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way, trying to reach also students without a specific preparation in mathematics. Only few proofs are
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Chapter 1

Measure theory and integration

1.1 Measure space
We fix a set X and we define P(X) the set of all subsets of X.

Definition 1.1.1. ¥ c P(X) is a c—algebra on X if
— it is closed by complement, that is if A€ X then X\Ae€ X,
— it is closed by countable union, that is if (A;); is a sequence of elements in = then U A; € X.

Let C < P(X), then X(C), the o-algebra generated by C is the smallest o—algebra which contains all the
elements in C (and then all countable intersections and countable unions of elements in C).

The smallest possible o-algebra on X is given by ¥ = {(J, X}, and the largest possible o-algebra on
X is ¥ = P(X).

Definition 1.1.2. B(R) is the o-algebra on R generated by all the intervals C = {(a,b) | a,be R}. B(RY)
is the o-algebra on RY generated by all the pluri-rectangulars C = {TIIL, (as, b;) | ai,b; € R}.

Remark 1.1.3. Note that o(C) = B(R) also when C = {(a,b] | a,b € R}, since (a,b) = Un (a,b— X],
or when C = {[a,b) | a,b € R}, since (a,b) = Un[a+ 1,b), or when C = {[a,b] | a,b € R} again
because (a,b) = Un [a+ L,b— L]. Analogously ¢(C) = B(R) when C = {(a,+%) | a € R}, since (a,b] =

(a,+00) N (—o0,b], and (—o0,b] = R\(b, +00) and so on.

Definition 1.1.4. Let ¥ be a o-algebra on X. A function p: ¥ — [0,400] is a measure if

- w(Q) =0,
— it s o-additive, that is if (A;); is a sequence of elements in X with A; N A; = & for i # j then
H(UZL A = D% (AL,
(X, X, ) is called a measure space.

If W(X) < 400, then u is a finite measure (a probability measure if n(X) = 1). Usually measure spaces
with probability measures are denoted with Q (in place of X ), the o-algebra is F (in place of ¥) and the
measure is P (in place of w).

If X = v As, with u(A;) < 400 for all i, u is o-finite.

IfX=R", n>=1andX = B(R"), then u is called a Borel measure.

1 .T(]EA

Example 1.1.5. Let zo € R, and define the measure on P(R) as dz,(A4) = {0 i A
Zo

Then 64, is called Dirac measure centered at xo.
Proposition 1.1.6 (Monotonicity, subadditivity, continuity). Let u be a measure on X. Then
(1) f Ac B, A,Be X, then u(A) < u(B) (monotonicity with respect to inclusion);
(ii) if (Ai)s is a sequence of elements in ¥ then p(UiZ, A;) < 2575 p(Ai);
(iii) 4f (A:)i is a sequence of elements in ¥ with A; © A1 then p(UiZ 1 A;) = im0 p(As);



(iv) of (Ai); is a sequence of elements in ¥ with A; 2 Aiy1 and p(Ai,) < +0 for some ig, then
p(N7Z1Ai) = limi oo p(Ai).
Proof. (i) Observe that B = A u (B\A), so by o-additivity u(B) = u(A) + p(B\A) = p(A).
(ii) Let B1 = A; and B; = A;\ u};ll Ay then B; are disjoint and

(111) Let B1 a1 and B; = Ai\Aifl then

+0o0 n
p(Uids) = p(UiBi) = Y p(Bi) = Jm D 1(Bi) = p(A).
=1 i=1
(iV) Let F; = AiO\Ai for ¢ > i9. Then M(Aio) = ;J,(FZ) + /L(Ai), F; < Fi+1 and U I = Aig\ N Aj.
Therefore by 1), we get

1(Aig) = (i) + lim p(Fr) = p(niAi) + Tim(u(Aig) = p(A))

and we cancel p(A;,) from both sides.

]
Definition 1.1.7. Let (X, X, u) a measure space. The completion of ¥ with respect to p is the o-algebra
M={Ac X |3IB,Cex,u(C)=0,B< A, A\Bc C}.

Definition 1.1.8. Let (X, X, 1) a measure space. A property holds almost everywhere if there exists
N € ¥ with u(N) = 0 such that the property holds for all x € X\N.

Proposition 1.1.9. Let ¥ be a o-algebra on X and p : ¥ — [0,+00] with u(&) = 0. Then they are
equivalent:

(i) w is o-additive: if (A;); is a sequence of elements in ¥ with A; " Aj; = & fori # j then p(UiZ, A;) =
25 (A,
(ii) w is additive: if A,Be ¥ and An B = & then u(An B) = pu(A) + u(B)
and
W is countable subadditive: if (A;); is a sequence of elements in ¥ then u(UiZ, A;) < Y75 p(Ai);

(iii) w is additive: if A,B€ Y and An B = ¢ then u(A n B) = u(A) + u(B)
and
1 18 continuous on increasing sequence of sets: if (A;); is a sequence of elements in ¥ with A; S Ai11
then p(UiZ1A;) = lim;— 4o p(A;).

Proof. The fact that (i) implies (ii) and that (i) implies (iii) has been proved in Proposition 1.1.6. We
prove that (ii) implies (i). We consider a sequence (4;); of elements in ¥ with 4; n A; = ¢F for ¢ # j.
Then by (ii) we get that p(ui2;4;) < 5% u(A;). On the other hand by additivity and monotonicity
(which is a consequence of additivity) we get that for every n, p(UiZ;A:) = p(uisiA:) = 20 pw(Aq).
Sending n — +00 we conclude u(UZ,A4;) = Zj:i w(Ai).

We prove that (iii) implies (i). We consider a sequence (4;); of elements in ¥ with 4; n A; = ¢J for
i # j. We define B; = U’_;A;. Then U;B; = U;A;. Note that by additivity pu(B;) = 23:1 u(A;) and
that By € B € Bs.... Therefore by (iii) and additivity we get

7 400

(U1 Ai) = p(0F2aBi) = lim p(Bi) = lim Zl“(Aj) = 1M(Aj)-
J= J=



1.2 Borel measures on R and cumulative distribution func-
tions

Let F : R — R be an increasing function which is right continuous, that is lim,_,,+ F(z) = F(a). We
define for all a,b e R,

pr(a,b] = F(b) — F(a)  pr(Q) = 0.
Then for every set C < R we define

1nf{ZF F(a:) | C < vila, b}
Note that since F' is increasing, we get that for sequences a1 < b1 < a2 < by < -+ < a; < b; < a;i+1 <
bi+1 ..., we obtain
:U'F Ui au z EF )

Observe that if we define C = {(a,b],a,b € R}, then ¥(C) = B(R). Note that if F1 = F» + ¢ for some
constant then pf, = p¥,. Also the viceversa is true: if puj, = ujf,, then Fi = Fy + ¢ for some constant c.

Remark 1.2.1. Note that F' monotone increasing implies that pr(a,b] = 0, and moreover, since F is
right continuous, then

pwr (Un(a+1/n,b]) = pr(a,b] = F(b) — F(a) = F(b) — liernF(a +1/n) = liy{n,uF(a +1/n,0b].

Reasoning as before, it is possible to see that, at least when restricted to C, there holds that pur has
positive values, is additive and is continuous with respect to increasing sequences of sets (which is enough
to get o-additivity if pp is defined on a o-algebra, see Proposition 1.1.9).

We recall that F' is monotone increasing and then lim,_, o F'(z) = sup F and lim,;,_o F(z) = inf F’
(we say that if F(R) is unbounded from above, supF = +0o0 and if F(R) is unbounded from below,
inf F' = —o0).

We may extend p?k to intervals obtained by unions and intersections of elements in C, and using
additivity and continuity. In particular we get

ph(a,+0) = pk(unla, a+n]):liTanF(a-i-n)—F(a):supF—F(a)
ph(—0,0] = phk(Un(b—mn,b]) = lim F(b) = F(b—n) = F(b) - inf F
() = pi (Vnzng(a,b—1/n]) = im F(b—1/n) = F(a) = lim F(z) - F(a)
u’;(—o@b) = uF (=0, =1] U (b—1,b)) = N?‘((_Ooﬂb - 1))+ U?((b —-1,0))
= lingliFac)—F(b—l)-i—F(b—l)—ian: liriliF(;r)—ian
M?‘[a’b) = = /ffj‘[(a_l’b)\(a_lva)] =N?(a_17b)_ult‘(a_1va)
= lirg F(z)— Fla—1)— l_i)mi F(z)+ F(a—1) = l_igl, F(z) — l_i)mi F(z)
pila,b] = pEfla,b+D\(b,b+1)] = pifa,b+1) — pi(b,b+ 1)
= F(b)— lim_ F(x)
pxla, +o0) = sup — lim F(z).
Note that
pE(R) = pu (un(a—n,b—‘rn])=1i£nF(b+n)—F(a—n)=supF—ian

wi({a}) sal\(¢; a))

— t((e.a) - ph((e,a) = Fla) ~ F(o) — (lim F(z) ~ F(c) = F(a) — lim F()

T—a r—a—

|
=
o¥ m% Mm%
=
Q

Theorem 1.2.2. (i) There exists a unique Borel measure up which coincides with u% on intervals
(a,b]. This measure is o-finite and it is finite if and only if sup F — inf F < 400.

(ii) Given a Borel measure on R which is o-finite, there exists F monotone increasing and right contin-
wous such that u = pur. F is unique up to addition of constants: that is if p = pr = pe then there
exists ¢ € R such that F(x) = G(z) + ¢ for all . ¢



Proof. (i) The proof is based on the Caratheodory criterion, and we refer to [3, Theorem 1.14, Theorem
1.16 ]. As for the o- finiteness it is sufficient to observe that purp(—n,n] = F(n) — F(—n) < 4+
and R = unp(—n,n]. Moreover, since pp(R) = sup F' — inf F', we conclude that F is finite iff
supp —inf F' < 400.

(ii) We want to construct F. Put F(0) = 0 and

_ Ju(0,7] x>0
(@) = {—M(I7O] z < 0.

Observe that if b > a = 0, F(b) — F(a) = u(0,b] — p(0,a] = w(0,b]\(0,a] = p(a,b] =0,if 0 = b > q,
then F(b) — F(a) = —pu(b,0] + p(a,0] = p(a,0]\(b,0] = p(a,b] = 0 and finally if a < 0 < b, then
F(b) — F(a) = n(0,b] + p(a, 0] = p(a,b] = 0. So F is increasing.

We check that it is right continuous. First of all observe that for a > 0, lim__,,+ F(z) = lim, F(a+
1/n) = lim, p(0,a + 1/n] = p(nn(0,a + 1/n]) = p(0,a] = F(a). If a = 0 lim,_,o+ F(z) =
lim, F(1/n) = lim, u(0,1/n] = w(nn(0,1/n]) = pw(F) = 0 = F(0). Finally if a < 0, then
lim,_,,+ F(z) = lim, F(a + 1/n) = —lim, p(a + 1/n,0] = —p(un(a + 1/n,0]) = —p(a, 0] = F(a).
Finally we already checked that u(a,b] = F(b) — F(a) and then we conclude that u = up.

Assume now that there exists a right continuous increasing function G such that g = ug. Then for
x>0, F(z) = u(0,z2] = pe(0,2] = G(z) — G(0) and for < 0 then F(z) = —pu(z,0] = pa(z,0] =
—(G(0) = G(z)) = G(x) — G(0). So, this implies that F(z) = G(z) — G(0) (for z = 0 this is trivially
verified).

O

Definition 1.2.3. Let u be a finite Borel measure. The function F(x) associated to the measure p and
normalized in order to have inf F' = 0 is called the cumulative distribution function of the measure p. It
is easy to check that F(z) := p(—o0,z].

1.3 The Lebesgue measure on R and R".

Definition 1.3.1. Let F(x) = x for all ©, then fip is called Lebesgue measure. We indicate with L.
We denote with M(R) the completion of B(R) with respect to L, and we call it the X-algebra of Lebesgue
measurable sets.
Proposition 1.3.2. The Lebesgue measure

(i) associates to each interval its length,

(i) s translation invariant, that is L(A + x) = L(A) for allz e R, Ae M,

(iii) is homogenous, that is L(AA) = AL(A) for all X > 0, Ae M,

(iv) assigns measure 0 to points, and so also to countable sets (e.g. Q),

(v

Proof. The proof is immediate by definitions and o-additivity. Exercise. O

)
)
)
)

it is o-finite, since R = Upen(—n,n) and L(—n,n) = 2n.

Measurable sets in R which contain at least one interval (they are called sets with non empty interior)
have positive measure. On the other hand sets which are given by countable union of isolated points have
measure zero. Nevertheless there are sets with empty interior in R (so that do not contain any interval)
and with positive measure (almost full measure).

Example 1.3.3 (A set of positive measure which does not contain any interval). Let (r,) be an enumer-
ation of Q N [0, 1] and fix € > 0 small.

