (x) = 1 — 1 but Fxx(x) = 0so
FXn(X) —|—> Fx*(x).

However, restricting the class of Borel sets in (8.4.1) or the class of functions ¢ in (8.4.2), we obtain an
interesting definition:
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Definition 8.4.1

Let (X,) < L(Q). We say that (X,,) converges in distribution to X, and we write X,, 4, x,if

(8.4.3) J ¢ dux, — J ¢ dux, Yo € €p(R)
R R

(€p(R) stands for the space of bounded and continuous function of R).

Remark 8.4.2

Equivalently
d
Xo — X, <= E[p(X,)] — E[p(X)], Vo € €)(R).

Proposition 8.4.3

The following properties are equivalent:
i x, -4 x.
i) Fx,(x) — Fx(x), Vx € R where Fy is continuous.

Proor. i) = ii). Let x be a continuity point for Fx:
lim Fx(y) = Fx(x) = lim Fx(y).
y—ox— y—x+

Notice that

Let now ¢, ¥, € €1 (R) piecewise linear defined as

1, y<x—g, 1, y < x,
pe(y) = —%(y—x—!—s))—&-l, x—e<y<x, Y (y):= —%(y—x)—&-l, x<y<x+e,
0, y =X 0, y=x+e.

FXn(x) < J Ve dux,,.
R
Since X, %> X, and ¥/, € G, we have

J Ye dux, _’J Ve dux < J‘ L—co,x+e] dux = Fx(x + &),
R R R

s0, there exists N = N (&) such that
Fx,(x) < Fx(x+¢€)+¢e Vn=N.

n

Similarly,
Fx, (x) = J ¢e dux, — J Qe dux > J 1—ox—s] dux = Fx(x — &).
R R R
So, for n large (we can always say n > N) we have

Fx,(x) > Fx(x —&) —&, Yn = N.
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Therefore
Fx(x — &) — Fx(x) —e < Fx, (x) — Fx(x) < Fx(x + &) — Fx(x) + & Vn = N,
so if € := lim, (Fx, (x) — Fx(x)) we have
Fx(x —&) — Fx(x) —e <€ < Fx(x + &) — Fx(x) + &.

Since & > 0 is arbitrary, letting &€ — 0, and recalling that x is a continuity point Fx (x + &) — Fx(x), we
get 0 < ¢ < 0, so ¢ = 0 which is the conclusion.

ii) == 1). The proof is a bit technical and omitted here.

An useful equivalent characterization is provided by the following result.

Theorem 8.4.4: continuity theorem

Proor. = Take ¢(x) = e'¢* in (8.4.3) and we have the conclusion.
<= The argument is similar to that one used in the proof of injectivity of FT for Borel probability 5.2. Let
¥ € LY(R). By duality

[0 dux, = [ w0, d6 — [ wi@ox(e)de = | 7 an.

by dominated convergence because i) i (£)éx,, (§) — ¥(£)¢x (&) ae. & € Randii) [y (§)¢x, (£)] < [(£)]
a.e. £ € R. So (8.4.3) holds for ¢ = y, with y € L'(R). Arguing as in the proof of Theorem 5.2, we get
that from this (8.4.3) extends to every ¢ € G (R).

Example 8.4.5

Proor. We know
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For simplicity, we prove (8.4.3) for ¢ € € (R) thatis ¢, ¢’ € €, (R). We write
E[p(X,)] —E[p(X)] =E[p(Xn) = ¢(X)] =

E[(¢(Xn) = (X)) Lix,—x1<& + (¢(Xn) = 0(X)) Ljx,—x|>2] -
Now,
B [(¢(Xn) — 0(X)) Lix,~x12¢]| < E[le(Xn) = @(X)|1x,—xi>6] < 2l¢]ocP (1Xn — X| > &).
Notice also that |¢(x) — ¢(¥)] < [|¢'[ls]x — y| so
E[(¢(Xn) = ¢(X)) Lix,—x|<e] SE[¢ ool Xn — X|1jx,—x1<e] < ¢/ w0t
Therefore,
[Ele(Xn)] — Ele(X)]] < &l¢'ll0 + 2] @] P (| Xn — X[ > £) .
Since P(|X,, — X| = &) — 0, there exists N such that P(|X,, — X| > &) < &,Vn = N, so
[E[¢(Xn)] — E[e(X)]| < & ([¢'l0 + 2[¢llcc) » ¥n = N,
and this means that
E[¢(Xn)] — E[e(X)],
that is, X, N X.

Warning 8.4.7

The vice versa is false. Take, as usual, (2, #,P) = ([0, 1], B[o,1], 41) and define
(=",  wel0,1/2],

Xn(w) =
—(-1)", well/2,1].
Itis clear that px, = (61 +061), therefore X,, A x~ B(—1,1,1/2). However, (X, ) is not convergent in
probability. Indeed: Xor = X = 1jg.1/2) — 1j1/2.1] —— X while Xog41 =Y = —1jg1/9) + 1j1/21] — Y-
However, if X, SES Z, then, necessarily, Z = X =Y butP(X =Y) = 0. O

It is convenient to keep in mind the logical relations between various convergences:

x, X x

8.5. Exercises

Exercise 8.5.1 (**). Use Jensen’s inequality to prove the inequality

exp (J log X d]P’) < J X dP,
Q Q
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for X = 0 P—a.s and deduce the classical inequality between geometric and arithmetic means:
N
1
N/xy---xny < N Z Xk, Vx1,...,XN € [0, +OO[.
n=1

Exercise 8.5.2 (x). Let X,, ~ exp(n), n € N. Show that X, =, 0 for n — +o0.

Exercise 8.5.3 (+x). Let (X,) be independent r.vs. with X, ~ B(0,1,1 — 1). Discuss L?, a.s., P and d
convergence of (Xp).

Exercise 8.5.4 («x). Suppose that €, > 0 are such that ), &, < +0 and P(|X,| > €,) < &,. Show
that the series ), X, is absolutely convergent with probability 1.

Exercise 8.5.5 (xx+). Let X, =, X and Y, 2., Y. Show that also X, +7Y, Fx + Y.

Exercise 8.5.6 (xx). Let (X,,) be a sequence of random variables with densities
1 n
=———— x€R.
Fxa () w1+ n2x? *
i) Is X, -5 07
ii) Is X, — 07
iii) Assuming the X,, independent, is X,, == 0?
Exercise 8.5.7 (xx+). Let (U,) ~ U([0,1]) and X,, := min(U, ..., Up,).
1) Determine FY,.
i) Discuss convergence of (nXp).

Exercise 8.5.8 (xx+). Let X,, be i.i.d. random variables with
1
P(X, >x)=—, Vx> 1.
Let M,, := max (X1, ..., Xn).
1) Determine the cdf of M.
ii) Discuss convergence in distribution of (My,), identifying also its limit (if any).






