

Dati multi-fonte e analisi territoriali

Marco Tosi, Irene Barbiera, e Federico Gianoli

Dipartimento di Scienze Statistiche

Introduzione a «Risposte mancanti»

- Risposte mancanti per l'intera unità/caso (unit non-response) dovute alla non risposta di un caso o una unità statistica / mancato contatto con l'intervistato.
 - In SHARE: abbiamo informazione su coloro che sono stati campionati ma non hanno fatto l'intervista. Questo può avere conseguenze sulla rappresentatività del campione e quindi sull'inferenza.
- Risposte mancanti in un singolo item (item non-response) dovute alla non risposta in una singola variabile o item.
 - In SHARE: abbiamo visto in qualche caso che le variabili relative alla salute contengono dei valori mancanti.

Alcune definizioni

- Prendiamo Y una matrice (4 casi X 4 variabili) in cui supponiamo che i valori siano osservati (ossia la matrice dei valori veri). Y12 Y23 Y31 e Y44 sono i valori che in realtà sono mancanti.
- Prendiamo M come la matrice dei valori mancanti in cui abbiamo un indicatore uguale a 1 per le non risposte.

$$Y = \begin{bmatrix} y_{11} & \mathbf{y_{12}} & y_{13} & y_{14} \\ y_{21} & y_{22} & \mathbf{y_{23}} & y_{24} \\ \mathbf{y_{31}} & y_{32} & y_{33} & y_{34} \\ y_{41} & y_{42} & y_{43} & \mathbf{y_{44}} \end{bmatrix} \qquad M = \begin{bmatrix} 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

$$\boldsymbol{M} = \begin{bmatrix} 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

Meccanismi sottostanti: MCAR

- MCAR = missing completely at random, ossia il meccanismo generativo non dipende da variabili osservate o non osservate. La distribuzione condizionata dei valori nella matrice M dati i valori di Y è P(M|Y) = P(M). Ogni analisi che esclude tali valori mancanti rimane consistente benché poco efficiente.
 - **Esempio:** in uno studio longitudinale sui test fisici alcuni rispondenti non si prestano al test perché tra una wave e l'altra cambiano area di residenza. MCAR se la decisione di cambiare residenza è esogena alle informazioni rilevate nello studio.
- MCAR è solitamente una assunzione irrealistica e i dati osservati sono come un sotto-campione random del campione originario.

Meccanismi sottostanti: MAR

- MAR = missing at random, ossia il meccanismo generativo può dipendere da qualche variabile osservata $P(M|Y) = P(M|Y_{obs})$. La probabilità di avere valori mancanti in Y può dipendere da X ma non da Y stesso o da meccanismi non osservabili.
 - **Esempio:** la probabilità di non riportare il proprio reddito può dipendere dallo stato civile (es., partnership premium / penalty) ma non dal fatto di avere un reddito alto o basso.
 - Intervistati che lasciano lo studio perché hanno avuto effetti collaterali del trattamento (X) dello studio e quindi non si sottopongono alla misurazione del test (Y).
 - MAR è solitamente l'assunzione che facciamo quando imputiamo i valori mancanti attraverso tecniche di imputazione multipla.

Meccanismi sottostanti: NMAR

- NMAR = Not missing at random, ossia il meccanismo generativo può dipendere da variabili osservate e non osservate $P(M|Y) \neq P(M|Y_{obs})$. La probabilità di avere valori mancanti in Y può dipendere da Y stesso.
 - **Esempio:** I più ricchi hanno più probabilità di non riportare il proprio reddito, per questioni legate all'evasione fiscale, oppure i più poveri potrebbero essere più inclini a non farsi vedere come tali durante una intervista.
 - Ragioni etiche possono essere il meccanismo sottostante a NMAR: come non sottoporsi al test della pressione del sangue (Y) perché si hanno valori molto alti in Y.