Set A = Un(rn — 27", ry + €27"). Then by subadditivity, L(A) < >, 2¢2™" = 4e. Moreover
B = [0,1\A is a set which does not contain any interval (otherwise it should contain some rational
number but Q n [0,1] € A), and moreover £(B) > 1 —4e > 0.

Not all the subsets of R are contained in M(R), so there are sets which are not measurable. This
is due to the fact that if we want to define a measure p on the intervals of R such that p([0,1]) = 1,
w(Au B) = pu(A) +u(B)if An B =& and pu(A) = pu(B) if B can be obtained translating and rotating
A, then the o- algebra of measurable sets cannot be P(R).



Example 1.3.4 (A set which is not (Lebesgue) measurable). We say that =,y € [0,1] are equivalent
ifx—y e Q. Let P e [0,1] a set such that P consists of exactly one representative point from each
equivalence class (this set exists by the axiom of choice). In particular this means that if p,p’ € P, p # p/,
then p — p’ ¢ Q. We claim that P provides the required example of a non measurable set. We prove it by
contradiction, showing that it is not possible for P to be measurable.

For each ¢ € Q n [0, 1], define

Py=[P+q)n[0,)]U[(P+\[0,1))=1] ={p+q, pe Pn[0,1-q)}u{p+q—1, pe Pn[l—q1)}.

So P, is obtained by considering P + ¢ and then shifting back of 1 unit the part of P + g which is outside
the interval [0, 1).

First of all we observe that £L(P) = L(P;). Indeed [(P +¢) n[0,1)] n [(P + ¢)\[0,1)) — 1] = &, since
if p+qe[0,1) for some pe P and p' + ¢ — 1 € [0,1) for some p’ € P, then necessarily p+q #p' +q—1,
since p,p’ € [0, 1).

Moreover we observe that if r # ¢ € Q n [0,1), then P. n P, = ¢J. Indeed assume it is not true
and z € P, n P,, this means that z = p+r = p' + ¢, for some p,p’ e Porz =p+r=p +q—1, or
z=p+7r—1=p +q Inany case we get that p — p’ € Q, which implies that p = p’ by definition of the
set P and so r = q.

Finally we observe that Ugegnpo,1)Py = [0,1). Indeed take x € [0, 1), then there exists p € P such that
x is equivalent to P, which means that there exists ¢ € Q such that x = p + ¢. In particular this implies
that g € (0,1] and z € P,.

We conclude by o-additivity that

1=L£([0,1)) = L(ugeoronPa) = Y, LP)= D, L(P)=
q€Qn[0,1) q€Qn[0,1)
which is not possible.

It is possible to define the Lebesgue measures on R™ as the product measure of the Lebesgue measure
on R. It is a Borel maesure and we denote with M the Y-algebra of Lebesgue measurable sets. We refer
to [3, Section2.6].

Proposition 1.3.5. The Lebesgue measure on R™
(i) associates to each n-parallelepiped its volume,
(i) s translation invariant, that is L(A + x) = L(A) for allz e R", Ae M,

(iii) 4s n-homogenous, that is LIAA) = A"L(A) for all X > 0, A € M, in particular L(B(0,7)) =
r"L(B(0,1)), where B(0,r) is the ball if radius v centered at 0,

(iv) 1t is o-finite, since R" = UrenB(0,k) and LB(0,k) = k"L(B(0,1)).

From now on, for simplicity we will indicate |A| = L(A).

1.4 Measurable functions and random variables

Definition 1.4.1. Let (X,X,u) be a measure space, and let f : X — R be a function. Then f is
measurable if for all t e R,

A(t):={zxe X | f(x) >t} = f'(t,+x) € %.

In particular we will be interested in the case in which (X, %, u) = (R™, M, L). In this case saying that
f:R™ > R is measurable is equivalent to require that for all A e B(R), f~'(A) e M.

Example 1.4.2. Let A € M and define the characteristic function of A as

1 z€ A
xalz) = {0 zé A

Then x4 is measurable. Indeed A(t) = J for t = 1, A(t) = R" for t < 0 and A(t) = A for t € (0,1).



Example 1.4.3 (Random variables). If (Q, F,P) is a probability space (that is a measure space endowed
with a probability measure), the measurable functions, that is functions f : © — R such that for all t € R,
At) :={we Q| f(w) >t} € F, are called random variables. Usually random variables are indicated
with X instead of f.

There is a notion of convergence of measurable functions which is quite used in probability.

Definition 1.4.4 (Convergence in measure). Let fn, f be measurable functions defined on the measure
space (X, X, p). Then fn converge to f in measure if for every € > 0

limjufw € X | |fale) — f(@)] > &} = 0.
If we are in a probability space, this convergence is called convergence in probability, since it reads

liyrln]P’{w €| | Xn(w)— X(w)|=e}=0.

1.5 Lebesgue integral

Definition 1.5.1. Let k > 1, A1,... Ak a finite family of disjoint sets in M and c1,...c, > 0. The
function ¢(x) = Zle cixa,; () is called simple function. It is a measurable (positive) function and we
define its integral as

k
JRN pa)dz = 3 (A,

Definition 1.5.2 (Lebesgue integral). Let f : R™ — R be a measurable function such that f(z) = 0 for
all x. Then
f(z)dz = sup {J o(z)dz | ¢ simple function with ¢ < f} .
RTL R’Vl,
If f is not positive we define its positve part f1(x) = max(f(x),0) and its negative part f~(x) =
max(—f(x),0) and we define

(x)dx = fH(z)dz — f(z)dz.
R"™ R™ R™

Note that §., | f(x)|dz = §;,, f*(x)dx + (5, f~ (z)dz.
Since T < |f|, f~ < |fl, we have that

<40 iff |f(z)|dx < +c0.
Rn

f(z)dx
Rn

We denote
L'(R™) := {f :R" - R | f is measurable andf |f(z)|dz < 400}
R"'L

If Ae M, then we define

L'(A) = {f :R™ > R |f is measurable andf |f(z)|xa(z) = f |f(z)|dx < +oo}.
R® A

Proposition 1.5.3. The following properties hold.
— If f = 0 almost everywhere then §,,, f(x) = 0. If {5, |f(z)|dz = 0 then f = 0 almost everywhere.
— If f,g are measurable functions such that f = g almost everywhere, then SR,L flx)dx = S]R,,L g(z)dzx.
- If f,ge L'(R™), o, BER, then §,, af(x) + Bg(x)dx = af,, f(z)dx + B, g(z)dz.
~ If f,ge L'(R™), and f < g then §, f(z)dx < §,, g(z)dz.

Proof. The proof is obtained by exploiting definitions, see [3, Section 2..2] O

Remark 1.5.4. [On the definition of L'] Note that due to the previous proposition, in particular the fact
that if f, g are measurable functions such that f = g almost everywhere, then §,, f(x)dx = §;, g(x)dz,
we identify functions in L'(R™) which coincide almost everywhere. So a function f in L'(R") is
actually a class of equivalence of functions, we do not distinguish functions which are different on sets of
measure zero.



Theorem 1.5.5 (Monotone convergence). Let fi : R" — R measurables , positive, i.e. fi = 0 for all k,
and such that fi(z) < fes1(x) for all x and for all k. Then

liIEn fi(z)dx.

n

lim | fi(z)dz = f
k Jgn
Proof. See [3, Theorem 2.14]. O

Proposition 1.5.6. An equivalent definition of the Lebesgue integral (which can be very useful) is the
following. Let f : R™ — R measurable and positive. Let for every t > 0 F(t) = L(A(t)) = L{z | f(z) > t}.
F is called the repartition function of f. Then

flz)dz = +OO F(t)dt.
R" 0

Proof. See [3, Proposition 6.24] O

1.6 Decomposition of measures.

Definition 1.6.1. Let v, p be measures defined on (R", B(R™)).

v is absolutely continuous with respect to L, and we write v << L if v(A) = 0 for all A € B such
that L(A) = 0.

p is singular with respect to L, and we write p L L, if there exist A, Be B, AnB =g, AuB =R",
such that L(A) =0 and p(B) = 0.

Example 1.6.2. Let xp € R and consider the Dirac measure J;, centered at xzo. Then it is singular with
respect to L. Indeed fix A = R\{z0}, B = {zo}, and observe that £(B) = 0 and d,,(A) = 0.

Proposition 1.6.3. Let f > 0, measurable and such that S]YM f(x)dx < +0o0 for all M > 0. Define the
function
vi: M —[0,+0] as vi(A) = J f(z)dz.
A

Then vy is a measure on (R™, M), which is o-finite and which is absolutely continuous with respect to L.
If f € L*(R™) the measure is finite.

Proof. First of all we show that it is a measure. Observe that f(z)xg(z) = 0 almost everywhere, then
vi(&) = 0. Let A; € M which are pairwise disjoint. Define the simple function ¢ (z) = Y5 xa, (z).
Note that limy ¢i(x) = xu,4,(z). Moreover 0 < f(x)dr(z) < f(z)pr+1(x) and so by the monotone
convergence theorem we get

tim [ gu(a)f(x)dz = f lim g (2) ().

R™

Observe that

k k
ti [ on@)f@)ds = tim [ D@ f@)de = tim Y] [ ou(o) (@)

R™ - i—1 JR™
k k +0

= lim Z J flz)dz = liin Z vi(Ai) = ) vi(A)
i=1JA; 1=1 i=1

and
|t = oo @@ = vi(oa.

Therefore we get that vy is a measure.
Since v (B(0,k)) = § 5o 4 f(¥)dx < +00 by assumption, then vy is o-finite.
Finally, note that if A € M and L£(A) = 0, this implies that xa(z) = 0 almost everywhere. Therefore
also f(z)xa(z) = 0 almost everywhere, which implies v;(A) = 0.
(]

Example 1.6.4. Let f(z) = e 1** . Then f e L'(R™) and the measure vy is called the Gaussian measure.
Note that it is a finite measure, and SRn e~1o g = 72, see [3, Prop. 2.53].



Theorem 1.6.5 (Lebesgue-Radon-Nikodym theorem). Let pu a Borelian measure on R™ which is o— finite.
Then there exist a unique v << L (absolutely continuous part) and a unique p L L (singular part) such
that p = v + p.

Moreover there exists f = 0, measurable and such that SBR f(x)dx < 40 for all R > 0, for which
vV =UVf.
f is called the density of v, or the Radon-Nikodym derivative of v and can be obtained (if the measure v

is reqular) as f(x) = lim,_,o %.

Proof. For the proof we refer to [3, Section 3.2]. O

1.7 Push forward of measures and laws of random variables

Definition 1.7.1 (Push forward of a measure). Let (X,X,u) be a measure space, and let f : X —
(R,B(R), L) be a measurable function. Then the push forward of the measure u by the function f is the
Borel measure fyp defined as follows: for all A € B(R),

fa(A) = plz e X, f(z) € A}

Let (2, F,P) be a probability space and X : © — R be a random variable (see Section 2.4). Then the
law Lx of X is the push forward of the probability measure P by X: that is for every A € B(R),

Lx(A) =P({w [X(w) € A}).
The cumulative distribution function associated to such Borel measure is defined as
Fx(z) = P({w [X(w) < z}).

The law identifies the (main properties of) random variable, and often the random variables can be de-
scribed just in terms of their laws.

Remark 1.7.2 (The cumulative distribution function). If X is an (absolutely) continuous random vari-
able, Lx is an absolutely continuous measure and F'x is an absolutely continuous function. The density
of fx with respect to the Lebesgue measure is

fx () = Fha) = tim FEHR = F(@)

for a.e.x € R.
h—0 h

If X is a discrete random variable, Lx is a singular measure with respect to the Lebesgue measure
and F'x is a monotone piecewise constant function.

More generally if F'x is the cumulative distribution function associated to a random variable, then F
a right continuous, monotone increasing function, which we normalize to have inf F’x = 0 (and obviously
supF' = 1). Fx has at most countably many discontinuity points, that are those for which F(a) >
lim,_,,- F(x), or equivalently for which

P({w | X(w) = a}) > 0.

We define
d
Fx(z):= ) P({w |X(w) = a}).
Yy

Note that Fj is a monotone increasing function, which is a.e. constant and has jumps only at discontinuity
points of Fx.

So the function Fx — F¢ is a continuous function, and it is easy to check it is still monotone increasing.
A deep result in mathematical analysis (see [3, Thm 3.23]) states that monotone increasing functions F are
differentiable a.e.- that is for a.e. a € R there exists F'(a) = limy_,o w and moreover F’'(a) = 0
a.e. So we define the absolutely continuous part of Fx as

@) = [ Py = [ @ - mY

So, Fx (z) is the density of the absolutely continuous measure p Fgc.
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It is possible to prove that in general
Fx(z) = FX(2) + FX*(2) + FX (o)

where F¥ is a continuous and increasing function, whose derivative is zero in almost all z, but it can be
not identically zero (a typical example is the devil’s staircase function, or the Cantor function).
The three functions F&, F$, F§ are all increasing, but are of very different nature:

— F¢ can only increase by jumps and it is constants between two consecutive jumps,

— F%°is a “nice” function with the property of being the integral of its derivative, which coincide with
the distribution density,

— F% is a function quite hard to imagine (continuous, increasing with zero derivative a.e.).

