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exercises are proposed, more or less simple to solve. In the appendix there are the (sketchy) solutions to
the problems.
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Chapter 1

Measure theory and integration

1.1 Measure space

We fix a set X and we define PpXq the set of all subsets of X.

Definition 1.1.1. Σ Ă PpXq is a σ´algebra on X if

– it is closed by complement, that is if A P Σ then XzA P Σ,

– it is closed by countable union, that is if pAiqi is a sequence of elements in Σ then Y8i“1Ai P Σ.

Let C Ď PpXq, then ΣpCq, the σ-algebra generated by C is the smallest σ´algebra which contains all the
elements in C (and then all countable intersections and countable unions of elements in C).

The smallest possible σ-algebra on X is given by Σ “ tH, Xu, and the largest possible σ-algebra on
X is Σ “ PpXq.

Definition 1.1.2. BpRq is the σ-algebra on R generated by all the intervals C “ tpa, bq | a, b P Ru. BpRN q
is the σ-algebra on RN generated by all the pluri-rectangulars C “ tΠN

i“1pai, biq | ai, bi P Ru.

Remark 1.1.3. Note that σpCq “ BpRq also when C “ tpa, bs | a, b P Ru, since pa, bq “ Yn
`

a, b´ 1
n

‰

,
or when C “ tra, bq | a, b P Ru, since pa, bq “ Yn

“

a` 1
n
, b
˘

, or when C “ tra, bs | a, b P Ru again
because pa, bq “ Yn

“

a` 1
n
, b´ 1

n

‰

. Analogously σpCq “ BpRq when C “ tpa,`8q | a P Ru, since pa, bs “
pa,`8q X p´8, bs, and p´8, bs “ Rzpb,`8q and so on.

Definition 1.1.4. Let Σ be a σ-algebra on X. A function µ : Σ Ñ r0,`8s is a measure if

– µpHq “ 0,

– it is σ-additive, that is if pAiqi is a sequence of elements in Σ with Ai X Aj “ H for i ‰ j then
µpY8i“1Aiq “

ř`8

i“1 µpAiq.

pX,Σ, µq is called a measure space.
If µpXq ă `8, then µ is a finite measure (a probability measure if µpXq “ 1). Usually measure spaces

with probability measures are denoted with Ω (in place of X), the σ-algebra is F (in place of Σ) and the
measure is P (in place of µ).

If X “ YiAi, with µpAiq ă `8 for all i, µ is σ-finite.
If X “ Rn, n ě 1 and Σ “ BpRnq, then µ is called a Borel measure.

Example 1.1.5. Let x0 P R, and define the measure on PpRq as δx0pAq “

#

1 x0 P A

0 x0 R A
.

Then δx0 is called Dirac measure centered at x0.

Proposition 1.1.6 (Monotonicity, subadditivity, continuity). Let µ be a measure on Σ. Then

(i) if A Ă B, A,B P Σ, then µpAq ď µpBq (monotonicity with respect to inclusion);

(ii) if pAiqi is a sequence of elements in Σ then µpY8i“1Aiq ď
ř`8

i“1 µpAiq;

(iii) if pAiqi is a sequence of elements in Σ with Ai Ď Ai`1 then µpY8i“1Aiq “ limiÑ`8 µpAiq;
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(iv) if pAiqi is a sequence of elements in Σ with Ai Ě Ai`1 and µpAi0q ă `8 for some i0, then
µpX8i“1Aiq “ limiÑ`8 µpAiq.

Proof. (i) Observe that B “ AY pBzAq, so by σ-additivity µpBq “ µpAq ` µpBzAq ě µpAq.

(ii) Let B1 “ A1 and Bi “ Aiz Y
i´1
k“1 Ak then Bi are disjoint and

µpYiAiq “ µpYiBiq “
`8
ÿ

i“1

µpBiq ď
`8
ÿ

i“1

µpAiq.

(iii) Let B1 “ a1 and Bi “ AizAi´1 then

µpYiAiq “ µpYiBiq “
`8
ÿ

i“1

µpBiq “ lim
nÑ`8

n
ÿ

i“1

µpBiq “ µpAnq.

(iv) Let Fi “ Ai0zAi for i ą i0. Then µpAi0q “ µpFiq ` µpAiq, Fi Ď Fi`1 and YiFi “ Ai0z Xi Ai.
Therefore by 1), we get

µpAi0q “ µpXiAiq ` lim
i
µpFiq “ µpXiAiq ` lim

i
pµpAi0q ´ µpAiqq

and we cancel µpAi0q from both sides.

Definition 1.1.7. Let pX,Σ, µq a measure space. The completion of Σ with respect to µ is the σ-algebra

M “ tA Ď X | DB,C P Σ, µpCq “ 0, B Ď A,AzB Ď Cu.

Definition 1.1.8. Let pX,Σ, µq a measure space. A property holds almost everywhere if there exists
N P Σ with µpNq “ 0 such that the property holds for all x P XzN .

Proposition 1.1.9. Let Σ be a σ-algebra on X and µ : Σ Ñ r0,`8s with µpHq “ 0. Then they are
equivalent:

(i) µ is σ-additive: if pAiqi is a sequence of elements in Σ with AiXAj “ H for i ‰ j then µpY8i“1Aiq “
ř`8

i“1 µpAiq,

(ii) µ is additive: if A,B P Σ and AXB “ H then µpAXBq “ µpAq ` µpBq
and
µ is countable subadditive: if pAiqi is a sequence of elements in Σ then µpY8i“1Aiq ď

ř`8

i“1 µpAiq;

(iii) µ is additive: if A,B P Σ and AXB “ H then µpAXBq “ µpAq ` µpBq
and
µ is continuous on increasing sequence of sets: if pAiqi is a sequence of elements in Σ with Ai Ď Ai`1

then µpY8i“1Aiq “ limiÑ`8 µpAiq.

Proof. The fact that (i) implies (ii) and that (i) implies (iii) has been proved in Proposition 1.1.6. We
prove that (ii) implies (i). We consider a sequence pAiqi of elements in Σ with Ai X Aj “ H for i ‰ j.
Then by (ii) we get that µpY8i“1Aiq ď

ř`8

i“1 µpAiq. On the other hand by additivity and monotonicity
(which is a consequence of additivity) we get that for every n, µpY8i“1Aiq ě µpYni“1Aiq “

řn
i“1 µpAiq.

Sending nÑ `8 we conclude µpY8i“1Aiq ě
ř`8

i“1 µpAiq.
We prove that (iii) implies (i). We consider a sequence pAiqi of elements in Σ with Ai X Aj “ H for

i ‰ j. We define Bi “ Y
i
j“1Aj . Then YiBi “ YiAi. Note that by additivity µpBiq “

ři
j“1 µpAjq and

that B1 Ď B2 Ď B3 . . . . Therefore by (iii) and additivity we get

µpY8i“1Aiq “ µpY8i“1Biq “ lim
iÑ`8

µpBiq “ lim
iÑ`8

i
ÿ

j“1

µpAjq “
`8
ÿ

j“1

µpAjq.
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1.2 Borel measures on R and cumulative distribution func-
tions

Let F : R Ñ R be an increasing function which is right continuous, that is limxÑa` F pxq “ F paq. We
define for all a, b P R,

µF pa, bs “ F pbq ´ F paq µF pHq “ 0.

Then for every set C Ă R we define

µ˚F pCq “ inft
ÿ

i

F pbiq ´ F paiq | C Ď Yipai, bisu.

Note that since F is increasing, we get that for sequences a1 ă b1 ă a2 ă b2 ă ¨ ¨ ¨ ă ai ă bi ă ai`1 ă

bi`1 . . . , we obtain
µ˚F pYipai, bisq “

ÿ

i

F pbiq ´ F paiq.

Observe that if we define C “ tpa, bs, a, b P Ru, then ΣpCq “ BpRq. Note that if F1 “ F2 ` c for some
constant then µ˚F1

“ µ˚F2
. Also the viceversa is true: if µ˚F1

“ µ˚F2
, then F1 “ F2 ` c for some constant c.

Remark 1.2.1. Note that F monotone increasing implies that µF pa, bs ě 0, and moreover, since F is
right continuous, then

µF pYnpa` 1{n, bsq “ µF pa, bs “ F pbq ´ F paq “ F pbq ´ lim
n
F pa` 1{nq “ lim

n
µF pa` 1{n, bs.

Reasoning as before, it is possible to see that, at least when restricted to C, there holds that µF has
positive values, is additive and is continuous with respect to increasing sequences of sets (which is enough
to get σ-additivity if µF is defined on a σ-algebra, see Proposition 1.1.9).

We recall that F is monotone increasing and then limxÑ`8 F pxq “ supF and limxÑ´8 F pxq “ inf F
(we say that if F pRq is unbounded from above, supF “ `8 and if F pRq is unbounded from below,
inf F “ ´8).

We may extend µ˚F to intervals obtained by unions and intersections of elements in C, and using
additivity and continuity. In particular we get

µ˚F pa,`8q “ µ˚F pYnpa, a` nsq “ lim
n
F pa` nq ´ F paq “ supF ´ F paq

µ˚F p´8, bs “ µ˚F pYnpb´ n, bsq “ lim
n
F pbq ´ F pb´ nq “ F pbq ´ inf F

µ˚F pa, bq “ µ˚F pYněn0pa, b´ 1{nsq “ lim
n
F pb´ 1{nq ´ F paq “ lim

xÑb´
F pxq ´ F paq

µ˚F p´8, bq “ µ˚F pp´8, b´ 1s Y pb´ 1, bqq “ µ˚F pp´8, b´ 1sq ` µ˚F ppb´ 1, bqq

“ lim
xÑb´

F pxq ´ F pb´ 1q ` F pb´ 1q ´ inf F “ lim
xÑb´

F pxq ´ inf F

µ˚F ra, bq “ “ µ˚F rpa´ 1, bqzpa´ 1, aqs “ µ˚F pa´ 1, bq ´ µ˚F pa´ 1, aq

“ lim
xÑb´

F pxq ´ F pa´ 1q ´ lim
xÑa´

F pxq ` F pa´ 1q “ lim
xÑb´

F pxq ´ lim
xÑa´

F pxq

µ˚F ra, bs “ µ˚F rra, b` 1qzpb, b` 1qs “ µ˚F ra, b` 1q ´ µ˚F pb, b` 1q

“ F pbq ´ lim
xÑa´

F pxq

µ˚F ra,`8q “ sup
F
´ lim
xÑa´

F pxq.

Note that

µ˚F pRq “ µ˚F pYnpa´ n, b` nsq “ lim
n
F pb` nq ´ F pa´ nq “ supF ´ inf F

µ˚F ptauq “ µ˚F ppc, aszpc, aqq

“ µ˚F ppc, asq ´ µ
˚
F ppc, aqq “ F paq ´ F pcq ´ p lim

xÑa´
F pxq ´ F pcq “ F paq ´ lim

xÑa´
F pxq.

Theorem 1.2.2. (i) There exists a unique Borel measure µF which coincides with µ˚F on intervals
pa, bs. This measure is σ-finite and it is finite if and only if supF ´ inf F ă `8.

(ii) Given a Borel measure on R which is σ-finite, there exists F monotone increasing and right contin-
uous such that µ “ µF . F is unique up to addition of constants: that is if µ “ µF “ µG then there
exists c P R such that F pxq “ Gpxq ` c for all x. t
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Proof. (i) The proof is based on the Caratheodory criterion, and we refer to [3, Theorem 1.14, Theorem
1.16 ]. As for the σ- finiteness it is sufficient to observe that µF p´n, ns “ F pnq ´ F p´nq ă `8
and R “ Ynp´n, ns. Moreover, since µF pRq “ supF ´ inf F , we conclude that F is finite iff
supF ´ inf F ă `8.

(ii) We want to construct F . Put F p0q “ 0 and

F pxq “

#

µp0, xs x ą 0

´µpx, 0s x ă 0.

Observe that if b ą a ě 0, F pbq´F paq “ µp0, bs ´µp0, as “ µp0, bszp0, as “ µpa, bs ě 0, if 0 ě b ą a,
then F pbq ´ F paq “ ´µpb, 0s ` µpa, 0s “ µpa, 0szpb, 0s “ µpa, bs ě 0 and finally if a ă 0 ă b, then
F pbq ´ F paq “ µp0, bs ` µpa, 0s “ µpa, bs ě 0. So F is increasing.

We check that it is right continuous. First of all observe that for a ą 0, limxÑa` F pxq “ limn F pa`
1{nq “ limn µp0, a ` 1{ns “ µpXnp0, a ` 1{nsq “ µp0, as “ F paq. If a “ 0 limxÑ0` F pxq “
limn F p1{nq “ limn µp0, 1{ns “ µpXnp0, 1{nsq “ µpHq “ 0 “ F p0q. Finally if a ă 0, then
limxÑa` F pxq “ limn F pa` 1{nq “ ´ limn µpa` 1{n, 0s “ ´µpYnpa` 1{n, 0sq “ ´µpa, 0s “ F paq.