Limit Theorems

The law of large numbers (LLN) provides a mathematical foundation for the intuitive idea that, over
a large number of repeated independent experiments Xy, the average outcome approximates the common

expected value:
n

Z Xk — m = E[Xk].
k=1

Xy =

S|

For example, in repeated coin tosses, the proportion of heads approaches 50% as the number of tosses
increases. The LLN is a cornerstone of statistics, underpinning concepts such as sampling and estimation,
and is widely applied in fields ranging from finance to physics and beyond.
If the X, are i.i.d. random variables with common mean m = E[X;] and variance o2 := V[X;], we
have that X,, — m has mean 0 and variance
2

V[X, —m] =E {(Y,, —mﬂ - n—12E (Zn](xk —m)>
k=1 ]

Since the X} are independent, Cov(Xy, X;) = 0 for k # j. So

= n—12 (i VIXe] + )] Cov(Xk,Xj)> .
k=1

k#j

1 ¢ o? 1«
VX, —m]l== ) 0?=—, — V (Xg —m)| =1.
" n? ,;1 n _0'\/?1];1

Therefore #ﬁ Y1 (Xg —m) is a r.v. with mean 0 and variance 1. It turns out that, for n large, no
matter how the X; are distributed, #ﬁ > i—1(Xx — m) takes more and more the shape of a standard

Gaussian .#/(0, 1). This happens, in general, in a very weak form as the convergence in distribution, that
is

ai/ﬁ Zn] (X —m) -5 #(0,1),
k=1

and this is known as the Central Limit Theorem (CLT), originally discovered by Bernoulli.

9.1. Weak Laws

There are many versions of the LLN, which differ in the way the sample average converges to the mean
m. Broadly speaking, these results fall into two categories: strong laws (SLLN), where the convergence
is almost sure, and weak laws (WLLN), where the convergence is weaker, typically convergence in L' or
in probability, or even just in distribution. In general, the stronger the mode of convergence, the harder
the proof. Here, for illustrative purposes, we will restrict attention to the proofs of the simplest cases.
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9.1.1. Chebishev’s WLLN. Let (X;) c L'(Q) be a sequence of independent random variables
with E[Xx] = m. We notice that, by replacing X; with Xx — m we may always assume that m = 0
because

1< 1 &
—Z(Xk—m)z—ZXk—m.
= Ly

The Chebishev WLLN is a simple result that assumes, one one hand, the more restrictive requirement
(X,) = L? but, on the other hand, it does not requires the (X,,) are identically distributed.

Proposition 9.1.1: Chebyshev

Let (Xx) = L?(Q) be independent r.vs. such that

e E[X,|=m;
e V[X,] <M.
Then
1 ¢ P
(9.1.1) =) X —>m.
n
k=1
In particular, Chebyshev’s bound holds:
— 1 &
9.1.2) P <|Xn —m| > s) <=5 ), VIXd
k=1
Proor. Assuming m = 0 and setting
Y}’l = 1 Z Xk5
n k=1

1 2
P (|Xn\ > s) < SE[X. %)
Now,
1 n n
B[[Xa"] =E||~ > Xe| | =5 ) E[XX;]=— <2 E[X;]+ ), E[xk]E[X.,-])
k=1 k.j k=1 k#j
1 ¢ M
== D V[Xi] < —.
k=1
Thus,
M _
P(|Xn|>g) <5 —0, = Xngo
e°n

Chebyshev’s bound is sometimes used to determine the number n of observations of a random variable
such that the mismatch of the average X, to the mean value m by an error € has sufficiently small
probability.
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Example 9.1.2

Q. Let (Xx) = L?(Q) with E[Xx] = m > 10 (unknown) and V[Xy] = 2. Determine n in such a

way that the probability that X,, mismatch m by more than 1% of m be less than 1%.

By Chebyshev’s bound,

— m 1 104 2 x 10* m=10 2 x 10* 2 x 102
P (% —m| > o) € ——— D V[X] = 2 _ z _
[Xn = m| 100 (%)2,12 k; [Xi] m2n2n0- m2n 10%n n
Imposing ,
2x1 1
x 10 <—, <= n=2x 104,
n 102

we get that for n = 2 x 10* = 20.000 we have the desired bound.

Despite its weak form and simplicity, Chebishev L2-WLLN has some remarkable applications.

9.1.2. Monte-Carlo approximation method. Consider the problem of computing an integral as

[ s ax

for a continuous function f. We know that the definition is based on the idea that
1 n
J fx)de~ > fxe)d dxy,
0 k=1
where {x;} < [0,1] and dx; = xx11 — xx. If points xi divide [0, 1] in n equal parts, xx = % we have

1 n
J fx)de~ ) f(xk)% = %Zf(xk)'
0 k=1 k

Imagine now that x; are outcomes of n independent random variables Uy, k = 1,...,n with uniform
distribution in [0, 1]. It seems reasonable that, for n large,

IR !
- fU) ~ | f(x)dx.
PUDEINE

This is a consequence of Cebishev weak law. Indeed, if U, are independent, also X, := f(U,) are
independent. Moreover,

1
ELX,] = B = | £t du = | ) du
while

VX, = j 7 au— j £ d,,,>2 <173
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1.f lloo
( > 8) S e2n

9.1.3. Weierstrass—Bernstein’s theorem. Another nice application of Chebishev WLLN is an orig-
inal proof of Weierstrass’ polynomial approximation theorem due to Bernstein.

Theorem 9.1.3: Weierstrass—Bernstein

Let f € €([0, 1]) and set
-5 () (E) 0

pnw’f

Polynomials p,, are called Bernstein’s polynomials of f.

Thus, weak law applies and

1 & 1
@ Uk)—JO £(x) du

Then

Proor. Let X,, ~ B(1,0,x) be i.i.d. Bernoulli random variables that is
P(X, =0)=1—-x, P(X,=1)=x
IfS, = Z?:l X then,

Notice that

s =8 [7 (3)] = 57 (5) rse == 57 (5) (D)0 -0t =

Since E[X,,] = x and V[X,] = x(1 — x), the assumptions of Cheblshev s WLLN are verified. Therefore

x(1— |
9.1.3) V6 > 0, P( )< (62nX) < o Yxef01]

We now assess | f — pnls- Let x € [0, 1] and notice that

&) = pa(x) = £() —BLF (X)) = B[ £(x) — £(%)]

= E[(f() — FE)lg, _sj<s] +E[(F0) = FRn)1x, _sjss] -

We now need a remarkable property of any f € €([0,1]) (Heine—Cantor’s theorem): f is uniformly
continuous, that is

Ve > 0,30 =8(e) > 0, : |f(€)—fm) <& Veme[0.1],: [e—nl <o
From this,

B[(r®) = FED Lz, —ajes | < 2B [1z,—ni<s] <&
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while
x % I
[E[(£0) = PRz, 15| < 2SI I0E 17, ai55] = 2P (K =51 > 5) < o2
Therefore,
)CE[O,I] 262}1
Now, since _QJ;‘LT[ — 0, there exists N = N(§) = N(e) such that l’;"zf, <eforn> N, so

If = pallw < 26, ¥n =N,

and this precisely means the conclusion.

9.1.4. L' WLLN. The natural hypothesis we might expect under which

S|

n
Z X — m, withE[Xi] = m,
k=1

is (X,,) = L. In this case, the variance V[X,,] is generally not defined, so the Chebishev’s WLLN does
not apply. However, we have the following theorem:

Theorem 9.1.4: WLLN

Let (X,) = LY(Q) be i.i.d. r.vs. If m := E[X;] (constant in k), then

1 " Lt
—ZXk—>m.
=t

9.2. Strong laws

Let (Xx) = L'(Q) be independent with E[X,] = m. Replacing Xy by X; — m we can always assume
that m = 0. To ensure X,, = 0, by (8.2.1) we need to check that

(9.2.1) P (limsup{lfn\ > 8}> =P <ﬂ U 1X,| = 8) =0, Ve > 0.

