

# Dati multi-fonte e analisi territoriali

Marco Tosi, Irene Barbiera, e Federico Gianoli

Dipartimento di Scienze Statistiche

#### Approcci Tradizionali o Deterministici

- Si tratta di una **sostituzione** dei valori mancanti con valori prodotti "artificialmente" (es. la media) che consente di riprodurre un dataset completo sul quale utilizzare strumenti di analisi standard.
- I valori imputati tendono ad essere considerati come quelli osservati. Perciò la variabilità delle stime associata alla non-risposta viene trascurata (e SE sottostimati).
- Notare come cambia la distribuzione della variabile imputata e le conseguenze che può avere sull'associazione tra variabili (che dipende da N. missing).

#### Approcci Moderni (Metodi di Imputazione Multipla)

- Imputazione Multipla (Rubin 1978, 1987): procedura attraverso la quale imputiamo i valori mancanti diverse volte per produrre diverse stime plausibili. Consiste nella ripetizione del processo di imputazione m volte (m>2) e nella generazione di un insieme di m data-set completi.
  - Univariata: imputiamo i valori di una sola variabile sulla base di altre osservate / complete tenendo conto della mancata risposta come sorgente di incertezza.
  - Multivariata: imputiamo i valori mancanti di più variabili sulla base di quelle osservate e sulla base delle imputazioni precedenti (ricorsività, concatenazione).
- I risultati delle analisi saranno così svolti su m dataset e verranno combinati in modo da tenere in conto dell'incertezza causata dalla presenza di dati mancanti (stimata dalla variabilità tra dagli m data-set imputati).
- Imputazione Singola quando il processo di imputazione viene fatto una volta su m=1 in base a dataset competi

#### Caratteristiche dell'Imputazione Multipla

- Imputazione Multipla (Rubin 1978, 1987) si basa su modelli statistici parametrici o semi-parametrici.
- Trasparenza del modello di imputazione (es., quali variabili e perchè).
- Replicabilità (es., settare i valori iniziali)
- Ha lo scopo di **preservare le proprietà dei dati osservati** (medie, varianze, e covarianze)
- Dipende dallo scopo di una ricerca o dalle relazioni tra variabili che vogliamo studiare (es. scelta delle variabili) e potenzialmente coinvolgere un set di variabili più ampio rispetto a quelle utilizzate in fase analitica.
- Il modello di imputazione scelto si basa spesso su una precisa distribuzione.

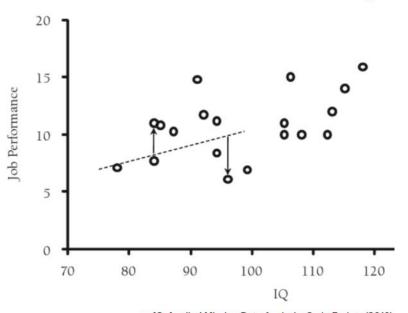
#### Caratteristiche dell'Imputazione Multipla

• Imputazione Multipla nel senso che il processo di imputazione viene ripetuto m volte. In teoria l'inferenza dei dati mancanti è efficiente quando M = ∞. Tuttavia quando M=5, 10, 20 per ripetizioni indipendenti del processo di imputazione otteniamo una inferenza efficiente dei dati mancanti.

• Mantiene le caratteristiche multivariate dei dati attraverso una sequenza di **imputazioni condizionate** ai dati osservati, oppure attraverso metodi la **catene Monte Carlo di Markov (MCMC)** che estraggono/ simulano i valori mancanti dalla distribuzione a posteriori del modello multivariato.

#### Tre fasi dell'imputazione multipla

- **1- Imputazione:** i valori mancanti sono sostituiti dai valori stimati e viene creato un dataset completo. Questo processo di «sostituzione» o «completamento» viene ripetuto *m* volte.
- 2- Analisi: ogni dataset è analizzato utilizzando il metodo di interesse (es, regressione)
- **3- Pooling (integrazione):** le stime dei parametri (coeficienti e errori standard) ottenuti dalle analisi di tutti i dataset sono combinati per l'inferenza.