Missing MCAR, MAR, e MNAR

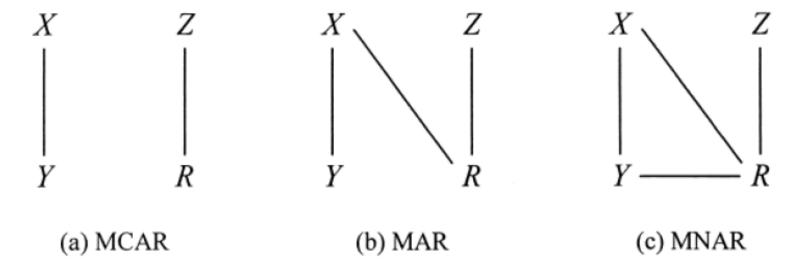
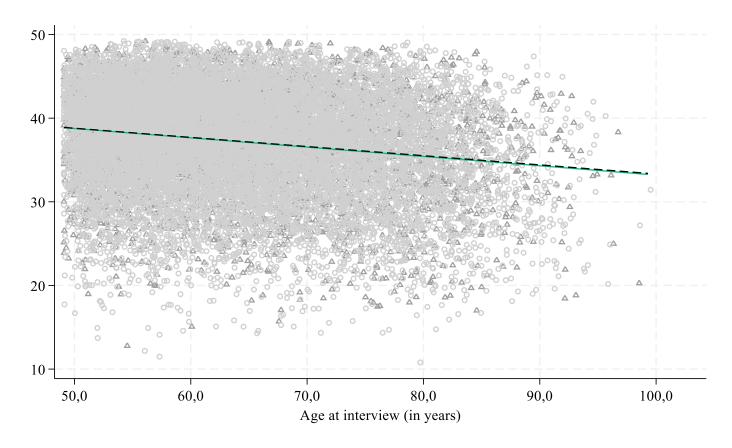
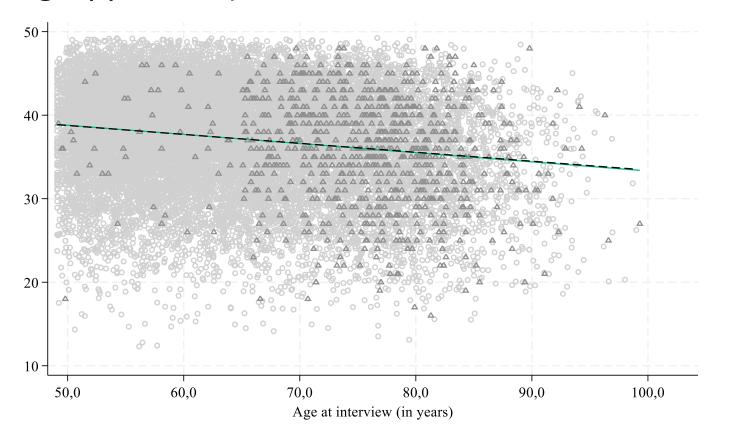
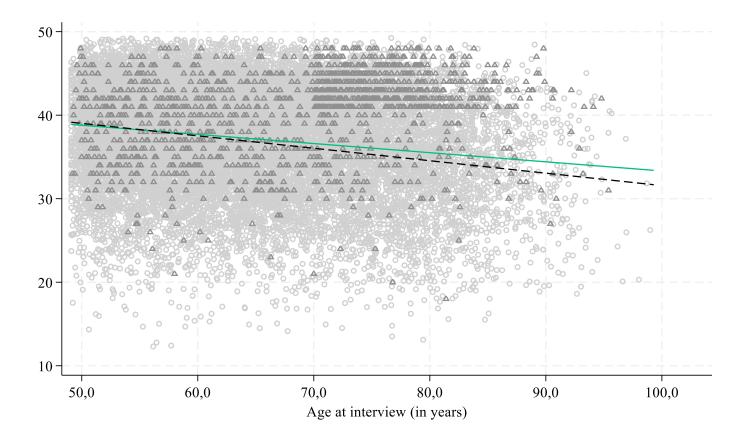



Figura 1 – Rappresentazione grafica di (a) missing completely at random (MCAR), (b) missing at random (MAR) e (c) missing not at random (MNAR) (Schafer e Graham, 2002)


MCAR

Y=Casp qualità della vita (25% di dati mancati casualmente distribuiti).
 Retta verde escludendo i dati mancanti.

MAR


• Y=Casp qualità della vita (25% di dati mancati scelti casualmente all'interno di gruppi di età).

Possiamo ricostruire la distribuzione condizionata di Y partendo dai valori osservati di Y per ogni livello di X.

NMAR

 Y=Casp qualità della vita (casi mancanti correlati a Y e X). Claster di dati mancanti per età avanzate e alti valori di Casp

Tipi di missing: 1- Risposte mancanti per costruzione

- 1.1 Inclusione di filtri: solo alcuni intervistati rispondono a quella domanda
 - Esempio: informazioni sui redditi da lavoro solo per coloro che hanno una posizione occupazionale
- 1.2 Nei dati longitudinali/panel alcune informazioni vengono chieste solo durante la prima intervista
 - Esempio: Informazioni costanti nel tempo, es, sesso, non chieste nella wave 2
- 1.3 Nei dati con struttura gerarchica alcune informazioni vengono chieste solo ad un rispondente per tutti i membri di una unità
 - Esempio: il capo famiglia risponde sui redditi del nucleo famigliare

Nei dati SHARE...