N n=N

A sufficient condition to make this true is provided by Borel-Cantelli’s Lemma 8.2.1: if
ZP (\Yn\ > e) < 40,
n

then (9.2.1) holds true. Under the extra assumption (X;) = L2(Q), from Chebishev’s bound (9.1.2) we
have

_ 1 &
P([Xa| > &) < 5 kz_]lV[Xk] ==

a bound which is essentially useless to prove convergence for ., P(|X,| > &).
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9.2.1. L*SLLN. An appropriate bound for P(|X,,| > &) can be obtained under stronger integrability
for the X:

Proposition 9.2.1

Let (Xx)  L*() be independent random variables with E[X,,] = m and E[X}] < K. Then

n
Z Xk a.s. m.
k=1

S|

Proor. We assume m = (. By Chebishev’s inequality

_ n 1 n 4
P(Xn|>8)=P< 8) ng Zxk
k=1 k=1

Z Xl =n
Now, if one of the indexes k is different from the other three, say k1 # ko, k3, k4 then, by independence,
E[XklkuXk3Xk4] = E[Xkl] 'E[szxksxk4] =0.

1
= 4_84 Z E[Xkl Xy Xy Xk4] :
ki,ko ks, ky=1

So,
n n
Z E[Xx, Xk, Xk, Xz, | ZEX4 1+3 Z E[X? X2 ]
kq,ko k3, ky=1 k=1 ki,ko=1
cs &
< Y E[X{]+3 Z E[X{ ]V?E[X} ]"/? < nK + 3n°K.
k=1 k1 ko=1
Therefore,

— 1 4K
P (|Xn‘ = 8) < W(:SHQ +n)K < W

From this, Zn P (\Yn| > 5) < 400, so the Borel-Cantelli Lemma applies, and we conclude.

Example 9.2.2: empirical probability

Let (Q, #,P) be a probability space and let E € & be an event. Let (Xx)x>1 be a sequence of
independent Bernoulli random variables with parameter p = P(E), i.e.

Xx ~ Bernoulli(p), p =P(E).
Interpret X (w) as the outcome of an experiment that equals 1 if w € E and 0 otherwise.
Clearly, X; € L*(Q), therefore by the L* SLLN we have

—ZXk—>]EX1]:p=P(E).

In words: over a long sequence of independent trials, the empirical frequency of the event E
converges almost surely to its theoretical probability.
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9.2.2. Kolmogorov’s maximal inequality. The key ingredient to get a.s. convergence is to get a
good bound for
I’ZS) .

P (%l > o) =]P’<§:1X

Let S, = 22:1 Xr

Theorem 9.2.3: Kolmogorov’s maximal inequality

Let (Xx) = L%(Q) be independent random variables with E[X;] = 0 for every k. Then

1 2 1 2
9.2.2) P (jeglax }ysjy > a) < —E [lmax,.:1 ’’’’’ i |Sj‘>(,s,,] (< —E[lS| ]) :

nlSjl = at ={[S1] = a} u{[Si] <@, |S2] = @} L {[S1],[S2] < @, [S3] Z @} ..

.....

n

= | {ISkl <@, Vk=0,....5-1,|5;| > ::|i|E
j=1

j=1
where we defined Sy := 0. Therefore,

.....

1S; 2
Now, on E; we have 1 < ﬁ, SO

We show that
B[15,82] = E[15,82]. Vi = L....n
Indeed,
n 2 n n 2
= <Sj+ Z Xk) :S?+QS,~ Z Xk+< Z Xk> ::S?+QSJTJ~+TJ.2,
k=il k=j+1 k=j+1

Now, since T is independent of both §; and 1 E;» We have

E[1g,52] —E|15,5?] + 2B [15,5,7)] + B 15,77 ]

— B 15,52 + 2B [15,5,] B[1;] +E 15,77 ]
J ——

_ _ =0
2 2
—E|15,52| +E [1EjTj]

>E 15,52




82 9. LIMIT THEOREMS

Therefore,

[1E S2 = lZ 1E,SQ] [ max; \Sjl?dsrzl] 0

Let (X,) c L%(Q) be i.i.d. random variables, and let m := E[X,,]. Then

n
1 a.s

ProoE. As usual, we assume m = 0. Let also 072 := V[Xk] (constant in k because the Xy are i.i.d.).
For k € N we define

Ay = { max |7n| > s} c { max |5, > 82k}.

n=2k . 2k+1

1 1
P(AK) < g BlISzn Pl = 5 ), VIX] =251

Therefore, by Borel-Cantelli’s Lemma 8.2.3
P (limsup Ag) = 0,

(U ﬂ { max  [X,| < 5}) =1, Ve > 0.
n=2k, ___ 2k+1

k=N VT
Now, take &, | 0. For each m there exists P(E,,) = 0 event such that

UM {n_;nagm Xl < } = Q\E,.

N k=N " =7
So,if E := ,, Em» P(E) = 0 and

AU N { ax Xl < }=Q\E.

m N k=N " =7

that is

From this it follows that 7,, 255 0. Indeed: let w € Q\E. For & > 0, there exists &, < &. Since

Xl <em<e, Vn=2N.

From this the conclusion follows.

Refining further the proof of Kolmnogorov’s SLLN, it is possible to prove the
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Theorem 9.2.5: Khinchin SLLN

Let (X,,) © L'(Q) be i.i.d. random variables, and let m := E[X,,]. Then

X a.s.
X, — m.

9.3. Central Limit Theorem

We already noticed that if (X;) < L?(Q) are i.i.d. with mean m and variance o2, then

1 n
77 e

(o

is a mean 0 and variance 1 random variable for every n € N. For large n and independently from the
specific distribution of the Xy, the previous random variable approximates a standard Gaussian. This it
the celebrated Central Limit Theorem:

Theorem 9.3.1

Let (X;) c L%(Q) be i.i.d. random variables with E[X;] = m and V[X;] = o2. Then,

ai/ﬁ Zn] (X —m) - #(0,1).
k=1

Proor. Let Z, := #ﬁ S (Xk —m), and let ¢(€) = ¢x, —m(€) (independent of n because of the
i.i.d. assumption). Then

n i n . n
67,(6) = B[ 7m T Kom] g | [T mm o | inder- TT g [17m(h-m] — g (i) _
k=1 k=1 oy/n

Now,

8 = 0(0) + ¢/ O+ L1002 1 o),

and since ¢(0) = 1 and
¢'(n) = 0Bl =B [i(x: — m)ei”(Xl_m)] , = ¢'(0) =iE[X; —m] =0,

#(7) = ~B[(X, — m)2eiXi=m)] — ¢(0) = ~E[(X, - m)?] = o,
we have
2
() =1- %772 + o(n?)
Therefore

2 g2 2 2 2 2 n 3
2= (12 o (L)) - (- E o (E)) — % -0s)

By the continuity theorem 8.4.4 the conclusion now follows.
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Remark 9.3.2

In particular, since the standard normal cdf is continuous on R, we have that

lim Pla< ! n( )< b Jb o Va <b
im a < m) < = e , Va .
n—-+00 o-\/ﬁk ] a V21

Example 9.3.3

A polling company needs to estimate the probability p of success for a certain candidate in an
election where there are, besides him, two other candidates. The task is to determine how many
people need to be surveyed so that, with at least 95% probability, the estimated percentage from
the sample differs from p by less than 1%:

i) assuming p is completely unknown;

ii) knowing that p < 30%.
Describe the survey using random variables X,,, which are identically distributed, with X, = 0 if
the preference is not for the candidate, and X,, = 1 if it is and use the Cebishev bound.