Step 1—Create 5 to 10 data sets using data augmentation

Step 2—Estimate the model (e.g., regression, logistic regression, SEM) separately for each of the 5 to 10 data sets using data augmentation

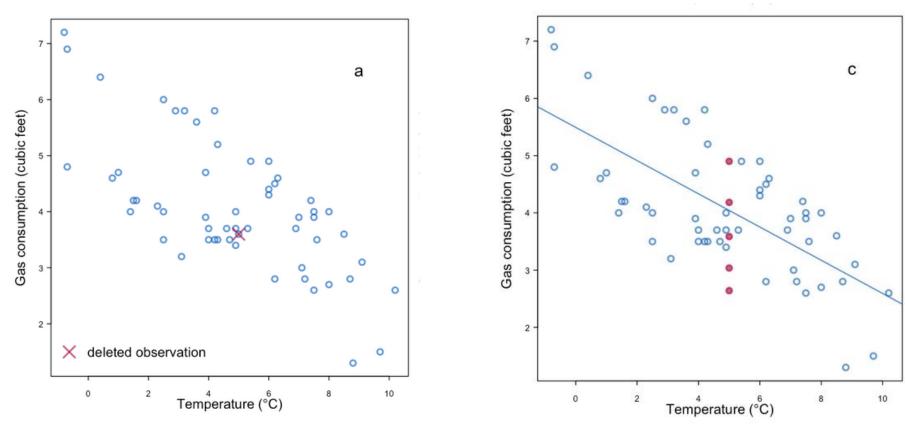
Step 3—Compute pooled estimates of the parameters and standard errors using the 5 to 10 solutions

## Fase 1: Come avviene la fase 1 di Imputazione. Il caso più facile: Imputazione multipla univariata

- Regredendo X su Y sui dati osservati/ completi otteniamo la distribuzione per ogni valore mancante di Y:  $\dot{y} = \hat{\beta}_0 + X_{\text{mis}}\hat{\beta}_1 + \dot{\epsilon}$
- Dove  $\hat{\beta}_0$  and  $\hat{\beta}_1$  sono stimati dal modello di regressione e  $\epsilon$  è un valore casuale della distribuzione normale standardizzata  $\dot{\epsilon} \sim N(0, \hat{\sigma}^2)$



Regressione stocastica di imputazione

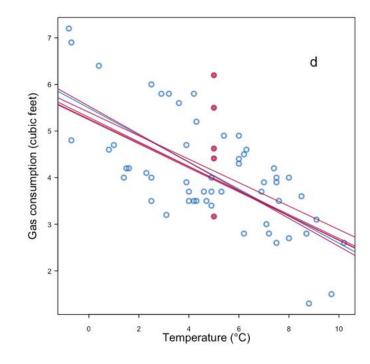

p.48, Applied Missing Data Analysis, Craig Enders (2010)

#### Fase 1: Imputazione univariata

Utilizziamo le tecniche tipiche dell'imputazione singola, ossia modelli di regressione per predire le variabili incomplete con i valori mancanti (Y) partendo dalle variabili complete (X).

- 1- Modello di regressione sui dati completi
- 2- Dal modello calcoliamo i valori predetti e l'errore standard delle stime. I valori predetti per i missing sono basati sulle altre variabili inserite nel modello.
- 3- Aggiungiamo variabilità random ai valori che vogliamo imputare, ossia moltiplichiamo l'errore standard con una variabile casuale normalmente distribuita,