 Risposte mancanti dovute ai cambiamenti/ non cambiamenti nel tempo: durante la prima intervista si rileva lo stato civile, nelle successive solo i cambiamenti

	mergeid	wave	dn014_	dn044_
1	AT-000327-01	1	Married and living together with spouse	*
2	AT-000327-01	2		No, marital status has not changed
3	AT-000327-02	1	Married and living together with spouse	· ·
4	AT-000327-02	2		No, marital status has not changed
5	AT-001816-01	1	Married and living together with spouse	· ·
6	AT-001816-01	2		· ·
7	AT-001816-02	1	Married and living together with spouse	· ·
8	AT-001816-02	2		No, marital status has not changed

Nei dati SHARE...

• Un rispondente («capofamiglia») riporta informazioni che riguardano tutti i membri del nucleo (vivere in una casa di proprietà/ in affitto)

	mergeid	hhid1	hou_resp	ho002_
55296	AT-000327-01	AT-000327-A	Not household respondent	2
55297	AT-000327-02	AT-000327-A	Household respondent	Tenant
55298	AT-001816-02	AT-001816-A	Not household respondent	
55299	AT-001816-01	AT-001816-A	Household respondent	Owner
55300	AT-002132-03	AT-002132-A	Not applicable	
55301	AT-002132-08	AT-002132-A	Not applicable	
55302	AT-002132-01	AT-002132-A	Household respondent	Subtenant
55303	AT-002132-07	AT-002132-A	Not applicable	
55304	AT-002132-02	AT-002132-A	Not applicable	
55305	AT-002132-06	AT-002132-A	Not applicable	

Missing per costruzione dei dati longitudinali

• Riportare informazioni da una wave a quella successiva

	mergeid	wave dn014_		marital_stat	dn044_
1	AT-000327-01	1	Married and living together with spouse	married	
2	AT-000327-01	2		married	No, marital status has not changed
3	AT-000327-02	1	married and Tiving cogether with spouse	married	•
4	AT-000327-02	2		married	No, marital status has not changed
5	AT-001816-01	1	Married and living together with spouse	married	
6	AT-001816-01	2		married	
7	AT-001816-02	1	Married and living together with spouse	married	
8	AT-001816-02	2		married	No, marital status has not changed

Missing nei dati longitudinali

 Problemi nella costruzione dei dati longitudinali: rispondenti che non vengono intervistati nella prima wave, entrano nella seconda, ma rispondono alle domande sui cambiamenti/ non cambiamenti nel tempo

	mergeid	wave	interview	marital_stat	dn044_
95	AT-017298-02	1	No interview		
96	AT-017298-02	2	Main interview		No, marital status has not changed
261	AT-057665-01	1	Main interview		·
846	AT-220315-02	2	Main interview		No, marital status has not changed
982	AT-262986-01	2	Main interview		No, marital status has not changed
1232	AT-322004-01	2	Main interview		No, marital status has not changed
1376	AT-366334-02	1	No interview		
1377	AT-366334-02	2	Main interview		No, marital status has not changed
2086	AT-543275-01	2	Main interview		No, marital status has not changed
2205	AT-575677-01	2	Main interview		No, marital status has not changed
2680	AT-707856-01	1	Main interview		

Una soluzione... parziale

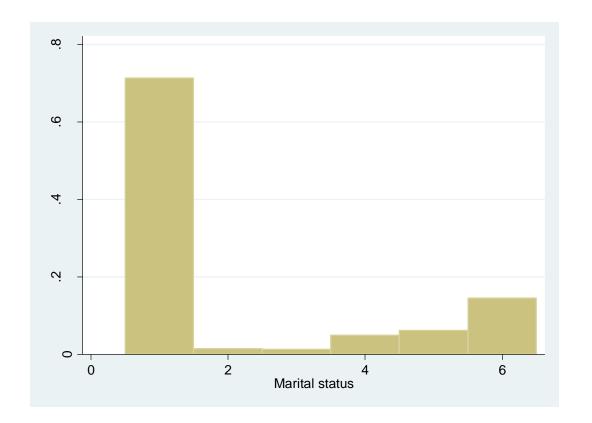
• Possiamo imputare le informazioni che riporta il partner attraverso l'ID del partner e l'ID della famiglia. Se 2 rispondenti vivono nello stesso nucleo ma solo uno dei 2 riporta lo stato civile

	mergeid	IDfam	wave	interview	marital_stat	mergeidp1	mergeidp2
93	AT-017298-02	AT-017298-A	1	No interview		AT-017298-01	
94	AT-017298-01	AT-017298-A	1	Main interview	married	AT-017298-02	
95	AT-017298-01	AT-017298-A	2	Main interview	married		AT-017298-02
96	AT-017298-06	AT-017298-A	2	No interview			
97	AT-017298-02	AT-017298-A	2	Main interview			AT-017298-01
98	AT-017298-07	AT-017298-A	2	No interview			

