

Dati multi-fonte e analisi territoriali

Marco Tosi, Irene Barbiera, e Federico Gianoli

Dipartimento di Scienze Statistiche

Imputazione Multipla Multivariata

- Abbiamo alcune variabili (>1) con valori mancanti (potenzialmente con una natura diversa: qualitative categoriali, ordinali, quantitative metriche e di conteggio). E' complicato stimare la distribuzione a posteriori dei parametri con i metodi standard dell'Imputazione univariata. 3 tipi:
 - 1- imputazione per pattern monotono
 - 2- imputazione per distribuzioni normali
 - 3- imputazione tramite equazioni concatenate

Pattern dei missing

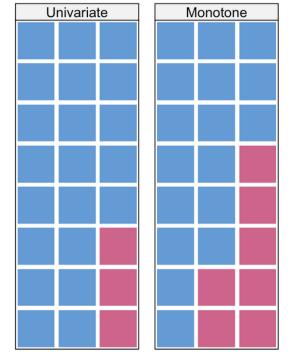
• Il pattern monotono dei dati mancanti può essere dovuto alle cadute nei dati longitudinali oppure (come in SHARE) a rispondenti che non si sottopongono a determinati stimoli (misurazione fisica della salute).

• Si usa una sequenza di imputazioni univariate: Y₁ viene imputato da

un set di variabili complete X ignorando Y_p incomplete.

Missing-value patterns
 (1 means complete)

Percent	Pattern 1 2
63%	1 1
31	0 0
5	1 0
100%	



1- Imputazione Multivariata per pattern monotono

Si può sintetizzare con $P(Y_j^{\text{mis}}|X,Y_1,\ldots,Y_{p-1},\phi_j)$, where ϕ_j rappresenta il parametro sconosciuto dell'imputazione univariata condizionata ai valori osservati in Y e X e quelli imputati alla variabile precedente Y_{p-1} . *Vantaggi:* convergenza veloce, no iterazioni (cambiano i valori iniziali m volte), la natura delle variabili e la conseguente funzione può essere di diverso tipo (logistica, normale, etc..).

- 1. Sort the data $Y_j^{ ext{obs}}$ with $j=1,\ldots,p$ according to their missingness.
- 2. Draw $\dot{\phi}_1 \sim P(Y_1^{\mathrm{obs}}|X)$.
- 3. Impute $\dot{Y}_1 \sim P(Y_1^{ ext{mis}}|X,\dot{\phi}_1)$.
- 4. Draw $\dot{\phi}_2 \sim P(Y_2^{ ext{obs}}|X,\dot{Y}_1)$.
- 5. Impute $\dot{Y}_2 \sim P(Y_1^{\mathrm{mis}}|X,\dot{Y}_1,\dot{\phi}_2)$.

Ordinare da Y₁ con meno dati mancanti a Y_D con più dati mancanti

1.1- Esempio: Imputazione per pattern monotono

29000

```
. mi impute monotone (poisson) chronicw1 (regress) maxgrip = gender age int age2 i.country, add(10) noisily replace
```

Conditional models:

```
chronicw1: poisson chronicw1 gender age int age2 i.country , noisily
```

maxgrip: regress maxgrip chronicw1 gender age int age2 i.country , noisily

Running regress on observed data:

Running poisson on observed data:

Iteration	0:	log	likelihood	=	-45823.702
Iteration	1:	log	likelihood	=	-45823.66
Iteration	2:	log	likelihood	=	-45823.66