#### Fase 1: Imputazione univariata



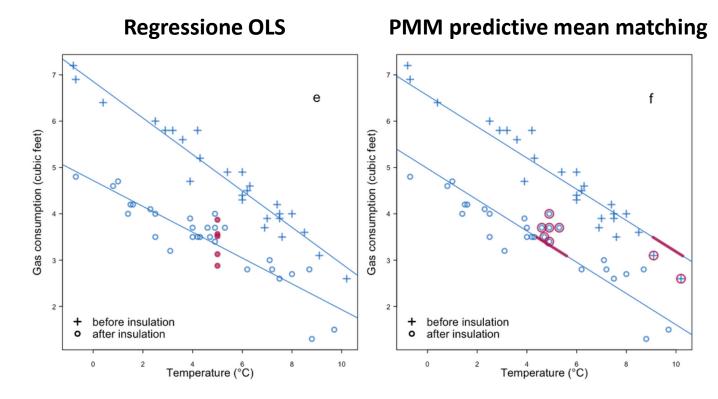

Variabilità di intercetta

Van Buuren (2021) Flexible Imputation of Missing Data

#### Fase 1: Imputazione Univariata

- Nell'Imputazione Multipla Univariata utilizziamo le previsioni di un modello di regressione aggiungendo un elemento di variabilità casuale. Abbiamo tuttavia una parte fissa, ossia assumiamo che l'intercetta, la pendenza, e la deviazione standard dei residui siano conosciuti.
- Aggiungiamo un elemento di incertezza sui parametri basato sulla distribuzione a posteriori, secondo  $\dot{y} = \dot{\beta}_0 + X_{\text{mis}}\dot{\beta}_1 + \dot{\epsilon}$  dove  $\dot{\epsilon} = \dot{\epsilon} \sim N(0, \dot{\sigma}^2)$  e  $\dot{\sigma}$  un valore casuale della distribuzione a posteriori.




#### Fase 1: E' Multipla

• Abbiamo quindi **una Imputazione Multipla** quando il processo viene ripetuto *m* volte per m dataset (**m>2**; es, *m*=3). Queste ripetizioni sono basate sulla distribuzione a posteriori dei parametri condizionata ai dati osservati.

|         | Da  | ata | Imputation 1 |     | Impu | tation 2 | Impu | tation 3 | Imputation 4 |     |
|---------|-----|-----|--------------|-----|------|----------|------|----------|--------------|-----|
| Subject | Y   | X   | Y            | X   | Y    | X        | Y    | X        | Y            | X   |
| 1       | 1.1 | 3.4 | 1.1          | 3.4 | 1.1  | 3.4      | 1.1  | 3.4      | 1.1          | 3.4 |
| 2       | 1.5 | 3.9 | 1.5          | 3.9 | 1.5  | 3.9      | 1.5  | 3.9      | 1.5          | 3.9 |
| 3       | 2.3 | 2.6 | 2.3          | 2.6 | 2.3  | 2.6      | 2.3  | 2.6      | 2.3          | 2.6 |
| 4       | 3.6 | 1.9 | 3.6          | 1.9 | 3.6  | 1.9      | 3.6  | 1.9      | 3.6          | 1.9 |
| 5       | 8.0 | 2.2 | 8.0          | 2.2 | 8.0  | 2.2      | 8.0  | 2.2      | 8.0          | 2.2 |
| 6       | 3.6 | 3.3 | 3.6          | 3.3 | 3.6  | 3.3      | 3.6  | 3.3      | 3.6          | 3.3 |
| 7       | 3.8 | 1.7 | 3.8          | 1.7 | 3.8  | 1.7      | 3.8  | 1.7      | 3.8          | 1.7 |
| 8       | ?   | 0.8 | 0.2          | 0.8 | 0.8  | 0.8      | 0.3  | 0.8      | 2.3          | 0.8 |
| 9       | ?   | 2.0 | 1.7          | 2.0 | 2.4  | 2.0      | 1.8  | 2.0      | 3.5          | 2.0 |
| 10      | ?   | 3.2 | 2.7          | 3.2 | 2.5  | 3.2      | 1.0  | 3.2      | 1.7          | 3.2 |

#### Fase 1: Variabili nel modello di imputazione

 Solitamente nel modello di imputazione includiamo più variabili per imputare i valori mancanti in modo più accurato (variabilità diminuisce e produce stime migliori). Qui un esempio con una terza variabile dummy.