Finally we already checked that µpa, bs “ F pbq ´ F paq and then we conclude that µ “ µF .

Assume now that there exists a right continuous increasing function G such that µ “ µG. Then for
x ą 0, F pxq “ µp0, xs “ µGp0, xs “ Gpxq ´Gp0q and for x ă 0 then F pxq “ ´µpx, 0s “ µGpx, 0s “
´pGp0q´Gpxqq “ Gpxq´Gp0q. So, this implies that F pxq “ Gpxq´Gp0q (for x “ 0 this is trivially
verified).

Definition 1.2.3. Let µ be a finite Borel measure. The function F pxq associated to the measure µ and
normalized in order to have inf F “ 0 is called the cumulative distribution function of the measure µ. It
is easy to check that F pxq :“ µp´8, xs.

1.3 The Lebesgue measure on R and Rn.

Definition 1.3.1. Let F pxq “ x for all x, then µF is called Lebesgue measure. We indicate with L.
We denote with MpRq the completion of BpRq with respect to L, and we call it the Σ-algebra of Lebesgue
measurable sets.

Proposition 1.3.2. The Lebesgue measure

(i) associates to each interval its length,

(ii) is translation invariant, that is LpA` xq “ LpAq for all x P R, A PM,

(iii) is homogenous, that is LpλAq “ λLpAq for all λ ą 0, A PM,

(iv) assigns measure 0 to points, and so also to countable sets (e.g. Q),

(v) it is σ-finite, since R “ YnPNp´n, nq and Lp´n, nq “ 2n.

Proof. The proof is immediate by definitions and σ-additivity. Exercise.

Measurable sets in R which contain at least one interval (they are called sets with non empty interior)
have positive measure. On the other hand sets which are given by countable union of isolated points have
measure zero. Nevertheless there are sets with empty interior in R (so that do not contain any interval)
and with positive measure (almost full measure).

Example 1.3.3 (A set of positive measure which does not contain any interval). Let prnq be an enumer-
ation of QX r0, 1s and fix ε ą 0 small.

Set A “ Ynprn ´ ε2´n, rn ` ε2´nq. Then by subadditivity, LpAq ď
ř

n 2ε2´n “ 4ε. Moreover
B “ r0, 1szA is a set which does not contain any interval (otherwise it should contain some rational
number but QX r0, 1s Ď A), and moreover LpBq ě 1´ 4ε ą 0.

Not all the subsets of R are contained in MpRq, so there are sets which are not measurable. This
is due to the fact that if we want to define a measure µ on the intervals of R such that µpr0, 1sq “ 1,
µpAY Bq “ µpAq ` µpBq if AX B “ H and µpAq “ µpBq if B can be obtained translating and rotating
A, then the σ- algebra of measurable sets cannot be PpRq.
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Example 1.3.4 (A set which is not (Lebesgue) measurable). We say that x, y P r0, 1s are equivalent
if x ´ y P Q. Let P P r0, 1s a set such that P consists of exactly one representative point from each
equivalence class (this set exists by the axiom of choice). In particular this means that if p, p1 P P , p ‰ p1,
then p´ p1 R Q. We claim that P provides the required example of a non measurable set. We prove it by
contradiction, showing that it is not possible for P to be measurable.

For each q P QX r0, 1s, define

Pq “ rpP ` qq X r0, 1qs Y rpP ` qqzr0, 1qq ´ 1s “ tp` q, p P P X r0, 1´ qqu Y tp` q´ 1, p P P X r1´ q, 1qu.

So Pq is obtained by considering P ` q and then shifting back of 1 unit the part of P ` q which is outside
the interval r0, 1q.

First of all we observe that LpP q “ LpPqq. Indeed rpP ` qq X r0, 1qs X rpP ` qqzr0, 1qq ´ 1s “ H, since
if p` q P r0, 1q for some p P P and p1 ` q ´ 1 P r0, 1q for some p1 P P , then necessarily p` q ‰ p1 ` q ´ 1,
since p, p1 P r0, 1q.

Moreover we observe that if r ‰ q P Q X r0, 1q, then Pr X Pq “ H. Indeed assume it is not true
and x P Pr X Pq, this means that x “ p ` r “ p1 ` q, for some p, p1 P P or x “ p ` r “ p1 ` q ´ 1, or
x “ p` r ´ 1 “ p1 ` q. In any case we get that p´ p1 P Q, which implies that p “ p1 by definition of the
set P and so r “ q.

Finally we observe that YqPQXr0,1qPq “ r0, 1q. Indeed take x P r0, 1q, then there exists p P P such that
x is equivalent to P , which means that there exists q P Q such that x “ p` q. In particular this implies
that q P p0, 1s and x P Pq.

We conclude by σ-additivity that

1 “ Lpr0, 1qq “ LpYqPQXr0,1qPqq “
ÿ

qPQXr0,1q

LpPqq “
ÿ

qPQXr0,1q

LpP q “

#

0 if LpP q “ 0

`8 if LpP q ą 0

which is not possible.

It is possible to define the Lebesgue measures on Rn as the product measure of the Lebesgue measure
on R. It is a Borel maesure and we denote with M the Σ-algebra of Lebesgue measurable sets. We refer
to [3, Section2.6].

Proposition 1.3.5. The Lebesgue measure on Rn

(i) associates to each n-parallelepiped its volume,

(ii) is translation invariant, that is LpA` xq “ LpAq for all x P Rn, A PM,

(iii) is n-homogenous, that is LpλAq “ λnLpAq for all λ ą 0, A P M, in particular LpBp0, rqq “
rnLpBp0, 1qq, where Bp0, rq is the ball if radius r centered at 0,

(iv) it is σ-finite, since Rn “ YkPNBp0, kq and LBp0, kq “ knLpBp0, 1qq.

From now on, for simplicity we will indicate |A| “ LpAq.

1.4 Measurable functions and random variables

Definition 1.4.1. Let pX,Σ, µq be a measure space, and let f : X Ñ R be a function. Then f is
measurable if for all t P R,

Aptq :“ tx P X | fpxq ą tu “ f´1
pt,`8q P Σ.

In particular we will be interested in the case in which pX,Σ, µq “ pRn,M,Lq. In this case saying that
f : Rn Ñ R is measurable is equivalent to require that for all A P BpRq, f´1

pAq PM.

Example 1.4.2. Let A PM and define the characteristic function of A as

χApxq “

#

1 x P A

0 x R A.

Then χA is measurable. Indeed Aptq “ H for t ě 1, Aptq “ Rn for t ď 0 and Aptq “ A for t P p0, 1q.
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Example 1.4.3 (Random variables). If pΩ,F ,Pq is a probability space (that is a measure space endowed
with a probability measure), the measurable functions, that is functions f : Ω Ñ R such that for all t P R,
Aptq :“ tω P Ω | fpωq ą tu P F , are called random variables. Usually random variables are indicated
with X instead of f .

There is a notion of convergence of measurable functions which is quite used in probability.

Definition 1.4.4 (Convergence in measure). Let fn, f be measurable functions defined on the measure
space pX,Σ, µq. Then fn converge to f in measure if for every ε ą 0

lim
n
µtx P X | |fnpxq ´ fpxq| ě εu “ 0.

If we are in a probability space, this convergence is called convergence in probability, since it reads

lim
n

Ptω P Ω | |Xnpωq ´Xpωq| ě εu “ 0.

1.5 Lebesgue integral

Definition 1.5.1. Let k ě 1, A1, . . . AK a finite family of disjoint sets in M and c1, . . . ck ą 0. The
function φpxq “

řk
i“1 ciχAipxq is called simple function. It is a measurable (positive) function and we

define its integral as
ż

RN
φpxqdx “

k
ÿ

i“1

ciLpAiq.

Definition 1.5.2 (Lebesgue integral). Let f : Rn Ñ R be a measurable function such that fpxq ě 0 for
all x. Then

ż

Rn
fpxqdx “ sup

"
ż

Rn
φpxqdx | φ simple function with φ ď f

*

.

If f is not positive we define its positve part f`pxq “ maxpfpxq, 0q and its negative part f´pxq “
maxp´fpxq, 0q and we define

ż

Rn
fpxqdx “

ż

Rn
f`pxqdx´

ż

Rn
f´pxqdx.

Note that
ş

Rn |fpxq|dx “
ş

Rn f
`
pxqdx`

ş

Rn f
´
pxqdx.

Since f` ď |f |, f´ ď |f |, we have that
ˇ

ˇ

ˇ

ˇ

ż

Rn
fpxqdx

ˇ

ˇ

ˇ

ˇ

ă `8 iff

ż

Rn
|fpxq|dx ă `8.

We denote

L1
pRnq :“ tf : Rn Ñ R | f is measurable and

ż

Rn
|fpxq|dx ă `8u.

If A PM, then we define

L1
pAq “

"

f : Rn Ñ R |f is measurable and

ż

Rn
|fpxq|χApxq “

ż

A

|fpxq|dx ă `8

*

.

Proposition 1.5.3. The following properties hold.

– If f “ 0 almost everywhere then
ş

Rn fpxq “ 0. If
ş

Rn |fpxq|dx “ 0 then f “ 0 almost everywhere.

– If f, g are measurable functions such that f “ g almost everywhere, then
ş

Rn fpxqdx “
ş

Rn gpxqdx.

– If f, g P L1
pRnq, α, β P R, then

ş

Rn αfpxq ` βgpxqdx “ α
ş

Rn fpxqdx` β
ş

Rn gpxqdx.

– If f, g P L1
pRnq, and f ď g then

ş

Rn fpxqdx ď
ş

Rn gpxqdx.

Proof. The proof is obtained by exploiting definitions, see [3, Section 2..2]

Remark 1.5.4. [On the definition of L1] Note that due to the previous proposition, in particular the fact
that if f, g are measurable functions such that f “ g almost everywhere, then

ş

Rn fpxqdx “
ş

Rn gpxqdx,
we identify functions in L1

pRnq which coincide almost everywhere. So a function f in L1
pRnq is

actually a class of equivalence of functions, we do not distinguish functions which are different on sets of
measure zero.
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Theorem 1.5.5 (Monotone convergence). Let fk : Rn Ñ R measurables , positive, i.e. fk ě 0 for all k,
and such that fkpxq ď fk`1pxq for all x and for all k. Then

lim
k

ż

Rn
fkpxqdx “

ż

Rn
lim
k
fkpxqdx.

Proof. See [3, Theorem 2.14].

Proposition 1.5.6. An equivalent definition of the Lebesgue integral (which can be very useful) is the
following. Let f : Rn Ñ R measurable and positive. Let for every t ą 0 F ptq “ LpAptqq “ Ltx | fpxq ą tu.
F is called the repartition function of f . Then

ż

Rn
fpxqdx “

ż `8

0

F ptqdt.

Proof. See [3, Proposition 6.24]

1.6 Decomposition of measures.

Definition 1.6.1. Let ν, ρ be measures defined on pRn,BpRnqq.
ν is absolutely continuous with respect to L, and we write ν ăă L if νpAq “ 0 for all A P B such

that LpAq “ 0.
ρ is singular with respect to L, and we write ρ K L, if there exist A,B P B, AXB “ H, AYB “ Rn,

such that LpAq “ 0 and ρpBq “ 0.

Example 1.6.2. Let x0 P R and consider the Dirac measure δx0 centered at x0. Then it is singular with
respect to L. Indeed fix A “ Rztx0u, B “ tx0u, and observe that LpBq “ 0 and δx0pAq “ 0.

Proposition 1.6.3. Let f ě 0, measurable and such that
şM

´M
fpxqdx ă `8 for all M ą 0. Define the

function

νf : MÑ r0,`8s as νf pAq “

ż

A

fpxqdx.

Then νf is a measure on pRn,Mq, which is σ-finite and which is absolutely continuous with respect to L.
If f P L1

pRnq the measure is finite.

Proof. First of all we show that it is a measure. Observe that fpxqχHpxq “ 0 almost everywhere, then
νf pHq “ 0. Let Ai P M which are pairwise disjoint. Define the simple function φkpxq “

řk
i“1 χAipxq.

Note that limk φkpxq “ χYiAipxq. Moreover 0 ď fpxqφkpxq ď fpxqφk`1pxq and so by the monotone
convergence theorem we get

lim
k

ż

Rn
φkpxqfpxqdx “

ż

Rn
lim
k
φkpxqfpxqdx.