We typically deal with real random variables such that the singular part F5 of their distribution function
is identically zero.

Moreover, we see that a real random variable is discrete if and only if Fx = F¢ and it is absolutely
continuous if and only if Fx = F%° and in this case fx(z) = Fx(x).

Remark 1.7.3 (Joint law). If XY are random variables on the same probability space, that is X,V :
(Q,F,P) > R, we may define the joint law Lx y as the push forward of the probability measure P with
respect to the map (X,Y) : (©,F,P) - R x R which associates to w the pair (X (w),Y (w)). Therefore

]nyy = (X, Y)ﬁP ]Lx’y(A X B) = ]P’{w € Q,X(w) € A,Y(w) € B}
The joint cumulative distribution function as
Fxy(z,y) = P({w [X(w) < 2} n {w [Y(w) <))

If X,Y are independent then Fx y(z,y) = Fx(z)Fy(y). Two random variables X and Y are jointly
continuous if there exists a nonnegative function fx y : R? — R such that for any measurable set A < R?
there holds

Pl (X (@)Y @) € 4D = [ e (ep)dody
The function fx,y(z,y) is called the joint probability density function and is obtained as

2

dxdy

Ixy(z,y) = Fxy(z,y) a.e..

Given the joint probability density function it is possible to recover the density functions of X and Y as

the marginals:
+0o0 +0o0

Ix(z) = fxy(@,ydy  fr(y) = fxy(x,y)de.

[e¢] o8]
On the other hand, given the marginals fx, fy, there is not a unique associated joint probability density
function (apart from the case in which X, Y are independent, in which case fx,y(z,y) = fx(z)fv(y)).
Remark 1.7.4. Some examples of widely used random variables/laws:

— the Dirac measure J. centered at c is the law associated to the constant random variable ¢ (so the
random variable X such that X (w) = ¢ almost surely).

— the gamma law with parameters a,b is an absolutely continuous measure with density f(z) =
F(a)_lbaxa_le_bzx<o,+oc) ({E)
— the chi-square law is a gamma distribution with parameters n/2,1/2,
— the normal or Gaussian law with parameters u, o is an absolutely continuous random variable,
. . _w@=m?
with density f(z) =

e 20 y
— the standard normal law is a normal law with parameters 0,1, that is an absolutely continuous

oV2m

_ 1

measure with density f(z) = =€ 7

— the binomial law of parameters n,p is a singular measure, and it is given by
D -0 ﬁikﬁpk(l — p)"*5,, where 8, is the Dirac measure centered at k,

— the Poisson law of parameter ) is a singular measure, and it is given by
ey %(5;C where Jj, is the Dirac measure centered at k.

11



1.8 The space of laws of random variables. p-moments of a
random variable

We restrict to consider the family of all Borel measures in R which are laws of some random variable, that
is

P(R) = {u | there exists a probability space (2, F,P) and X : Q@ — R random variable s.t. = Lx}.

Note that all ;1 € P(R) are Borel measures in R such that u(R) = 1 (so they are finite). Observe also that
given p € P(R) there are several probability spaces (Q2,P, F) and several X : Q — R random variables s.t.
u = Lx. In any case, the law determines the most important feature (from a measure theoretic/analytic
point of view) of the random variable, on the other hand we loose completely the information about what
is the sample space (that is sample space, the set of possible outcomes of an experiment), and which are
the events which have been measured. To every u € P(R) is uniquely associated its cumulative distribution
function
F(z) = p(—o0,z].

Moreover, if p is absolutely continuous, its density f(x) coincides almost everywhere with F”(z).
Following the same approach used to define the Lebesgue integral, it is possible to define in R the
integration with respect to a general p € P(R) of y-measurable functions g : R — R (that is if for all ¢ € R,
g~ '(t, +o0) is a set contained in the completion of B(R) with respect to u).
A more intuitive way to define integration of continuous or monotone functions is via the Lebesgue-
Stiltjes integral. Let g : R — R continuous (so it is surely y-measurable). We define

M=>0

Lg(fﬂ)du = sup sup {

=0

It is possible to show that if p is an absolutely continuous measure with density f, then

| s@an = [ s@r@a.

R

On the other hand, if p is associated to a discrete random variable, so F' = F'¢, with jumps given by the
countable or finite set of points (a;);, then

| st = Yate(Pe) - Fap).

Definition 1.8.1. The nth-moment of a random wvariable X is given by E(X") := SIR z"dLx, more
precisely

— if X is a (asbsolutely) continuous random variable (whose associated law has density f) then
E(X") = f " f(x)dx.
R

— if X is a discrete random variable (taking values on Z),

E(X") = Y k"Pw | X(w) = k).

keZ

Note that E(X™) < +0 if and only if E(]X|™) < +o0o0.
We recall that the moment for n = 1, that is E(X), is called the mean, whereas E(X — E(X))? =
E(X?) — (E(X))? is called the variance.

1.9 Modes of convergence for random variables
We have several notion of convergence in the space of random variables and in the space P(R).

Definition 1.9.1. Let (Q, F,P) be a probability space and X,, X : @ — R be real random variables.
— X, converges to X in probability if for every ¢ > 0, lim, P(| X, — X| > ¢) =0,

12



- X, converges in mean to X if E(| X, — X|) —» 0
- X, converges in mean square to X if E((X, — X)?) — 0
— X, converges in distribution to X if E(g(X»)) — E(g9(X)) for every bounded continuous function g.

We recall also a notion of convergence on the space P(R).

Definition 1.9.2 (Weak convergence). Let pn,pu € P(R) with pn = Lx,,,u = Lx with X, X : Q > R
random variables on a probability space (2, F,P).

Then pin converges weakly to p if Xn converges in distribution to X that is §; g(x)dpn — §; g(x)dp
for every bounded continuous function g.

Theorem 1.9.3 (Prokhorov’s theorem). Let X, be a sequence of random variables which are tight in
the following sense: for every e > 0 there exist n. > 0 and a compact set K. (so a bounded closed set)
such that P{w, Xp(w) € Ko} = 1 —¢ for all n = ne. Then, there exists a random variable X such that, up
to a subsequence, X, — X in distribution.

The same statement can be stated in the space P(R).

Theorem 1.9.4 (Prokhorov’s theorem for laws). Let p, € P(R) be a sequence of probability measures
which is tight in the following sense: for every ¢ > 0 there exist ne > 0 and a compact set K. (so a
bounded closed set) such that pn(Ke) = 1—¢ for alln = n. (recall that p,(R) = 1 for all n). Then, there
exists € P(R) such that, up to a subsequence, pn — pu weakly.

1.10 Problems

(i) Let f: R — R be a monotone function. Show that f is Lebesgue measurable.

(ii) Consider the right continuous increasing function on R

F(m)—{x <0

r+1 x>=0.

Which is the Borel measure associated to this function?

13



Chapter 2

Spaces of random variables with
finite p-moment.

2.1 The Banach spaces M? of random variables with finite
moments

2.1.1 Banach spaces

Let X be a vectorial space on R (this means that it is closed by summation and by multiplication by
scalars, that is if z,y € X, A\, u € R, then Az + py € X).
Definition 2.1.1. A norm ||- | : X — [0,400) is a function such that

— |zl = 0 for all x € X and ||z|| = 0 iff z = 0 (positivity);

- |Az| = [Al|z| for all x € X, A € R (homogeneity);

— |z +y| < |zl + |yl (triangular inequality).

(X,| - 1) 4s a normed space.
Example 2.1.2. On R" we may define the euclidean norm |z| = 4/x2 + - - - + |z, |2
A norm induces on X a metric structure on X in the following way.

Definition 2.1.3 (Metric structure and notion of convergence). Let (X, - |) be a normed space. We
define a distance between elements in X as

d(z,y) = |z —yl.

Note that this is a good definition, since it is positive, zero only if x = y, and satisfies the triangular
inequality, that is d(z, z) < d(z,y) + d(y, z) for all z,y, z.
We define the balls associated to this distance as follows: we fix a center xo € X and a radius v > 0
and we set
B(zo,r) ={z e X ||z — zo| < r}.

A set A € X is open if for all x € A there exists r > 0 such that B(x,r) € A. A set C is closed is
X\C is open.
Let (zn)n a sequence of element in X and x € X. Then

limz, = iff lm |z, —z| =0.
n n—+0o0

Proposition 2.1.4. The following are equivalent:
i) C is closed

i1) for every sequence (zy) of elements in C such that there exists x € X with lim,, , = z, there holds
that x € C.

14



Proof. Assume that C' is closed and ii) is false. Then there exists (z,) of elements in C such that
lim, z, = x ¢ C. This implies that there exists r > 0 such that B(z,r) € X\C. Therefore z,, ¢ B(x,r)
for all n, which means that ||z, — z| = r for all n, in contradiction with the fact that lim, z, = z.
Assume that ii) holds and assume that C is not closed. So there exists x ¢ C such that for all r > 0
there holds that B(z,7) n C' + . Let @, € C such that z, € B(z, 1) n C. So |z, — || < £ and then
limy, , = z. But this would imply z € C. O

Definition 2.1.5 (Banach space).
A sequence (zn)n tn X is a Cauchy sequence if imp m |€n — zm| = 0.
A normed space is called a Banach space if all the Cauchy sequences have limit in X.

Remark 2.1.6. Note that if (2, ), is a sequence which converge to z € X, then it is also a Cauchy sequence,
since by triangular inequality |z, — Zm| < |2n — 2| + | — 2m | and then 0 < limp,motoo [Tn — Tm| <
liMm notow [|Tn — || + |2 — 2m]|| = 0.

The viceversa is not always true. Let’s think e.g. of the case X = QQ and the euclidean norm. Define
(zn) as follows: zg = 1, z1 = 1,01, z2 = 1,01001, s = 1,010010001, 24 = 1,01001000100001 and so on,

that is z, = 1,1010010001...1 0.7.1.0 1. It is easy to check that =, € Q for all n, that z,, — = (so (zn)n
is a Cauchy sequence, but this can also be checked directly) and that = ¢ Q. This implies that (Q,]-|) is
not a Banach space.

An important theorem in Banach spaces (more generally in complete metric spaces) is the contraction
lemma, or Banach-Caccioppoli theorem:

Theorem 2.1.7. Let (X, |-|) a Banach space and F : X — X such that there exists 0 < a < 1 for which
|F(z) = F(y)| < ale—y|  Vo,yeX.

(F' is a contraction) Then the map F admits a unique fized point, that is a point such that T = F(ZT).

Proof. See problem 1 at the end of the chapter. O

Definition 2.1.8. Let (X, || x) and (Y,| - |ly) be two Banach space.

A linear operator is a map T : X — Y such that T(ax + By) = oT'(x) + BT (y) for all o, € R,
r,ye X.

A bounded operator is a map T : X — Y such that

1T = sup |Tz| < +o0.
{reX||z|<1}

If this quantity if finite, it is called the norm of T.
A continuous operator is a map T : X — Y such that

IimTz, =Tx for all sequences x,, such that limx, = x.

Proposition 2.1.9. A linear operator T : X — Y 1is continuous if and only if it is bounded.
Proof. Assume that T is bounded, then

Ty — X
[T = T2l = 1T = 2)] = lon = ol ({225 ) < o = alI T
zn — |
Therefore if ||z, — z| — 0, then also |Tz, — Tx| — 0.
Assume that T is continuous, and we want to prove that T is bounded. Assume by contradiction that
Tn

it is not true. So for every n € N there exists x, € X such that |z,| = 1 and ||Tz,| > n. Define y, = “=.

Then |y.| = @ =1 — 0. This implies that ¥, — 0. Observe that by linearity Ty, = 1Tz, and then
|Tyn|| = L|Tan| = 2 = 1. Therefore y, — 0 but Ty, $> 0, in contradiction with continuity. O

Theorem 2.1.10. The set of all bounded linear operators between two Banach spaces X,Y , is a Banach
space B(X,Y), with norm |T|| as defined above.

Proof. See [2, Theorem 2.12]. O
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Example 2.1.11. Let X = R™ and Y = R™ both with the euclidean norm. Let A € M, x»(R) be a
n X m matrix. Then

n
Tx = Ax = (Z @i T5)i=1,...,m
j=1
is a bounded linear operator from R™ to R™.