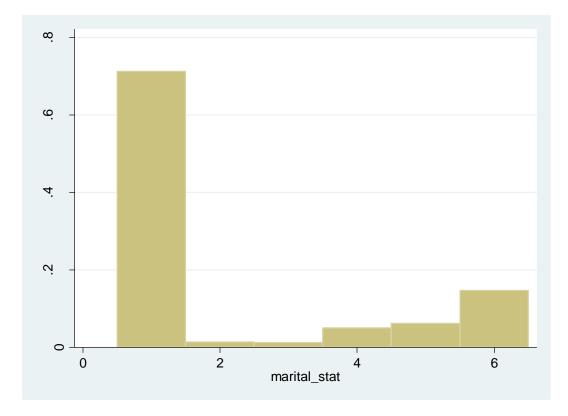
Stato civile del partner

- Quando il partner riporta lo stato civile «coniugato» o «coppia di fatto» possiamo ragionevolmente imputare la variabile
- Ma per i divorziati e i vedovi si può trattare di una nuova relazione di coppia e non sappiamo se sono entrambi vedovi o divorziati.
- Imputando lo stato civile delle coppie abbiamo lo 0.58% di missing

	mergeid	IDfam	wave	interview	marital_stat	IDpartner	partn
45535	FR-452543-01	FR-452543-A	2	Main interview	married	FR-452543-02	
45773	FR-480740-02	FR-480740-A	2	Main interview		FR-480740-01	6
45774	FR-480740-01	FR-480740-A	2	Main interview	widowed	FR-480740-02	
45788	FR-482124-01	FR-482124-A	1	Main interview	divorced	FR-482124-02	
45789	FR-482124-02	FR-482124-A	1	Main interview		FR-482124-01	5
45790	FR-482124-01	FR-482124-A	2	Main interview	divorced	FR-482124-02	
45791	FR-482124-02	FR-482124-A	2	Main interview		FR-482124-01	5


Chi sono coloro che non rispondono?

- Hanno mediamente un'età di 66 anni contro i 64 dei rispondenti
- Sono sovra-rappresentati in Israele (anche 82 veterani ebrei). In una analisi si potrebbe pensare di escludere Israele in quanto unico stato extra europeo
- Netta maggioranza nella wave 2 rispetto che nella wave 1.
- Hanno (leggermente) più limitazioni dovute allo stato di salute.

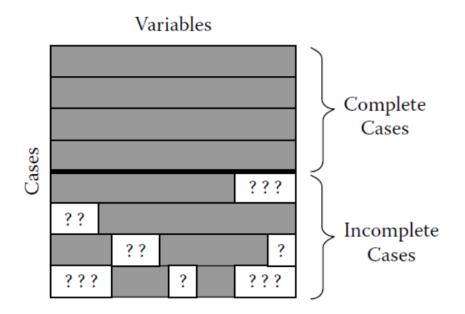

 Notare che recuperiamo dei casi ma la distribuzione cambia solo in minima parte rispetto alla variabile originaria

Distribuzione

Variabile osservata Esclusione di tutti i missing

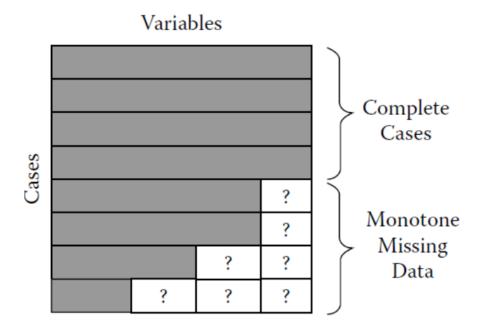
Variabile imputata Esclusione dei missing «veri»

2- Risposte mancanti «vere»

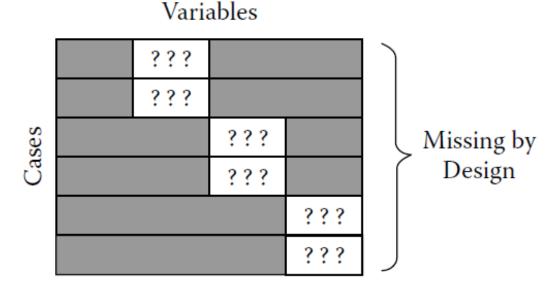

- Abbiamo Molti metodi per affrontare il problema dei dati mancanti. In questo corso verranno raggruppati in Approcci «Tradizionali» e Approcci «Moderni».
- Il metodo più appropriato dipende dal meccanismo generativo dei missing (es., assunzioni: MAR) e dalla distribuzione e dal pattern dei valori mancanti.

- Prendiamo Y come se fosse una matrice in cui tutti i valori sono osservati. In grassetto quei valori che in realtà sono mancanti.
- Abbiamo quindi anche la matrice M in cui 1 indentifica i valori mancanti e 0 quelli osservati nella matrice Y
- I pattern delle risposte mancanti sono le distribuzioni osservate in M.

$$Y = \begin{bmatrix} y_{11} & \mathbf{y_{12}} & y_{13} & y_{14} \\ y_{21} & y_{22} & \mathbf{y_{23}} & y_{24} \\ \mathbf{y_{31}} & y_{32} & y_{33} & y_{34} \\ y_{41} & y_{42} & y_{43} & \mathbf{y_{44}} \end{bmatrix}$$


$$\boldsymbol{M} = \begin{bmatrix} 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

• Quando il pattern è **non-monotono**, M si presenta così:


 Questo pattern può essere dovuto a rifiuti a rispondere o «non so». Si ricorre spesso a tecniche di imputazione multipla.