Observe that

lim
k

ż

Rn
φkpxqfpxqdx “ lim

k

ż

Rn

k
ÿ

i“1

φipxqfpxqdx “ lim
k

k
ÿ

i“1

ż

Rn
φipxqfpxqdx

“ lim
k

k
ÿ

i“1

ż

Ai

fpxqdx “ lim
k

k
ÿ

i“1

νf pAiq “
`8
ÿ

i“1

νf pAiq

and
ż

Rn
lim
k
φkpxqfpxqdx “

ż

Rn
χYiAipxqfpxqdx “ νf pYiAiq.

Therefore we get that νf is a measure.
Since νf pBp0, kqq “

ş

Bp0,kq
fpxqdx ă `8 by assumption, then νf is σ-finite.

Finally, note that if A PM and LpAq “ 0, this implies that χApxq “ 0 almost everywhere. Therefore
also fpxqχApxq “ 0 almost everywhere, which implies νf pAq “ 0.

Example 1.6.4. Let fpxq “ e´|x|
2

. Then f P L1
pRnq and the measure νf is called the Gaussian measure.

Note that it is a finite measure, and
ş

Rn e
´|x|2dx “ πn{2, see [3, Prop. 2.53].
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Theorem 1.6.5 (Lebesgue-Radon-Nikodym theorem). Let µ a Borelian measure on Rn which is σ´finite.
Then there exist a unique ν ăă L (absolutely continuous part) and a unique ρ K L (singular part) such
that µ “ ν ` ρ.

Moreover there exists f ě 0, measurable and such that
ş

BR
fpxqdx ă `8 for all R ą 0, for which

ν “ νf .
f is called the density of ν, or the Radon-Nikodym derivative of ν and can be obtained (if the measure ν
is regular) as fpxq “ limrÑ0

νpBpx,rqq
LpBpx,rqq .

Proof. For the proof we refer to [3, Section 3.2].

1.7 Push forward of measures and laws of random variables

Definition 1.7.1 (Push forward of a measure). Let pX,Σ, µq be a measure space, and let f : X Ñ

pR,BpRq,Lq be a measurable function. Then the push forward of the measure µ by the function f is the
Borel measure f7µ defined as follows: for all A P BpRq,

f7µpAq “ µtx P X, fpxq P Au.

Let pΩ,F ,Pq be a probability space and X : Ω Ñ R be a random variable (see Section 2.4). Then the
law LX of X is the push forward of the probability measure P by X: that is for every A P BpRq,

LXpAq “ Pptω |Xpωq P Auq.

The cumulative distribution function associated to such Borel measure is defined as

FXpxq “ Pptω |Xpωq ď xuq.

The law identifies the (main properties of) random variable, and often the random variables can be de-
scribed just in terms of their laws.

Remark 1.7.2 (The cumulative distribution function). If X is an (absolutely) continuous random vari-
able, LX is an absolutely continuous measure and FX is an absolutely continuous function. The density
of fX with respect to the Lebesgue measure is

fXpxq “ F 1Xpxq “ lim
hÑ0

F px` hq ´ F pxq

h
for a.e.x P R.

If X is a discrete random variable, LX is a singular measure with respect to the Lebesgue measure
and FX is a monotone piecewise constant function.

More generally if FX is the cumulative distribution function associated to a random variable, then F
a right continuous, monotone increasing function, which we normalize to have inf FX “ 0 (and obviously
supF “ 1). FX has at most countably many discontinuity points, that are those for which F paq ą
limxÑa´ F pxq, or equivalently for which

Pptω |Xpωq “ auq ą 0.

We define
F dXpxq :“

ÿ

yďx

Pptω |Xpωq “ auq.

Note that Fd is a monotone increasing function, which is a.e. constant and has jumps only at discontinuity
points of FX .

So the function FX´F
d
X is a continuous function, and it is easy to check it is still monotone increasing.

A deep result in mathematical analysis (see [3, Thm 3.23]) states that monotone increasing functions F are
differentiable a.e.- that is for a.e. a P R there exists F 1paq “ limhÑ0

F pa`hq´F paq
h

and moreover F 1paq ě 0
a.e. So we define the absolutely continuous part of FX as

F acX pxq “

ż x

´8

F 1Xpyqdy “

ż x

´8

pFX ´ F
d
Xq
1
pyqdy.

So, F 1Xpxq is the density of the absolutely continuous measure µFac
X

.
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It is possible to prove that in general

FXpxq “ F dXpxq ` F
ac
X pxq ` F

s
Xpxq

where F sX is a continuous and increasing function, whose derivative is zero in almost all x, but it can be
not identically zero (a typical example is the devil’s staircase function, or the Cantor function).

The three functions F dX , F acX , F sX are all increasing, but are of very different nature:

– F dX can only increase by jumps and it is constants between two consecutive jumps,

– F acX is a “nice” function with the property of being the integral of its derivative, which coincide with
the distribution density,

– F sX is a function quite hard to imagine (continuous, increasing with zero derivative a.e.).

We typically deal with real random variables such that the singular part F sX of their distribution function
is identically zero.

Moreover, we see that a real random variable is discrete if and only if FX “ F dX and it is absolutely
continuous if and only if FX “ F acX and in this case fXpxq “ F 1Xpxq.

Remark 1.7.3 (Joint law). If X,Y are random variables on the same probability space, that is X,Y :
pΩ,F ,Pq Ñ R, we may define the joint law LX,Y as the push forward of the probability measure P with
respect to the map pX,Y q : pΩ,F ,Pq Ñ Rˆ R which associates to ω the pair pXpωq, Y pωqq. Therefore

LX,Y “ pX,Y q7P LX,Y pAˆBq “ Ptω P Ω, Xpωq P A, Y pωq P Bu.

The joint cumulative distribution function as

FX,Y px, yq “ Pptω |Xpωq ď xu X tω |Y pωq ď yuq.

If X,Y are independent then FX,Y px, yq “ FXpxqFY pyq. Two random variables X and Y are jointly
continuous if there exists a nonnegative function fX,Y : R2

Ñ R such that for any measurable set A Ď R2

there holds

Pptω |pXpωq, Y pωqq P Auq “
ż

A

fX,Y px, yqdxdy.

The function fX,Y px, yq is called the joint probability density function and is obtained as

fX,Y px, yq “
d2

dxdy
FX,Y px, yq a.e..

Given the joint probability density function it is possible to recover the density functions of X and Y as
the marginals:

fXpxq “

ż `8

8

fX,Y px, yqdy fY pyq “

ż `8

8

fX,Y px, yqdx.

On the other hand, given the marginals fX , fY , there is not a unique associated joint probability density
function (apart from the case in which X,Y are independent, in which case fX,Y px, yq “ fXpxqfY pyq).

Remark 1.7.4. Some examples of widely used random variables/laws:

– the Dirac measure δc centered at c is the law associated to the constant random variable c (so the
random variable X such that Xpωq “ c almost surely).

– the gamma law with parameters a, b is an absolutely continuous measure with density fpxq “
Γpaq´1baxa´1e´bxχp0,`8qpxq

– the chi-square law is a gamma distribution with parameters n{2, 1{2,

– the normal or Gaussian law with parameters µ, σ is an absolutely continuous random variable,

with density fpxq “ 1

σ
?

2π
e´

px´µq2

2σ ,

– the standard normal law is a normal law with parameters 0, 1, that is an absolutely continuous

measure with density fpxq “ 1?
2π
e´

x2

2 ,

– the binomial law of parameters n, p is a singular measure, and it is given by
řn
k“0

n!
k!pn´kq!

pkp1´ pqn´kδk where δk is the Dirac measure centered at k,

– the Poisson law of parameter λ is a singular measure, and it is given by

e´λ
ř`8

k“0
λk

k!
δk where δk is the Dirac measure centered at k.
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1.8 The space of laws of random variables. p-moments of a
random variable

We restrict to consider the family of all Borel measures in R which are laws of some random variable, that
is

PpRq “ tµ | there exists a probability space pΩ,F ,Pq and X : Ω Ñ R random variable s.t. µ “ LXu.

Note that all µ P PpRq are Borel measures in R such that µpRq “ 1 (so they are finite). Observe also that
given µ P PpRq there are several probability spaces pΩ,P,Fq and several X : Ω Ñ R random variables s.t.
µ “ LX . In any case, the law determines the most important feature (from a measure theoretic/analytic
point of view) of the random variable, on the other hand we loose completely the information about what
is the sample space (that is sample space, the set of possible outcomes of an experiment), and which are
the events which have been measured. To every µ P PpRq is uniquely associated its cumulative distribution
function

F pxq “ µp´8, xs.

Moreover, if µ is absolutely continuous, its density fpxq coincides almost everywhere with F 1pxq.
Following the same approach used to define the Lebesgue integral, it is possible to define in R the

integration with respect to a general µ P PpRq of µ-measurable functions g : RÑ R (that is if for all t P R,
g´1

pt,`8q is a set contained in the completion of BpRq with respect to µ).
A more intuitive way to define integration of continuous or monotone functions is via the Lebesgue-

Stiltjes integral. Let g : RÑ R continuous (so it is surely µ-measurable). We define

ż

R
gpxqdµ “ sup

Mą0
sup

#

k
ÿ

i“0

p min
rxi,xi`1s

gqpF pxi`1q ´ F pxiqq,´M ď x0 ă x1 ă ¨ ¨ ¨ ă xk ă xk`1 ďM

+

.

It is possible to show that if µ is an absolutely continuous measure with density f , then

ż

R
gpxqdµ “

ż

R
gpxqfpxqdx.

On the other hand, if µ is associated to a discrete random variable, so F “ F d, with jumps given by the
countable or finite set of points paiqi, then

ż

R
gpxqdµ “

ÿ

i

gpaiqpF paiq ´ F pa
´
i q.

Definition 1.8.1. The nth-moment of a random variable X is given by EpXn
q :“

ş

R x
ndLX , more

precisely

– if X is a (asbsolutely) continuous random variable (whose associated law has density f) then

EpXn
q “

ż

R
xnfpxqdx.

– if X is a discrete random variable (taking values on Z),

EpXn
q “

ÿ

kPZ
knP pω | Xpωq “ kq.

Note that EpXn
q ă `8 if and only if Ep|X|nq ă `8.

We recall that the moment for n “ 1, that is EpXq, is called the mean, whereas EpX ´ EpXqq2 “
EpX2

q ´ pEpXqq2 is called the variance.

1.9 Modes of convergence for random variables

We have several notion of convergence in the space of random variables and in the space PpRq.

Definition 1.9.1. Let pΩ,F ,Pq be a probability space and Xn, X : Ω Ñ R be real random variables.

– Xn converges to X in probability if for every ε ą 0, limn Pp|Xn ´X| ą εq “ 0,
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– Xn converges in mean to X if Ep|Xn ´X|q Ñ 0

– Xn converges in mean square to X if EppXn ´Xq2q Ñ 0

– Xn converges in distribution to X if EpgpXnqq Ñ EpgpXqq for every bounded continuous function g.

We recall also a notion of convergence on the space PpRq.

Definition 1.9.2 (Weak convergence). Let µn, µ P PpRq with µn “ LXn , µ “ LX with Xn, X : Ω Ñ R
random variables on a probability space pΩ,F ,Pq.

Then µn converges weakly to µ if Xn converges in distribution to X that is
ş

R gpxqdµn Ñ
ş

R gpxqdµ
for every bounded continuous function g.

Theorem 1.9.3 (Prokhorov’s theorem). Let Xn be a sequence of random variables which are tight in
the following sense: for every ε ą 0 there exist nε ą 0 and a compact set Kε (so a bounded closed set)
such that Ptω,Xnpωq P Kεu ě 1´ ε for all n ě nε. Then, there exists a random variable X such that, up
to a subsequence, Xn Ñ X in distribution.

The same statement can be stated in the space PpRq.

Theorem 1.9.4 (Prokhorov’s theorem for laws). Let µn P PpRq be a sequence of probability measures
which is tight in the following sense: for every ε ą 0 there exist nε ą 0 and a compact set Kε (so a
bounded closed set) such that µnpKεq ě 1´ ε for all n ě nε (recall that µnpRq “ 1 for all n). Then, there
exists µ P PpRq such that, up to a subsequence, µn Ñ µ weakly.

1.10 Problems

(i) Let f : RÑ R be a monotone function. Show that f is Lebesgue measurable.

(ii) Consider the right continuous increasing function on R

F pxq “

#

x x ă 0

x` 1 x ě 0.

Which is the Borel measure associated to this function?
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Chapter 2

Spaces of random variables with
finite p-moment.

2.1 The Banach spaces Mp of random variables with finite
moments

2.1.1 Banach spaces

Let X be a vectorial space on R (this means that it is closed by summation and by multiplication by
scalars, that is if x, y P X, λ, µ P R, then λx` µy P X).

Definition 2.1.1. A norm } ¨ } : X Ñ r0,`8q is a function such that

– }x} ě 0 for all x P X and }x} “ 0 iff x “ 0 (positivity);

– }λx} “ |λ|}x} for all x P X,λ P R (homogeneity);

– }x` y} ď }x} ` }y} (triangular inequality).

pX, } ¨ }q is a normed space.