Theorem 2.1.12 (Uniform boundedness principle, or Banach-Steinhaus theorem). Let T, be a sequence
of bounded linear operators between the Banach spaces X and Y, that is T, € B(X,Y) for all n. Assume
that for all x € X there exists Cy € R such that sup,, |[Thz| < Cs.

Then there exists C' € R such that |T,|| < C for all n.

In particular this implies that if the sequence T,z is convergent for every x € X, then Tx := lim, T,z
defines a bounded linear operator.

Proof. See [2, Theorem 4.1]. O

2.1.2 Spaces of random variables with finite moments

We fix a probability space (2, F,P) and we consider the random variables X : Q@ — R. We introduce the
spaces of random variables with finite p-moment (see definition in Section 2.7)

MP = {X random variable E(|X|") < +o0}
with associated norm | X |, = (E(|X|?))"".

Definition 2.1.13. Letp > 1. Then the conjugate exponent of p is the number ¢ > 1 such that 1/p+1/q =
1. In particular the conjugate exponent of 2 is 2.
We say that the conjugate exponent of 1 is +00.

Lemma 2.1.14 (Young inequality). Let p,q be conjugate exponents. Then zy < zF/p + y?/q for all
z,y = 0.

Proof. Fix x > 0 and consider sup,.,(zy — y?/q). First of all observe that the supremum is actually a

maximum, since limy— 4+ 2y — y?/q = —o0. Differentiating in y, we get that the unique point where the
derivative is 0 is given by y = /(=Y. This is the maximum. Therefore for all y > 0, zy — yl/q <
gttt — g0l fq = 2P [p, since p = ¢/(q — 1). O

Proposition 2.1.15. Let X € M? and Y € MY, with q conjugate exponent of p, then
E(|XY]) < E(X[")"P(E(Y]))".
Moreover if X,Z € MP, then
E(X + ZI")V" <E(IX[")"? +E(|12]")""
Proof. Tt is sufficient to apply the Young inequality to = = |X|E(]X|?))™Y? and to y = |Y|E(|Y|?))~ 4

and one obtain .
RS Y] | X Y|

< + .
E(X )P E([Y]9)Ye = pE(IX|P)  qE(]Y])
By applying E to both term we conclude

E(XY]) 11
E(XP)PE(Y))T S p " g

Observe that if X, Y € M? the X +Y € MP. This is due to the fact that

P S g
< +

X4yp _|X v
T2 2 T2 2

2p

by the convexity of the function r +— r? on [0, +00) when p > 1. Now we observe that

X +YP =X +Y|X+YP ' <|IX|IX+YP T + X)X+ Y
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and that | X + Y|P~ € M9 where q = p%l is the conjugate exponent of p. Moreover

E(IX +Y[P ) =E|X + Y[ (2.1.1)
So by Holder inequality applied to f and |f + g|P~" we get

1 p—1
P

EIX||X + V[P < (BIX[")7 (B|X + Y|
and analogously by Holder inequality applied to f and |f + g|* ™! we get
p=1

P

E[Y||X + Y[ lde < (E[Y[")7 (E[X + Y?)

Integrating (2.1.1) and using the previous inequalities we get

EX +Y[P < (BIX]P)7 (EX +Y]")F
+EYP)P EIX Y1)
= EX+YP)T [EIXP)P + @)
from which we deduce the statement by dividing both sides by (E|X + Y|p)p771. O

Theorem 2.1.16. The space MP with the norm || X|, for p € [1,400) is a Banach space.
We recall the Jensen inequality:

Lemma 2.1.17 (Jensen’s inequality). Let g : R — R be a convex function, then for every random variable
X

E(9(X)) = g(E(X)).

Theorem 2.1.18. There holds that M* M"™ for every 1 < n < k. Moreover if X € M* then

(E(|X‘n))% < (E(\X|k))% for alln < k.

N

Proof. Let 1 < n <k, g(z) = \m|% Since £ > 1, the function g is convex. Let X € M"* and we apply
Jensen’s inequality to the random variable | X|", observing that g(|X|™) = |X|*,

k
n

E(1X|") = E(g(1X[")) > g(E(X|")) = (E(X]™))
O

Example 2.1.19. T : M* — R such that T(X) = E(X) is a bounded linear operator.
If we consider X € M?, then Tx : M? — R defined as Tx(y) = E(XY) is again a bounded linear
operator.

2.2 Hilbert space M? and conditional expectation

2.2.1 Hilbert spaces

Hilbert spaces are spaces where it is possible to define the notions of length and orthogonality, which allow
to work with the elements geometrically, as if they were vectors in Euclidean space. First of all we recalls
some basic definitions.

Definition 2.2.1. A set X is a vector space on R (a real vector space) if it is a set equipped with two
operations, vector addition (which allows to add two vectors z,y € X to obtain another vector x + y € X)
and scalar multiplication (which allows us to “scale” a vector x € X by a real number ¢ to obtain a vector
cx € X). Moreover we require that X contains a neutral element for the vector addiction, that is an
element 0 € X such that 0 + x = z for every x € X and x —x = 0.

A scalar product on X is a function (-,-) : X x X — R such that

- (z,z) = 0 for all x and (z,z) =0 iff x = 0;
— it is symmetric (z,y) = (y,z) for all x,y € X;
— 4t is linear, that is (ax + By, 2z) = a(x, z) + By, z) for all x,y,z € X,a, B € R.
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We associate to a scalar product a norm in this way |z| = 4/(z, ).

Proposition 2.2.2. The function || - | : X — [0, +00) defined as ||z = /(z,x) is a norm. Moreover the
scalar product is continuous, that is if x, — x in X and y € X, then (zn,y) — (z,y) in R.

Proof. Positivity and homogeneity are obvious. To prove the triangle inequality one first need to to prove
the Cauchy Schwartz inequality |(z,y)| < ||z||y|. See [2, Theorem 5.1].
The continuity is an easy consequence of the Cauchy Schwartz inequality:

[(@n — 2, y)| < [zn — 2]yl

O

Definition 2.2.3 (Hilbert space). A space X with a scalar product which induces on X a norm such that
X is a Banach space is called Hilbert space.

Proposition 2.2.4 (Parallelogram identity). For every x,y € H, there holds
2 2 2 2
lz+yl” + |z —y[” = 2]z]” + 2[y|".

Proof. By definition and by linearity and symmetry of the scalar product |z + y|? = (z + v,z + y) =
(z,2) + 2(z,y) + (y,9) = |2 +2(z,y) + [y[?, and |z —y|* = (z +y, 2 +y) = |2]* - 2(z,y) + |y[*. Tt is
sufficient to sum. O

Example 2.2.5. In R™ we define the scalar product (x,y) = z1y1 + T2y2 + -+ + Znyn. The euclidean
norm is the norm associated to this scalar product. So R™ with this scalar product is a Hilbert space.
This is the basic example of Hilbert space of finite dimension.

2.2.2 Orthogonality and projections in Hilbert spaces

Definition 2.2.6 (Orthogonal space). We say that z,y € X are orthogonal if (xz,y) = 0.
If S € X is a subset of X, we define the orthogonal subspace

St ={zeX | (z,s)=0Vse S}
This a vectorial subspace of X.

Example 2.2.7. If we consider S © M? the subspace of constant random variables, then S+ = {X €
M? |E(X) = 0}.

Theorem 2.2.8 (Orthogonal projection). Let V < H be a closed subspace of a Hilbert space, V # {0}
and let h e H.

Then there exists a unique element v € V' at minimal distance from h, that is such that |h — v| =
mingey |k — w||. Moreover there exists a unique element s € V- such that h = v + s.

The map Prv : H — V which associate h — v is called the orthogonal projection of H in'V and it is
a bounded linear operator of norm 1.

Proof. We consider the minimization problem minyev |h — w| and we show that it admits a solution
which is unique. Since |h — w| = 0 we get that infyev |h — w| = § = 0. Let v, € V such that
0 < |vn — h|| <6+ 1/n. Then (v,)n is a Cauchy sequence, since by parallelogram identity and linearity

v = vm | = 2[vn —h|* +2[vm — h|* = [ (vn +vm) —2h]> < 2(6+1/n)* +2(6+1/m)* — 4| h— (vn +vm)/2]>.
We conclude by recalling that since (vn + v )/2 € V then |h — (vn + vm)/2|| = 4,
[vn — vm|> < 2(6 4+ 1/n)° + 2(0 + 1/m)* — 46 = 46/n + 46/m + 1/n* + 1/m> — 0 as m,m — 4.

Since H is a Banach space there exists v € H such that lim, v, = v and since V is closed then v € V. By
continuity, we conclude that |v — h| = § = infyey |h — w|. v is the unique minimizer. Indeed if it were
not the case, there would exists v' € V with |v — h|| = |v" — h| = 6. By parallelogram identity

o —o'|* = 2Jv —hl]> + 2|0 — R|* — 4] (v +v')/2 — h|* < 26 + 26> — 46> =0

which implies v — v'|| = 0.
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Let w € V. We claim that (h — v,w) = 0. Since v is the point at minimum distance, then the
function A — |h — v + Aw|? has minimum in A = 0. Differentiating the function in X it should be that the
derivative in 0 is 0. Hh*”;/\)‘w”z = (h7“+M‘;’f7”+Aw) = 2(h — v,w). Therefore (h — v, w) = 0. This means
that h —ve V*.

Let v = Pry(h),v' = Pry(h/) and let o, 3 € R. Then aw + fv’ € V and av + v/ — ah — Bh € V.
Therefore by uniqueness Pry(ah + Sh') = av + Bv’. Then Pry is linear. Moreover since (Pryh —
h, Pryh) =0,

|| = |k — Pryh + Prvh|? = (h — Pryh + Pryh,h — Prvh + Pryh) = |h— Pryvh|® + | Prvh|.

This implies that for all b with ||h| < 1, |Prvh|? = |h|?—|h—Prvh|? < 1. So Pry is bounded. Moreover
if h e V, then Pryh = h. Therefore |Prv| = 1.
O

Definition 2.2.9 (Orthonormal set). A set {u;,i € I} of elements in H is an orthonormal set if |u;| = 1
for all i and (u;,uj) =0 for all i # j.
Proposition 2.2.10. Let {u;,i € I} be a orthonormal set. Then the following are equivalent

— if (x,u;) =0 for all i, then z =0

~ Jaf? = X, (@, u)? for allw e H,

— forallze H, x = Y, (x,us)us, (where the convergence is with respect to the norm of H).

An orthonormal set for which one of the previous conditions hold is called an orthonormal basis. FEvery
Hilbert space admits a orthonormal basis.
Proof. See [3, Proposition 5.28]. O

Definition 2.2.11 (Separable space). H is separable if it admits a countable orthonormal basis.

Theorem 2.2.12 (Computation of the orthogonal projection). Let V be a closed subspace of H and let
{vi,i € I} be an orthonormal basis of V. Then for all he H,

Pry(h) = Y. (h,vi)vs.
i€l

Proof. See [2, Theorem 5.10]. O
Theorem 2.2.13 (Parseval theorem). Let {u;,i € I} be a countable orthonormal set in H. The following
are equivalent

— if (hyu;) =0 for all i then h =0,

— for each h € H there holds h = Y, (h, us)u;, which means that limy, [h — 37, (h, us)ui| = 0,

~ for each h e H, |h|* =, |(h,wi)|?.

In particular {u;,i € I} is an orthonormal basis of H.

2.2.3 Conditional expectation

We fix a probability space (2,P, F) and we define the space
M? = {X:(Q,P,F) > R| X random variable with IE(XQ) < 400}

Recall that X is a random variable if X™'(A) € F for every A € B (so for every A in the o—algebra of
Borel sets. Given X random variable, we define o(X) € F, that is the o-algebra generated by X, as
the minimal o- algebra contained in F which contains all the elements X '(A) = {we Q | X (w) € A} for
every A € B. So it is the minimal o-algebra which assures that X is measurable.

Note that if X is a constant random variable, so X (w) = c for all w € Q, then X *(4) = Q if ce A,
and X '(A) = @ if c¢ A. So in this case o(X) = {F,Q}, which is the minimal possible o-algebra.

We define on M? the scalar product

(X,Y) =E(XY) = J]-nyd]L(X,y)(m,y)
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and the induced norm is
X[ = /E(X?).
It is possible to prove that M? with this norm and this scalar product is a Hilbert space. Observe that
we are actually considering class of equivalence of random variables, since we are identifying two random
variables X, Y such that P(w | X (w) = Y(w)) = 1.
We consider a o-algebra G € F, and consider the probability space (2,P,G). On this space we may
define the space

Mg = {X :(Q,P,G) >R | X random variable with E(X?) < +00}.
Note that M3 is a closed subspace of M?.

Definition 2.2.14 (Conditional expectation). We define the conditional expectation of X given G
as the orthogonal projection of X € M? in the space Mé as defined and characterized in Theorem 2.2.8
that is

E(X[G) = Pryg (X),

or equivalently B(X|G) is the unique random variable in Mg such that

E(X —E(X|G))? = min E(X — Z)°.