9.4. Exercises

Exercise 9.4.1 (). Let (X,) < L*(Q) be independent random variables with E[X,,] = m. Use characteristic
functions to show that

d
X, — m.

Exercise 9.4.2 (xx). Let (X,,) be i.i.d. random variables, uniformly distributed on [—1, 1]. Show that

hm]P( (1-e ( (X1, .0 X)) < (1+g)\/§> =1, Ve > 0.
(here |(x1,...,xn)| = A/X3 + -+ + xj. is the Euclidean norm of R").

Exercise 9.4.3 (xx). Let (X,) be independent and such that
1 1
P(X, = 0) = 1

P(Xn = 2n) =  2nlogn’

2nlogn’
Show that

1) X" E, 0 (use Chebishev’s lemma)

ii) X, does not converge a.s. (use the second Borel-Cantelli statement).

Exercise 9.4.4 (+x+). Let (X,) < L'(Q) be i.i.d. random variables with m = E[X,]. Discuss a.s. convergence

for
n
- Z X Xg+1-
iz

—_

Exercise 9.4.5 (xx+). Compute

. x% +o+x2
lim — dxy - - dx,.
n=+0 Jo,agn X1+ X
(hint: dxq - - - dx, = KXy, X)) With X Lid., Xi ~ u(o,1])...)

.....
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Exercise 9.4.6 (++). Let (X,,) < L(Q) be i.i.d. random variables with common Cauchy distribution with density

1 a
I0 = ey
for some a # 0. Notice that
i) Is (X,,) = L'?
ii) By using the characteristic function, compute the distribution of X .
iii) Discuss convergence of X, in distribution.

Exercise 9.4.7 (+x+). Let (X,,) be i.i.d. random variables, X,, ~ U[0, 1]. Use Central Limit Theorem to determine

the limit
e 1/y/n
i <|— <
nh_)rrololP a\(X1~X2~--X,,> <b|], O<a<b

Exercise 9.4.8 (+x+). Let (X,) be i.i.d. with B[X;] = 0 and E[X?] = 1. Show that
k=1 Xk
\ 2k X

To conclude you need to use the following fact: if Yy, 4,y and Zn L5 ¢ € R (constant) then Z,Y, Ay, (you
can prove this as non trivial exercise).

-, #(0,1).

Exercise 9.4.9 (xx+). Let (X,) be i.i.d. random variables, each with Poisson distribution
. 1 _
i) Determine the distribution of S, := Y,;_, Xx. In particular, determine P(S, < n).

ii) Use the CLT to show that

n
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Martingales

10.1. Definitions

A martingale is a “time dependent” random variable for which the best prediction of the future value
is the present value. Here, time can be either a discrete time, represented by n € N or a continuous time
t € R. For simplicity, here we will focus on the discrete time case.

Before we can dive into the definition of martingale, we have to introduce the definition of filtration.
Informally, this is a time dependent family of o-—algebras that represent the “information” available up
to a certain time. As time goes by, the information increases, this meaning that the o—algebras of the
filtration are nested:

Definition 10.1.1: filtration

A family (F,),en of o—algebras of Q is called filtration if

Fn < Fn, Vm < n.

A fundamental case of filtration is that one generated by a one-parameter family of random variables:

Definition 10.1.2: natural filtration

Let (X, )n = 0 be a one-parameter family of random variables on a probability space (Q, F,P).
The natural filtration generated by (X,,) is

Fni=0 Xm : m<n).

We are now ready to introduce the main definition of this Chapter:

Definition 10.1.3: martingale

Let (Q, %, P) be a probability space, (M,,),>0 = L' (L) be a one parameter family of L' random
variables, and (%, ),>0 a filtration. We say that (M,,) is a martingale w.r.t. (%) if

(10.1.1) E[M, | Fn] = My, ¥n = m.

87
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Proposition 10.1.4

The condition (10.1.1) is equivalent to
(10.1.2) E[Myi1 | Fn] = My, Vn.

Proor. Indeed, it is clear that (10.1.2) is a particular case of (10.1.1). Vice versa, if (10.1.2) holds then,
by the sub-conditioning property of the conditional expectation (property v) of Prop. 7.2.2), for n > m we
have

E[My | Fnl = B[B[M, | Fur] | Fon| = B[Myy | F] = -+ = B [Myns1 | Fin] = M.

Example 10.1.5: Doob martingale

Let (Q, %, P) be a probability space, X € L'(Q). Let (%,), be a filtration and define
M, :=E[X | %]

Proor. Since #,, c %, 1, by sub-conditioning we have
E[Mys1 | Fnl = B[E[X | Fui1] | Fu] = E[X | Fol = M,,.

Example 10.1.6

| \

Let (Q, #,P), (Xi) = L*(Q) be independent random variables. Define

n

My =) (Xe —E[X]).
k=0

Then (M,,) is a martingale w.r.t. the natural filtration of (X},).

Proor. Let &, := o(X1,...,X,). Since
Mn+1 = M, +(Xn+1 _E[XnJrl])’
——
EFn
we have

E[Mn+1 | e?n] =M, +E [(Xn+1 - E[XnJrl]) | 9,!] .
Since the Xy are independent, in particular X,, 11 — E[X,,+1] is independent of &, so
E[(Xn+1 = E[Xn+1]) | Fnl = B[(Xn41 — E[Xn41])] = 0,
from which E[M,, 11 | Fu] = M,,.

10.2. Super and sub martingales

We start with the following
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Example 10.2.1: Gambler’s wins process

We model a gambler who puts wages on an hazardous game. At k—th game, X represents the
payoff for a unitary bet. For simplicity, we assume that X} is a Bernoulli random variable with
P(Xx = 1) = p (win), P(Xx = —1) = 1 — p (loss). We assume also that k—th game win is
independent of the previous wins, that is Xj is independent of X; j = 1,...,k — 1. We call
Yr = 0 the wage on the k—th game. This is assumed to be random and non anticipative, that is
Yy, which is the wage put for the k—th game depends on what happened until the £ — 1-th game.
In other words Y € o (Xy,..., Xk—1). If w is the gambler’s initial fortune, the total win after n
games is
G, =w+YVX1+...+Y,X,.

Let us consider an example that illustrates why it is convenient to allow the wager process to be
random. We start by betting the entire initial wealth w on the first game. After the first game
we may either win w (in which case G; = 2w) or lose everything (so G; = 0). In the latter
case, Yo = 0 (and consequently Y3 = ¥4 = --- = 0), meaning that we effectively stop playing. If
instead we win the first game, we may choose to bet Yo = 2w in the second round. In other words,

0, ifX;=-—1,
Yo =
2w, ifX; = 1.

After the second game, we might have G2 = 4w if we win again, or Go = 0 if we lose. For the
next game, we could then decide:

v 0, ifX1 = —1, or (Xl = 1, XQ = —1),
3 =
4W, 1fX1 = X2 =1.

