

METODI STATISTICI PER LA BIOINGEGNERIA (B)

PARTE 9: UN CASO DI STUDIO SULLA REGRESSIONE LINEARE

A.A. 2025-2026

Prof. Martina Vettoretti

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA (RIPASSO)

> Modello di regressione lineare multipla:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_m x_{im} + \varepsilon_i, \qquad i = 1, \dots, n$$
$$Y = X \cdot \beta + \varepsilon$$

- > Assunzioni:
 - Relazione lineare tra X_j , j=1,...,m e Y.
 - ε_i normali e tra loro indipendenti e $\varepsilon_i \sim N(0, \sigma_i^2)$
- > Dati necessari per l'identificazione del modello:
 - $(x_{i1}, x_{i2}, ..., x_{im}, y_i)$, i=1,...,n

IDENTIFICAZIONE DEL MODELLO

- Stima dei coefficienti di regressione con il metodo dei minimi quadrati lineari
 - Assunzione: $\sigma_i^2 = \sigma^2 \ \forall i = 1, ..., n$
 - Applicazione dello stimatore:

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ 1 & x_{21} & \cdots & x_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix}, \qquad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

 \triangleright Stima a posteriori del valore di σ^2

$$\widehat{\sigma}^2 = \frac{SSE}{n - (m+1)},$$

$$\hat{\sigma}^2 = \frac{SSE}{n - (m+1)}, \qquad SSE = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

VALUTAZIONE DELLA BONTA' DEL MODELLO

Confronto tra uscita misurata e uscita predetta

$$y_i$$
 vs. $\hat{y}_i = \hat{\beta}_0 + \sum_{j=1}^m \hat{\beta}_j x_{ij}$
 y vs. $\hat{y} = X \cdot \hat{\beta}$
 $MSE = \frac{SSE}{n}$, $RMSE = \sqrt{MSE}$

Coefficiente di determinazione R²

$$R^2 = 1 - \frac{SSE}{SST}$$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

> Test F

•
$$H_0$$
: $\beta_1 = \beta_2 = \cdots = \beta_m = 0$

• H_1 : almeno un coefficiente $\beta_i \neq 0$, $j \neq 0$

ANALISI DEI RESIDUI

Calcolo dei residui:

$$r_i = y_i - \hat{y}_i, \qquad i = 1, \dots, n$$

- Check distribuzione normale
 - Istogramma, test di normalità, q-q plot, indici di forma campionari
- Check media nulla
 - Calcolo media campionaria + test di verifica ipotesi
- Check campioni scorrelati (bianchezza)
 - Plot r_i vs. \hat{y}_i + funzione di autocorrelazione
- > Check varianza omogenea, no trend, no outlier
 - Plot r_i vs. \hat{y}_i

VALUTAZIONE DEI PARAMETRI STIMATI

- Calcolo dello standard error:
 - SE_j è radice quadrata dell'elemento in posizione j su diagonale di $\sigma^2(\pmb{X}^T\pmb{X})^{-1}$
- > Calcolo coefficiente di variazione delle stime:

$$CV_j = \frac{SE_j}{|\widehat{\beta}_j|} \cdot 100 \%$$

➤ Valutazione valori stimati ed intervallo di confidenza al 95%

$$\hat{\beta}_j \pm 1.96 \cdot SE_j$$

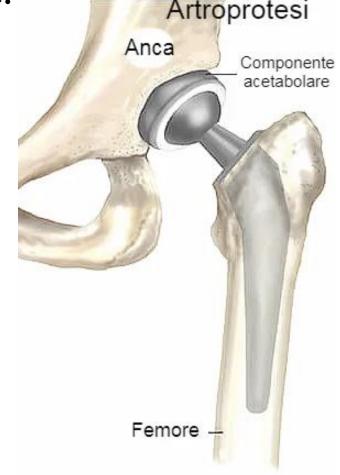
- lacksquare Segno di \hat{eta}_i
- lacksquare Valore assoluto di \hat{eta}_i
- > Test statistico sulle stime dei parametri (t test):
 - H_0 : $\beta_i = 0$
 - H_1 : $\beta_i \neq 0$

CASO DI STUDIO

Problema: predizione diametro della componente acetabolare di una

protesi all'anca utilizzando variabili antropometriche.