ZeMg

In particular E(X|G) is the minimum mean squared predictor of X based on the information contained in
g.
Note that X —E(X|G) is orthogonal to every element of M that is

E(XY) =E(E(X|G)Y) VYeM
In particular, since constant random variables are in Mg for every G, we get E(X) = E(E(X|G)).

Remark 2.2.15 (Conditioning with respect to a random variable X). A particular case of the previous
definition is the following. Let us consider a random variable X € M?, and let G = o(X) as before. Tt
is possible to show that in this case every G measurable random variable is a Borel function of X, which
means that

Mé := {h(X), for h: R — R, borelian function}.

h:R — R is a Borel function if for all borelian set B < B(R), the set h™*(B) := {x € R h(x) € B} is in
the Borel o-algebra (Note that this condition is slightly stronger than asking that h is measurable, since
measurable functions satisfies h~'(B) := {z € R h(x) € B} € M, that is are elements of the o-algebra of
measurable sets (given by sets which differs from Borel sets by subsets of sets of zero Lebesgue measure).
In this case E(Y|o(X)) = E(Y|X) is the best predictor of Y given X. In particular E(Y|X) the unique
Borel function h(X) which minimizes E(Y — h(X))?:
BI(Y — B(YIX))?] = BIY ~A(X)* = min B[V = /(X))

and moreover
E(Yf(X)) =Eh(X)f(X)) Vf:R — R. borelian.

Note that solving this minimization problem can be very difficult, so in general we consider a reduced
problem, adding some conditions on the functions f on which we are minimizing.
The simplest case is the case in which we consider the minimization problem among linear functions:
that is
in  E[(Y - f(X))?].
f:RE]}{l,{}near [( f( )) ]
h : R — R is linear if and only if there exists a,b € R such that h(r) = ar + b. So the problem reduced
to a finite dimensional problem: given X € M? we want to find for all Y, a,b € R for which it is minimal
E((Y — a — bX)?). So, the linear least square estimator is given by

L(Y|X) = a + bX,

where a, b are the optimal values which minimize E((Y — a —bX)?). This problem can be restated exactly
as a projection problem: we define S as the space generated by X,1 in M?, that is S = {Z = aX +be
M? aeR,be R} and we want to find Prs(Y).
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In order to solve the problem, first of all we choose an orthonormal basis of S. A basis of S is given
by {1, X}. Observe that if E(X) = (X, 1) # 0, we have that X and 1 are not orthogonal, so we substitute
X with the element X — E(X) which is orthogonal to 1. Moreover we have to normalize this element by
choosing ¢ € R such that ¢?E(X — E(X))? = 1. Since E(X — E(X))? = E(X?) — (E(X))? = Var(X), it is
sufficient to choose ¢ = v/VarX. Therefore an orthonormal basis of S is given by 1, XEX) Recalling

/Var(X)’

Theorem 2.2.12, we get

Prs(¥) = (¥, 1)1 4 ( X—]E(X)) X — E(X)

Y, .
\/Var(X) \/Var(X)

So the linear least square estimator coincides with

Cov(X,Y)

LOYIX) = E(Y) + 700

(X —E(X))

where Cov(X)Y) = E(X — E(X))(Y —E(Y)) = E(XY) — E(X)E(Y). Finally we compute the average
error

2 Cov?*(X,Y) Cov(X,Y)
Vary Cov*(X,Y) Var(Y)Var(X) — Cov*(XY)
—vart e Var(X) Var(X) '

In general the best linear predictor is different from the general minimum mean squared predictor. Let
Y = X? + Z with X, Z independent and both normals with mean 0 and variance 1. Then EY|X) = X2
whereas L(Y|X) = 1 (check it!).

Remark 2.2.16 (Conditioning with respect to a constant random variable). A very simple case to
compute E(Y]o(X)) = E(Y|X) is the case in which X = k (that is X is constant). In this case o(X) =
{,9) and the space

M3 := {constant random variables}.

So, E(Y|X) is the unique constant ¢ such that

E[(Y — 0)*] = minE[(Y ~ A)’]
and moreover
AE(Y) = E(Y M) = E(cA) =cA VYA eR.

It is immediate to verify that ¢ = E(Y|G) = E(Y). Another simple case is the case in which X = x4, for
some A € F which means that ya(w) =1if we A and xa(w) =0if w ¢ A. It is simple to see that in this
case o(xa) = {J,Q, A, Q\A}. In this case

Mg = {axa +bxaa = (a—b)xa+b abeR}.
So, E(Y|A) is obtained by solving the finite dimensional minimization problem

min E[(Y — axa — b)°].
a,beR
Since Mg is a finite dimensional space (of dimension 2), we compute a orthonormal basis of it. We start

from the basis given by {1, x4} and we orthonormalize it by Gram-Schmidt procedure. Let X; = 1 and

Xo = %. Note that E|X:1|> = 1 = E|X>|* and moreover E(X;X2) = 0. Therefore by Theorem
2.2.12 we deduce that

E(Y]A) = E(Y X1) X1 + E(Y X2) Xz = B(Y) + o
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2.3 DMetric spaces of laws of random variables and basics of
optimal transport

Up to now we fixed a probability space (€2, F,P) and we considered the random variables X : Q@ — R. with
finite p-moment M? = {X random variable E(|X|FP) < 400} with associated norm |X|, = (E(|X[?))"?.
We showed that these spaces are Banach spaces (as normed linear spaces of random variables defined on
a fixed probability space ) and in case p = 2 are also Hilbert.

Another point of view is possible. Actually we may directly work on spaces of Borel measures on R
which are laws of some random variable. In this way, we have not to fix a given probability space (so a
sample set), and we have much more freedom.

2.3.1 Space of probability measures (laws of random variables)

Let us recall the definition of the space of laws of random variables:

P(R) = {u | there exists a probability space (2, F,P) and X :  — R random variable s.t. u =Lx}
= {u | Borel measure on R s.t. u(R) = 1}.

The second equality is completely not obvious: it is the consequence of the following result (see e.g. [1,
Proposition 9.1.11]).

First we recall some definition. On a probability space (2, F,P) we say that A € F is an atom if
P(A) > 0 and for all B € F with B € A and P(B) < P(A), it holds P(B) = 0. So in an atomless
probability space for any A € F with P(A) > 0 there exists B € A, B € F, with 0 < P(B) < P(4).

Proposition 2.3.1. Let p be a Borel measure on R™, with u(R™) = 1. Then there exists an atomless
probability space (Q, F,P) and a random variable X : Q@ — R" such that Lx = p.

In particular we get that the space of probability measures on R™ coincide with the space of all laws
associated to some random variable (with values in R™). One of the most used is the Total variation
distance:

drv(p,v) =2 sup |u(A) —v(A)|=2 inf PlweQX(w)#Y(w)}.
AeB(R) Lx=pLy=v

Another important distance is the Lévy-Prokhorov distance, which is the distance associated to the

weak convergence of probability measures.

drp(p,v) :inf{5>0: inf P{we Q|| X(w) —Y(w)| > e} <5}.

Lx=p,Ly=v

2.3.2 Couplings between measures and deterministic couplings

We introduce the following definition

Definition 2.3.2 (Coupling between measures). Let p,v € P(R). A coupling m between p and v is a
probability measure ™ € P(R2) such that the first marginal of 7w is p and the second marginal is v, that
is for all A € B(R) it holds 7(A x R) = u(A), 7(R x A) = v(A). We denote II(u,v) the family of all
couplings between p,v.

For any m € II(w,v), it is possible to find (2, F,P) a probability space, X,Y : Q@ — R random variables,
such that m = L(x y).

In optimal transport theory a coupling 7 € II(u,v) is also called a transport plan between p and v.

A particular class of couplings are the one associated to transport maps:

Definition 2.3.3 (Deterministic coupling). Let p,v € P(R) and ¢ : (R, B(R), 1) — R be a measurable
map (e.g a monotone map or a continuous map). Then v is a transport map if Yy = v, that is for all
A€ B(R), it holds
V(A) = pfz, w(z) € A},

We associate to ¢ a coupling called deterministic coupling and defined as (Id, ) where (Id,) : R —
R x R is defined as (Id,¥)(z) = (z,¥(x)).

If (Q, F,P) is a probability space, with X : Q@ — R random variable with law Lx = u, then Y = ¢ (X)
is a random variable with law v and (Id, )y = Lix y(x))-
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Obviously the previous definition can be extended to the case p,v € P(R™). In case of dimension 1,
nonetheless, we may also use the cumulative distribution function.
Let p € P(R) and let F,(z) = p(—o0,z] the associated cumulative distribution function. Then
F, : R — [0,1] is monotone increasing function and right continuous. We may define a pseudo-inverse of
F,, as follows:
F, () := inf{t, F,(t) > =} F, :[0,1] - R.
It is easy to show the following properties, by using the definition:

Lemma 2.3.4. Let Ljjo1] be the Lebesque measure restricted to the interval [0,1].
(i) F, (z) <a if and only if Fl.(a) = = and F,; (x) > a if and only if F.(a) < x.
(i) (Fu)eLipoy = pe

(1) Letn = (F,,, F, )sL0,1]- Then ne (u,v) and

n((=00,a] x (=00,b]) = min(Fy(a), £, (b)).
(iv) If F, is continuous, then (F.)sp = Lj[o,1]. In particular (F; o F)spu = (F,) )s(Fu)pp = v.

Proof. (i) F, (z) < a is equivalent to say that a > inf{¢, F},(t) > x} which is equivalent to F,(a) > .
Moreover, F,; (x) > a is equivalent to say that a < inf{t, F,(t) > «} which is equivalent to F,(a) < .

(ii) By definition
(Fu_)ﬁ['\[oql](_oova] = ‘{1’ € [07 1],F#_(.1‘) < a}‘ = |{£ € [071]7Fu(a) = .T}| = Fu(a)‘

Therefore F), is the cumulative distribution function associated to (F}, )4L|f0,1], Which therefore
coincides with p.

(iii) By definition and the previous properties
n((—o0,0] % (—o0,b]) = [{ € [0, 1], Fy (&) < a, F (&) < b}| = [{ € [0,1], Fy (@) > 2, Fu(b) >}

(iv) Note that since F), is continuous, for 0 < a < 1, {z € F,,(z) < a} = (-0, z,] where F,(z,) = a.
This implies that

(F,)znl0,a] = pfa € Fu(@) < a} = u(=00,24] = Fu(wa) = a = Lyo.y[0, al.

2.3.3 Monge and Kantorovich optimal transport problem

We will define for p € [1, +00) the subspace:

Ppr(R) {p|3(Q,P,F),X:Q— R random variable s.t. X € M? p=Lx}

(e PR), | Jald < -+oc).

It is quite easy, arguing as for M? spaces (and using Jensen inequality), to show that for 1 < p < ¢ it
holds
Py(R) < Pp(R) < P1(R) < P(R).

The optimal transport problem as stated by Monge in 1781 (as a problem of optimal transportation
and optimal allocation of resources) can be rephrased in modern language as follows. We are given two
probability measures p, v € P(R) and a convex cost ¢(z,y), that from now on we fix to be |z —y|? for some
p = 1, measuring the cost of transporting one unit of mass from x to y . The optimal transport problem
is how to transport p to v (so finding a transport map ¢ such that ¢yp = v) whilst minimizing the cost:

inf {J |z — (z)Pdp 1 : R — R, measurable, and such that ¢yu = u} . (2.3.1)

R
The problem with this formulation is that in general we cannot assume that the set of transport maps
is nonempty: so it is not sure that there exists at least one map 1 such that yu = v. For example if

@ =0z, and v = %(5y1 + %51,2, it is easy to see that no transport map may exist.
Such maps exists always in two basic cases.
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If p = %Zf\lzldﬁ and v = %Zf\;ldyi, then we consider any map v such that (z;) = y; for
some ¢ and some j and we are done. In this case the Monge problem can be rewritten as follows: let
o:{1,2,...,N} — {1,2,..., N} a injective map (it is one of the possible permutations of the indexes),
then

H}’inz lzi — Yo i) [*

Another case in which there exists a transport map is when F), is continuous, as we have seen in
Lemma 2.3.4, in this case ¢ = F,; o F},.
Note that even if the transport maps exist, the optimal transport map may not be unique.

Example 2.3.5. [Book shift] Let us consider i = L[o,1] and v = L[ 2. A transport map is ¢1(t) = t+1,
but also ¥2(t) = 2 —t. Let us compute the cost associated to them for p = 1:

1 1 1
J |x—1(x)|dp = J |le—(1+z)|dx =1 f |x—1p2 () |dp = j |lz—(2—2z)|dx = j (2—2z)dzx =2—-1=1.
R 0 R 0 0

Actually it is possible to prove that in this case both 1, ¥2 are optimal for the Monge problem with

p = 1. Let us compute the cost associated to them for p = 2:

1
f |z — 1 (2)|?dp = j |z — (1 +z)|?de =1
R 0

J}R|x—¢2(x)\2du = Ll |z — (2 — z)|°de = J1(2—2x)2d;r =4-1+ % > 1.