We observe that, in this construction, Y depends on Xi, ..., Xx_1.
Then

E[Gn+1 ‘ gn] =G, +E Yini1 Xns1 ‘ Fn| =Gp+ Yn-‘rlE[Xn-‘rl ’ gn]
——

EFn
Since X+ is independent of X, . .., X,, we have

E[XnJrl | gn] = E[XnJrl] = +1 'P(Xn+1 = 1) + (_1) 'P(XnJrl = _1) =P— (1 —P) =2p—1L
In particular, for a fair game p = 1/2 (same probability to win and to loose) we have that
E[Xn-i-l | 'C}Tn] =0,
so (G,) is a martingale. In the more realistic case of an unfair game, thatis p < %, we have
E[Gn—H | gn] =Gp+ Y1 (217 - 1) < Gy,
=

that is the best prediction on future wins is always worst than actual win.

The last case of the example yields to the
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Definition 10.2.2

Let (Q, #,P) be a probability space, (M,,),>0 = L'(Q) be a one parameter family of L' random
variables, and (%, ),>0 a filtration. We say that (M,,) is

e a super-martingale w.r.t. (%,) if

E[Mpi1 | Fn] < My, Vn.
¢ a sub-martingale w.r.t. (%) if

E[Mui1 | Fu] = My, Vn.

Proposition 10.2.3: Jensen’s inequality

Let (Q, %, P) be a probability space, & — F a sub-o—algebra of %. Then, for X € L',
e if ¢ is convex, we have
¢ (E[X|¥9]) <Ele(X) | %]

o if ¢ is concave, we have

Proor. For simplicity we assume ¢ € €*(R). If ¢ is convex we have
0(y) = ¢(x) + ¢'(x)(y — x), ¥x,y €R.
Applying this with x = E[X | €] and y = X we get
¢ (X) > ¢(BIX | 9]) + ¢'(E[X | ¥]) (X - E[X | 7]).

and taking the conditional expectation we have

Elp(X)|¥] >E [‘P(E[X | €]) | ?} +E [(ﬁ’(E[X | ) (X -E[X|%]) ¥

€y €y

= ¢ (E[X| %)) +¢ (B[X | Z])E[X —E[X | 9] | 9]

=0

= ¢ E[X|%]).

For the case of ¢ concave, ¢ is convex and the conclusion follows.

Corollary 10.2.4
Let (M,,) be a martingale w.r.t. (%,). Then
e if ¢ is convex, then (¢(M,,)) is a sub-martingale.

e if ¢ is concave, then (¢(M,,)) is a super-martingale.
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Proor. If ¢ is convex we have

Jensen

Elo(Mni1) | Fnl = ¢ (E[Mut1 | Ful) = ¢(My),

from which we deduce that (¢(M,,)) is a sub-martingale.

J

.

So, for instance, if (M,,) is a martingale, (M?), (eMn) are sub-martingales (provided they make sense).
The concept of martingale can be extended to the case of continuous time dependent random variables.
Here, we will limit to few definitions.

Definition 10.2.5: filtration

A family (%;),>0 of o—algebras of Q is called filtration if
Fy C Fy, Vs < 1.

Definition 10.2.6: natural filtration

Let (X;)t > 0 be a one-parameter family of random variables on a probability space (Q, F,P).
The natural filtration generated by (X;) is

Fri=0(Xy : s<1).

Definition 10.2.7: (super/sub)martingale

| \

Let (Q, &, P) be a probability space, (M;);>o = L'(Q) be a one parameter family of L' random
variables, and (#; ),> a filtration. We say that (M;) is a
e martingale w.r.t. (%) if
E[M, | %] = My, Vt > s.
e super-martingale w.r.t. (%;) if
E[M; | F5] < M;, Yt = s.
e sub-martingale w.r.t. (%) if
E[M,; | F] = My, Yt > s.

10.3. Martingale transform

The example of gambler’s wins process can be extended as follows. We start from the following

Definition 10.3.1

Let (Q, #,P) be a probability space, and (%,) be a filtration. We say that (X,) < L(Q) is
non-anticipative (or adapted) w.r.t. (to) (#,) if X,, € &, for every n € N.
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If we think (#,) as the information available at time n, saying that (X,,) is non anticipative means that
events like {X,, € E'} do not depend on the future. We now introduce a general way to generate martingales
based on a given one.

Proposition 10.3.2

Let (M,) c L? is be a martingale w.r.t. the filtration %, and (X,,) = L? be non anticipative w.r.t.
(Fn). Let
n—1
Yo=Y XedMy, dMy = Myy1 — My.
k=0
Then, (Y,) = L' is a martingale w.r.t. (%), also called martingale transform of X w.r.t. M.

ProorF. Since Xi,dM; € L?, by the Cauchy-Schwarz inequality X;dM; € L', so Y, € L'. We check
that (Y, ) is a martingale w.r.t. (%,). Since X,, € &%,, we have

E[Ynt1 | Fn] = E[Yy + XudM, | Fn] = Yn + XuEldM,, | ],
and since (M,,) is a martingale w.r.t. (%,),
EldM,, | Fn] = E[Mps1 — My, | Ful| = E[Mys1 | Fu] — M, =0,
SO E[Yu11 | Fn] = Ya, that is (¥,) is a martingale w.r.t. (%,).

Under suitable conditions, a vice-versa also holds. Let g, be i.i.d. Bernoulli random variables with
Plex =1) = p,Pleg = —=1) =1 —p (here 0 < p < 1). Let gg := &x — 2p + 1, in such a way that
E[nr = 0. We define My = 0,

n
M, = Z Nk
k=1
Let #, := o (&1,...,&n) = (N1, ...,1,). Since the nx are independent, (M,,) is a martingale.

Theorem 10.3.3

Let (Y,) = L! be a martingale w.r.t. (%,). Then, there exists a non anticipative (X,,) = L' such
that

n—1
Y, =Y+ 2 XedMy.
k=0
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for some Borel function ¢g. Since ¥y = E[Yyy1 | Fi], we have

= ppk+1(e1,..., &k 1) + (1 = p)pkti(er, . ... &k, —1).
Now,
Yit1 — Y = ox+1(&15 -+ k1) — @r(€15 - -5 k).
For ex+1 =1,

while, for g1 = —1,

Therefore, defining

_ 90k+1(817 s €k, ]-) - §0k+1(81, s &k _1)

X :
k 2

€ 9"]{,

dYy = Xgni+1 = XpdMy.

From this,
n—1 n—1
Y, —Yy = Z dyy = Z XedMg,
k=0 k=0
as stated.

ok(e1, ..., ex) = Eloks1(€1, ..., 8k+1) | €1, - - &k]
= ]E[‘pk+1(817 e s €k, 1)13k+1=1 | [ P ’81(] + E[(,Dk+1(81, - &k _1)15k+1=71 | €1, ,Sk]
= gr+1(€1,-..,6k,1) Bllg,,—1|&1,....8k] +@rs1(e1,....60,—1)E[lg, ,——1]&1,...,8k]
iniep]E[lskJrl:1]:P(8k+1:1):P :E[1£k+1:71]:1_p

dYk = ‘pk-‘rl(‘sl’-"’gk? 1) - ‘Pk(gl""?gk) = (1 _P) (‘pk+1(81"'-7‘9k’ 1) - ¢k+1(817'-"8k,_1))

dYy = or1(e1, .- ek, —1) —oi(er, ... e6) = —p (pry1(€15 - s €k 1) — @ry1(e1, .., €0, —1))

and recalling that g1 = €411 —2p+ 1 =2(1 — p) if ex41 = 1 and = —2p if g1 = —1, we just have

10.4. Exercises

Exercise 10.4.1 (). Let (Xx) = L' be independent with E[X;] = 1. Let &, := o(Xi,...