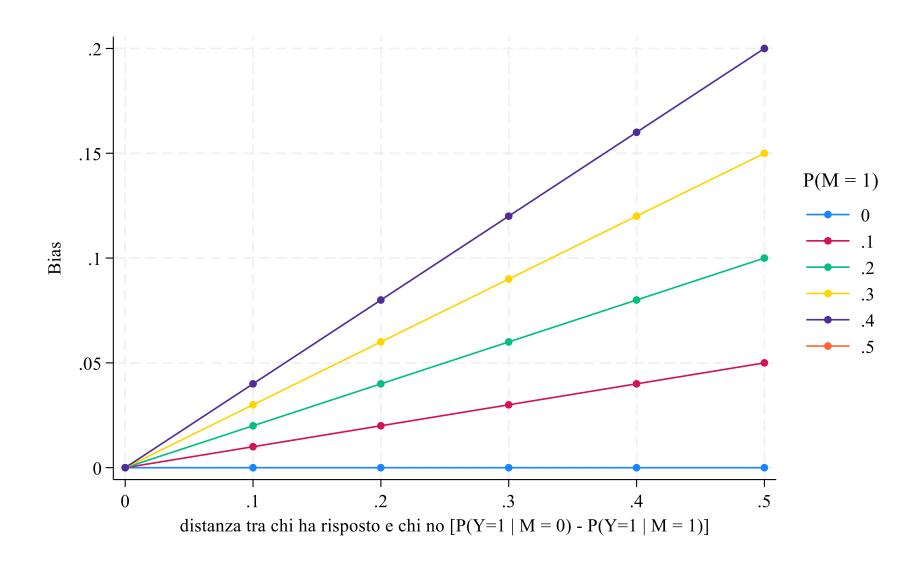
• Quando il pattern è monotono, M si presenta così:

 In questo caso i pesi di non risposta possono essere più efficaci dell'imputazione. Imputazione è più semplice perché X2 è missing quando X1 è missing (anche se può avere altri missing non correlati a X1)

 Quando il pattern è strutturato ma non-monotono, M si presenta così:

• Questo pattern può essere dovuto all'assegnazione random di alcuni quesiti del questionario.

Perché dovremmo preoccuparci dei valori mancanti («veri»)?


- Se assumiamo che il meccanismo generativo dei valori mancanti sia MAR o NMAR le nostre stime sono distorte.
- Se abbiamo una variabile dummy Y e siamo interessati a stimare le probabilità con cui si verifica Y=1 (e M=1 quando Y è missing), allora abbiamo (per il teorema della probabilità totale):

$$P(Y=1) = P(Y=1 \mid M=0) * P(M=0) + P(Y=1 \mid M=1) * P(M=1)$$

Ignorando i valori mancanti, la stima di P(Y=1) è $P(Y=1 \mid M=0)$, ottenendo un BIAS = P(M=1) * $[P(Y=1 \mid M=0) - P(Y=1 \mid M=1)]$

Che quindi dipende dalla proporzione dei missing e dalla differenza tra il valore di P(Y=1) tra coloro che hanno risposto e chi non ha risposto.

Identificazione del bias

Identificazione del range del bias

Dato che: $0 \le P(Y=1 \mid M = 1) \le 1$

LB =
$$P(Y=1 \mid M=0) * P(M=0)$$

UB = $P(Y=1 \mid M=0) * P(M=0) + P(M=1)$

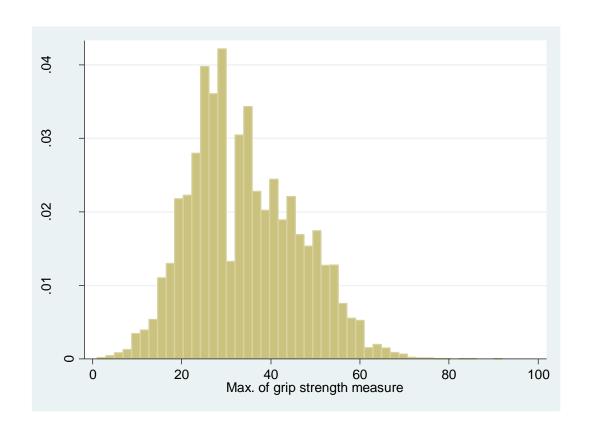
P(M=1) come misura dell'incertezza attorno a P(Y=1) dovuta alle risposte mancanti. Quindi la probabilità con cui si verifica un dato mancante viene qui usata come misura di distorsione.