➤ Zou et al. «Development and validation of multiple linear regression models for predicting total hip arthroplasty acetabular prosthesis», Journal of Orthopaedic Surgery and Research, 2024.



DATASET

Dati raccolti su 500 pazienti di età compresa tra 65 e 85 anni.

- > Variabile dipendente Y: diametro della componente acetabolare [mm]
- Variabili indipendenti:
 - X₁: altezza [cm]
 - X₂: peso [kg]
 - X₃: girovita [cm]
 - X₄: lunghezza del piede [cm]
 - X₅: età [anni]

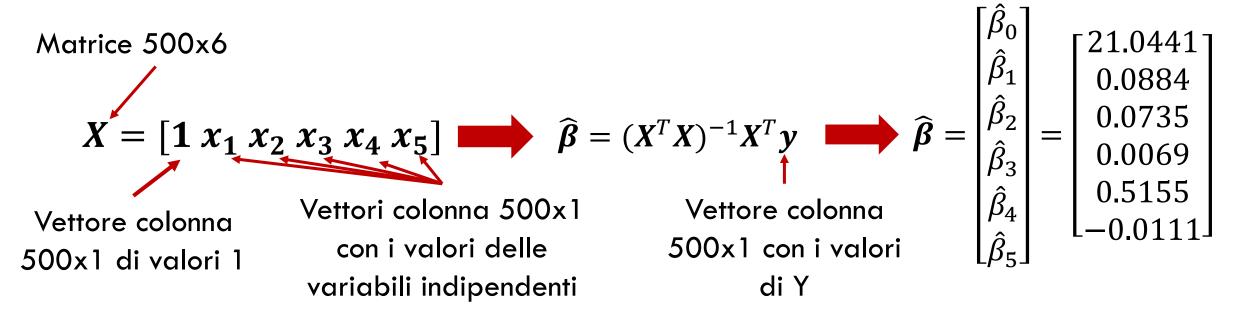
Esercizio svolto in Matlab. Di seguito i risultati principali.

IDENTIFICAZIONE DEL MODELLO DI REGRESSIONE LINEARE MULTIPLA

> Equazione del modello

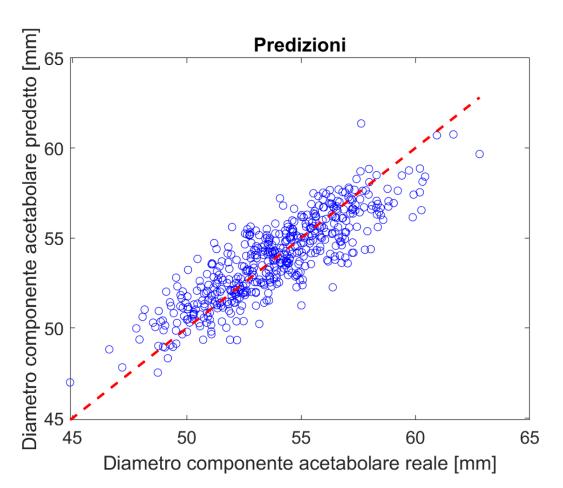
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \varepsilon$$

> Stima dei coefficienti del modello con il metodo dei minimi quadrati lineari, assumendo varianza d'errore costante.

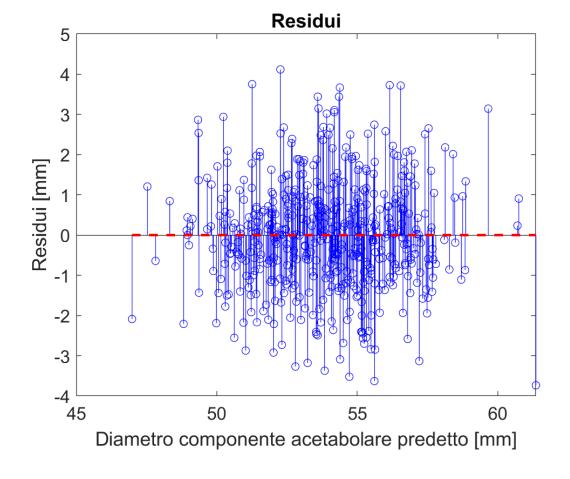


PREDIZIONI E RESIDUI

Predizioni: $\widehat{y} = X \cdot \widehat{\beta}$



Residui: $y - \widehat{y}$



STIMA DELLA VARIANZA DELL'ERRORE

Calcolo di SSE

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 980.2855 [mm^2]$$

Varianza dell'errore stimata a posteriori: $\hat{\sigma}^2 = \frac{SSE}{n-(m+1)} = 1.9844 \ [mm^2]$

