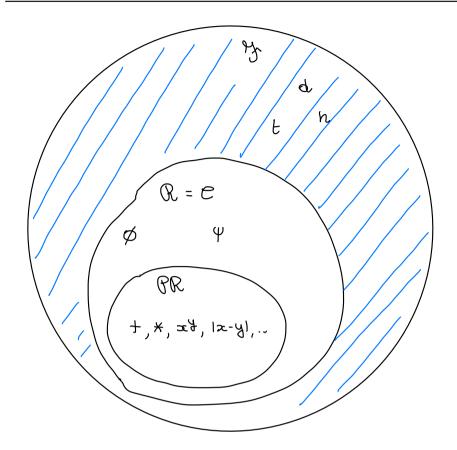
COMPUTABILITY (24/11/2025)

RECURSIVE and RECURSIVELY ENUMERABLE SETS



$$d(x) = \begin{cases} \varphi_{x}(x) + 1 & \text{if } \varphi_{x}(x) \\ 0 & \text{otherwise} \end{cases}$$

$$h(x) = \begin{cases} 1 & \text{if } \varphi_x(x) \\ 0 & \text{otherwise} \end{cases}$$

$$f(x) = \begin{cases} 1 & \text{if } W_{\alpha} = |N| \\ 0 & \text{otherwise} \end{cases}$$

given
$$\times \subseteq \mathbb{N}$$
 " $\times \in \times$ "? $\times = \{ \times \mid \varphi_{\mathbb{Z}} = \text{fact} \}$

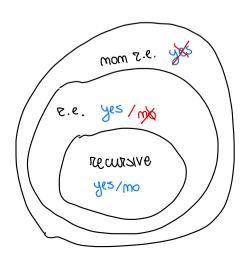
set of programs

 $\times = \{ \times \mid P_{\mathbb{Z}} \text{ has } \ell_{\mathbb{M}} \}$

$$X = \{x \mid \varphi_x = \text{fact}\}$$
 $X = \{x \mid P_x \text{ has limear complexity}\}$
 $X = \{x \mid P_x \text{ has limear complexity}\}$
 $X = \{x \mid P_x \text{ does not access }\}$

a given register

$$X = \frac{1}{2} \times 1$$
 Pz executes each 1 mstruction for some 1



decidable properties / recursive sets

amswer: yes/mo

semi-decidable properties/ recursively enumerable sets (12.e.) X RECURSINE Set

$$\chi_A: \mathbb{N} \to \mathbb{N}$$

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$
 is computable

$$\chi_{IN}(\infty) = 1$$
 $\forall x \in IN$

$$\chi_{g}(x) = 0 \quad \forall x \in \mathbb{N}$$

$$\chi_{\mathbb{P}}(x) = \overline{sg}(rm(2,x))$$

:

OBSERVATION: All fimite sets one recursive

dim

$$\chi_{A}(x) = \overline{sg}\left(\prod_{i=0}^{m} |x - x_{i}|\right)$$

o if $x = x_{i}$ for some if $x = x_{i}$ for some if $x = x_{i}$ otherwise

$$K = \{ x \in \mathbb{N} \mid \varphi_{x}(x) \downarrow \}$$

$$= \{ x \in \mathbb{N} \mid x \in \mathbb{W}_{x} \}$$

$$\chi_{\kappa(x)} = \begin{cases} 1 & \text{if } \varphi_{\kappa(x)} \downarrow \\ 0 & \text{otherwise} \end{cases}$$

mot computable

OBSERVATION: Let A,B & IN sets, If A,B or recursive them

(i)
$$\overline{A} = \mathbb{N} \setminus A$$

$$\frac{\text{proof}}{\text{proof}} \quad \text{(ii)} \quad \chi_{\text{AUB}}(x) = \begin{cases} 1 & \text{if } x \in A \text{ or } x \in B \\ 0 & \text{otherwise} \end{cases}$$

=
$$Sg(\chi_A(x) + \chi_g(x))$$

(same proof as for decido, ble predicates)

* REDUCTION

problems and B

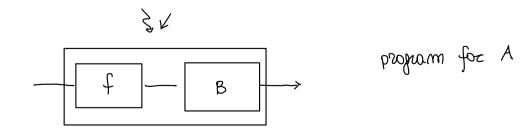
a reduces to B

every imstance of a combe transformed into on in stance of B in a simple way

Def: Given $A, B \in IN$ we say that the problem " $x \in A$ " reduces to " $x \in B$ "

or, for short, A reduces to B, write $A \leq_m B$ if there is a total computable function $f: IN \to IN$ s.t. $\forall x \in IN$

 $x \in A$ iff $f(x) \in B$



OBSERVATION: Let A,B & IN A &m B

- (c) if B is recursive them A is recursive
- (ii) if A is not recursive them B is not recursive

foorg

(i) let B be recursive i.e.

$$\chi_{B}(x) = \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{otherwise} \end{cases}$$

computable

since $A \leq_m B$ there is $f: IN \to IN$ total computable s.t $\forall x$ $x \in A$ iff $f(x) \in B$

Them

$$\pi_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases} = \pi_{B}(f(x))$$