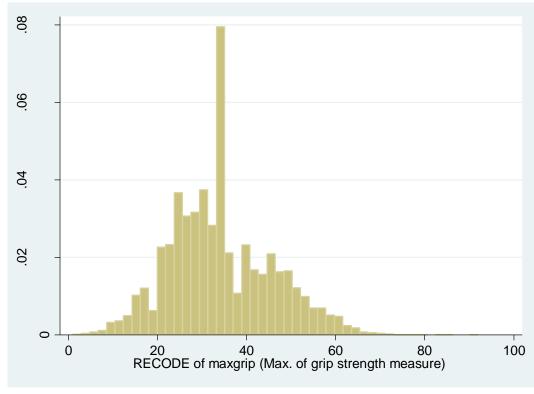
Risposte mancanti «vere» Approcci tradizionali o deterministici

- 1- Esclusione dei casi con risposte mancanti
- 2- Sostituire con la media
- 2.1- Sostituire con la media di gruppo
- 3- Creare un indicatore per i missing
- 4- Campionamento aleatorio

1- Eliminare i casi con risposte mancanti

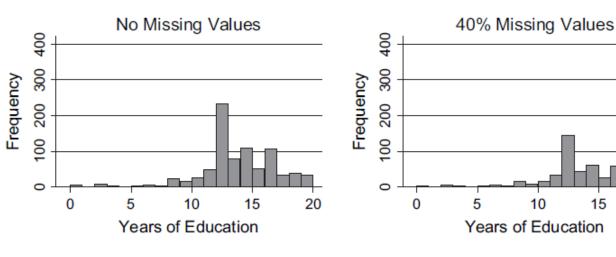
- Assunzione che il meccanismo generativo delle risposte mancanti non dipende dalle variabili osservate o non osservate (MCAR). Spesso viene violata nella pratica.
- Anche quando la distribuzione dei dati mancanti è (verosimilmente) casuale (MCAR), la riduzione della numerosità è sufficiente a provocare una perdita di efficienza. + Errore di TIPO II
- Se l'assunzione MCAR non è supportata le stime possono essere distorte in entrambe le direzioni, in quanto il campione non è più rappresentativo della popolazione (problemi di validità esterna).

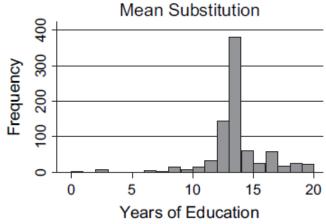

2- Sostituzione con la media


- Assunzioni: risposte mancanti sono osservazioni casuali di una distribuzione normale. MISSING AT RANDOM
- Tuttavia gli estremi potrebbero avere propensione maggiore a non rispondere
 - ESEMPIO: Fasce basse e alte di reddito sono più reticenti a rispondere a domande sui loro redditi.
- Distribuzione distorta: riduzione (artificiosa) della variabilità, più concentrata attorno alla media, minore varianza.
 - Sd MAXGRIP: 12.11
 - Sd GRP2 (no missing): 11.55

Forza della presa della mano (in SHARE)

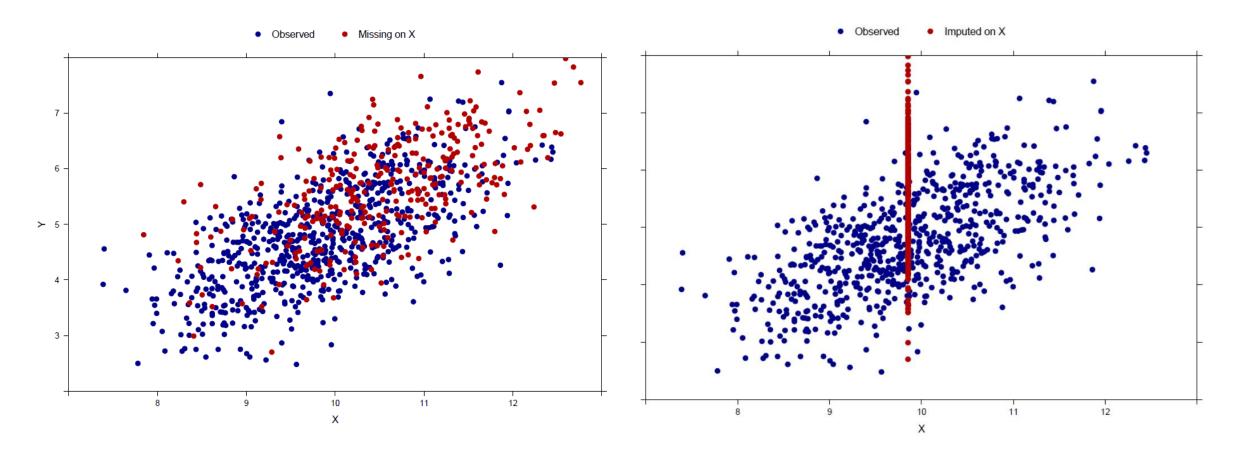
Variabile originale (6110 missing)