VALUTAZIONE DEL MODELLO

Calcolo di MSE ed RMSE

$$MSE = \frac{SSE}{n} = 1.96 \text{ mm}^2,$$

$$RMSE = \sqrt{MSE} = 1.40 \text{ mm}$$

➤ Calcolo di R²

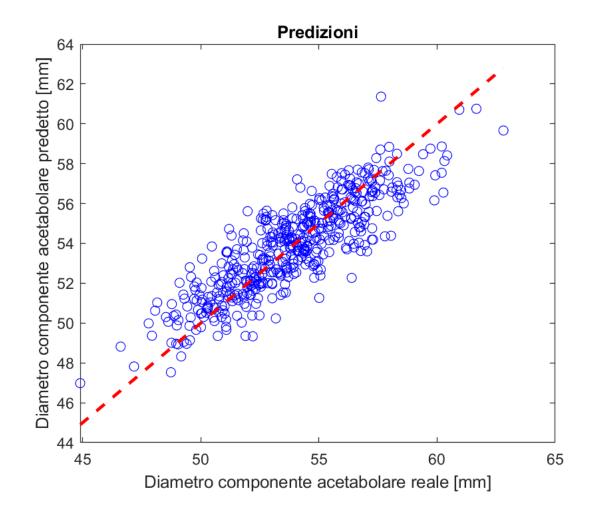
$$R^2 = 1 - \frac{SSE}{SST} = 0.7374$$

> Test F

$$F = \frac{(SST - SSE)/m}{SSE/(n - m - 1)} = 277.4024$$

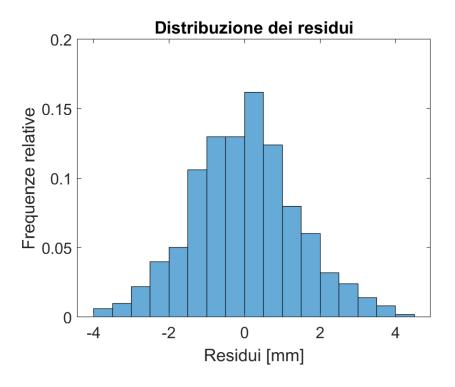
$$\alpha = 0.05 \rightarrow F_{\alpha, m, n - m - 1} = 2.23$$

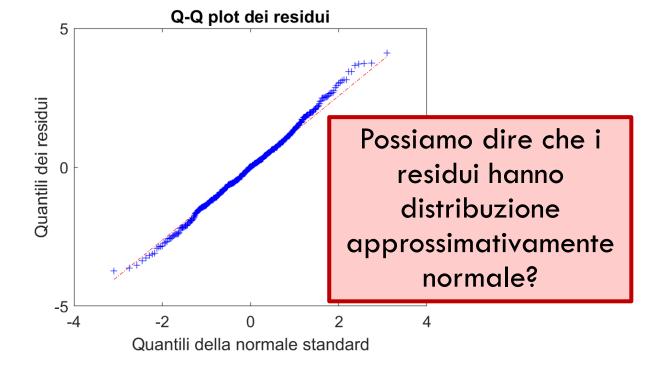
Commenti?