Poisson regression Number of obs =

> LR chi2(14) 4905.84 Prob > chi2 0.0000 Pseudo R2 0.0508

Log likelihood = -45823.66

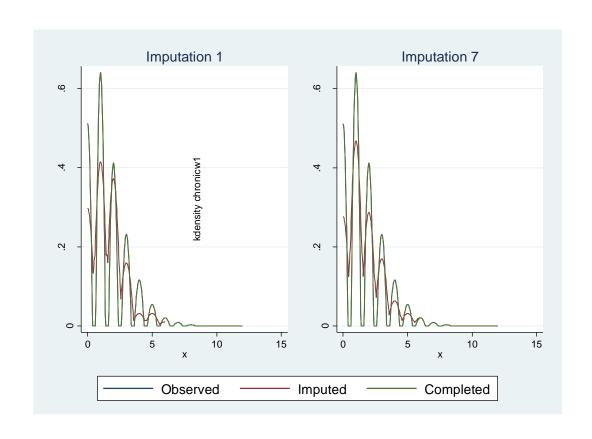
country

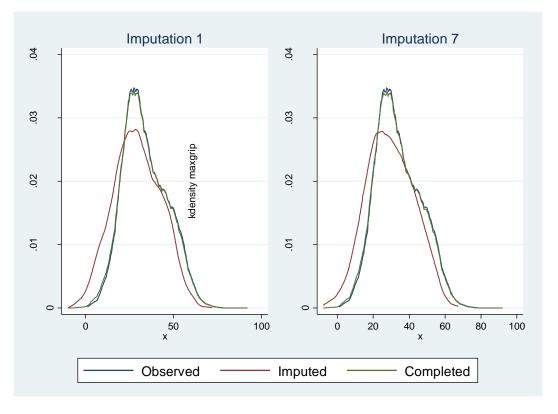
chronicw1	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
gender	.1364891	.0095341	14.32	0.000	.1178027	.1551756
age_int	.1379382	.0056337	24.48	0.000	.1268964	.1489799
age2	0008077	.0000408	-19.79	0.000	0008878	0007277

Source	SS df	MS	Number of obs = 26696
			F(15, 26680) = 3006.45
Model	2588734.3 15	172582.287	Prob > F = 0.0000
Residual	1531539.3 26680	57.4040218	R-squared = 0.6283
			Adj R-squared = 0.6281
Total	4120273.61 26695	154.346267	Root MSE = 7.5765

maxgrip	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
chronicw1	7792959	.0346246	-22.51	0.000	8471618	7114299
gender	-16.62528	.0933534	-178.09	0.000	-16.80826	-16.4423
age_int	.153978	.0597172	2.58	0.010	.0369291	.2710269
age2	0042891	.0004452	-9.63	0.000	0051617	0034166
country						

1.2- Esempio: diagnostica





2- Imputazione Multivariata per distribuzioni Normali (MVN)

- MVN utilizza un approccio basato sulla **distribuzione normale multivariata** dei parametri e quindi utilizza una unica modellizzazione per le variabili da imputare.
- E' un metodo pensato per variabili continue distribuite normalmente ma può dare risultati robusti anche per variabili ordinali e dicotomiche (Allison, 2001).
- **Pattern** di dati mancanti è **arbitrario** ed è quindi difficile stimare il parametro sconosciuto dalla distribuzione delle variabili osservate. Ricorriamo quindi ad un algoritmo chiamato *Data augmentation*.

2.1- Imputazione Multivariata per distribuzioni Normali (MVN)

- Data augmentation (DA) che appartiene alla famiglia di algoritmi del Monte Carlo Markov Chain (MCMC). Si assume che la distribuzione multivariata dei missing condizionata alle variabili osservate/ complete sia approssimabile alla normale.
- Algoritmo Expectation Maximization (EM) per i valori iniziali:
- 1- Fase di Previsione (Expectation) utilizza le medie e la matrice di covarianza per costruire un insieme di equazioni di regressione e prevedere i valori incompleti partendo dalle variabili osservate.
- 2 Fase di Massimizzazione (Maximization) utilizza i dati appena "creati" nella fase E per aggiornare le stime del vettore delle medie e della matrice di varianza e covarianza. Le nuove stime dei parametri vengono utilizzate nel passo E successivo.