#### Fase 1: Variabili nel modello di imputazione

- La scelta delle variabili non è limitata a quelle che hanno valori mancanti da imputare e a quelle che useremo nel modello analitico. Solitamente utilizziamo anche variabili che possano predire la variabile da imputare e quelle che potrebbero predire la generazione dei missing.
- Se non includiamo tutte le variabili del modello analitico introduciamo una distorsione nelle associazioni studiate modello deve essere *appropriato* (Rubin 1996). Se X è correlato a Y ma non viene usato nel modello di imputazione, abbiamo valori imputati di Y indipendenti da X, così la relazione tra X e Y è distorta verso lo 0.

#### Fase 1: Variabili nel modello di imputazione

• La scelta delle variabili introduce un altro problema (che vedremo nei Modelli di imputazione Multivariata): quando includiamo tante variabili di diversa natura (quantitative continue, di conteggio, qualitative categoriali, ecc...) che possono includere dati mancanti (item non-response) è praticamente impossibile specificare la forma della distribuzione a posteriori congiunta di queste variabili.

• Le Catene Monte Carlo di Markov (MCMC) sono un metodo per approssimare le estrazioni partendo da una distribuzione a posteriori congiunta sconosciuta.

#### Fase di Imputazione in Stata

• Dataset con 2 variabili a (regular), b (imputed). Creiamo 3 dataset (con anche c= a + b, come variabile passiva).

mi set mlong mi register imputed maxgrip m=0: 6109 m=0 obs. now marked as incomplete) 1 mi register regular mergeid country wave gender age int hhsize adl b m=1:2 4.5 8.5 m=2: 5.5 9.5

#### Stili diversi

• Wide

|          | a      | Ъ | С | _1_b     | _2_b     | _1_c     | _2_c     | _mi_miss |
|----------|--------|---|---|----------|----------|----------|----------|----------|
| 1.<br>2. | 1<br>4 | 2 | 3 | 2<br>4.5 | 2<br>5.5 | 3<br>8.5 | 3<br>9.5 | 0<br>1   |

• Flong

|          | a      | b   | С   | _mi_miss | _mi_m | _mi_id |
|----------|--------|-----|-----|----------|-------|--------|
| 1.<br>2. | 1<br>4 | 2   | 3   | 0<br>1   | 0     | 1<br>2 |
| 3.       | 1      | 2   | 3   |          | 1     | 1      |
| 4.       | 4      | 4.5 | 8.5 |          | 1     | 2      |
| 5.       | 1      | 2   | 3   | :        | 2     | 1      |
| 6.       | 4      | 5.5 | 9.5 |          | 2     | 2      |

Mlong

|    | a |                 |     | _mi_miss | _mi_m | _mi_id |
|----|---|-----------------|-----|----------|-------|--------|
| 1. | 1 | 2               | 3   | 0        | 0     | 1      |
| 2. | 4 | •               | •   | 1        | 0     | 2      |
| 3. | 4 | 2<br>4.5<br>5.5 | 8.5 |          | 1     | 2      |
| 4. | 4 | 5.5             | 9.5 |          | 2     | 2      |

mi set mlong

### Modello di imputazione

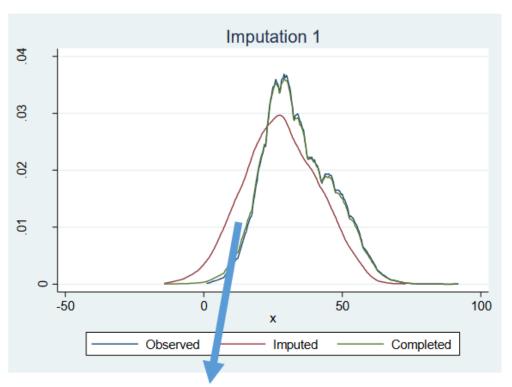
mi impute regress maxgrip i.country wave gender age\_int hhsize adl, add(20) rseed(2232) no isily