Fo = {@,Q} and define
n
My:=1, M, =[] X
k=1
i) Check that (M,,) = L' is a martingale w.r.t. (%,).
ii) Is it true that if E[ Xy | > 1, then (My,) is a sub-martingale?
Exercise 10.4.2 (x). Let (X,,) be a sub-martingale w.r.t. (#,). Define
Y, = max(Xy,a).

Show that also (Y,) is a sub-martingale w.r.t (%,).

Exercise 10.4.3 (). Let (Xi) = L2(Q) be such that (Sn), Syn = Yi_y Xk is a martingale w.r..

Fn =0(X1,...,Xn). Show that
E[X;X,] =0, Vi # J.
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Exercise 10.4.4 (+x). Let (X,,) = L'(Q) be such that
E[Xn+1 | gn] =aX, + bX, 1,

with) < a,b < landa+b = land F, = o(X1,...,X,). Determine a in such a way that (a X, + Xn—1)
be a martingale

Exercise 10.4.5 (xx). Let X,, be Bernoulli with P(X,, = 1) = p, P(X, = —1) = 1 —p and p # 3.

Define
p \™
Y, =
" <1—p)

Check that (Y,,) is a martingale w.r.t. the natural filtration ¥, :== o (X1, ..., Xy).
Exercise 10.4.6 (). Let (Xy) be i.i.d. random variables with E[Xy] = 0 and V[Xy] = o2. Check that

n 2
M, = (Z Xk> — no?

k=1

is a martingale w.r.t. the natural filtration of (Xg).

Exercise 10.4.7 (+%+). Let (M) — L? be a martingale w.r.t. (%,).
i) Check that if k < m < n then E[(M,, — M,,,)My] = 0.
ii) Check that E[(M, — M,,)? | Fi] = E[M? | Fi] — B[M2, | Fi].
iii) Check that 31im, E[M2] < +o0.
iv) Show that if EJM?] < K < +0o0 for every n € N, then necessarily (M,,) is convergent in L?
norm when n — +0.

Exercise 10.4.8 (x++). Let (Zy) be independent random variables with

1

P(Z, = ta,) = B(Zy=0)=1-—.

202’
where a1 = 2, a, = 422: ax, n = 2.
i) Check that My, := Y, _, Zx is a martingale w.r.t. Fp = 0 (Zu,...,Zy).
i) Discuss a.s. limit of (My,).
iii) What about L* convergence of M,,?

Exercise 10.4.9 (+x). At time n = 0, a nonempty urn contains b black and w white balls. On each

subsequent day, a ball is chosen at random from the urn (each ball in the urn has the same probability of

being picked) and then put back together with another ball of the same color. Therefore, at the end of day

n, here are n + b +w balls in the urn. Let B,, denote the number of black balls in the urn at day n, and let
By,

T btwtn

Check that (X,,) is a martingale w.r.t. to its natural filtration.

X, :
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Brownian Motion

11.1. Definition

The Brownian Motion (hereafter just BM) — equivalently, the Wiener process —, arises to describe
the irregular movement of small particles suspended in a fluid, caused by incessant collisions with the
fluid’s molecules. Despite continuity, typical trajectories are highly irregular, with apparently random
changes of direction, which makes them non differentiable. Empirical observations of the BM enlighten
a number of main features:

e trajectories y = y(t) are continuous function of t;
e increments y(f) — y(s) are Gaussian, with mean 0 and variance proportional to ¢ — s;
e consecutive increments, that is y(¢) — y(s) and y(s) — y(r) with r < s < ¢ are independent.

A natural model is to look at trajectories as outcomes of some time-dependent random variable,
W =Wt w):[0,+0[xQ — R
with the agreement that

e for w € Q fixed, r — W(t, w) is the trajectory;
e fort € [0, +o0[ fixed, w —> W(t, w) is the time t position. The notation W, or W (t) is used for
the random variable W(z, £).

Such type of functions, depending on a scalar (usually interpreted as ’time”) and on a random parameter
w are called stochastic processes. For technical simplicity, we will focus on d = 1, the one-dimensional
BM.

Definition 11.1.1

Let (Q, #,P) be a probability space. A function W : [0, +o0[ xQ — R is called BM if
i) Wo = 0P—a.s.
n ifd<n <...<ty,,

(W s Wey =Wy oot Wy, = W, ) ~ N (0,diag(t1,t2 — t1, ... 1y — th—1))
i) Wy(w) € B([0, o) P—as.

11.2. Lévy-Ciesielski construction

The original Wiener’s construction of the BM was based on a Fourier representation for the time
derivative of W;:
oW, = Z<atWta en>€n,
n

95
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with (e,,) the classic trigonometric basis. The proof is complicate, but Lévy and Ciesielsky found a much
easier way to do this by using the Haar basis. Let us recall that this is a basis for L2([0, 1]) made of
functions

2", Eloi<k

eo(t) =1, exn() =4 —2"7, L<r<kl k=1...2"-1 kodd neN,

0, otherwise.

We set F := {(k,n) : neN, k=1,...,2" — 1 odd}.

szl
SEf

Ficure 1. Haar’s functions (left), Schauder’s functions (right)

Now, if
(11.2.1) OWr = Xoeo(t) + D Xemern(t)
(k,n)es
the Fourier coefficients Xy and Xj , are
1
Xo ={0Wi,ep)2 = J oW dt = Wy — Wy =Wy,
0

k+1
n

k
n— 2n 2
Xk,l’l = <§t ‘L[,ek’n>2 = 2 21 <J\]\ L atWt dt - J
<— k

2n an

o W; dl)

n—1
=277 [Wijan = Wemryon — (Wirnyon — Wigon) |-
Now, assuming W; is already defined, it is not difficult to check that the X, are independent r.vs.

Xk ~ A (0,1). So, integrating the (11.2.1), we may expect that
t

t
(11.2.2) W (w) = Xo(w)J eo(s) ds + Z Xk,n(w)f ex.n(s) ds
0 (k.n)es 0
It is conventient to introduce the so-called Schauder functions
t t 1 0’,,,71 k=1 ¢ [i;} kg;l],
so(1) = f ey = f 1=t, spn(t):= J ekn =13 2 Qn_(lf — ) te S gl
0 0 0 =27 (1= 35) + 7. 1€ 30 5
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Clearly, Schauder-s functions are continuous on [0, 1] so the series in (11.2.2) is made of continuous
functions. We prove now that the series is convergent in uniform norm (of € ([0, 1])) with probability 1.

Theorem 11.2.1: Lévy—Ciesielski, 1961

Let Xo, Xk n, (k,n) € . be i.i.d. random variables ./ (0,1) on some (2, F,P). Let so, Sk.n,
(k,n) € . be the Schauder functions on [0, 1]. Then,

(11.2.3) Wi(w) == Xo(@)so(t) + . Xiw(@)sin(t), 1€[0,1], we Q,
(k,n)es

is uniformly convergent with probability 1 and (W, )o<;<1 fulfills the definition 11.1 in [0, 1].