sostituzione con la media

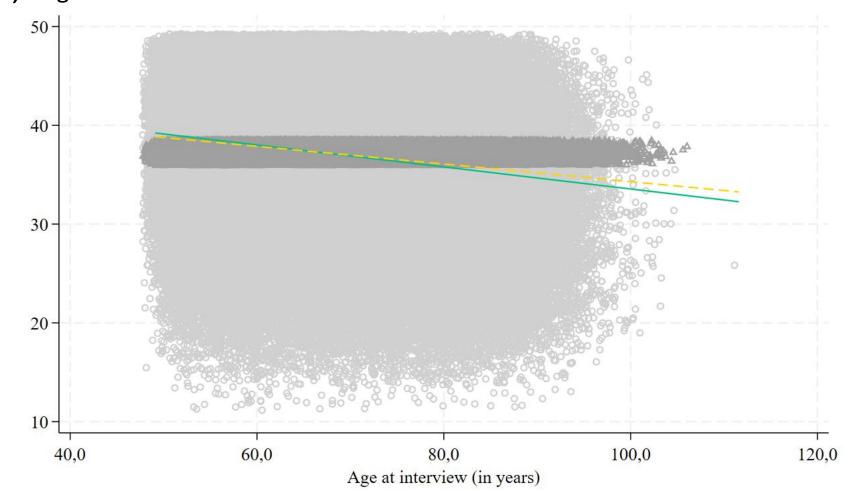


Sostituzione con la media (un esempio)

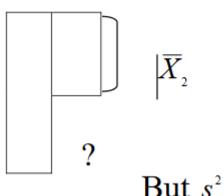
FIGURE 1. MEAN SUBSTITUTION DISTORTS DISTRIBUTION AND ATTENUATES VARIANCE



Acock (2005). Working With Missing Values, *Journal of Marriage and Family*

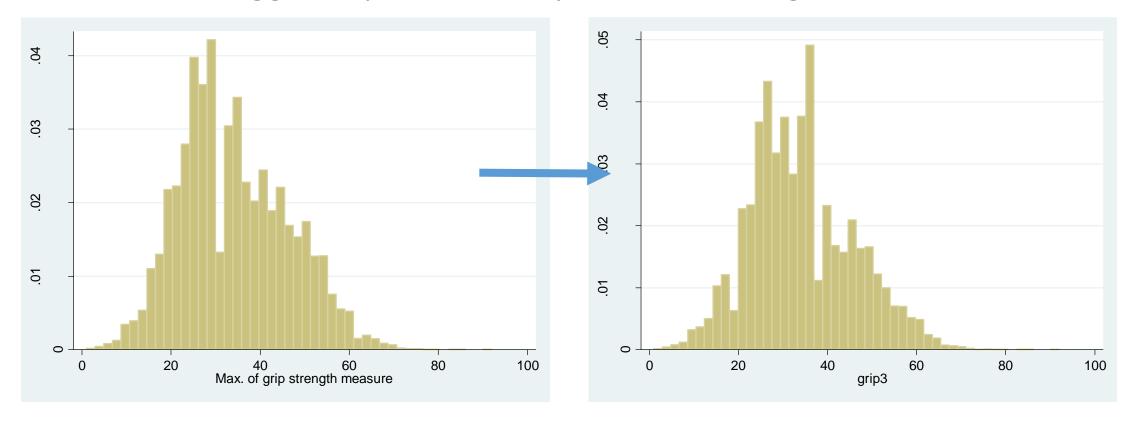

20

Sostituzione con la media (un esempio)


Sostituzione con la media (un esempio)

• Y= CASP; in giallo la retta che avremmo sostituendo con la media.