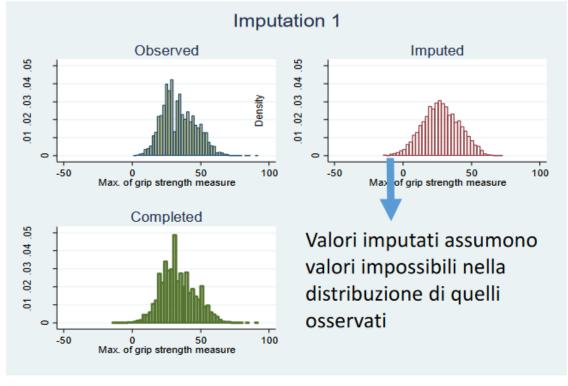
unning regress on observed data:

| maxgrip     | Coef.     | Std. Err. | t      | P> t  | [95% Conf. | . Interval] |
|-------------|-----------|-----------|--------|-------|------------|-------------|
| country     |           |           |        |       |            |             |
| Germany     | .1070684  | .1822272  | 0.59   | 0.557 | 2500973    | .4642341    |
| Sweden      | 4831797   | .1803796  | -2.68  | 0.007 | 8367242    | 1296351     |
| Netherlands | 9025835   | .1813169  | -4.98  | 0.000 | -1.257965  | 547202      |
| Spain       | -6.417636 | .1898281  | -33.81 | 0.000 | -6.7897    | -6.045573   |

### Risultati del Modello di imputazione

. list maxgrip age\_int \_mi\_id \_mi\_miss \_mi\_m if \_mi\_id ==


|                          |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         | maxgrip   | age_int | _mi_id | _mi_miss | _mi_m |
|--------------------------|---------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----------|---------|--------|----------|-------|
|                          |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 8.      |           | 70      | 8      | 1        | 0     |
| Univariate imputation    | n                   | I                                                  | mputations =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20    | 67573.  | 21.796093 | 70      | 8      |          | 1     |
| Linear regression        | inear regression    |                                                    | added = 20 73682. 28.755367 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8     |         | 2         |         |        |          |       |
| mputed: m=1 through m=20 |                     | updated =                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     | 79791.  | 22.112566 | 70      | 8      |          | 3     |
|                          |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 85900.  | 15.874813 | 70      | 8      |          | 4     |
|                          |                     | Observation                                        | ns per m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 92009.  | 19.866873 | 70      | 8      |          | 5     |
| Variable                 | Complete            | Incomplete                                         | Imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total | 98118.  | 23.204582 | 70      | 8      |          | 6     |
| E-2007-03-00-0-00        | Mario Andrea Andrea | 28 m 3 5 1 - 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | /360011 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - |       | 104227. | 12.764587 | 70      | 8      | *        | 7     |
| maxgrip                  | 61463               | 6109                                               | 6109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67572 | 11033€. | 16.141899 | 70      | 8      |          | 8     |
| <br> complete + incomple | te = total:         | imputed is the                                     | e minimum acr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oss m | 116445. | 11.882469 | 70      | 8      | •        | 9     |
| of the number of fi      |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 122554. | 18.148088 | 70      | 8      | *        | 10    |
|                          |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 128663. | 22.607437 | 70      | 8      |          | 11    |
|                          |                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 134772. | 26.27165  | 70      | 8      |          | 12    |