Example 2.1.2. On Rn we may define the euclidean norm |x| “
a

x2
1 ` ¨ ¨ ¨ ` |xn|

2.

A norm induces on X a metric structure on X in the following way.

Definition 2.1.3 (Metric structure and notion of convergence). Let pX, } ¨ }q be a normed space. We
define a distance between elements in X as

dpx, yq “ }x´ y}.

Note that this is a good definition, since it is positive, zero only if x “ y, and satisfies the triangular
inequality, that is dpx, zq ď dpx, yq ` dpy, zq for all x, y, z.

We define the balls associated to this distance as follows: we fix a center x0 P X and a radius r ą 0
and we set

Bpx0, rq “ tx P X |}x´ x0} ă ru.

A set A Ď X is open if for all x P A there exists r ą 0 such that Bpx, rq Ď A. A set C is closed is
XzC is open.

Let pxnqn a sequence of element in X and x P X. Then

lim
n
xn “ x iff lim

nÑ`8
}xn ´ x} “ 0.

Proposition 2.1.4. The following are equivalent:

i) C is closed

ii) for every sequence pxnq of elements in C such that there exists x P X with limn xn “ x, there holds
that x P C.
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Proof. Assume that C is closed and ii) is false. Then there exists pxnq of elements in C such that
limn xn “ x R C. This implies that there exists r ą 0 such that Bpx, rq Ď XzC. Therefore xn R Bpx, rq
for all n, which means that }xn ´ x} ě r for all n, in contradiction with the fact that limn xn “ x.

Assume that ii) holds and assume that C is not closed. So there exists x R C such that for all r ą 0
there holds that Bpx, rq X C ­“ H. Let xn P C such that xn P Bpx,

1
n
q X C. So }xn ´ x} ă 1

n
and then

limn xn “ x. But this would imply x P C.

Definition 2.1.5 (Banach space).
A sequence pxnqn in X is a Cauchy sequence if limn,m }xn ´ xm} “ 0.
A normed space is called a Banach space if all the Cauchy sequences have limit in X.

Remark 2.1.6. Note that if pxnqn is a sequence which converge to x P X, then it is also a Cauchy sequence,
since by triangular inequality }xn ´ xm} ď }xn ´ x} ` }x ´ xm} and then 0 ď limn,mÑ`8 }xn ´ xm} ď
limm,nÑ`8 }xn ´ x} ` }x´ xm} “ 0.

The viceversa is not always true. Let’s think e.g. of the case X “ Q and the euclidean norm. Define
pxnq as follows: x0 “ 1, x1 “ 1, 01, x2 “ 1, 01001, x3 “ 1, 010010001, x4 “ 1, 01001000100001 and so on,

that is xn “ 1, 1010010001 . . . 1
n

0 . . . 0 1. It is easy to check that xn P Q for all n, that xn Ñ x (so pxnqn
is a Cauchy sequence, but this can also be checked directly) and that x R Q. This implies that pQ, | ¨ |q is
not a Banach space.

An important theorem in Banach spaces (more generally in complete metric spaces) is the contraction
lemma, or Banach-Caccioppoli theorem:

Theorem 2.1.7. Let pX, } ¨ }q a Banach space and F : X Ñ X such that there exists 0 ă a ă 1 for which

}F pxq ´ F pyq} ď a}x´ y} @x, y P X.

(F is a contraction) Then the map F admits a unique fixed point, that is a point such that x̄ “ F px̄q.

Proof. See problem 1 at the end of the chapter.

Definition 2.1.8. Let pX, } ¨ }Xq and pY, } ¨ }Y q be two Banach space.
A linear operator is a map T : X Ñ Y such that T pαx ` βyq “ αT pxq ` βT pyq for all α, β P R,

x, y P X.
A bounded operator is a map T : X Ñ Y such that

}T } “ sup
txPX}x}ď1u

}Tx} ă `8.

If this quantity if finite, it is called the norm of T .
A continuous operator is a map T : X Ñ Y such that

limTxn “ Tx for all sequences xn such that lim
n
xn “ x.

Proposition 2.1.9. A linear operator T : X Ñ Y is continuous if and only if it is bounded.

Proof. Assume that T is bounded, then

}Txn ´ Tx} “ }T pxn ´ xq} “ }xn ´ x}T

ˆ

xn ´ x

}xn ´ x}

˙

ď }xn ´ x}}T }.

Therefore if }xn ´ x} Ñ 0, then also }Txn ´ Tx} Ñ 0.
Assume that T is continuous, and we want to prove that T is bounded. Assume by contradiction that

it is not true. So for every n P N there exists xn P X such that }xn} “ 1 and }Txn} ě n. Define yn “
xn
n

.

Then }yn} “
}xn}
n
“ 1

n
Ñ 0. This implies that yn Ñ 0. Observe that by linearity Tyn “

1
n
Txn and then

}Tyn} “
1
n
}Txn} ě

n
n
“ 1. Therefore yn Ñ 0 but Tyn ­Ñ 0, in contradiction with continuity.

Theorem 2.1.10. The set of all bounded linear operators between two Banach spaces X,Y , is a Banach
space BpX,Y q, with norm }T } as defined above.

Proof. See [2, Theorem 2.12].
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Example 2.1.11. Let X “ Rn and Y “ Rm both with the euclidean norm. Let A P MmˆnpRq be a
nˆm matrix. Then

Tx “ Ax “ p
n
ÿ

j“1

aijxjqi“1,...,m

is a bounded linear operator from Rn to Rm.

Theorem 2.1.12 (Uniform boundedness principle, or Banach-Steinhaus theorem). Let Tn be a sequence
of bounded linear operators between the Banach spaces X and Y , that is Tn P BpX,Y q for all n. Assume
that for all x P X there exists Cx P R such that supn }Tnx} ď Cx.

Then there exists C P R such that }Tn} ď C for all n.
In particular this implies that if the sequence Tnx is convergent for every x P X, then Tx :“ limn Tnx

defines a bounded linear operator.

Proof. See [2, Theorem 4.1].

2.1.2 Spaces of random variables with finite moments

We fix a probability space pΩ,F ,Pq and we consider the random variables X : Ω Ñ R. We introduce the
spaces of random variables with finite p-moment (see definition in Section 2.7)

Mp
“ tX random variable Ep|X|pq ă `8u

with associated norm }X}p “ pEp|X|pqq1{p.

Definition 2.1.13. Let p ą 1. Then the conjugate exponent of p is the number q ą 1 such that 1{p`1{q “
1. In particular the conjugate exponent of 2 is 2.

We say that the conjugate exponent of 1 is `8.

Lemma 2.1.14 (Young inequality). Let p, q be conjugate exponents. Then xy ď xp{p ` yq{q for all
x, y ě 0.

Proof. Fix x ą 0 and consider supyě0pxy ´ yq{qq. First of all observe that the supremum is actually a
maximum, since limyÑ`8 xy ´ yq{q “ ´8. Differentiating in y, we get that the unique point where the
derivative is 0 is given by y “ x1{pq´1q. This is the maximum. Therefore for all y ě 0, xy ´ yq{q ď
x1`1{pq´1q

´ xq{pq´1q
{q “ xp{p, since p “ q{pq ´ 1q.

Proposition 2.1.15. Let X PMp and Y PMq, with q conjugate exponent of p, then

Ep|XY |q ď Ep|X|pqq1{ppEp|Y |qqq1{q.

Moreover if X,Z PMp, then

Ep|X ` Z|pqq1{p ď Ep|X|pqq1{p ` Ep|Z|pqq1{p

Proof. It is sufficient to apply the Young inequality to x “ |X|Ep|X|pqq´1{p and to y “ |Y |Ep|Y |qqq´1{q

and one obtain
|X|

Ep|X|pqq1{p
|Y |

Ep|Y |qqq1{q
ď

|X|p

pEp|X|pq
`

|Y |q

qEp|Y |qq
.

By applying E to both term we conclude

Ep|XY |q
Ep|X|pqq1{pEp|Y |qqq1{q

ď
1

p
`

1

q
“ 1.

Observe that if X,Y PMp the X ` Y PMp. This is due to the fact that

|X ` Y |p

2p
“

ˇ

ˇ

ˇ

ˇ

X

2
`
Y

2

ˇ

ˇ

ˇ

ˇ

p

ď
|X|p

2
`
|Y |p

2

by the convexity of the function r ÞÑ rp on r0,`8q when p ě 1. Now we observe that

|X ` Y |p “ |X ` Y ||X ` Y |p´1
ď |X||X ` Y |p´1

` |X||X ` Y |p´1
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and that |X ` Y |p´1
PMq where q “ p

p´1
is the conjugate exponent of p. Moreover

E
`

|X ` Y |p´1
˘q
“ E|X ` Y |p. (2.1.1)

So by Holder inequality applied to f and |f ` g|p´1 we get

E|X||X ` Y |p´1
ď pE|X|pq

1
p pE|X ` Y |pq

p´1
p

and analogously by Holder inequality applied to f and |f ` g|p´1 we get

E|Y ||X ` Y |p´1dx ď pE|Y |pq
1
p pE|X ` Y |pq

p´1
p .

Integrating (2.1.1) and using the previous inequalities we get

E|X ` Y |p ď pE|X|pq
1
p pE|X ` Y |pq

p´1
p

`pE|Y |pq
1
p pE|X ` Y |pq

p´1
p

“ pE|X ` Y |pq
p´1
p

”

pE|X|pq
1
p ` pE|Y |pq

1
p

ı

from which we deduce the statement by dividing both sides by pE|X ` Y |pq
p´1
p .

Theorem 2.1.16. The space Mp with the norm }X}p for p P r1,`8q is a Banach space.

We recall the Jensen inequality:

Lemma 2.1.17 (Jensen’s inequality). Let g : RÑ R be a convex function, then for every random variable
X

EpgpXqq ě gpEpXqq.

Theorem 2.1.18. There holds that Mk
Ď Mn for every 1 ď n ď k. Moreover if X P Mk then

pEp|X|nqq
1
n ď pEp|X|kqq

1
k for all n ď k.

Proof. Let 1 ď n ď k, gpxq “ |x|
k
n . Since k

n
ě 1, the function g is convex. Let X P Mk and we apply

Jensen’s inequality to the random variable |X|n, observing that gp|X|nq “ |X|k,

Ep|X|kq “ Epgp|X|nqq ě gpEp|X|nqq “ pEp|X|nqq
k
n .

Example 2.1.19. T : Mk
Ñ R such that T pXq “ EpXq is a bounded linear operator.

If we consider X P M2, then TX : M2
Ñ R defined as TXpyq “ EpXY q is again a bounded linear

operator.

2.2 Hilbert space M 2 and conditional expectation

2.2.1 Hilbert spaces

Hilbert spaces are spaces where it is possible to define the notions of length and orthogonality, which allow
to work with the elements geometrically, as if they were vectors in Euclidean space. First of all we recalls
some basic definitions.

Definition 2.2.1. A set X is a vector space on R (a real vector space) if it is a set equipped with two
operations, vector addition (which allows to add two vectors x, y P X to obtain another vector x` y P X)
and scalar multiplication (which allows us to “scale” a vector x P X by a real number c to obtain a vector
cx P X). Moreover we require that X contains a neutral element for the vector addiction, that is an
element 0 P X such that 0` x “ x for every x P X and x´ x “ 0.

A scalar product on X is a function p¨, ¨q : X ˆX Ñ R such that

– px, xq ě 0 for all x and px, xq “ 0 iff x “ 0;

– it is symmetric px, yq “ py, xq for all x, y P X;

– it is linear, that is pαx` βy, zq “ αpx, zq ` βpy, zq for all x, y, z P X,α, β P R.
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We associate to a scalar product a norm in this way }x} “
a

px, xq.

Proposition 2.2.2. The function } ¨ } : X Ñ r0,`8q defined as }x} “
a

px, xq is a norm. Moreover the
scalar product is continuous, that is if xn Ñ x in X and y P X, then pxn, yq Ñ px, yq in R.

Proof. Positivity and homogeneity are obvious. To prove the triangle inequality one first need to to prove
the Cauchy Schwartz inequality |px, yq| ď }x}}y}. See [2, Theorem 5.1].

The continuity is an easy consequence of the Cauchy Schwartz inequality:

|pxn ´ x, yq| ď }xn ´ x}}y}.

Definition 2.2.3 (Hilbert space). A space X with a scalar product which induces on X a norm such that
X is a Banach space is called Hilbert space.

Proposition 2.2.4 (Parallelogram identity). For every x, y P H, there holds

}x` y}2 ` }x´ y}2 “ 2}x}2 ` 2}y}2.