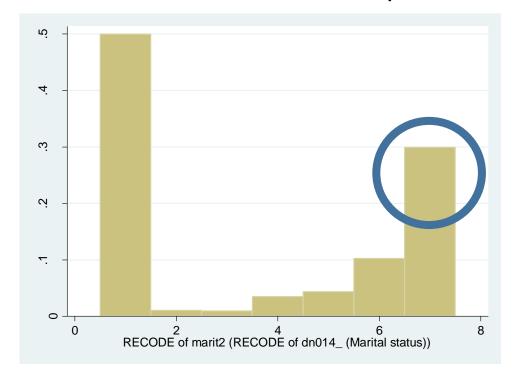
Sostituzione con la media: limiti

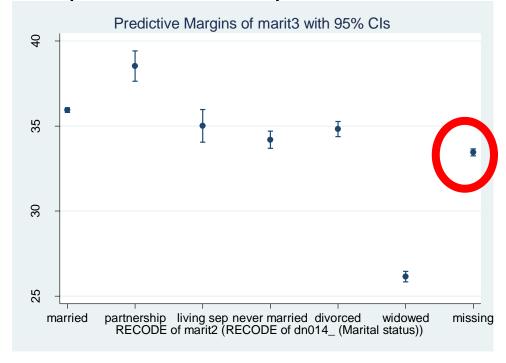

- Introduce una distorsione nella distribuzione della variabile con un picco artificiale sulla media.
- Non dà buoni risultati per la stima della varianza
- Provoca distorsioni nella relazione tra variabili
- Ricordate però che il BIAS dipende anche da P(M=1)

But $s_2^2 < \sigma_2^2$!

2.1 Sostituzione con la media di gruppo

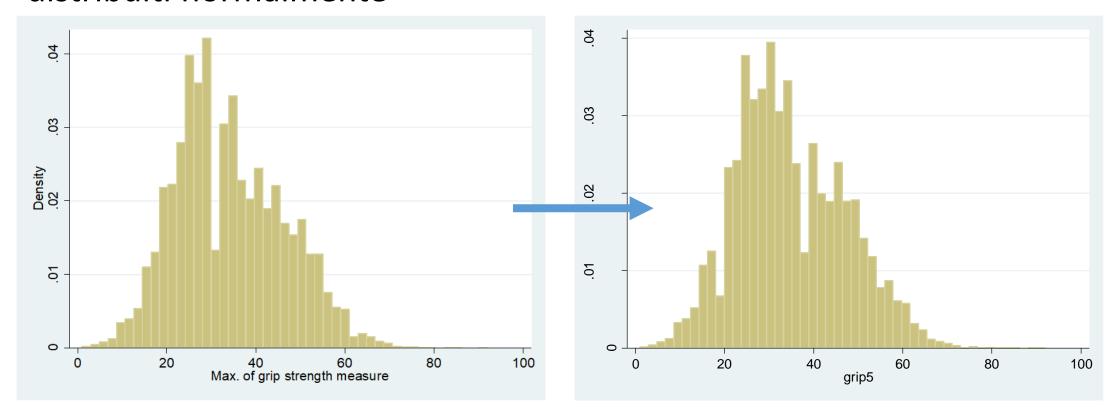
- Stime migliori per i gruppi definiti dalla variabile
- Varianza maggiore (più simile a quella reale/ originale)


Sostituzione con la media di gruppo: limiti


- Introduce distorsioni (sebbene in maniera meno evidente del metodo precedente) nella distribuzione della variabile, creando una serie di picchi artificiali in corrispondenza della media di ciascuna classe.
- Provoca un'attenuazione della varianza della distribuzione dovuta al fatto che i valori imputati riflettono solo la parte di variabilità tra le classi (between) ma non quella all'interno delle classi (within).
- Provoca distorsioni nelle relazioni tra le variabili non considerate per la definizione delle classi di imputazione.

3- creare un indicatore per i missing «veri»

- Includiamo nelle analisi una categoria per i valori mancanti.
 - Problema di collinearità visto che coloro che non rispondono ad una domanda tendono a non rispondere anche ad altri items.


• Distorsione delle stime quando includiamo più variabili indipendenti

4- campionamento aleatorio

• Campionamento aleatorio: valori mancanti imputati come se fossero distribuiti normalmente

Chi sono? Ossia testare i meccanismo generativo

- Coloro che non fanno il test sulla forza di presa della mano sono tendenzialmente (rispetto a coloro che fanno il test):
 - Donne vedove con più limitazioni dovute alla salute (20% tra gli Irlandesi)
 - Missing completely at random è una assunzione che spesso non è supportata dai dati
 - Possiamo assumere MAR? (altre variabili sulle condizioni di salute ci fanno credere che siano distribuiti in modo MNAR).

Come cambiano il coefficiente dei vedovi

• OLS: forza della mano = B(stato civile) + B(wave) + B(gender) + constante

Sulla Indipendente: Sulla Dipendente:	No imputazione	Missing per costruzione	Missing indicator	Sostituzione Missing con moda
No imputazione	-4.996 (0.129)	-4.851 (0.107)	-4.949 (0.127)	-4.836 (0.107)
Mean substitution	-3.977 (0.119)	-3.767 (0.098)	-3.957 (0.117)	-3.759 (0.098)
Group mean substitution	-5.357 (0.117)	-5.212 (0.097)	-5.303 (0.116)	-5.196 (0.097)
Uniform random values	-3.213 (0.166)	-2.793 (0.139)	-3.202 (0.166)	-2.822 (0.140)
Normal random values	-3.395 (0.133)	-3.179 (0.110)	-3.387 (0.131)	-3.188 (0.110)