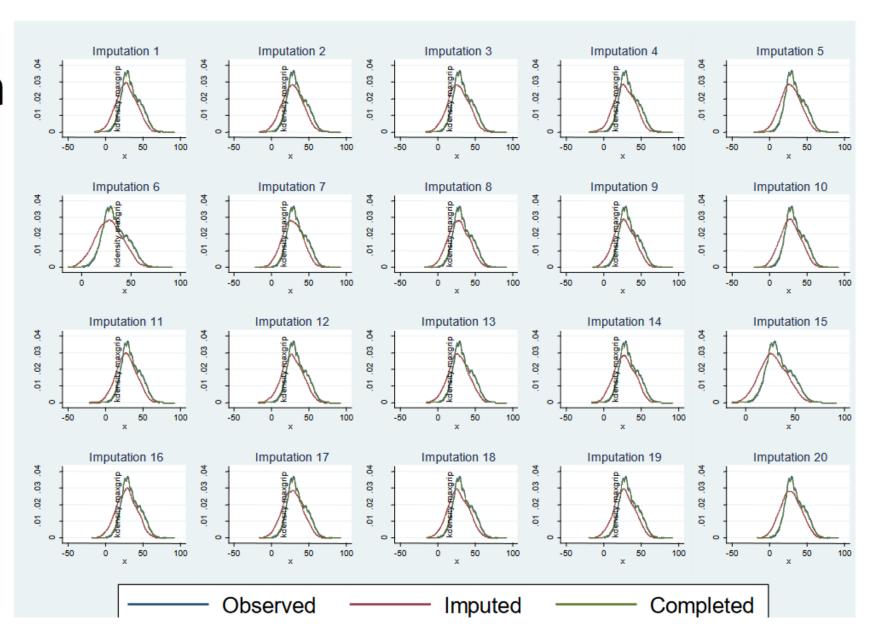

140881. 146990.

31.968353

#### Diagnostica Sulla distribuzione

• Modello di imputazione: Regressione lineare OLS






Assunzioni sulla distribuzione normale

#### Diagnostica

20 imputazioni diverse (anche se simili).

Se guardiamo solo un dataset imputato potremmo avere distribuzioni distorte dovute al caso



#### Diagnostica

- M=0 dataset senza imputazione
- M=1 dataset 1 con imputazione
- Si noti il range della variabile maxgrip
- Si noti la media e SD della variabile maxgrip

#### m=0 data:

-> summarize maxgrip gender

|   | Variable | Obs   | Mean     | Std. Dev. | Min | Max |
|---|----------|-------|----------|-----------|-----|-----|
| Γ | maxgrip  | 61463 | 34.1811  | 12.11589  | 1   | 92  |
| L | gender   | 67572 | 1.557228 | .4967179  | 1   | 2   |

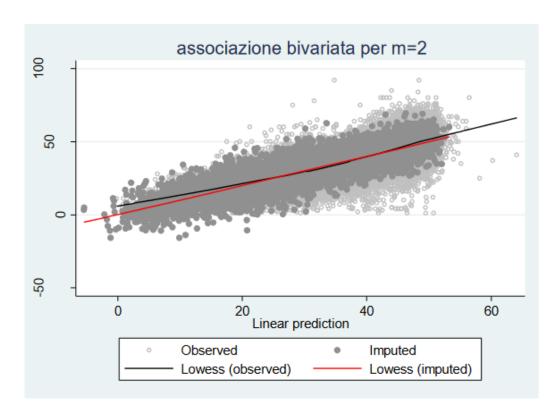
#### m=1 data:

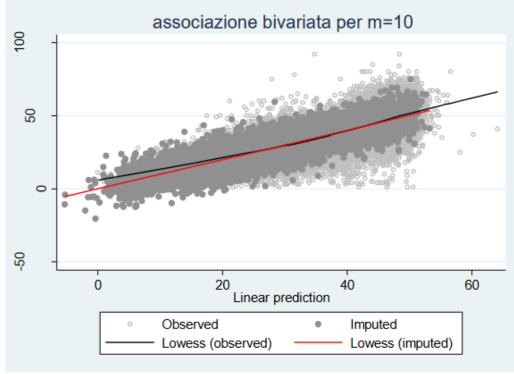
-> summarize maxgrip gender

| Variable | Obs   | Mean     | Std. Dev. | Min       | Max |
|----------|-------|----------|-----------|-----------|-----|
| maxgrip  | 67572 | 33.60823 | 12.37259  | -14.34454 | 92  |
| gender   | 67572 | 1.557228 | .4967179  | 1         | 2   |