Proof. By definition and by linearity and symmetry of the scalar product }x ` y}2 “ px ` y, x ` yq “
px, xq ` 2px, yq ` py, yq “ }x}2 ` 2px, yq ` }y}2, and }x´ y}2 “ px` y, x` yq “ }x}2 ´ 2px, yq ` }y}2. It is
sufficient to sum.

Example 2.2.5. In Rn we define the scalar product px, yq “ x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn. The euclidean
norm is the norm associated to this scalar product. So Rn with this scalar product is a Hilbert space.
This is the basic example of Hilbert space of finite dimension.

2.2.2 Orthogonality and projections in Hilbert spaces

Definition 2.2.6 (Orthogonal space). We say that x, y P X are orthogonal if px, yq “ 0.
If S Ď X is a subset of X, we define the orthogonal subspace

SK “ tx P X | px, sq “ 0 @s P Su.

This a vectorial subspace of X.

Example 2.2.7. If we consider S Ă M2 the subspace of constant random variables, then SK “ tX P

M2
|EpXq “ 0u.

Theorem 2.2.8 (Orthogonal projection). Let V Ď H be a closed subspace of a Hilbert space, V ‰ t0u
and let h P H.

Then there exists a unique element v P V at minimal distance from h, that is such that }h ´ v} “
minwPV }h´ w}. Moreover there exists a unique element s P V K such that h “ v ` s.

The map PrV : H Ñ V which associate hÑ v is called the orthogonal projection of H in V and it is
a bounded linear operator of norm 1.

Proof. We consider the minimization problem minwPV }h ´ w} and we show that it admits a solution
which is unique. Since }h ´ w} ě 0 we get that infwPV }h ´ w} “ δ ě 0. Let vn P V such that
δ ď }vn ´ h} ď δ ` 1{n. Then pvnqn is a Cauchy sequence, since by parallelogram identity and linearity

}vn´vm}
2
“ 2}vn´h}

2
`2}vm´h}

2
´}pvn`vmq´2h}2 ď 2pδ`1{nq2`2pδ`1{mq2´4}h´pvn`vmq{2}

2.

We conclude by recalling that since pvn ` vmq{2 P V then }h´ pvn ` vmq{2} ě δ,

}vn ´ vm}
2
ď 2pδ ` 1{nq2 ` 2pδ ` 1{mq2 ´ 4δ2

“ 4δ{n` 4δ{m` 1{n2
` 1{m2

Ñ 0 as n,mÑ `8.

Since H is a Banach space there exists v P H such that limn vn “ v and since V is closed then v P V . By
continuity, we conclude that }v ´ h} “ δ “ infwPV }h ´ w}. v is the unique minimizer. Indeed if it were
not the case, there would exists v1 P V with }v ´ h} “ }v1 ´ h} “ δ. By parallelogram identity

}v ´ v1}2 “ 2}v ´ h}2 ` 2}v1 ´ h}2 ´ 4}pv ` v1q{2´ h}2 ď 2δ2
` 2δ2

´ 4δ2
“ 0

which implies }v ´ v1} “ 0.
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Let w P V . We claim that ph ´ v, wq “ 0. Since v is the point at minimum distance, then the
function λÑ }h´ v`λw}2 has minimum in λ “ 0. Differentiating the function in λ it should be that the

derivative in 0 is 0. }h´v`λw}2

dλ
“

ph´v`λw,h´v`λwq
dλ

“ 2ph ´ v, wq. Therefore ph ´ v, wq “ 0. This means
that h´ v P V K.

Let v “ PrV phq, v
1
“ PrV ph

1
q and let α, β P R. Then αv ` βv1 P V and αv ` βv1 ´ αh ´ βh1 P V K.

Therefore by uniqueness PrV pαh ` βh1q “ αv ` βv1. Then PrV is linear. Moreover since pPrV h ´
h, PrV hq “ 0,

}h}2 “ }h´ PrV h` PrV h}
2
“ ph´ PrV h` PrV h, h´ PrV h` PrV hq “ }h´ PrV h}

2
` }PrV h}

2.

This implies that for all h with }h} ď 1, }PrV h}
2
“ }h}2´}h´PrV h}

2
ď 1. So PrV is bounded. Moreover

if h P V , then PrV h “ h. Therefore }PrV } “ 1.

Definition 2.2.9 (Orthonormal set). A set tui, i P Iu of elements in H is an orthonormal set if }ui} “ 1
for all i and pui, ujq “ 0 for all i ‰ j.

Proposition 2.2.10. Let tui, i P Iu be a orthonormal set. Then the following are equivalent

– if px, uiq “ 0 for all i, then x “ 0

– }x}2 “
ř

i |px, uiq|
2 for all x P H,

– for all x P H, x “
ř

ipx, uiqui, (where the convergence is with respect to the norm of H).

An orthonormal set for which one of the previous conditions hold is called an orthonormal basis. Every
Hilbert space admits a orthonormal basis.

Proof. See [3, Proposition 5.28].

Definition 2.2.11 (Separable space). H is separable if it admits a countable orthonormal basis.

Theorem 2.2.12 (Computation of the orthogonal projection). Let V be a closed subspace of H and let
tvi, i P Iu be an orthonormal basis of V . Then for all h P H,

PrV phq “
ÿ

iPI

ph, viqvi.

Proof. See [2, Theorem 5.10].

Theorem 2.2.13 (Parseval theorem). Let tui, i P Iu be a countable orthonormal set in H. The following
are equivalent

– if ph, uiq “ 0 for all i then h “ 0,

– for each h P H there holds h “
ř

iph, uiqui, which means that limn }h´
řn
i“1ph, uiqui} “ 0,

– for each h P H, }h}2 “
ř

i |ph, uiq|
2.

In particular tui, i P Iu is an orthonormal basis of H.

2.2.3 Conditional expectation

We fix a probability space pΩ,P,Fq and we define the space

M2
“ tX : pΩ,P,Fq Ñ R | X random variable with EpX2

q ă `8u.

Recall that X is a random variable if X´1
pAq P F for every A P B (so for every A in the σ´algebra of

Borel sets. Given X random variable, we define σpXq Ď F , that is the σ-algebra generated by X, as
the minimal σ- algebra contained in F which contains all the elements X´1

pAq “ tω P Ω | Xpωq P Au for
every A P B. So it is the minimal σ-algebra which assures that X is measurable.

Note that if X is a constant random variable, so Xpωq “ c for all ω P Ω, then X´1
pAq “ Ω if c P A,

and X´1
pAq “ H if c R A. So in this case σpXq “ tH,Ωu, which is the minimal possible σ-algebra.

We define on M2 the scalar product

pX,Y q “ EpXY q “
ż

R
xydLpX,Y qpx, yq
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and the induced norm is
}X} “

a

EpX2q.

It is possible to prove that M2 with this norm and this scalar product is a Hilbert space. Observe that
we are actually considering class of equivalence of random variables, since we are identifying two random
variables X,Y such that Ppω | Xpωq “ Y pωqq “ 1.

We consider a σ-algebra G Ď F , and consider the probability space pΩ,P,Gq. On this space we may
define the space

M2
G “ tX : pΩ,P,Gq Ñ R | X random variable with EpX2

q ă `8u.

Note that M2
G is a closed subspace of M2.

Definition 2.2.14 (Conditional expectation). We define the conditional expectation of X given G
as the orthogonal projection of X P M2 in the space M2

G as defined and characterized in Theorem 2.2.8
that is

EpX|Gq “ PrM2
G
pXq,

or equivalently EpX|Gq is the unique random variable in M2
G such that

EpX ´ EpX|Gqq2 “ min
ZPM2

G

EpX ´ Zq2.

In particular EpX|Gq is the minimum mean squared predictor of X based on the information contained in
G.

Note that X ´ EpX|Gq is orthogonal to every element of M2
G that is

EpXY q “ EpEpX|GqY q @ Y PM2
G .

In particular, since constant random variables are in M2
G for every G, we get EpXq “ EpEpX|Gqq.

Remark 2.2.15 (Conditioning with respect to a random variable X). A particular case of the previous
definition is the following. Let us consider a random variable X P M2, and let G “ σpXq as before. It
is possible to show that in this case every G measurable random variable is a Borel function of X, which
means that

M2
G :“ thpXq, for h : RÑ R, borelian functionu.

h : R Ñ R is a Borel function if for all borelian set B Ď BpRq, the set h´1
pBq :“ tx P R hpxq P Bu is in

the Borel σ-algebra (Note that this condition is slightly stronger than asking that h is measurable, since
measurable functions satisfies h´1

pBq :“ tx P R hpxq P Bu PM, that is are elements of the σ-algebra of
measurable sets (given by sets which differs from Borel sets by subsets of sets of zero Lebesgue measure).

In this case EpY |σpXqq “ EpY |Xq is the best predictor of Y given X. In particular EpY |Xq the unique
Borel function hpXq which minimizes EpY ´ hpXqq2:

ErpY ´ EpY |Xqq2s “ ErpY ´ hpXqq2s “ min
f :RÑR,borelian

ErpY ´ fpXqq2s

and moreover
EpY fpXqq “ EphpXqfpXqq @f : RÑ R. borelian.

Note that solving this minimization problem can be very difficult, so in general we consider a reduced
problem, adding some conditions on the functions f on which we are minimizing.

The simplest case is the case in which we consider the minimization problem among linear functions:
that is

min
f :RÑR,linear

ErpY ´ fpXqq2s.

h : R Ñ R is linear if and only if there exists a, b P R such that hprq “ ar ` b. So the problem reduced
to a finite dimensional problem: given X PM2 we want to find for all Y , a, b P R for which it is minimal
EppY ´ a´ bXq2q. So, the linear least square estimator is given by

LpY |Xq “ a` bX,

where a, b are the optimal values which minimize EppY ´a´ bXq2q. This problem can be restated exactly
as a projection problem: we define S as the space generated by X, 1 in M2, that is S “ tZ “ aX ` b P
M2, a P R, b P Ru and we want to find PrSpY q.
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In order to solve the problem, first of all we choose an orthonormal basis of S. A basis of S is given
by t1, Xu. Observe that if EpXq “ pX, 1q ‰ 0, we have that X and 1 are not orthogonal, so we substitute
X with the element X ´ EpXq which is orthogonal to 1. Moreover we have to normalize this element by
choosing c P R such that c2EpX ´ EpXqq2 “ 1. Since EpX ´ EpXqq2 “ EpX2

q ´ pEpXqq2 “ V arpXq, it is
sufficient to choose c “

?
V arX. Therefore an orthonormal basis of S is given by 1, X´EpXq?

V arpXq
. Recalling

Theorem 2.2.12, we get

PrSpY q “ pY, 1q1`

˜

Y,
X ´ EpXq
a

V arpXq

¸

X ´ EpXq
a

V arpXq
.

So the linear least square estimator coincides with

LpY |Xq “ EpY q ` CovpX,Y q

V arpXq
pX ´ EpXqq

where CovpX,Y q “ EpX ´ EpXqqpY ´ EpY qq “ EpXY q ´ EpXqEpY q. Finally we compute the average
error

EpY ´ LpY |Xqq2 “ V arpY q `
Cov2

pX,Y q

V ar2pXq
V arX ´ 2

CovpX,Y q

V arpXq
CovpX,Y q

“ V arY ´
Cov2

pX,Y q

V arpXq
“
V arpY qV arpXq ´ Cov2

pXY q

V arpXq
.

In general the best linear predictor is different from the general minimum mean squared predictor. Let
Y “ X2

` Z with X,Z independent and both normals with mean 0 and variance 1. Then EpY |Xq “ X2,
whereas LpY |Xq “ 1 (check it!).

Remark 2.2.16 (Conditioning with respect to a constant random variable). A very simple case to
compute EpY |σpXqq “ EpY |Xq is the case in which X ” k (that is X is constant). In this case σpXq “
tH,Ωq and the space

M2
G :“ tconstant random variablesu.

So, EpY |Xq is the unique constant c such that

ErpY ´ cq2s “ min
λPR

ErpY ´ λq2s

and moreover
λEpY q “ EpY λq “ Epcλq “ cλ @λ P R.

It is immediate to verify that c “ EpY |Gq “ EpY q. Another simple case is the case in which X “ χA, for
some A P F which means that χApωq “ 1 if ω P A and χApωq “ 0 if ω R A. It is simple to see that in this
case σpχAq “ tH,Ω, A,ΩzAu. In this case

M2
G :“ taχA ` bχΩzA “ pa´ bqχA ` b a, b P Ru.

So, EpY |Aq is obtained by solving the finite dimensional minimization problem

min
a,bPR

ErpY ´ aχA ´ bq2s.