Proor. Let’s start introducing the notation

0
Sn = Z Xk,nsk,na == W= XOSO + Z Sn-
k<2, k odd n=0
Notice that every Schauder function is &, therefore S,, € €. Our goal is to prove uniform convergence with
probability 1, that is
D ISulw < 400, P—a.s.
n

The idea is to prove that
1
_2’

P<3N : ISnlleo < =5 Vn >N> —1,

n
or, equivalently

2 (ﬂ U 18ulo > i) -0,

N n=N
Applying Borel-Cantelli’s Lemma, we are led to estimate P(||S, [ > ). Now since s, and s, have
disjoint supports for h # k (h, k odd), we have

1
ISnllo = o, _gna Xl

Hence

nti nti
P(| S > @) = P <k<2ﬂ‘fa}<xodd Xen| > 23 a'> < ijp (|x,<,,,| > 2% a) :
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Since X, are all #/(0, 1), we have

+0o0 -

e 2
P(||S > a <2-2'HJ dy.
(ISnlleo > @) e D

Notice now that,

a a y=a a
SO
’ (15 )< 2" 1 i1 1 23 _onge
> a —e z = ———0c
* - Vor 9t g V2o a

We can now conclude: taking @ = % in the previous estimate
P (S loo > ) n?2"2¢ " nt
3 =5

: : . _2n\1/n _2
being the series clearly convergent (for instance, by root test we have (n22”/ 2¢7nd ) = n?/"\/2e" "5 —
0). Therefore, Borel-Cantelli Lemma applies and the conclusion follows.

It remains to prove that W fulfills Def. 11.1 for # € [0,1]. i) it is evident, ii) it follows by uniform
convergence. For simplicity, we just prove that W, ~ (0, ¢). To check this we compute the characteristic

function of W;:
2
E[/ W] = e 5

By construction

E[i$W0] = E [hmeif(xoSoJanNoSn)] Leb. hmE[ zf(xosuuwzn”:osn(z))]
N

By independence

N
E [ei§<xoso<z>+2£7:0 SN))] [ef50®%o] [T [ Bleiéorn X,
n=0 k
and because every X and Xy, is a standard gaussian .4/ (0, 1) we have

£250 ()2 g n(0?
507 — e

E[ei-fso(l)xo] =& , E[eifs‘k,n(t)xk,n] =e ,

SO f
E[e"$"®)] = lim ef%z (s0(0)*+ X0 D st (07)
N

To finish just notice that

t 2 N
P 1
sk,nm?:(f o) ds) — o el 7L hm( 2+22sk,n<z>2> — IoalZ =1,
k

0 n=0

. 1£2
and by this, finally, we get E[e/ €W ()] = =5 thatis W(r) ~ 4(0, 1).

To complete the construction of the BM we need to show that it can be defined on ¢ > 0 and not
only for # € [0,1]. This can be done in the following way. Let (W,) independent BMs on [0, 1] (this
can be done by choosing countable copies of coefficients X for the series (11.2.3) in such a way they are
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independent). We define

Wo (1), t € [0, 1],
Wo(l) + Wl(l‘ — 1), te [1,2],
W) == Wo(1) + Wi (1) + Wa(t — 2), te 23],

It is easy to check that W is now a BM.

11.3. Exercises
Exercise 11.3.1 (+). Let W be a BM. Show that, for A # 0, W(t) := AW (1/A2) is a BM.
Exercise 11.3.2 (xx). Let W and W be two independent BMs and p €| — 1, 1| a constant. Define
X, = pW, + /1 — p2W,, 1 > 0.
1) Check that X; is a BM.

ii) More in general, for which values a, b is X; = aW; + bﬁ’, a BM?
Exercise 11.3.3 (x%). Let (W;) be a BM. Which of the following processes are still BM?
i) —W,;
ii) \/1Wy
111) W2t - Wl
Exercise 11.3.4 (xx). Let (W;) be a BM, %, its natural filtration.

i) Check that (W;) is a martingale w.r.t. (F;).
ii) Determine if (Wt2 ) is a martingale/sub-martingale/super-martingale.
iii) Determine f(t) in such a way that W? — f(t) be a martingale.

Exercise 11.3.5 (xx+). Show that, for 0 < s < t,

1 1 ) s
P(Wy>0,W,>0) = Z+§arcsm -

Exercise 11.3.6 (+x). Let X := fé) W(t)? dt. Compute E[X] and E[X?]. (hint: you can use Fubini’s

theorem to exchange E with f if required).

Exercise 11.3.7 (#x+). Let X = fé’ W(t) dt. Determine the distribution of X. (hint: compute the
characteristic function of X; you can use the approximation

Lb f(t) dr = lir{n%;f (k%) .

Exercise 11.3.8 (x#+). Let W be a BM. Show that W (1) := tW(1/t) ift > 0 and W(0) = 0 is still a BM
(the difficult part is the continuity at t = 0+).
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Brownian Paths
We explore some properties of brownian paths that emphasize their irregular character.

12.1. Length

An important feature of Brownian paths is that they have infinite lengths. We start recalling the
concept of length of a curve y = v, : [a,b] —> R¥:

L) (¥) = 51D Y |¥y s — Yo | =t sup Sa(yi7),
T k T

where 7 = {tp = a <11 <... <t, = b} is a subdivision of [a, b]. We define
7| = ml?x{|tk+1 — 1%}
It is an easy exercise to prove that if y € €([a, b]) then

HAap)(y) = lim Si(y;7).

|7x|—0

It is convenient to introduce also the quadratic variation

Sa (i) = D e — Yl
k

We start by proving the following

2
Sa(w,m) 8 b _a (x| —> 0)

Proor. Notice that

IS2(Wim) = (b= a)l3 =B |(S2(Wim) = (b—a))’|

E[S2(W;n)? —2(b —a)S2(W;n) + (b —a)?]

— B[So(W;7)%] — 2(b — a)E[Sa(W; m)] + (b — a)?.

101
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Now, by definition

E[S2(W;n)?] =E <Z(Wtk+1 - Wtk)2>

k

= ZE [(Wtk+1 - Wtk)4] + Z E [(Wtk+1 - Wtk)Q(thH—l - Wt‘h)Q]
k h#k

3 (tkpr — 1) + Y Bl(Wi,, — Wy )*JE[(W,., — Wi,)?]
I h#k

=33 (k1 — 1) + ), (k1 — 1) (th1 — 1)
k

h#k

=3 (tee1 — 1) + Z (the1 — tn))(ther — tn)
k

=2 (tes1 — 16)> + (b — ).
k

Moreover
E[S2(W;n)] = E lZ(Wml - Wtk)2] =D (tr1 —1) =b—a,

k k
SO

B[(Sa(Wim) — (b - )| = 2%% — 1) + (b~ a)? —2(b—a)? + (b — a)’ (k1 — 1)

I
-1

< |7 Y (tks1 —16) = (b — a)lxl.
k

Therefore, if |7| — 0 then
B[(Sa(m) — (b — )| < (b~ a)a] — 0,

from which the conclusion follows. O

Proposition 12.1.2

(12.1.1) P (Lap)(W) = +0) = 1.