#### m=10 data:

-> summarize maxgrip gender

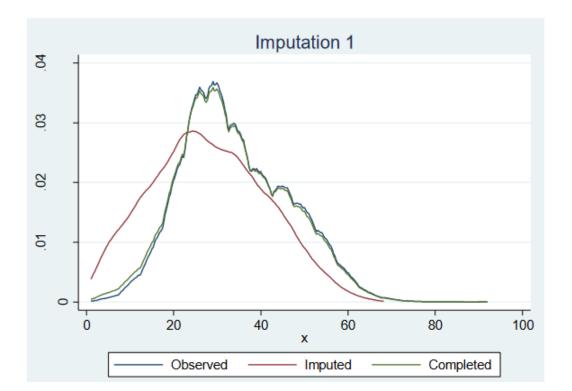

|   | Variable | Obs   | Mean     | Std. Dev. | Min       | Max |
|---|----------|-------|----------|-----------|-----------|-----|
| ľ | maxgrip  | 67572 | 33.60994 | 12.38274  | -20.49694 | 92  |
| ı | gender   | 67572 | 1.557228 | .4967179  | 1         | 2   |


#### Diagnostica

- 20 dataset con stime diverse per la variabile imputata (maxgrip).
- Caso 5 è il primo che abbiamo imputato
- Età è costante per i dataset visto che non è stata imputata

|         | maxgrip   | age_int | _mi_id | _mi_miss | _mi_m |
|---------|-----------|---------|--------|----------|-------|
| 5.      |           | 70      | 5      | 1        | 0     |
| 67573.  | 21.796093 | 70      | 5      |          | 1     |
| 73682.  | 28.755367 | 70      | 5      |          | 2     |
| 79791.  | 22.112566 | 70      | 5      | _        | 3     |
| 85900.  | 15.874813 | 70      | 5      |          | 4     |
|         |           |         |        |          |       |
| 92009.  | 19.866873 | 70      | 5      |          | 5     |
| 98118.  | 23.204582 | 70      | 5      |          | 6     |
| 104227. | 12.764587 | 70      | 5      |          | 7     |
| 110336. | 16.141899 | 70      | 5      |          | 8     |
| 116445. | 11.882469 | 70      | 5      |          | 9     |
|         |           |         |        |          |       |
| 122554. | 18.148088 | 70      | 5      |          | 10    |
| 128663. | 22.607437 | 70      | 5      |          | 11    |
| 134772. | 26.27165  | 70      | 5      | _        | 12    |
| 140881. | 21.346783 | 70      | 5      | _        | 13    |
| 146990. | 31.968353 | 70      | 5      |          | 14    |
|         |           |         |        |          |       |

#### Diagnostica sul modello






## Modello di imputazione 2 OLS con range

- Regressione OLS «troncata» con range (e per gruppi)
- Diagnostica: miglioriamo il range dei valori, ma distribuzione peggiore

| m=0 data: -> summarize maxgrip    |                                 |          |           |     |     |  |  |  |  |
|-----------------------------------|---------------------------------|----------|-----------|-----|-----|--|--|--|--|
| Variable                          | Obs                             | Mean     | Std. Dev. | Min | Max |  |  |  |  |
| maxgrip                           | 61463                           | 34.1811  | 12.11589  | 1   | 92  |  |  |  |  |
| m=l data:<br>-> summarize maxgrip |                                 |          |           |     |     |  |  |  |  |
| Variable                          | Obs                             | Mean     | Std. Dev. | Min | Max |  |  |  |  |
| maxgrip                           | 67572                           | 33.62091 | 12.34432  | 1   | 92  |  |  |  |  |
| m=10 data:<br>-> summarize n      | m=10 data: -> summarize maxgrip |          |           |     |     |  |  |  |  |
| Variable                          | Obs                             | Mean     | Std. Dev. | Min | Max |  |  |  |  |
| maxgrip                           | 67572                           | 33.64115 | 12.33044  | 1   | 92  |  |  |  |  |



#### FASE 2 modello analitico e FASE 3 Pooling

 Fase 2: stimiamo il modello analitico (che si basa su ciò che vogliamo studiare) includendo la variabile imputata X.

 Fase 3: ripetiamo il modello analitico m volte per tutti i dataset creati e combiniamo (media aritmetica) tutte le stime in un solo set di stime e errori standard.

