* QUESITO: la perdita del partner influenza la qualità della vita? ****************************************************************** * ora il nostro trattamento è un evento che accade tra le wave * ossia la perdita del partner ***************************************************************** * notate che non vivere più con il partner può essere dovuto * sia alla morte che al divorzio/ separazione ***************************************************************** * SAMPLE SELECTION: POPULATION AT RISK ***************************************************************** drop if wave<7 gen sample=1 if partnerinhh==1 & wave==7 sort mergeid wave replace sample=1 if sample[_n-1]==1 & sample==. & mergeid==mergeid[_n-1] tab sample wave recode sample(1=.) if wave==7 & mergeid!=mergeid[_n+1] tab sample wave *************************************************************** * variabile indipendente sort mergeid wave gen plost=1 if partnerinhh==3 & partnerinhh[_n-1]==1 & mergeid==mergeid[_n-1] recode plost(.=0) if sample==1 tab plost wave if sample==1 & female==1 *variabile dipendente mean casp if wave==8 & female==1 & eurod>-1, over(plost) ************************************************************************************* * possibili effetti confondenti: istruzione, paese età, e salute del partner recode isced1997_r (0/2=1 "low") (3 4=2 "med") (5 6=3 "high"),gen(educ) recode educ(95 97 -15 -12=.) recode chronic (min/-1=.),gen(chronic2) *ci concentriamo sulle donne con partner uomini gen chronic_m=chronic2 if female==0 bys coupleid: egen chronic_p=min(chronic_m)if wave==7 tab sample wave if female==1 tab sample wave if female==1 & chronic_p!=. *introduciamo dei missing: in questo esempio non ci preoccupiamo dei missing *definiamo i due gruppi sort mergeid wave gen treat=1 if plost==1 | (mergeid==mergeid[_n+1] & plost[_n+1]==1) recode treat(.=0) tab treat wave if sample==1 & female==1 & coupleid!="" tab treat wave if sample==1 & female==1 & chronic_p!=. ************************************************************************************** *fattori confondenti hist age_p if sample==1 & female==1 & chronic_p!=., by(treat) hist chronic_p if sample==1 & female==1 & chronic_p!=., by(treat) dis tab educ treat if sample==1 & female==1 & chronic_p!=., ************************************************************************************* * selezioniamo il campione drop if sample!=1 | casp<0 | female==0 *il nostro outcome dovrebbe essere post-treatment sort mergeid wave gen casp1=casp[_n+1] if mergeid==mergeid[_n+1] tab casp1 wave ************************************************************************************* * NN propensity score senza replacement help psmatch2 psmatch2 treat c.age_p##c.age_p i.country i.educ chronic_p if wave==7, noreplacement /// out(casp) n(1) common caliper(.01) pstest c.age_p##c.age_p i.country i.educ chronic_p, both pstest age_p, both density pstest chronic_p, both density psmatch2 treat c.age_p##c.age_p i.country i.educ chronic_p if wave==7, noreplacement /// out(casp1) n(1) common caliper(.01) *************************************************************************************** * Radius psmatch2 treat c.age_p##c.age_p i.country i.educ chronic_p if wave==7, /// out(casp1) radius common caliper(.01) psmatch2 treat c.age_p##c.age_p i.country i.educ chronic_p if wave==7, /// out(casp) radius common caliper(.01) *************************************************************************************** *Kernel psmatch2 treat c.age_p##c.age_p i.country i.educ chronic_p if wave==7, /// out(casp1) kernel k(normal) bw(0.05) common caliper(.01) psmatch2 treat c.age_p##c.age_p i.country i.educ chronic_p if wave==7, /// out(casp) kernel k(normal) bw(0.05) common caliper(.01)