Since M2
G is a finite dimensional space (of dimension 2), we compute a orthonormal basis of it. We start

from the basis given by t1, χAu and we orthonormalize it by Gram-Schmidt procedure. Let X1 “ 1 and
X2 “

χA´PpAq?
PpAqp1´PpAqq

. Note that E|X1|
2
“ 1 “ E|X2|

2 and moreover EpX1X2q “ 0. Therefore by Theorem

2.2.12 we deduce that

EpY |Aq “ EpY X1qX1 ` EpY X2qX2 “ EpY q ` EpY χAq
PpAqp1´ PpAqq

χA ´ EpY q PpAq
PpAqp1´ PpAqq

“

“
EpY χAq

PpAqp1´ PpAqq
χA ´

PpAq
1´ PpAq

EpY q.
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2.3 Metric spaces of laws of random variables and basics of
optimal transport

Up to now we fixed a probability space pΩ,F ,Pq and we considered the random variables X : Ω Ñ R. with
finite p-moment Mp

“ tX random variable Ep|X|pq ă `8u with associated norm }X}p “ pEp|X|pqq1{p.
We showed that these spaces are Banach spaces (as normed linear spaces of random variables defined on
a fixed probability space Ω) and in case p “ 2 are also Hilbert.

Another point of view is possible. Actually we may directly work on spaces of Borel measures on R
which are laws of some random variable. In this way, we have not to fix a given probability space (so a
sample set), and we have much more freedom.

2.3.1 Space of probability measures (laws of random variables)

Let us recall the definition of the space of laws of random variables:

PpRq “ tµ | there exists a probability space pΩ,F ,Pq and X : Ω Ñ R random variable s.t. µ “ LXu
“ tµ | Borel measure on R s.t. µpRq “ 1u.

The second equality is completely not obvious: it is the consequence of the following result (see e.g. [1,
Proposition 9.1.11]).

First we recall some definition. On a probability space pΩ,F ,Pq we say that A P F is an atom if
PpAq ą 0 and for all B P F with B Ď A and PpBq ă PpAq, it holds PpBq “ 0. So in an atomless
probability space for any A P F with PpAq ą 0 there exists B Ď A, B P F , with 0 ă PpBq ă PpAq.

Proposition 2.3.1. Let µ be a Borel measure on Rn, with µpRnq “ 1. Then there exists an atomless
probability space pΩ,F ,Pq and a random variable X : Ω Ñ Rn such that LX “ µ.

In particular we get that the space of probability measures on Rn coincide with the space of all laws
associated to some random variable (with values in Rn). One of the most used is the Total variation
distance:

dTV pµ, νq “ 2 sup
APBpRq

|µpAq ´ νpAq| “ 2 inf
LX“µ,LY “ν

Ptω P Ω|Xpωq ‰ Y pωqu.

Another important distance is the Lévy-Prokhorov distance, which is the distance associated to the
weak convergence of probability measures.

dLP pµ, νq “ inf

"

ε ą 0 : inf
LX“µ,LY “ν

Ptω P Ω||Xpωq ´ Y pωq| ą εu ă ε

*

.

2.3.2 Couplings between measures and deterministic couplings

We introduce the following definition

Definition 2.3.2 (Coupling between measures). Let µ, ν P PpRq. A coupling π between µ and ν is a
probability measure π P PpR2

q such that the first marginal of π is µ and the second marginal is ν, that
is for all A P BpRq it holds πpA ˆ Rq “ µpAq, πpR ˆ Aq “ νpAq. We denote Πpµ, νq the family of all
couplings between µ, ν.
For any π P Πpµ, νq, it is possible to find pΩ,F ,Pq a probability space, X,Y : Ω Ñ R random variables,
such that π “ LpX,Y q.
In optimal transport theory a coupling π P Πpµ, νq is also called a transport plan between µ and ν.

A particular class of couplings are the one associated to transport maps:

Definition 2.3.3 (Deterministic coupling). Let µ, ν P PpRq and ψ : pR,BpRq, µq Ñ R be a measurable
map (e.g a monotone map or a continuous map). Then ψ is a transport map if ψ7µ “ ν, that is for all
A P BpRq, it holds

νpAq “ µtx, ψpxq P Au.

We associate to ψ a coupling called deterministic coupling and defined as pId, ψq7µ where pId, ψq : R Ñ
Rˆ R is defined as pId, ψqpxq “ px, ψpxqq.

If pΩ,F ,Pq is a probability space, with X : Ω Ñ R random variable with law LX “ µ, then Y “ ψpXq
is a random variable with law ν and pId, ψq7µ “ LpX,ψpXqq.
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Obviously the previous definition can be extended to the case µ, ν P PpRnq. In case of dimension 1,
nonetheless, we may also use the cumulative distribution function.

Let µ P PpRq and let Fµpxq “ µp´8, xs the associated cumulative distribution function. Then
Fµ : RÑ r0, 1s is monotone increasing function and right continuous. We may define a pseudo-inverse of
Fµ as follows:

F´µ pxq :“ inftt, Fµptq ě xu F´µ : r0, 1s Ñ R.
It is easy to show the following properties, by using the definition:

Lemma 2.3.4. Let L|r0,1s be the Lebesgue measure restricted to the interval r0, 1s.

(i) F´µ pxq ď a if and only if Fµpaq ě x and F´µ pxq ą a if and only if Fµpaq ă x.

(ii) pF´µ q7L|r0,1s “ µ.

(iii) Let η “ pF´µ , F
´
ν q7L|r0,1s. Then η P Πpµ, νq and

ηpp´8, as ˆ p´8, bsq “ minpFµpaq, Fνpbqq.

(iv) If Fµ is continuous, then pFµq7µ “ L|r0,1s. In particular pF´ν ˝ Fµq7µ “ pF
´
ν q7pFµq7µ “ ν.

Proof. (i) F´µ pxq ď a is equivalent to say that a ě inftt, Fµptq ě xu which is equivalent to Fµpaq ě x.
Moreover, F´µ pxq ą a is equivalent to say that a ă inftt, Fµptq ě xu which is equivalent to Fµpaq ă x.

(ii) By definition

pF´µ q7L|r0,1sp´8, as “
ˇ

ˇ

 

x P r0, 1s, F´µ pxq ď a
(
ˇ

ˇ “ |tx P r0, 1s, Fµpaq ě xu| “ Fµpaq.

Therefore Fµ is the cumulative distribution function associated to pF´µ q7L|r0,1s, which therefore
coincides with µ.

(iii) By definition and the previous properties

ηpp´8, as ˆ p´8, bsq “
ˇ

ˇ

 

x P r0, 1s, F´µ pxq ď a, F´ν pxq ď b
(
ˇ

ˇ “ |tx P r0, 1s, Fµpaq ě x, Fνpbq ě xu| .

(iv) Note that since Fµ is continuous, for 0 ă a ă 1, tx P Fµpxq ď au “ p´8, xas where Fµpxaq “ a.
This implies that

pFµq7µr0, as “ µtx P Fµpxq ď au “ µp´8, xas “ Fµpxaq “ a “ L|r0,1sr0, as.

2.3.3 Monge and Kantorovich optimal transport problem

We will define for p P r1,`8q the subspace:

PppRq “ tµ | DpΩ,P,Fq , X : Ω Ñ R random variable s.t. X PMp, µ “ LXu

“ tµ P PpRq,
ż

R
|x|pdµ ă `8u.

It is quite easy, arguing as for Mp spaces (and using Jensen inequality), to show that for 1 ď p ď q it
holds

PqpRq Ď PppRq Ď P1pRq Ď PpRq.
The optimal transport problem as stated by Monge in 1781 (as a problem of optimal transportation

and optimal allocation of resources) can be rephrased in modern language as follows. We are given two
probability measures µ, ν P PpRq and a convex cost cpx, yq, that from now on we fix to be |x´y|p for some
p ě 1, measuring the cost of transporting one unit of mass from x to y . The optimal transport problem
is how to transport µ to ν (so finding a transport map ψ such that ψ7µ “ ν) whilst minimizing the cost:

inf

"
ż

R
|x´ ψpxq|pdµ ψ : RÑ R, measurable, and such that ψ7µ “ ν

*

. (2.3.1)

The problem with this formulation is that in general we cannot assume that the set of transport maps
is nonempty: so it is not sure that there exists at least one map ψ such that ψ7µ “ ν. For example if
µ “ δx0 and ν “ 1

2
δy1 `

1
2
δy2 , it is easy to see that no transport map may exist.

Such maps exists always in two basic cases.
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If µ “ 1
N

řN
i“1 δxi and ν “ 1

N

řN
i“1 δyi , then we consider any map ψ such that ψpxiq “ yj for

some i and some j and we are done. In this case the Monge problem can be rewritten as follows: let
σ : t1, 2, . . . , Nu Ñ t1, 2, . . . , Nu a injective map (it is one of the possible permutations of the indexes),
then

min
σ

ÿ

i

|xi ´ yσpiq|
p.

Another case in which there exists a transport map is when Fµ is continuous, as we have seen in
Lemma 2.3.4, in this case ψ “ F´ν ˝ Fµ.

Note that even if the transport maps exist, the optimal transport map may not be unique.

Example 2.3.5. [Book shift] Let us consider µ “ Lr0,1s and ν “ Lr1,2s. A transport map is ψ1ptq “ t`1,
but also ψ2ptq “ 2´ t. Let us compute the cost associated to them for p “ 1:

ż

R
|x´ψ1pxq|dµ “

ż 1

0

|x´p1`xq|dx “ 1

ż

R
|x´ψ2pxq|dµ “

ż 1

0

|x´p2´xq|dx “

ż 1

0

p2´2xqdx “ 2´1 “ 1.

Actually it is possible to prove that in this case both ψ1, ψ2 are optimal for the Monge problem with
p “ 1. Let us compute the cost associated to them for p “ 2:

ż

R
|x´ ψ1pxq|

2dµ “

ż 1

0

|x´ p1` xq|2dx “ 1

ż

R
|x´ ψ2pxq|

2dµ “

ż 1

0

|x´ p2´ xq|2dx “

ż 1

0

p2´ 2xq2dx “ 4´ 1`
4

3
ą 1.

In this case ψ1 is surely better than ψ2. We will see in the following that in case p ą 1, if µ ăă L, then
the optimal transport map is unique and coincide with ψ1 which is monotone.

Since the Monge problem has not always a solution, Kantorovich proposed a relaxation of it around
1940: instead of minimizing on deterministic couplings, we may minimize on all possible couplings between
measures µ, ν:

inf
πPΠpµ,νq

ż

RˆR
|x´ y|pdπpx, yq. (2.3.2)

It is equivalent to restrict, when we consider the coupling cpx, yq “ |x ´ y|p to µ, ν P PppRq. Since a
transport map induces a deterministic coupling, which in particular is a coupling it holds

inf
πPΠpµ,νq

ż

RˆR
|x´y|pdπpx, yq ď inf

"
ż

R
|x´ ψpxq|pdµ ψ : RÑ R, measurable, and such that ψ7µ “ ν

*

.

Looking at the problem of minimizing the cost with coupling is an alternative way to describe the displace-
ment of the particles of µ: instead of prescribing for each x the destination ψpxq of the particle located at
x, for every x, y we specify how many particles go from x to y: that is πpA ˆ Bq is the amount of mass
moving from A to B. Obviously this formulation allows for more general movements, since it may happen
that a particle move to different destinations.

We end the section looking at the counterpart of the previous problem in the case of random variables.
Let µ, ν P PppRq, and consider X,Y random variables on pΩ,F ,Pq such that LX “ µ, LY “ ν. In
particular X,Y PMp. Note that we are not prescribing the joint law of pX,Y q. Therefore

inf
πPΠpµ,νq

ż

RˆR
|x´ y|pdπpx, yq “ inf

tLX“µ,LY “νu
E|X ´ Y |p “ inf

tLX“µ,LY “νu

ż

|x´ y|pdLpX,Y qpx, yq.

We consider the case p “ 2.

inf
πPΠpµ,νq

ż

RˆR
|x´ y|2dπpx, yq “ inf

tLX“µ,LY “νu
E|X ´ Y |2 “ inf

tLX“µ,LY “νu

ż

|x´ y|2dLpX,Y qpx, yq.

Define x0 “ EpXq “
ş

R xdµ, and y0 “ EpY q “
ş

R xdν we have that

E|X ´ Y |2 “ E|pX ´ x0q ´ pY ´ y0q ` px0 ´ y0q|
2

“ E|X ´ x0|
2
` E|Y ´ y0|

2
` |x0 ´ y0|

2
`

`2EppX ´ x0qpx0 ´ y0qq ` 2EppY ´ y0qpx0 ´ y0qq ´ 2EppX ´ x0qpY ´ y0qq

“ VarX `VarY ` |x0 ´ y0|
2
´ 2CovpX,Y q.
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Therefore the optimization problem

inf
πPΠpµ,νq

ż

RˆR
|x´ y|2dπpx, yq “ inf

tLX“µ,LY “νu
E|X ´ Y |2

can be restated as

inf
πPΠpµ,νq

ż

RˆR
|x´ y|2dπpx, yq “ Cpµ, νq ´ 2 sup

tLX“µ,LY “νu
CovpX,Y q,

where Cpµ, νq is a constant depending on µ, ν. More precisely: let x0 “
ş

R xdµ, y0 “
ş

R xdν, it holds

Cpµ, νq “

ż

R
px´ x0q

2dµ`

ż

R
px´ y0q

2dν ` |x0 ´ y0|
2
“

ż

R
x2dµ`

ż

R
x2dν ´ 2

ż

R
xdµ

ż

R
xdν.