#### FASE 2 e FASE 3

12

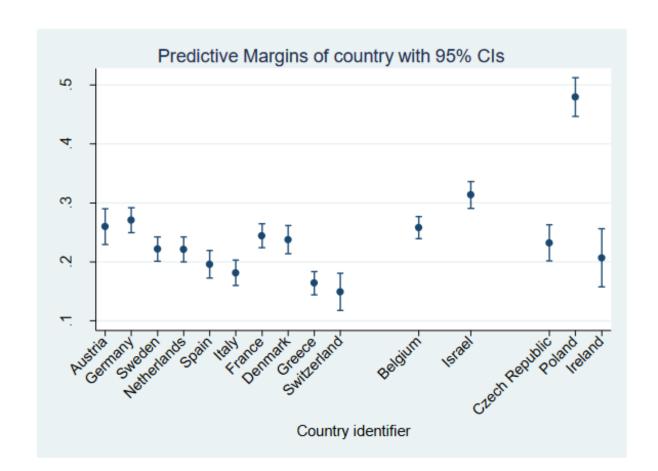
-.0385966

.0185377

mi estimate, dots: regress adl maxgrip i.country wave gender age int hhsize Imputations (20): Multiple-imputation estimates Imputations 20 Number of obs = 67572 Linear regression Average RVI = 0.0358 Largest FMI = 0.3915 Complete DF = 67552 DF adjustment: Small sample DF: min = 129.6439446.66 avg 63933.35 max Model F test: Equal FMI F(19,54211.9) = 450.82Within VCE type: OLS Prob > F = 0.0000 Coef. Std. Err. [95% Conf. Interval] adl P>|t| maxgrip -.0229264 .0005198 -44.11 0.000 -.0239547 -.0218981 country

.0105547 .0186557 0.57 0.572 -.0260106 .0471199

0.037


-.0749306

-.0022625

-2.08

#### Modello analitico

Dipende da cosa vogliamo studiare/ le finalità dell'analisi



## Modelli analitici a seconda del tipo di imputazione

| Tipo di modello: | Coef. hhsize  | Coef. maxgrip  | Coef. gender   |
|------------------|---------------|----------------|----------------|
| No imputation    | 0.005 (0.002) | -0.012 (0.000) | -0.168 (0.007) |
| regress          | 0.026 (0.003) | -0.022 (0.000) | -0.315 (0.011) |
| truncreg         | 0.026 (0.003) | -0.022 (0.000) | -0.299 (0.011) |
| PMM (1)          | 0.026 (0.003) | -0.021 (0.000) | -0.272 (0.011) |
| PMM (5)          | 0.026 (0.003) | -0.021 (0.000) | -0.265 (0.011) |
|                  |               |                |                |

#### Take-home message

- La procedura di Imputazione Multipla:
  - È finalizzata a «sostituire» i dati mancanti con un set di valori simulati per avere dataset completi.
  - Le stime dei parametri ottenute dal dataset completo tengono in considerazione dell'incertezza generata dalle non-risposte.
  - Lo scopo non è quello di «sostituire» i valori mancanti con quelli più vicini a quelli reali ma ottenere un dataset completo per **l'inferenza statistica** (Rubin 1996).
- La fase di **imputazione è separata da quella analitica**. Quindi gli studiosi (a prescindere dal loro scopo analitico) possono ripetere l'imputazione e coloro che raccolgono i dati, che di solito hanno variabili ausiliarie aggiuntive, possono fornire dati imputati migliori.

#### Tipo di modello di imputazione

• Imputazione Univariata tiene in considerazione della natura delle variabili imputate:

regress linear regression for a continuous variable

pmm predictive mean matching for a continuous variable

truncreg truncated regression for a continuous variable with a restricted range

intreg interval regression for a partially observed (censored) continuous variable

logit logistic regression for a binary variable

ologit ordered logistic regression for an ordinal variable

mlogit multinomial logistic regression for a nominal variable

poisson Poisson regression for a count variable

nbreg negative binomial regression for an overdispersed count variable