0
In this case 11 is surely better than 1. We will see in the following that in case p > 1, if u << £, then
the optimal transport map is unique and coincide with t; which is monotone.

Since the Monge problem has not always a solution, Kantorovich proposed a relaxation of it around
1940: instead of minimizing on deterministic couplings, we may minimize on all possible couplings between
measures [, V:

inf J |z — y|Pdm(z,y). (2.3.2)
mell(p,v) Jr xR
It is equivalent to restrict, when we consider the coupling c(z,y) = |z — y|® to p,v € Pp(R). Since a

transport map induces a deterministic coupling, which in particular is a coupling it holds

inf J |z—y|Pdn(z,y) < inf {J |z — (x)|Pdu 1 : R > R, measurable, and such that ¢y = 1/} .
RxR R

well(p,v)
Looking at the problem of minimizing the cost with coupling is an alternative way to describe the displace-
ment of the particles of u: instead of prescribing for each x the destination 1 (z) of the particle located at
z, for every x,y we specify how many particles go from z to y: that is (A x B) is the amount of mass
moving from A to B. Obviously this formulation allows for more general movements, since it may happen
that a particle move to different destinations.

We end the section looking at the counterpart of the previous problem in the case of random variables.
Let p,v € Pp(R), and consider X,Y random variables on (9, F,P) such that Lx = u, Ly = v. In
particular X, Y € M,. Note that we are not prescribing the joint law of (X,Y’). Therefore

inf z —y|Pdr(z,y) = inf EX -Y|’ = inf J:r— PdL z,Y).
it [ eeupaney) = nf X -vP =t eyl )
We consider the case p = 2.
inf z — yldr(z,y) = inf E|X —Y]* = inf f z — y|2dL z,Y).
me(p,v) J}RXR | vl (@9) {Lx=p,Ly =v} | | {Lx=p,Ly =v} | vl <X’Y)( y)

Define zo = E(X) = {, #du, and yo = E(Y) = {; xdv we have that

EIX - Y|? E|(X — z0) — (Y — yo0) + (z0 — y0)|?
= EIX —zol* +E|Y — yol* + |zo — yo|” +

+2E((X — 20) (w0 — yo)) + 2E((Y — vo)(zo — o)) — 2E((X — z0)(Y — vo))
= VarX + VarY + |zo — yo|® — 2Cov(X,Y).
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Therefore the optimization problem

mell(p,v) Lx=p,Ly =v}

inf J le — y|*dn(x,y) = inf E|X —Y|?
RxR {
can be restated as

inf J |z — y|*dr(z,y) = C(u,v) — 2 sup Cov(X,Y),
RxR

mell(p,v) {Lx=pLy=v}

where C'(u,v) is a constant depending on u,v. More precisely: let xg = SR xdu, yo = SR xdv, it holds

Clp,v) =J

R

(x — x0)dp + J (x — yo)’dv + |zo — yo|*> = J a’dp + J a2’ dv — 2] mduf zdv.
R R R R R

The optimal coupling is obtained by finding the joint law between X,Y which maximizes the covariance,
that is which guarantees maximal dependance between the two random variables with given laws (we will
see that it will be obtained when Y is an increasing function of X).

Remark 2.3.6. Optimal transport problem has several economic interpretation where 7 is a matching
between different actors of an economy and c is a sort of compatibility condition between agents x and y
or the opposite of a utility function.

An optimal matching problem which is very famous is that of the stable marriage. Let us consider a
population of women, with distribution p and a population of men with distribution v. A coupling 7 is a
coupling between women and men, so a set of marriages. We define ¢, (z,y) as the interest of woman x
towards man y, and analogously ¢, (z,y), so that the utility function is ¢y + ¢m.-

Finally the problem (2.3.2) can be restated as a linear optimization problem under convex constraints.
We express the constraint 7 € II(, v) as follows:

s [ s [ i [ (160 + ot} - {iw retinn),

Therefore we may rewrite (2.3.2) as:

inf JRXR |z — y|Pdm(z,y) + sup {J}R flz)dp + L{g(x)du - J

weP(RxR) £,9€Cy (R) RxR

(7(@) + alu)in
interchanging sup and inf

~ ap {jmf(x)dw [s@ar+ | XR(|x—y|P—f<x>—g(y))dw(x,w}.

f,9€Cp (R) 7weP(RxR)
We rewrite

0 flx) +9g(y) <lz—yl” Vo,yeR

meP (RxR) —o0  elsewhere

inf f (lz =y’ = f(z) — 9(y))dr(z,y) = {
RxR
Therefore we have that

inf ijR |z — y|Pdm(z,y) = sup J]Rf(x)du + j g(x)dv.

well(p,v) £,9€Cy(R), f(2)+g(y)<|z—y|P R

If @ is an optimal transport plan, then there exist f,g optimal function (which are called Kantorovich
potentials) such that f(x) + g(y) = |« — y|” for (z,y) € supp 7.

2.3.4 Wasserstein spaces

Let p > 1, p,v € Pp(R): we define the p-Wasserstein distance between u, v as

1
Wp<u,u>=( w | |x—y|f’dw<m7y>)”.
RxR

me(p,v)
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The limit case p = +00 is given by

Weo(u,v) = sup {|lz —yl, (z,y) € suppr}
mell(p,v)

where the support of a measure defined in (X, X) is the largest (closed) subset of X for which every open
ball centered at any point of the set has positive measure.

We collect in the following proposition some results (see [4, Chapter 1]), which are completely non
trivial:
Proposition 2.3.7. Let p,v € Pp(R).

(i) There exists always at least one coupling 7 € Il(u,v) such that
W)’ = [ o= ylPdn(a.v)
RxR

We denote such couplings as I1°(u, v).

(ii) If p > 1, there exists K € R, closed bounded set, such that u(K) =1 = v(K) and p << L, then the
optimal coupling ™ between w, v is unique, and coincides with a deterministic coupling: that is there
exists ¢ : R — R measurable such that m = (1,9)su, or equivalently

Wi (1, 1) = j & — () Pdp.

(iii) If p = 2 and p << L then the optimal coupling m between p,v is unique, and coincides with a
deterministic monotone coupling, that is there exists 1) : R — R measurable such that 1) = u' where
u:R — R is a convex function and m = (1, )z, i.e.

Wayi,v)? = f & — o (2) Pdp.

In particular ¢ = F; o F),.
(iv) If p=1 then

Wi v) = sup ([ stran - [ orav).

P R-R,[p(2)—d(y)|<|z—y|

We have a description more accurate in dimension 1. The basic idea behind the proof of this theorem
is the idea of monotonicity. If 7 transports mass from x1 to y1 and from x2 > x1 to y2 we expect y2 > y1,
else it would have been cheaper to transport from 1 to y2 and from x2 to y;.

Proposition 2.3.8. Let p,v € Pp(R), and F,, F, the associated cumulative functions. Let us define
on R x R the measure m whose cumulative distribution function is H(z,y) = w((—o0,z] x (—0,y]) =
min(F,(z), Fu(y)). Then w € 1I°(u,v) and

Wi (1, )" = f & — yPdn(z,y) = f \E () — By (6)|"dt.

RxR

If F), is continuous, then 7 is a deterministic coupling, associated to ¢ = F, o F},. In particular for p =1
it holds

Wi (a)? = j & — yldn(z, ) = j \E (1) — Fy ()| dt = f \Fy(2) — Fo (2)|da

RxR
It is not easy, but possible to show that actually W, is distance. We have a notion of convergence
with respect to this metric. Moreover the space Pp(R) with this metric is a complete metric space.
Proposition 2.3.9. (i) W, is a distance: that is Wy(p,v) = 0 if and only if p = v, Wp(p,v) =
Wp(v, 1), and finally the triangular inequality holds Wy (i, p) < Wp(u, v) + Wp(v, p).

(i) Let pin, pu € Pp(R). Then Wp(pin, p) — 0 iff p — p weakly and limy, § |z[Pdp, = §; |2[Pdp.

(iii) (Pp(R), W) is a complete metric space.

(iv) If g > p, then Wq(p,v) = Wy (p,v).
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One of the most popular applications of optimal transport is the barycenter problem, providing
dimension-free rates of statistical estimation. Wasserstein barycenters are a type of average of proba-
bility measures defined using the optimal transport geometry, and allow to average data that can be
represented as probability distributions on R (or R?), a setting that commonly arises in machine learning
and statistics.

Let us consider just empirical barycenters. So, given p1,...,ur € P2(R) we define the barycenter of
this family as [ realizing (if it exists) the minimum of

k
.1 2
SN W2 (i, ).
Juin ; 5 (ks 1)

2.4 Problems

(i) Let (X,|-|) a Banach space and F' : X — X such that there exists 0 < a < 1 for which
|F(z) = F(y)| < ale —y|  Vo,yeX.
(F is a contraction)
(a) Show that the map F' is continuous.
(b) Let xo € X. Define z1 = F(x0), z2 = F(z1) and so on x,, = F(zn—1). Prove that
|Zn — Znsa] < a”zo — 21|

Deduce that (z,). is a Cauchy sequence.

(¢) Let £ = lim,, zy, where (z,) has been defined in the previous step. Show that F(Z) = Z. So,
T is a fixed point of F.

(d) Show that the map F' admits a unique fixed point, that is a point such that z = F(Z).

This is called Banach-Caccioppoli theorem.
(ii) Let Xn, Y, € H such that X,, »> X and Y,, —» Y. Show that
E(X5) — E(X),
- (Xn,Yn) = E(X,Y,) - E(XY) = (X,Y),
— Cov(Xn,Yn) = E(X,Ys) — E(Xn)E(Y,) > Cov(XY) = E(XY) - E(X)E(Y)
- Var(X,) = Cov(Xn, Xn) = Var(X) = Cov(X, X).

(iii) Consider X,Y,Z € H and assume X,Z are not constant. Compute the least linear quadratic
estimator L(Y|X, Z). Show that L(Y|X,Z) = L(Y|X) + L(Y|Z — L(Z|X)) — E(Y). (Hint: look at
Remark 2.2.15).
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Chapter 3

Element of Fourier analysis and
the Central Limit Theorem

Fourier Analysis has several important applications in mathematics and statistics, in particular in data
analysis and estimation. Loosely speaking, Fourier analysis refers to the tool used to compress complex
data into exponential functions (or trigonometric functions). So, it permits to analyze data in terms
of their frequency components. Two of the central ingredients of Fourier Analysis are the convolution
operator and the Fourier transform.

In this last section we will consider also functions taking complex values, that is f : R — C. In this
case f can be written in terms of 2 real functions f1, fo which correspond to the real and imaginary part
of f, that is f(z) = fi(z) + if2(z).

We recall also the formula for the complex exponential

e'” =cosx + isinz.

3.1 Convolution operator

Let f,g: R™ — R be measurable functions and we define the convolution between f and g as the function

f#g(z) = J]Rf(w —y)g(y)dy  (or equivalently = Lf(y)g(x —y)dy)

for all  such that the integral exists finite. Note that f * g is a function of x!
Intuitively: let € R™ and consider the function y — f(x — y). This is the same as the function f, but
we have to shift the graph of f by x and then flip it around the axis y = x. Assume that f is a smooth
function which is positive only in a neighborhood of 0 and null elsewhere, with integral 1. Computing
f = g(x) we are taking a sort of weighted average of the values of g near the point z (weighted by the
values of g)..

Basic properties of the convolution are the following. For the proof we refer to the Section 8.2 in [3].

(i) f#g(@) =g=* f(z) and (f * g) * h(z) = f* (g% h)(z),
(ii) The support of a function h is the closure of the set of points where h # 0. The support of f * g is
contained in the closure of the sum of the support of f and the support of g.

One of the main important features of the convolution operator is that it has regularizing properties.

Proposition 3.1.1. If f € L'(R") and g € C*(R") bounded and with bounded derivatives up to order k,
then f x ge C*(R™) and for everyie {1,...,n} and h e {1,...,k}, 0k (f % g)(z) = f * (0% g)(z).

Let

1
celsP-1 x| <1
g(z) =
0 elsewhere

where ¢ > 0 is chosen such that §, g(z)dz = 1. Note that g € C*(R) and g(z) = 0 for |z| > 1.
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Let ¢t > 0 and consider g(x) = tg (£) . Then {, g:(z)dz = 1 (by change of variable formula!) and
gi(z) = 0if |z| = ¢.

As t — 0 g+ becomes more and more concentrated at x = 0. Observe that by its properties, g: is the
density function of the law of an absolutely continuous random variable X;.