Proor. Notice that

Sa(W;m) Z Wiy, — Wfk maX|Wtk+1 Wi, | Z Wi, — We|
=1 k=1
< maxg |Wtk+1 — Wlk |g[a’b] (W)
Since Wy € €([a, b]) it is uniformly continuous (Heine-Cantor theorem), it means that
Ve >0, 36(e) >0, : [r—s|<d(e), = |W —W|<¢
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s0, in particular,
|n| < 6(e), = mkax|Wtk+l - W, | <e.
Thus, if ZJ, (W) < +00, we would deduce that
So(Win) < Lap)(W)e,
and in particular,
lim Sy(W;n) =0.

[7]—0
However, from the Lemma we proved that So(W; ) L2 b — a, hence, extracting a subsequence, So(W;n) —
b —a > 0P—a.s.: in particular So(W; 1) — 0 with P = 0, hence, necessarily & (W) < +oo with P = 0. o
12.2. Regularity
We know that W, — W ~ A/ (0,1 — ), so, in particular
E[((W; — W)?] =1 —s.

This could suggest that (W, — W,)? ~ t — s, that is [W, — W,| ~ |t — s|'/2. So, brownian paths would
be more than continuous, but still non differentiable.

Definition 12.2.1

We say that f € €([a,b]) is 0 < @ < 1 Holder continuous (and we write f € €([a, b])) on
[a, b] if
|ft — fs|

(flegap) = sup ——— < +oo.
ala.] t#s€la,b) ’t_s|a

Case @ = 1 corresponds to Lipschitz continuous functions that, as known, are almost everywhere
differentiable. If we expect that brownian paths are 1/2 Holder continuous, the following results won’t
be surprising.

Proposition 12.2.2

Proor. We notice that

Woers = Wal\?
So(Wim) = Z <|l‘k:+1l——lk‘i k1 — 12 < [Wti]i,[a,b] Z k1 — 1 *®
3 I

a>1/2
= W2, oy 2 lken = tklltin = P00 < W2 1720 D Jian — 1
x X

< W2 721 — al.
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So, if [Wi]a,[a,p] < +0 then So(W;m) — 0. But we know that this happens almost never, so we conclude that
P(We &) =P([W(-)]a,[a,p] < +0) = 0. i
The same conclusion holds for a = % (see exercises) but the previous proof does not work. It is however
true that paths are o < % Holder continuous. To achieve this is much more complex. We will limit to

sketch the argument.
The starting point is a remarkable inequality:

Lemma 12.2.3: Besov’s inequality

Let f € €([a,b]),p > 1and B > l. Then, there exists a constant C = C(a, b, 3, p) such that

b p 1/p
(12.2.1) |£(t) = f(s)| < Cl|t — s|P~Y/P (jf ‘f|u—v|1+'3)| dudv) .

Accepting this inequality we have the

Theorem 12.2.4

P(%°([a,b])) = 1, Va <

N | =

Prook. Leta < % The goal is to prove that
P ([W]a,[ap) < +0) = 1.

To this aim notice that, from (12.2.1), we have

1
Wl e ([ M )
|t — s|B— 1/p < lu — v|1+BP

SO,

1/
(W] C ’ |W — Wl dudv ’
B-1/p S |M_V|1+ﬁp

Now, take p = 2n (here n € N, n > 1): we have

b |W W |2n
[W] B 1/2n\CJ J \u—v\1+/32" dudv.

Taking expectations, and recalling that W,, — W,, ~ 4/ (0,u — v) so, in particular,

EHWM - WV‘Qn] = Kn‘
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for some constant K,,, we have

b 2n 2n
2 W = W ™" _ (W — Wy |
E I:[W]Bn—l/Qn < CE [[ J lu — v[i+2Bn dudv] = J J [ y[1+26n dudy
bE (W, — W, [*] Knlu —v["
J J u7v|1+23 dudv = J L |u—v|1+23" dudy

1 1

So, in particular,
1
P([Wlg—1/2n < +0) =1, VB < 3= 1.

In conclusion, if @ < 5 1s fixed, piking B in such a way thata < 8 < 3 L and n large enough such that 8 — == >
(well possible because 5. — 0), we have [W], < [W]g_1/24, 50

P([W](Y < +OO) =P ([W]ﬁ*1/2n < +OO) =1,

from which the conclusion finally follows. O

12.3. Differentiability

Since €' functions (that is, continuous function together with their derivative) are easily € functions
for every @ < 1, it follows that

B (W, € € ([a.b])) <P (W, € 8% ([a. b])) = O, v% <a<l.

A slightly more general result can be easily achieved concerning the regularity of paths: paths are never
differentiable with probability 1!

Proposition 12.3.1

P{weQ:30,W,(w)}) =0, Vi >0.

Proor. We start recalling that

0 Wi (w) = lim Wesn(w) = Wi(w)

eR,
h—0 h

S0, in particular,

35,W(w), = dJL = L(w), 16g = 50(0)) : L, V|/’l‘ < 0o

In other words,

pawic U U N {‘WH’I‘Wf <

L>0 60>0 |h|< 8o
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<t}]-o

To make this a countable calculation, without loss of generality, we will actually show

Wivim — W, L
P(m {‘% SL}) =P<ﬂ {|Wt+1/n_W,’<;}> = 0.
n=N ASN

Now, W, 1/n — Wy ~ #(0, 1) so

L 2
L Von (o —2¢
P <}Wt+1/n - Wt| < ;) == e *n dy
0

L
_ /Q_n ” w»?v)?d Vity= Z\/7J\F *idz,
7 Jo

The goal is to prove that, for L > 0 and 6y > 0 fixed,

p {'Wr-i—h W,
[h|< 60

N
L
L 2 (v _:2
P < ﬂ {WH-l/n - Wt| < —}> < \/jf e 2 dz, Vn=N
n T Jo
n=N
Letting n — +00 we have the conclusion. O

Remark 12.3.2. What actually the previous proof shows is that the event {w € Q : 30, W,(w)} is a
subset of a probability O set. If the probability PP is complete (that is, a subset of a null event is a (null)
event), then we conclude. O

12.4. Exercises

Exercise 12.4.1 (xx+). Let m, := {& . k = 0,...,n} be the subdivision on [0,1] in n equal parts.
Check that

n—1 2 1
> Wi (Wi 1ym — Wiesn) s 3 (Wf—1).
k=0

Exercise 12.4.2 (x#x). Let nt, be a dyadic subdivision of [a, b], that is
k n
My 1= a+2—n(b—a) ck=0,...2"}.

Then

So(W;mp) 25 b — a.

2
Warning: we proved that that So(W; ) Le) b — a, so there is an a.s. convergent subsequence. Here,
one has to prove directly that (So(W;n,)) converges pointwise a.s. (hint: try to express the set where

So(W;my) +— b —a). ]
Exercise 12.4.3. The goal is to prove that

p (W e %1/2) - 0.
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W(ti)—W(tk—1)

A/ Tk —tk—1

Let 7 be a subdivision of [a, b] and set Xy := . What kind of r.vs are the Xy ? Hence, noticed that

, show that

(W11 [a.p) = max [ X

P (W ap) S4) =0, ¥2>0

2

and conclude. O
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