2.1 – Esempio MVN

Abbiamo 4 variabili da imputare che assumiamo siano distribuite normalmente, anche se abbiamo visto precedentemente la distribuzione di Casp e Maxgrip (skewed). Abbiamo inoltre Adl2 come dummy e Sphus come variabile ordinale. In questo caso non siamo tanto interessati a riprodurre la distribuzione univariata tra variabili (soprattutto per Adl2 e Sphus) ma vogliamo ridurre il bias nell'associazione tra variabili considerando le mancate risposte come elemento di incertezza.

mi impute mvn maxgrip adl2 casp sphus = i.country wave hhsize gender age_int, rseed (53421) add(5) noisily

Performing EM optimization:

note: 249 observations omitted from EM estimation because of all imputation variables missing

2.2 – Esempio MVN

EM converge in 17 iterazioni per la stima dei valori iniziali (procedura già vista nell'imputazione multipla univariata).

L'algoritmo è più lento a convergere se più osservazioni vengono escluse dalla stima. Prior si riferisce alla distribuzione a priori (uniform, Jeffreys [distribuzione non-informativa], ridge [basata su df]). Qui (uniform) tutti i valori dei parametri sono

ugualmente probabili.

Expectation-maximization estimation

Prior: uniform

 Number obs
 =
 67313

 Number missing
 =
 20443

 Number patterns
 =
 14

 Obs per pattern: min =
 1

 avg =
 4808.071

max = 49360

Observed log likelihood = -247577.56 at iteration 17

	maxgrip	adl2	casp	sphus
Coef				
11b.country	0	0	0	0
12.country	.1481132	0020214	.0097676	.2252113
13.country	3733106	0118922	.7133972	3718959
14.country	7868113	0155719	1.477563	0392693
15.country	-6.477767	.0227605	-2.618414	.3691808

2.2 – Esempio MVN

Dopo aver ottenuto i valori iniziali:

Performing MCMC data augmentation ...

Multivariate imputation

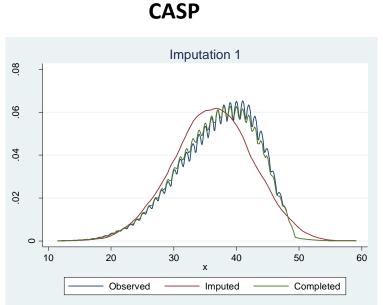
E imputazione dei 5 dataset:

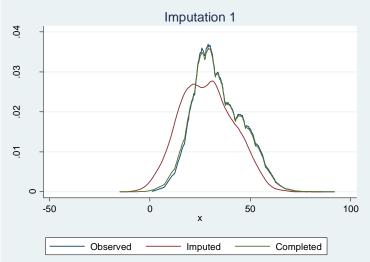
Multivariate imputation	Imputations =	= 5
Multivariate normal regression	added =	= 5
Imputed: m=1 through m=5	updated =	= 0
Prior: uniform	Iterations =	= 500
	burn-in =	= 100
	between =	= 100

		Observation	ns per m	
Variable	Complete	Incomplete	Imputed	Total
maxgrip	61454	6108	6108	67562
adl2	67249	313	313	67562
casp	52893	14669	14669	67562
sphus	67213	349	349	67562

(complete + incomplete = total; imputed is the minimum across m
 of the number of filled-in observations.)

2.3 – Esempio MVN: diagnostica





Sphus

Proportions of sphus for m=1

Number of observed = 67213 Number of imputed = 349 Number of completed = 67562

Self-perce ived health - us version	Observed	Imputed	Completed
11051963		0.003	0.000
.18370019		0.003	0.000
.53293246		0.003	0.000
.69702286		0.003	0.000
.81570554		0.003	0.000
.9382537		0.003	0.000
.96542102		0.003	0.000
Excellent	0.097	0.000	0.096
1.0002817		0.003	0.000
	•		

3- Equazioni concatenate (MICE)

- E' il metodo più comune per imputare i dati mancanti e consiste in un mix di regressioni sequenziali per variabili di varia natura (continue, nominali, ordinali, di conteggio).
- Durante la prima iterazione, Y_1 , la variabile da imputare con il minore numero di missing, viene regredita su tutte le altre variabili complete. Nella seconda fase, la variabile Y_2 con il minor numero di missing viene regredita su tutte le variabili complete, più Y_1 imputata. Una iterazione consiste in un ciclo di imputazioni su tutte le variabili da imputare Y_i .
- L'imputazione avviene attraverso una estrazione casuale dei valori dalla distribuzione a posteriori ottenuta dal modello di imputazione.