ANALISI DEI RESIDUI: NORMALITA' E MEDIA NULLA

> Check distribuzione normale e media nulla

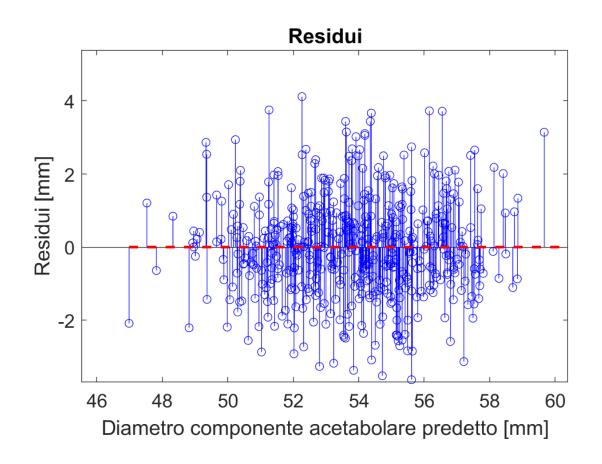


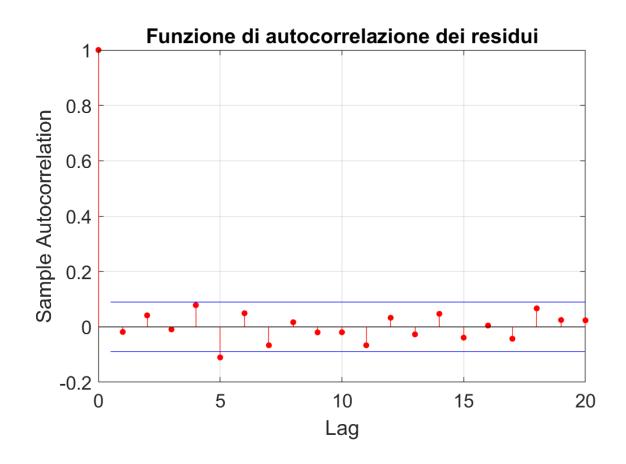


- > Skewness campionaria = 0.1138
- Curtosi campionaria = 3.0341
- \triangleright Media campionaria = 4 x 10⁻¹³

- Lilliefors test: p-value=0.3664
- > T test $(H_0: \mu = 0)$: p-value = 1.00

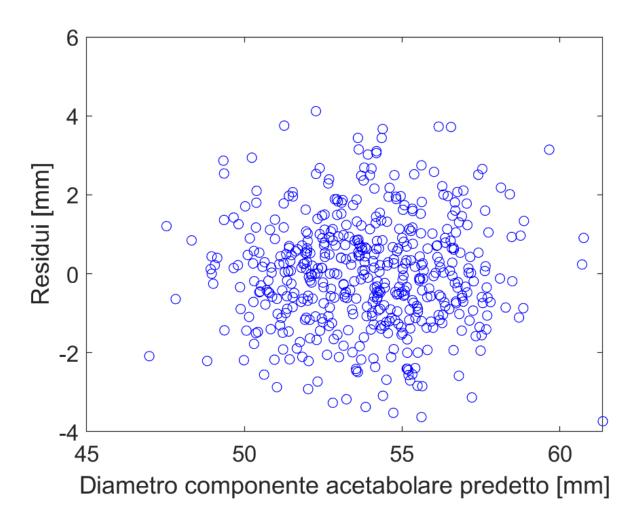
ANALISI DEI RESIDUI: BIANCHEZZA





Possiamo dire che i residui sono a campioni scorrelati (bianchi)?

ANALISI DEI RESIDUI: VARIANZA OMOGENEA, OUTLIER



- La varianza è omogenea?
- Sono presenti outlier?

VALUTAZIONE STIME DEI PARAMETRI

Variabili	Stime dei parametri $\widehat{oldsymbol{eta}}_{oldsymbol{j}}$	Standard error SE_j	Coefficiente di variazione CV_j	Intervallo di confidenza $[\widehat{m{eta}}_j - 1.96*SE_j \ \widehat{m{eta}}_j + 1.96*SE_j]$	Z-score * Z_j
Intercetta	21.0441	1.6262	7.73%	[17.86 24.23]	12.94
Altezza	0.0884	0.0120	13.63%	[0.065 0.112]	7.34
Peso	0.0735	0.0109	14.89%	[0.052 0.095]	6.72
Girovita	0.0069	0.0115	166.37%	[-0.016 0.029]	0.60
Lunghezza piede	0.5155	0.0578	11.22%	[0.402 0.629]	8.91
Età	-0.0111	0.0130	117.00%	[-0.037 0.014]	-0.85

^{*}Con α =0.05 la soglia critica è 1.96.

- Come valuteresti l'incertezza delle stime dei parametri?
- Quali variabili hanno un impatto statisticamente significativo sull'outcome?
- Quali variabili influiscono positivamente sul valore dell'outcome? Quali negativamente?