Proposition 3.1.2 (Approximation of the Dirac measure and regularization by convolution). Let X
be the continuous random wvariable with density given by g: as defined before. Then X: converges in
distribution ast — 0% to the discrete random variable Xo with associated distribution the Dirac measure
do (that is X = 0 almost surely).

Proof. To prove the convergence in distribution we need to show that for every f which is continuous and
bounded there holds

t—0t

lim J}Rf(:c)gt(m)dm =do(f) = £(0).

By definition and changing the variable posing y = £

| f@a@iz = [ s@a@de=c [ e 7.
R —t -1

Sending t — 0 and applying the dominated convergence theorem we conclude.

]
The convolution is also useful to compute density functions of the sum of independent random variables.

Theorem 3.1.3. Let X and Y be independent absolutely continuous random variables and let f,g the
density functions of the laws of X, Y. So Z = X +Y is a continuous random variable with density function

given by f xg.

Remark 3.1.4. The same statement holds also with discrete random variables, substituting the integral
with sum and convolution with a discrete convolution. That is if X,Y are discrete independent random
variables, then X +Y = Z is discrete random variable and the following holds: for every n € Z,

P(Z =n) = f]p(x = k)P(Y =n — k).

The proof of this formula can be checked easily in the case of random variables taking a finite number of
values.

Proof. Observe that for every a, b, by independence
a b
P(X <a,Y <b)=P(X <a)P(Y <b) = J f(m)dyj 9(y)dy.
—a0 —o0
So in particular we get

P(X+Y<t)=IP’(X<1:,Y<y,$+y<t)=f f(@)g(y)dedy

(z,y)eR2,x+y<t

where the integral is an integral computed in R?. We change variables to (z,w) wherez = zand w = z+y
(so y =w — z). So we get that z€e R and w < &:

]P’(X+Y<t):f

(z,y)eR2,x4+y<t

Fgdody = [ [ f@lgtw iz = [ fegle)a

where in the last equality we use the definition of convolution. O
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3.2 Fourier transform

The Fourier transform is an isometry among Hilbert spaces as we will see (so a bijection which maintains
the distance) and in some sense it can be interpreted as a generalization of the Fourier serie in non periodic
context.

Let f € L'(R). We define the Fourier transform of f as the complex valued function

fz) = f Fy)e™dy.
R
It can be generalized to several dimension: if f € L'(R™) then
fl@)y=| flyerdy.
Rn

Observe that since [®*Y| = 1 for all z,y € R, |f(x)| < $e lf(W)|e™¥dy < §. [f(y)|dy = | f] 2. More precisely
we get the following result (see for the proof [3], Section 8.3), stating that the Fourier transform sends
integrable functions in bounded continuous functions.

Proposition 3.2.1 (Riemann Lebesgue lemma). Let f € L*(R). Then f € C(R) and moreover lim| |- 40 flz) =
0, | flloo < Iflz1-

Other important properties of the Fourier transform are stated in the following proposition.
Proposition 3.2.2. Let f,ge L*(R). Then
(1) (m) = f{]. So the Fourier transform of a convolution is the product of the Fourier transform.
(i) If |z*f € L*(R), then f € C*(R) and d*f(z) = [(iy)*f].

(iii) If f € C*(R), dif(z) € L', limy|m o0 dp f(x) = 0 for n < k, then (d;l/T)(a:) = (—iz)" f(x) for all
n<k.

Proof. (i) By definition, properties of the exponential and changing at the end variables (from (y,t) to
(s,t) where s =y —t)

(f*9)(z) j}R fgly)e™dy = JRJRf(t)g(y —t)e"Ydtdy

J f F(B)aly — )= e drdy
R JR

fR f F(Hg(s)e™* e dtds = f(w)g(a).

(ii) We get that

dof(@) = do | F)e™dy = [ dep)e™dy = | @) dy = Guh)(a).
R R R
Repeat the argument we conclude with the result for every k£ € N.

(iii) We integrate by parts and we have that

L@ = [ ds@eiy = [10)e] " - | rwmedy = iafa),

Iterating the procedure we conclude.

O
The previous proposition has a very important consequence:
—alz[? ~ _le?
let a >0 and fo(z) =e , then fo(x) =4/ —e 4o . (3.2.1)
a
~ n _l=?
More generally in R, if f,(z) = e_“"”|2, for z € R™, then fo(z) = 4/T7e 4o .
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We prove (3.2.1). Observe that by the previous proposition, items (ii) and (iii) we get that
d.Tote) = [ e ey = [ Sy ey = 5 4T = - 5 ful)
R 20 0 2a Y 2a

So the function f, = ¢ satisfies ¢'(z) = — & ¢(x), integrating we get that (log ¢(x)) = f% + ¢ and then

o(x) = ke~ a®”. Finally to compute k we need to compute ¢(0) = f,(0).

fa(0) = JR e_aly‘Zeody = \/g.

Proposition 3.2.3. Let f, g€ L'(R), then

jR f(@)g(2)dz = fRﬂx)g(x)dw

Proof. By definition and by changing the order of integration (thanks to Fubini Tonelli theorem)

fRf(ar) dw—Jff ”ydyda:—ff )o(o)de.

For f € L'(R) we may define also the anti transform of f as follows:
1 —ixy _ i P _
3 | fe vy = 5 -fa).

Obviously, this operator satisfies the same properties as the Fourier transform.

Theorem 3.2.4 (Fourier inversion theorem). Let f € L'(R) such that also f € L*(R). Then f is

continuous and bounded (that is, it coincides almost everywhere with a continuous function) and f =f=1.
In particular if f,g € L'(R) with f = §, then f = g almost everywhere.

Proof. We give a sketch of the proof, for the rigorous demonstration we refer to [3], Theorem 8.26.
We have that

J fy)e vy = hmf fy)e” —ev’ dy = hmf J f(z)eiyzdzefizyefsfdy =
R R

e—0 e—0

by changing the order of integration

= limf f(z)f eiy(z*z)e%fdydz.
R

e—0 R

Now we observe that
J (z=) g=ev? dy = e (2 — x)
R

and then by (3.2.1) we conclude

J eiy(zfm)efsyzdy _ e,syz (Z 7 ZU) _ ﬁef(zfz)2/45.
R 5

We substitute in the previous integral and we get

27rf J f _wydy = llr%f f(z e (o 2)? Medy = 2f hm f (x - W) _Ezdf
N R

= Zﬁf(a:)flke_gzdf = 2n f(x).

The last conclusion comes from the fact that (f/—\g) = f—§=0. Therefore f — g € L'(R) is such
that (f/:\g) = 0e L'(R), which implies by the inversion theorem that f — g = (f/:\g) =0. O

Using the inversion theorem, we get also the following result:
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Corollary 3.2.5. Let

={9:R—>R, geC”, Vk sup|lz["g(x)| < Cr, |z|"g(x) € L' (R)}.

Then the Fourier transform is a bijection of S into itself.

Note that for all @ > 0, e’ ¢ 8.

Proof. By Proposition 3.2.2, we get that if g € S then § € C* and moreover 2*§ is bounded continuous
and integrable, so in particular g € S. The conclusion comes from the inversion theorem. O

Lemma 3.2.6. The set S is dense in the space Co(R) = {g € C(R) | lim|y|— 4o g(x) = 0} (with respect to
| - [lc mOTM).

For this lemma we refer to [3, Proposition 8.17].

Theorem 3.2.7. Let f,, f € L*(R). Assume that fn — f pointwise and that there exists C > 0 such
that | fullpr < C for all n. Then f, — f wvaguely in L*(R), that is for all g € Co(R), there holds

lim,, SR fa(x)g(x)dz = SR f(z)g(z)dx.

Proof. Let g € Co(R). Then by Lemma 3.2.6 there exists g € S such that sup,g |gr(z) — g(z)| <
Since gi, € S then gx = gx by Corollary 3.2.5. Therefore we get

| e = D@t = [ (5= N@i@de = [ [ (2= H@aitu)e vy

x|~

exchanging the order of integration

- [ [ = D@atwerizay - [ (. - Dt
R JR R
Since supyez |fn(y) = f@W) < Ifn = flor < Mfalr + [flz2 < €+ [f]zr and gi € L', we get that
[(fo — @) gi(W)| < C+ | f]lz1]gx] € L. Moreover fn(y) — f(y) — 0 as n — 400 by assumption, then by
the Lebesgue dominated convergence we conclude that

tim | (2= @) (e)dz = 0

for all k > 0. Using the fact that sup g |gr(2) — g(2)] < £ we get

1
k

fR (fn = N(@)g(@)da] < L(fnff)(w)(gk — g)(@)da| + f (fo = 1) (@)ge(x)dz
< [ 150) = F@llon(o) |dx+\ [t - D@
Hlfe = s+ f D @)an()da] < HO+ ) + ' f - F)(w)gn(x)dal.

Therefore we conclude that for all k£ € N,

< 2O+ 1fl)

lim
n

jRun ~ P@)g(x)da

which gives the conclusion sending k — +00. O

32



3.3 Characteristic functions of random variables

Let X be a random variable, with associated Px probability distribution. The characteristic function of
X is defined as the (complex valued) function

¢x(t) = E(e"™).
More precisely

— if X is a (asbsolutely) continuous random variable (with density f) then

ox(t) = J}Reimf(az)dx = f(t).

So in this case the characteristic function of X is the Fourier transform of the density function f
associated to X.

— if X is a discrete random variable (taking values on Z),

¢x(t) = Y ™ P(w | X(w) = k).

keZ
Note that ¢x is a continuous function such that ¢(0) = 1.

Proposition 3.3.1. If X1, X2 are independent random variables, then the characteristic function of X1 +
X satisfies
¢X1+X2 (t) = ¢X1 (t)¢X2 (t)

Proof. We consider only the case in which X1, X, are absolutely continuous random variables (for the
other case the argument is similar). The probability density of the sum of X; and X is given by the
convolution between the density of X; and the density of X5 by Theorem 3.1.3. Then the Fourier transform
of a convolution is the product of the Fourier transforms, see Proposition 3.2.2. O

The characteristic function associated to a random variable characterizes completely the random vari-
able, and moreover the functional from the spaces of random variables with the convergence in distribution
to the space of characteristic functions with the pointwise convergence is continuous, in the sense that if a
sequence of random variables is converging in distribution to a random variable, then the same holds for
the characteristic functions (and viceversa).

Theorem 3.3.2. Let X,, be a family of random variables.
(1) If X, are converging in distribution to X, then ¢x,, (t) — ¢x(t) for every t.
(ii) If ¢x,, (t) — &(t) for every t, where ¢ is a function continuous at t = 0, then ¢ is the characteristic
function of a random variable X and X,, converge in distribution to X.
Proof. (i) X» — X in distribution for every bounded continuous function g it holds

E(g(Xn)) — E(g(X)).

So, taking for every ¢, g:(y) = €' (which is bounded and continuous), we get ¢x,, (t) — dx (1)
(i) We prove this part theorem only in the case of absolutely continuous random variables X,, with
associated densities f,,. The general case can be obtained similarly.

We claim that X,, are tight. If the claim is true, then by Theorem 1.9.3, up to a subsequence we
get that X, converge in distribution to a random variable X. By (i), we get that ¢x,, () — éx(t)
for every ¢ and so ¢(t) = ¢x(t). Since the limit is unique (does not depend on subsequences), we
conclude the convergence of the whole sequence of X,,.

So to conclude it is sufﬁcier}t to show that X, are tight. Since we are assuming X,, to have a density
fn, we get that ¢x,, (t) = fn(t). Fix § > 0 and consider

26 f —¢x.(D)dt = o5 f 2 J f — ) fn(y)dydt

25” Y dt fo(y)dy %fR[%—@}n(wdy{R[l—Sm‘sy]m)
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=

N | =

1 2
)y = =P (| X, =2 ).
f\syezf (y)dy 5 (I \ 5)

P (\Xn| > %) < H:a b, (£))dt — %féu — o()dt.

Since ¢ is continuous and ¢(0) = 1, we get that for every e > 0 there exists § such that (1—¢(t)) < e/4
for t € [-4,0]. So

Hence

)
: f_é(l o)t < ¢

We fix ¢ > 0, we choose § as above, and K. = {|z| < 2} and then we choose 7 such that %Sé_é(l -
¢x,(t))dt < e for all n > fi. This gives the desired tightness: P (|X,,|€ K.) > 1—¢ for all n > 7.
O

3.4 The Central Limit Theorem

We conclude showing that actually the Central Limit theorem can be interpreted as a result in Fourier
analysis. The theorem says that if we have a sufficiently large sample of observations- randomly produced
in a way that does not depend on the values of the other observations- the probability distribution of the
observed averages will closely approximate a normal distribution.

Theorem 3.4.1 (Central Limit theorem). Let X,, be independent identically distributed random variables
with (common) mean p and a variance o. Then W converges in distribution to the normal
random variable with mean 0 and variance 1.