3.1- Equazioni concatenate (MICE)

- Basate su un tipo di algoritmo MCMC. Le catene Monte Carlo di Markov (MCMC) approssimano l'estrazione (pseudo-random) dei valori da imputare da una distribuzione sconosciuta e multidimensionale. Tecnica iterativa di simulazione della distribuzione a posteriori per pattern arbitrari di dati mancanti.
- L'algoritmo procede così fino a che non viene fatto il modello di regressione per $Y_{i(m)}$ con il maggior numero di valori mancanti.
- Questa procedura viene ripetuta più volte (n=10 iterazioni) per completare un ciclo e produrre un dataset imputato.

3.2- Equazioni concatenate (MICE)

- In sostanza utilizziamo un modello di regressione a seconda della natura della variabile da imputare per stimare la distribuzione condizionata di Y₁. Le imputazioni avvengono attraverso una estrazione stocastica da questa distribuzione. Y₁ imputata serve a predire Y₂ fino a completare un ciclo di imputazione.
- Questa procedura viene ripetuta più volte per avere M dataset imputati.
- Il modello analitico deriva dalla semplice media aritmetica dei parametri stimati nei singoli M dataset.

3.1 – Un esempio MICE

mi impute chained (reg) maxgrip (logit) adl2 (reg) casp (ologit) sphus

= i.country wave hhsize gender age_int, rseed (53421) replace noisily

```
Running regress on data from iteration 8, m=1:
```

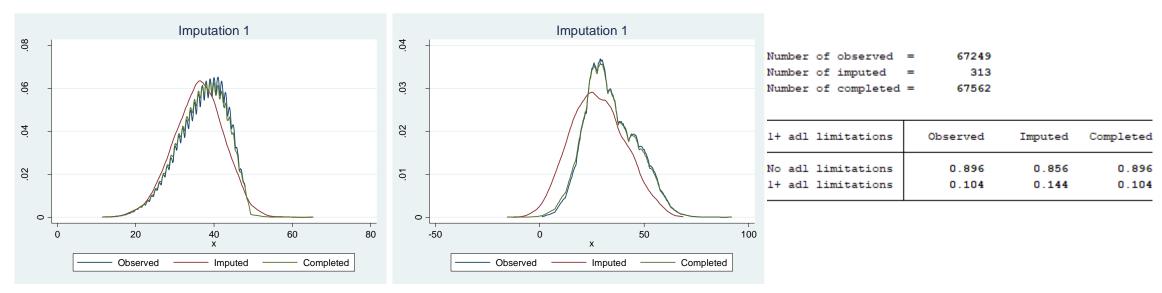
Adl2, Sphus, e Casp imputate precedentemente servono a predire maxgrip nell'iterazione 8 (ad esempio)

maxgrip	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
adl2 L+ adl limitations	-2.191482	.115534	-18.97	0.000	-2.417929	-1.965035
sphus						
Very good	2361878	.112496	-2.10	0.036	4566803	0156953
Good	9974089	.1064887	-9.37	0.000	-1.206127	7886907
Fair	-2.279448	.1188525	-19.18	0.000	-2.512399	-2.046497
Poor	-4.125177	.1603997	-25.72	0.000	-4.43956	-3.810793
casp	.1361096	.0057744	23.57	0.000	.1247919	.1474274

3.2 – Un esempio MICE

mi impute chained (reg) maxgrip (logit) adl2 (reg) casp (ologit) sphus

= i.country wave hhsize gender age_int, rseed (53421) replace noisily



Modello Analitico:

Coef. Svezia= -0.36 (dati completi); -0.04 (MVN); -0.04 (MICE)