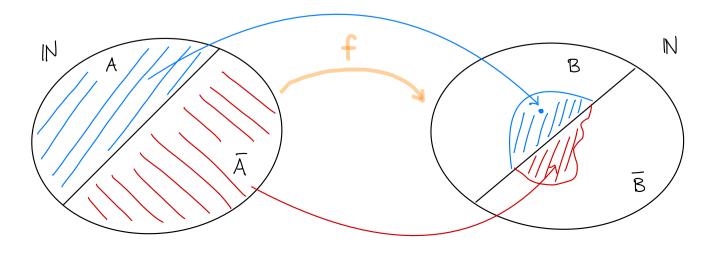
1 computable by composition

(ii) countermeminal

NOTE , Knowing $A \le mB$ and X_A tells us very little about X_B E.g., with A = IN, B = K note that $A \le mB$ let $e \in IN$ s.t. $q_e = id$, then $f(x) = e \ \forall x$ is a reduction for $A \le mB$

$$\forall x \in A = IN \quad \text{if} \quad f(x) \in B = K$$

im fact e E K (fe(e) = e l), hemce



Example:
$$K = \{x \mid x \in W_x\} = \{x \mid \varphi_x(x)\}$$

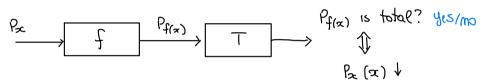
$$T = \{x \mid W_x = |N\} = \{x \mid \varphi_x(y)\} \quad \forall y \}$$

assume that we have

given be we can construct Pfor s.t.

 $P_{x}(x)$ If $P_{f(x)}$ is defined on all imputs

them we can combine T and f



How do we define ??

$$def P_{f(x)}(y):$$
return $P_{x}(x)$

def
$$P_{f(x)}(y)$$
:

return $P_{x}(x)$

if $P_{x}(x)$
 $\sim P_{f(x)}(y) \wedge \forall y$
 $\sim P_{f(x)}(y) \wedge \forall y$

Formally

$$g(x,y) = \varphi_x(x) = \psi_v(x,x)$$

com putable

By the smm theozem there is $f: IN \rightarrow IN$ total computable such that Yx,y

$$\varphi_{f(\alpha)}(y) = g(\alpha, y) = \varphi_{\alpha}(x)$$

We claim that f is the reduction function for K≤mT ie.

$$\forall x$$
 $x \in K$ iff $f(x) \in T$

* if
$$x \in K$$
 them $f(x) \in T$ assume $x \in K$, i.e. $\varphi_{x}(x) \downarrow$. Them $\forall y$ $\varphi_{f(x)}(y) = \varphi_{x}(x) \downarrow$ which means $\varphi_{f(x)} \in T$

* if
$$x \notin K$$
 them $f(x) \notin T$ assume that $x \notin K$ (e. $\varphi_{\alpha}(x) \uparrow$ them $\forall y$
$$\varphi_{f(\alpha)}(y) = \varphi_{\alpha}(\alpha) \uparrow$$
 which implies $\varphi_{f(\alpha)} \notin T$

Therefore f is the reduction function for K <m T and since K is know to be not recursive, them T is not recursive.

Example (Imput problem)

Let
$$m \in \mathbb{N}$$
 be fixed. Comsider $Am = \{ \alpha \mid \varphi_{\alpha}(m) \}$

K < m Am

if Para) & them Pf(x) (y) & Yy im particular Pf(a) (m) V

if Pa(x) T thun Pf(x) (y) T ty in particulur $\phi_{f(x)}(m)$

Define g: IN²→IN

$$g(x,y) = \varphi_x(x) = \Psi_{\sigma}(x,x)$$
 computable hence by smm theorem there is $f: |N \to N|$ total computable s.t. $\forall x,y \qquad \varphi_{f(x)}(y) = g(x,y) = \varphi_x(x)$

We show that f is a reduction function for KEm An

* if xek them flat & Am

if $x \in K$ Ghem $q_x(x) \downarrow$. Therefore $\forall y$ $q_{f(x)}(y) = q_x(x) \downarrow$

hence, in portrouble ofta, (m) I hence fix) e Am

* if zek then f(x) & Am

if $x \notin K$ then $\varphi_x(x) \uparrow$. Therefore $\forall y \quad \varphi_{f(x)}(y) = \varphi_x(x) \uparrow$ hence, in particular, $Q_{f(x)}(m) \uparrow$ hence $f(x) \in A_m$

Le K≤m Am and, simce k is not recursive, we comclude Am mot recursive

* EXERCISE: Show that Am &m K (easy) " " T \$ K (less easy)

EXERCISE: ONE = $\{\infty \mid \varphi_{\infty} = A\}$

Pz ONE - Px correct (mplementation of comstant 1

EXERCISE: (OUTPUT PROBLEM)

Let meIN fixed. Consider Bm = {z | m e Ez }

Pa produces m os output

EXERCISE: URM with programs where only forward Jumps one offowed

 $I_i: J(m, m, t) \qquad t > i$

Show that all functions are total, hence &' & &

What if I can only jump backward

 $I_i: J(m, m, t)$ t < i

[home]