We are not going to prove in full generality this theorem, but we are just giving an idea of what is
going on in the case in which every X, is an absolutely continuous random variable with density f. Up to
a renormalization we may assume that the mean of X; is 0 and the variance is 1.

Proposition 3.4.2. Let f: R — [0, +00) such that
J flz)dz =1, J zf(z)dr =0 J 2’ f(z)dx = 1.
R R R

Let f*" := fx---x% f (the convolution of f by itself n times).
Then fn(x) := \/nf*"(v/nx) converges vaguely as n — +o0 to <

—m2/2

Vo

~

Proof. The first assumption on f implies that f(0) = 1. Moreover, recalling Proposition 3.2.2, item ii, we
get that the second and third assumption on f imply that f € C%. Moreover

—

210 = | @)@y =0 &) = | (=i )y = 1.
By Taylor theorem we conclude that for x — 0,
fla) =1— %ﬁ + o(z?).
We compute now ﬁ(m) We have that
Fatw) = [ fatwe vy = [ Vg ey -
changing variable z = v/ny
ny oy iw— ny oy iz (=

= le () Vidz = J]Rf* (z)e vi'dz = f*n (ﬁ)

and recalling by Proposition 3.2.2, item i, that f/";L(x) = (f(a:))" we conclude that

o7 () 0(5)
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So, we get for z fixed and n — 400

o= (1)) - (- o2 -2

2

Recalling that for x fixed and n — 400, we get log (1 — % +o0 (%)) =—5-+o0 (%) we get

Fala) = e 1)

J—

~ 22 _z2 22
and therefore lim,, fn(z) = e~z . By (3.2.1) with a = 5 we have that e\/% = e 2 . Therefore
—~ e 2
lim f(x) = —.
m fi@) = S

Moreover ||fr]1 = 1 for all n. So, we may apply Theorem 3.2.7 to obtain that f, is converging vaguely to
2

x

2
em . D

3.5 Problems

(i) Let ¢> 0, and
1 <
hc(il)) _ { |~T| C

0 elsewhere

Compute h. # he. Then compute h. * he * h.. What we can say about the regularity of these
functions?

(ii) Let X1, X2,... X, are n independent continuous random variables with the same distribution (and
so with the same density function f). Assume that E(X;) = u and E(X; — p)? = 0®. Show that the
density function of 1=t Xn=t ig given by /no f*" (zy/no + pun), where f*"(z) is the convolution
of f with itself repeated n times.

(iii) (a) Compute the Fourier transform of g(x) = e~ "X (0,+w) ().

Recall the following formulas (obtained by integration by parts):

_ 1 _
Je Y sin(zy)dy = it Y(x coszy + sinzy) + ¢
e Y cos(zy)dy = ! e Y(xzsinzy — coszy) + c.
z2+1

(b) Compute the Fourier transform of f(x) = xe™“X(0,+0)(x) (that is the characteristic function
of the Gamma distribution).
Use item (a) and Proposition 3.2.2.
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Solutions to problems Chapter 1

(i)

Let f: R — R be a monotone function. Show that f is Lebesgue measurable.
It is sufficient to show that for all ¢ € R the set {x € R | f(z) > ¢} is measurable.

Assume that f is monotone increasing (if it is monotone decreasing the argument is analogous). Let
ceR. If f(z) <cforall z€R then {x e R | f(z) > ¢} is the empty set and we are done.

Assume now that there exists Z € R such that f(Z) > ¢. By monotonicity we get that f(y) > ¢
for all y > Z. We consider now the set A. = {z € R |f(z) > ¢}. Our aim is to show that this is a
measurable set.

We observed that by monotonicity, if © € A., then [z, +00) € A.. So, if A. is not bounded from
below, this implies that A. = R and so we are done. Assume now that A. is bounded from below
and define z. = inf A.. For all x > x. we get that f(z) > ¢ and f(x) < ¢ for all z < z.. This
implies that Ac = (z¢, +0) if f(z:) < ¢, and Ac = [z, +0) if f(xc) > ¢. In both cases, A. € M.
Note that actually we get something more: for all ¢, we get that A. is a Borel set, so the function
f is Borel measurable.

Consider the right continuous increasing function on R

F(m)—{x <0

z+1 z>=0.

‘Which is the Borel measure associated to this function?

We define pr(a,b] = F(b)— F(a), and then we extend it to a measure on the Borel o-algebra. Given
F as in the statement, we get that ur(a,b] =b—aifa<b<0, pr(a,b]=b+1—(a+1)=b—a
if 0 <a<b, whereas if a < 0 = b, then ur(a,b] =b+1—a=>b—a+ 1. Therefore up = L + do.

Solutions to problems Chapter 2

(i)

Banach-Caccioppoli theorem

(a) Let (z,) be a sequence in X which is converging to z. Then 0 < |F(z,) — F(z)| < a|zn — |,
and so lim,— 40 F(x,) = F(x) since limy— 40 Tn, = .

(b) By the property of the function F and the definition of the we get that
|Znt1 = 2al = [F(20) = F(zn-1)| < a|zn —zn-] =

= a|F(zn-1) = F(an-2)| < a’|zn-1 — 2n—2| < ... < a"[z1 — 2.
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Let n > m. Then,by using the triangular inequality, we get
|lzn — @m| < lzn — o] + 01 — 2ol + -+ [Tmir — 2.

By using the previous inequality and recalling that Y7 at = %, we get

B Mt _ gn+l
n — 2mll < (@ + @ 4+ oot @™o — 2] <= T g — ).
l1—a
Since 0 < a < 1, we get that "™ a™™ — 0 as n,m — 400. So in particular the previous

inequality implies that (z,) is a Cauchy sequence.

(¢) Since (z,) is a Cauchy sequence, and the space is complete, it is converging to some point x.
Using the continuity of F' we have that lim, F'(z,) = F(x). But we recall that lim, F(z,) =
limy, £,—1 = z. So F(z) = x.

(d) Let z,z such that F(z) = = and F(z) = z. The by the property of F, and recalling that a < 1,
|z =z = [F(z) = F(2)| < az = 2] <[]z — 2.
This is not possible unless |z — z| = 0, which implies z = z.

ii - E(X,) = (Xn,1) = (X,1) = E(X), by continuity of the scalar product (as a consequence of
(ii)
Cauchy Schwartz inequality).
- (Xn,Yn) = (X0 — XY, —Y) 4+ (X, V) + (Xn,Y) — (X,Y). We conclude observing that
(X, —X,)Y,—-Y) -0, (Xn,Y) - (X,Y) and (X,Y,) - (X,Y).

— the convergence of covariance and variance are immediate consequences of the first two items.

(iii) Recalling Remark 2.2.15 we have that
L(Y|X,Z) = Prs(Y) = a + bX + cZ

where S is the space with basis 1, X, Z.

Observe that by the same argument L(Z|X) = Prr(Z) where T is the space with a basis given by
1,X. In particular by Theorem 2.2.8 we have that Z — L(Z|X) € T and arguing as in Remark
2.2.15 L(Z|X) = E(Z) + SRE5 (X — E(X)).

An orthonormal basis of S can be therefore obtained by considering an orthonormal basis of T', which
is given by 1, % as proved in Remark 2.2.15 and then adding the element k(Z — L(Z|X))

where k is such that E(k(Z — L(Z|X))? = 1. Since E((Z — L(Z]X))? = YerVar(X)_Cov®(X.2) ,q

Var(X)
proved in Remark 2.2.15, we get that k = v VarX .
\/Var(2)Var(X)—Cov?(X,Z2)
So, as in Remark 2.2.15,
_ Cov(X,Y)
LYIX.2) = BY)+ e -B)
Var(X)Cov(Z,Y) — Cov(X, Z)Cov(X,Y)
Var(Z)Var(X) — Cov?(X, Z) (Z = L(Z1X))
= E(Y)
Var(Z)Cou(X,Y) — Cov(Z,Y)Cou(X,Z) ,
Var(Z)Var(X) — Cov? (X, Z) (X —E(X))
Var(X)Cov(Z,Y) — Cov(X, Z)Cov(X,Y) (Z —E(2))

Var(Z)Var(X) — Cov?(X, Z)
Observe that
Cov(X,Y)

E(Y) + Var(X)

(X —E(X))) = L(Y[X)

and moreover

Var(X)Cov(Z,Y) — Cov(X, Z)Cov(X,Y)
Var(Z)Var(X) — Cov(X, Z)

E(Y) + (Z — L(Z|X)) = L(Y|Z — L(Z|X)).

This conclude the proof.
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Solutions to problems Chapter 3

(i)

(i)

1 |z|<e

0 elsewhere
can say about the regularity of these functions?
By definition of h.

Let ¢ > 0, and h(z) = . Compute he * he(x). Then compute he * he * he. What we

he # hoa) = thc(x — Yhe(y)dy = f he(z — y)dy = |[~¢,c A [z — ¢, + ]

where we indicated with |[—c,¢c] n [x — ¢,z + ¢]| the length of the intersection between the two
intervals. Since
%) x=2corx<—2

[ce]lnfz—cx+c]=<[-c,x+c] —2c<z<0
[t—cec] O<z<2e
we conclude that
0 T =2corx< —2¢
hexhe(z) =4z4+2c —2c<z<0
2c—z 0<z<2c

The graph is a triangular.. Then again by definition

he # he % he(x) :J

(e s he)(o =)oy = | (hex ho)e — )y

= f (he * he)(z — y)dy.
[—c,c]n[z—2c,z+2c]

We observe that he * he * he(z) = he % he % he(—2) so it is sufficient to compute the function for
x positive and then symmetrize it (as an even function). If x > 3c then h¢ * he # he(x) = 0. If
z € (2¢,3c) then [—c¢,c] N [x — 2¢,z + 2¢] = [z — 2¢, ¢| with  — 2¢ > 0 and so

C dc — 2 2
hc*hc*hc(l‘)zf hc*hc(y)dy: M_ci.
r—2c 2 2
If z € (¢,2¢) then [—c,c] N [z — 2¢,z + 2¢] = [x — 2¢, ¢] with 2 — 2¢ < 0 and so
0 e 2 _ 2
hc*hc*hc(m) :J hc*hc(y)derJ hc*hc(y)dy: LLCT'T+ 262.
r—2c 0

If x € (0,¢) then [—c,c] N [z — 2¢,z + 2¢] = [—¢, c] and so
he # he % he(x) = f he # he(y)dy = 3c2.

Let X1, X2,... X, are n independent continuous random variables with the same distribution (and
so with the same density function f). Assume that E(X;) = u and E(X; — p)> = 0. Show that the
density function of W is given by \/no f*" (z/no + pn), where f*"(zx) is the convolution
of f with itself repeated n times.

By Theorem 3.1.3 we get that the density function associated to the sum of X, X5 is f * f.
Then again by the theorem, the density function associated to the sum of X; + X3 with X3 is
(f* f)* f= f* and so on.

By linearity E(X1 + --- + X,,) = nu and by independence we get E((X1 + --- + Xy — un)?) = no?.
So the sum as Z = W, we get that Z has E(Z) = 0 and E(Z?) = 1 (so it has mean 0

and variance 1).

f™* is the density associated to X1 + ...X,, we get that /nof*" (zy/no + un) is the density
associated to Z. Indeed we compute, changing variable,

fm av/no f*" (z/no + pn) dz = i y\;ﬁi”f*"(y)dy = ﬁE(XI +o o Xy —np) =0

LxQﬁaf*" (zv/no + pn) dx = J}wa*"(y)dy = 1.

no?
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(i) (a) Compute the Fourier transform of g(x) = €™ “X(0,40) ().
Recall the following formulas (obtained by integration by parts):

—y . 1 _ .
Je Ysin(zy)dy = e Y(zcoszy + sinzy) + ¢
e Y cos(zy)dy = #efy(x sin xy — coszy) + c.
2 +1

(b) Compute the Fourier transform of f(x) = xe™"X(0,40)(x) (that is the characteristic function
of the Gamma distribution).
Use item a. and Proposition 3.2.2.

(a) By definition and using the primitive of the functions e™¥ coszy and e~ ¥ sin zy, we get

+00 +00 +

e Ycosxydy +1 j e Y sinxydy
0

g(x) = Lg(y)ei”ydy = f

e Ve'™dy = f
0

0

1 v T
= —+1 .
2 +1 2 +1

(b) By Proposition 3.2.2,

dei(z) = f (iy)g(w)e™dy = i f F)edy = if (2).

R

Therefore

fay =i i) (e
- 22+1 " 22+1) (2 +1)2 (22 +1)2
1—22 . 2x 1+iz)\? . \—2
= = —(1—
@12 @2 (1+:1’2) (1= i=)
where the last identity is obtained by using the fact that —— = 12

1—ix 1+x2°
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