The optimal coupling is obtained by finding the joint law between X,Y which maximizes the covariance,
that is which guarantees maximal dependance between the two random variables with given laws (we will
see that it will be obtained when Y is an increasing function of X).

Remark 2.3.6. Optimal transport problem has several economic interpretation where π is a matching
between different actors of an economy and c is a sort of compatibility condition between agents x and y
or the opposite of a utility function.

An optimal matching problem which is very famous is that of the stable marriage. Let us consider a
population of women, with distribution µ and a population of men with distribution ν. A coupling γ is a
coupling between women and men, so a set of marriages. We define cwpx, yq as the interest of woman x
towards man y, and analogously cmpx, yq, so that the utility function is cw ` cm.

Finally the problem (2.3.2) can be restated as a linear optimization problem under convex constraints.
We express the constraint π P Πpµ, νq as follows:

sup
f,gPCbpRq

"
ż

R
fpxqdµ`

ż

R
gpxqdν ´

ż

RˆR
pfpxq ` gpyqqdπ

*

“

#

0 π P Πpµ, νq

`8 elsewhere
.

Therefore we may rewrite (2.3.2) as:

inf
πPPpRˆRq

ż

RˆR
|x´ y|pdπpx, yq ` sup

f,gPCbpRq

"
ż

R
fpxqdµ`

ż

R
gpxqdν ´

ż

RˆR
pfpxq ` gpyqqdπ

*

interchanging sup and inf

“ sup
f,gPCbpRq

"
ż

R
fpxqdµ`

ż

R
gpxqdν ` inf

πPPpRˆRq

ż

RˆR
p|x´ y|p ´ fpxq ´ gpyqqdπpx, yq

*

.

We rewrite

inf
πPPpRˆRq

ż

RˆR
p|x´ y|p ´ fpxq ´ gpyqqdπpx, yq “

#

0 fpxq ` gpyq ď |x´ y|p @x, y P R
´8 elsewhere

.

Therefore we have that

inf
πPΠpµ,νq

ż

RˆR
|x´ y|pdπpx, yq “ sup

f,gPCbpRq,fpxq`gpyqď|x´y|p

ż

R
fpxqdµ`

ż

R
gpxqdν.

If π̄ is an optimal transport plan, then there exist f̄ , ḡ optimal function (which are called Kantorovich
potentials) such that f̄pxq ` ḡpyq “ |x´ y|p for px, yq P supp π̄.

2.3.4 Wasserstein spaces

Let p ě 1, µ, ν P PppRq: we define the p-Wasserstein distance between µ, ν as

Wppµ, νq “

ˆ

inf
πPΠpµ,νq

ż

RˆR
|x´ y|pdπpx, yq

˙ 1
p

.
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The limit case p “ `8 is given by

W8pµ, νq “ sup
πPΠpµ,νq

t|x´ y|, px, yq P suppπu

where the support of a measure defined in pX,Σq is the largest (closed) subset of X for which every open
ball centered at any point of the set has positive measure.

We collect in the following proposition some results (see [4, Chapter 1]), which are completely non
trivial:

Proposition 2.3.7. Let µ, ν P PppRq.
(i) There exists always at least one coupling π P Πpµ, νq such that

Wppµ, νq
p
“

ż

RˆR
|x´ y|pdπpx, yq.

We denote such couplings as Πo
pµ, νq.

(ii) If p ą 1, there exists K Ď R, closed bounded set, such that µpKq “ 1 “ νpKq and µ ăă L, then the
optimal coupling π between µ, ν is unique, and coincides with a deterministic coupling: that is there
exists ψ : RÑ R measurable such that π “ p1, ψq7µ, or equivalently

Wppµ, νq
p
“

ż

R
|x´ ψpxq|pdµ.

(iii) If p “ 2 and µ ăă L then the optimal coupling π between µ, ν is unique, and coincides with a
deterministic monotone coupling, that is there exists ψ : RÑ R measurable such that ψ “ u1 where
u : RÑ R is a convex function and π “ p1, u1q7µ, i.e.

W2pµ, νq
2
“

ż

R
|x´ u1pxq|2dµ.

In particular ψ “ F´ν ˝ Fµ.

(iv) If p “ 1 then

W1pµ, νq “ sup
φ:RÑR,|φpxq´φpyq|ď|x´y|

ˆ
ż

R
φpxqdµ´

ż

R
φpxqdν

˙

.

We have a description more accurate in dimension 1. The basic idea behind the proof of this theorem
is the idea of monotonicity. If π transports mass from x1 to y1 and from x2 ą x1 to y2 we expect y2 ą y1,
else it would have been cheaper to transport from x1 to y2 and from x2 to y1.

Proposition 2.3.8. Let µ, ν P PppRq, and Fµ, Fν the associated cumulative functions. Let us define
on R ˆ R the measure π whose cumulative distribution function is Hpx, yq “ πpp´8, xs ˆ p´8, ysq “
minpFµpxq, Fνpyqq. Then π P Πo

pµ, νq and

Wppµ, νq
p
“

ż

RˆR
|x´ y|pdπpx, yq “

ż 1

0

|F´µ ptq ´ F
´
ν ptq|

pdt.

If Fµ is continuous, then π is a deterministic coupling, associated to ψ “ F´ν ˝Fµ. In particular for p “ 1
it holds

W1pµ, νq
p
“

ż

RˆR
|x´ y|dπpx, yq “

ż 1

0

|F´µ ptq ´ F
´
ν ptq|dt “

ż

R
|Fµpxq ´ Fνpxq|dx.

It is not easy, but possible to show that actually Wp is distance. We have a notion of convergence
with respect to this metric. Moreover the space PppRq with this metric is a complete metric space.

Proposition 2.3.9. (i) Wp is a distance: that is Wppµ, νq “ 0 if and only if µ “ ν, Wppµ, νq “
Wppν, µq, and finally the triangular inequality holds Wppµ, ρq ďWppµ, νq `Wppν, ρq.

(ii) Let µn, µ P PppRq. Then Wppµn, µq Ñ 0 iff µÑ µ weakly and limn

ş

R |x|
pdµn “

ş

R |x|
pdµ.

(iii) pPppRq,Wpq is a complete metric space.

(iv) If q ą p, then Wqpµ, νq ěWppµ, νq.
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One of the most popular applications of optimal transport is the barycenter problem, providing
dimension-free rates of statistical estimation. Wasserstein barycenters are a type of average of proba-
bility measures defined using the optimal transport geometry, and allow to average data that can be
represented as probability distributions on R (or Rd), a setting that commonly arises in machine learning
and statistics.

Let us consider just empirical barycenters. So, given µ1, . . . , µk P P2pRq we define the barycenter of
this family as µ̄ realizing (if it exists) the minimum of

min
µPP2pRq

1

k

k
ÿ

i“1

W 2
2 pµi, µq.

2.4 Problems

(i) Let pX, } ¨ }q a Banach space and F : X Ñ X such that there exists 0 ă a ă 1 for which

}F pxq ´ F pyq} ď a}x´ y} @x, y P X.

(F is a contraction)

(a) Show that the map F is continuous.

(b) Let x0 P X. Define x1 “ F px0q, x2 “ F px1q and so on xn “ F pxn´1q. Prove that

}xn ´ xn`1} ď an}x0 ´ x1}.

Deduce that pxnqn is a Cauchy sequence.

(c) Let x̄ “ limn xn, where pxnq has been defined in the previous step. Show that F px̄q “ x̄. So,
x̄ is a fixed point of F .

(d) Show that the map F admits a unique fixed point, that is a point such that x̄ “ F px̄q.

This is called Banach-Caccioppoli theorem.

(ii) Let Xn, Yn P H such that Xn Ñ X and Yn Ñ Y . Show that

– EpXnq Ñ EpXq,
– pXn, Ynq “ EpXnYnq Ñ EpXY q “ pX,Y q,
– CovpXn, Ynq “ EpXnYnq ´ EpXnqEpYnq Ñ CovpXY q “ EpXY q ´ EpXqEpY q
– V arpXnq “ CovpXn, Xnq Ñ V arpXq “ CovpX,Xq.

(iii) Consider X,Y, Z P H and assume X,Z are not constant. Compute the least linear quadratic
estimator LpY |X,Zq. Show that LpY |X,Zq “ LpY |Xq ` LpY |Z ´ LpZ|Xqq ´ EpY q. (Hint: look at
Remark 2.2.15).
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Chapter 3

Element of Fourier analysis and
the Central Limit Theorem

Fourier Analysis has several important applications in mathematics and statistics, in particular in data
analysis and estimation. Loosely speaking, Fourier analysis refers to the tool used to compress complex
data into exponential functions (or trigonometric functions). So, it permits to analyze data in terms
of their frequency components. Two of the central ingredients of Fourier Analysis are the convolution
operator and the Fourier transform.

In this last section we will consider also functions taking complex values, that is f : R Ñ C. In this
case f can be written in terms of 2 real functions f1, f2 which correspond to the real and imaginary part
of f , that is fpxq “ f1pxq ` if2pxq.

We recall also the formula for the complex exponential

eix “ cosx` i sinx.

3.1 Convolution operator

Let f, g : Rn Ñ R be measurable functions and we define the convolution between f and g as the function

f ˚ gpxq :“

ż

R
fpx´ yqgpyqdy p or equivalently “

ż

R
fpyqgpx´ yqdyq

for all x such that the integral exists finite. Note that f ˚ g is a function of x!
Intuitively: let x P Rn and consider the function y Ñ fpx ´ yq. This is the same as the function f , but
we have to shift the graph of f by x and then flip it around the axis y “ x. Assume that f is a smooth
function which is positive only in a neighborhood of 0 and null elsewhere, with integral 1. Computing
f ˚ gpxq we are taking a sort of weighted average of the values of g near the point x (weighted by the
values of g)..

Basic properties of the convolution are the following. For the proof we refer to the Section 8.2 in [3].

(i) f ˚ gpxq “ g ˚ fpxq and pf ˚ gq ˚ hpxq “ f ˚ pg ˚ hqpxq,

(ii) The support of a function h is the closure of the set of points where h ‰ 0. The support of f ˚ g is
contained in the closure of the sum of the support of f and the support of g.

One of the main important features of the convolution operator is that it has regularizing properties.

Proposition 3.1.1. If f P L1
pRnq and g P CkpRnq bounded and with bounded derivatives up to order k,

then f ˚ g P CkpRnq and for every i P t1, . . . , nu and h P t1, . . . , ku, Bhxipf ˚ gqpxq “ f ˚ pBhxigqpxq.

Let

gpxq “

#

ce
1

|x|2´1 |x| ď 1

0 elsewhere

where c ą 0 is chosen such that
ş

R gpxqdx “ 1. Note that g P C8pRq and gpxq “ 0 for |x| ě 1.
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Let t ą 0 and consider gtpxq “ tg
`

x
t

˘

. Then
ş

R gtpxqdx “ 1 (by change of variable formula!) and
gtpxq “ 0 if |x| ě t.

As tÑ 0 gt becomes more and more concentrated at x “ 0. Observe that by its properties, gt is the
density function of the law of an absolutely continuous random variable Xt.

Proposition 3.1.2 (Approximation of the Dirac measure and regularization by convolution). Let Xt
be the continuous random variable with density given by gt as defined before. Then Xt converges in
distribution as tÑ 0` to the discrete random variable X0 with associated distribution the Dirac measure
δ0 (that is X ” 0 almost surely).

Proof. To prove the convergence in distribution we need to show that for every f which is continuous and
bounded there holds

lim
tÑ0`

ż

R
fpxqgtpxqdx “ δ0pfq “ fp0q.

By definition and changing the variable posing y “ x
t

ż

R
fpxqgtpxqdx “

ż t

´t

fpxqgtpxqdx “ c

ż 1

´1

fptyqe
´ 1
|y|2´1 dy.

Sending tÑ 0 and applying the dominated convergence theorem we conclude.

The convolution is also useful to compute density functions of the sum of independent random variables.

Theorem 3.1.3. Let X and Y be independent absolutely continuous random variables and let f, g the
density functions of the laws of X,Y . So Z “ X`Y is a continuous random variable with density function
given by f ˚ g.

Remark 3.1.4. The same statement holds also with discrete random variables, substituting the integral
with sum and convolution with a discrete convolution. That is if X,Y are discrete independent random
variables, then X ` Y “ Z is discrete random variable and the following holds: for every n P Z,

PpZ “ nq “
`8
ÿ

´8

PpX “ kqPpY “ n´ kq.

The proof of this formula can be checked easily in the case of random variables taking a finite number of
values.

Proof. Observe that for every a, b, by independence

PpX ď a, Y ď bq “ PpX ď aqPpY ď bq “

ż a

´8

fpxqdy

ż b

´8

gpyqdy.

So in particular we get

PpX ` Y ď tq “ PpX ď x, Y ď y, x` y ď tq “

ż

px,yqPR2,x`yďt

fpxqgpyqdxdy

where the integral is an integral computed in R2. We change variables to pz, wq where x “ z and w “ x`y
(so y “ w ´ z). So we get that z P R and w ď t:

PpX ` Y ď tq “

ż

px,yqPR2,x`yďt

fpxqgpyqdxdy “

ż t

´8

ż

R
fpzqgpw ´ zqdwdz “

ż t

´8

f ˚ gpzqdz

where in the last equality we use the definition of convolution.
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3.2 Fourier transform

The Fourier transform is an isometry among Hilbert spaces as we will see (so a bijection which maintains
the distance) and in some sense it can be interpreted as a generalization of the Fourier serie in non periodic
context.

Let f P L1
pRq. We define the Fourier transform of f as the complex valued function

f̂pxq “

ż

R
fpyqeixydy.

It can be generalized to several dimension: if f P L1
pRnq then

f̂pxq “

ż

Rn
fpyqeix¨ydy.

Observe that since |eixy| “ 1 for all x, y P R, |f̂pxq| ď
ş

R |fpyq|e
ixydy ď

ş

R |fpyq|dy “ }f}L1 . More precisely
we get the following result (see for the proof [3], Section 8.3), stating that the Fourier transform sends
integrable functions in bounded continuous functions.

Proposition 3.2.1 (Riemann Lebesgue lemma). Let f P L1
pRq. Then f̂ P CpRq and moreover lim|x|Ñ`8 f̂pxq “

0, }f̂}8 ď }f}L1 .

Other important properties of the Fourier transform are stated in the following proposition.

Proposition 3.2.2. Let f, g P L1
pRq. Then

(i) {pf ˚ gq “ f̂ ĝ. So the Fourier transform of a convolution is the product of the Fourier transform.

(ii) If |x|kf P L1
pRq, then f̂ P CkpRq and dkx pfpxq “ {rpiyqkf s.

(iii) If f P CkpRq, dkxfpxq P L1, lim|x|Ñ`8 d
n
xfpxq “ 0 for n ď k, then {pdnxfqpxq “ p´ixq

nf̂pxq for all
n ď k.

Proof. (i) By definition, properties of the exponential and changing at the end variables (from py, tq to
ps, tq where s “ y ´ t)

{pf ˚ gqpxq “

ż

R
f ˚ gpyqeixydy “

ż

R

ż

R
fptqgpy ´ tqeixydtdy

“

ż

R

ż

R
fptqgpy ´ tqeixpy´tqeixtdtdy

“

ż

R

ż

R
fptqgpsqeixseixtdtds “ f̂pxqĝpxq.

(ii) We get that

dxf̂pxq “ dx

ż

R
fpyqeixydy “

ż

R
dxfpyqe

ixydy “

ż

R
fpyqpiyqeixydy “ zpiyfqpxq.

Repeat the argument we conclude with the result for every k P N.

(iii) We integrate by parts and we have that

ydyfpxq “

ż

R
dyfpyqe

ixydy “
”

fpyqeixy
ı`8

´8
´

ż

R
fpyqpixqeixydy “ ´ixf̂pxq.

Iterating the procedure we conclude.

The previous proposition has a very important consequence:

let a ą 0 and fapxq “ e´a|x|
2

, then pfapxq “

c

π

a
e´

|x|2

4a . (3.2.1)

More generally in Rn, if fapxq “ e´a|x|
2

, for x P Rn, then pfapxq “
b

πn

an
e´

|x|2

4a .
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We prove (3.2.1). Observe that by the previous proposition, items (ii) and (iii) we get that

dxxfapxq “

ż

R
e´a|y|

2

piyqeixydy “

ż

R

´i

2a
dype

´a|y|2
qeixydy “ ´

i

2a
zdyfapxq “ ´

x

2a
f̂apxq.

So the function f̂a “ φ satisfies φ1pxq “ ´ x
2a
φpxq, integrating we get that plog φpxqq1 “ ´x2

4a
` c and then

φpxq “ ke´
1
4a
x2 . Finally to compute k we need to compute φp0q “ f̂ap0q.

f̂ap0q “

ż

R
e´a|y|

2

e0dy “

c

π

a
.

Proposition 3.2.3. Let f, g P L1
pRq, then

ż

R
f̂pxqgpxqdx “

ż

R
fpxqĝpxqdx.

Proof. By definition and by changing the order of integration (thanks to Fubini Tonelli theorem)

ż

R
f̂pxqgpxqdx “

ż

R

ż

R
fpyqgpxqeixydydx “

ż

R
fpxqĝpxqdx.

For f P L1
pRq we may define also the anti transform of f as follows:

f̌pxq “
1

2π

ż

R
fpyqe´ixydy “

1

2π
f̂p´xq.

Obviously, this operator satisfies the same properties as the Fourier transform.

Theorem 3.2.4 (Fourier inversion theorem). Let f P L1
pRq such that also f̂ P L1

pRq. Then f is

continuous and bounded (that is, it coincides almost everywhere with a continuous function) and
ˇ̂
f “ f “ ˆ̌f .

In particular if f, g P L1
pRq with f̂ “ ĝ, then f “ g almost everywhere.

Proof. We give a sketch of the proof, for the rigorous demonstration we refer to [3], Theorem 8.26.
We have that

ż

R
f̂pyqe´ixydy “ lim

εÑ0

ż

R
f̂pyqe´ixye´εy

2

dy “ lim
εÑ0

ż

R

ż

R
fpzqeiyzdze´ixye´εy

2

dy “

by changing the order of integration

“ lim
εÑ0

ż

R
fpzq

ż

R
eiypz´xqe´εy

2

dydz.

Now we observe that
ż

R
eiypz´xqe´εy

2

dy “ {e´εy2pz ´ xq

and then by (3.2.1) we conclude

ż

R
eiypz´xqe´εy

2

dy “ {e´εy2pz ´ xq “

?
π
?
ε
e´px´zq

2{4ε.

We substitute in the previous integral and we get

2π
ˇ̂
fpxq “

ż

R
f̂pyqe´ixydy “ lim

εÑ0

ż

R
fpzq

?
π
?
ε
e´px´zq

2{4εdz “ 2
?
π lim
εÑ0

ż

R
f

ˆ

x´
ξ

2
?
ε

˙

e´ξ
2

dξ

“ 2
?
πfpxq

ż

R
e´ξ

2

dξ “ 2πfpxq.

The last conclusion comes from the fact that {pf ´ gq “ f̂ ´ ĝ “ 0. Therefore f ´ g P L1
pRq is such

that {pf ´ gq “ 0 P L1
pRq, which implies by the inversion theorem that f ´ g “

­

{pf ´ gq “ 0.

Using the inversion theorem, we get also the following result:
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Corollary 3.2.5. Let

S “ tg : RÑ R, g P C8, @k sup
x
||x|kgpxq| ď Ck, |x|

kgpxq P L1
pRqu.

Then the Fourier transform is a bijection of S into itself.

Note that for all a ą 0, e´ax
2

P S.

Proof. By Proposition 3.2.2, we get that if g P S then ĝ P C8 and moreover xkĝ is bounded continuous
and integrable, so in particular ĝ P S. The conclusion comes from the inversion theorem.

Lemma 3.2.6. The set S is dense in the space C0pRq “ tg P CpRq | lim|x|Ñ`8 gpxq “ 0u (with respect to
} ¨ }8 norm).

For this lemma we refer to [3, Proposition 8.17].

Theorem 3.2.7. Let fn, f P L
1
pRq. Assume that f̂n Ñ f̂ pointwise and that there exists C ą 0 such

that }fn}L1 ď C for all n. Then fn á f vaguely in L1
pRq, that is for all g P C0pRq, there holds

limn

ş

R fnpxqgpxqdx “
ş

R fpxqgpxqdx.

Proof. Let g P C0pRq. Then by Lemma 3.2.6 there exists gk P S such that supxPR |gkpxq ´ gpxq| ď
1
k

.

Since gk P S then gk “ ˆ̌gk by Corollary 3.2.5. Therefore we get

ż

R
pfn ´ fqpxqgkpxqdx “

ż

R
pfn ´ fqpxq ˆ̌gkpxqdx “

ż

R

ż

R
pfn ´ fqpxqǧkpyqe

ixydydx

exchanging the order of integration

“

ż

R

ż

R
pfn ´ fqpxqǧkpyqe

ixydxdy “

ż

R
pf̂n ´ f̂qpyqǧkpyqdy.

Since supyPR |f̂npyq ´ f̂pyq| ď }fn ´ f}L1 ď }fn}L1 ` }f}L1 ď C ` }f}L1 and gk P L1, we get that

|pf̂n ´ f̂qpyqǧkpyq| ď C ` }f}L1 |gk| P L
1. Moreover f̂npyq ´ f̂pyq Ñ 0 as nÑ `8 by assumption, then by

the Lebesgue dominated convergence we conclude that

lim
n

ż

R
pfn ´ fqpxqgkpxqdx “ 0

for all k ą 0. Using the fact that supxPR |gkpxq ´ gpxq| ď
1
k

we get

ˇ

ˇ

ˇ

ˇ

ż

R
pfn ´ fqpxqgpxqdx

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

R
pfn ´ fqpxqpgk ´ gqpxqdx

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

R
pfn ´ fqpxqgkpxqdx

ˇ

ˇ

ˇ

ˇ

ď

ż

R
|fnpxq ´ fpxq||gkpxq ´ gpxq|dx`

ˇ

ˇ

ˇ

ˇ

ż

R
pfn ´ fqpxqgkpxqdx

ˇ

ˇ

ˇ

ˇ

ď
1

k
}fn ´ f}L1 `

ˇ

ˇ

ˇ

ˇ

ż

R
pfn ´ fqpxqgkpxqdx

ˇ

ˇ

ˇ

ˇ

ď
1

k
pC ` }f}L1q `

ˇ

ˇ

ˇ

ˇ

ż

R
pfn ´ fqpxqgkpxqdx

ˇ

ˇ

ˇ

ˇ

.

Therefore we conclude that for all k P N,

lim
n

ˇ

ˇ

ˇ

ˇ

ż

R
pfn ´ fqpxqgpxqdx

ˇ

ˇ

ˇ

ˇ

ď
1

k
pC ` }f}L1q

which gives the conclusion sending k Ñ `8.
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3.3 Characteristic functions of random variables

Let X be a random variable, with associated PX probability distribution. The characteristic function of
X is defined as the (complex valued) function

φXptq “ EpeitXq.

More precisely

– if X is a (asbsolutely) continuous random variable (with density f) then

φXptq “

ż

R
eitxfpxqdx “ pfptq.

So in this case the characteristic function of X is the Fourier transform of the density function f
associated to X.

– if X is a discrete random variable (taking values on Z),

φXptq “
ÿ

kPZ
eiktP pω | Xpωq “ kq.

Note that φX is a continuous function such that φp0q “ 1.

Proposition 3.3.1. If X1, X2 are independent random variables, then the characteristic function of X1`

X2 satisfies
φX1`X2ptq “ φX1ptqφX2ptq.

Proof. We consider only the case in which X1, X2 are absolutely continuous random variables (for the
other case the argument is similar). The probability density of the sum of X1 and X2 is given by the
convolution between the density of X1 and the density of X2 by Theorem 3.1.3. Then the Fourier transform
of a convolution is the product of the Fourier transforms, see Proposition 3.2.2.

The characteristic function associated to a random variable characterizes completely the random vari-
able, and moreover the functional from the spaces of random variables with the convergence in distribution
to the space of characteristic functions with the pointwise convergence is continuous, in the sense that if a
sequence of random variables is converging in distribution to a random variable, then the same holds for
the characteristic functions (and viceversa).

Theorem 3.3.2. Let Xn be a family of random variables.

(i) If Xn are converging in distribution to X, then φXnptq Ñ φXptq for every t.

(ii) If φXnptq Ñ φptq for every t, where φ is a function continuous at t “ 0, then φ is the characteristic
function of a random variable X and Xn converge in distribution to X.

Proof. (i) Xn Ñ X in distribution for every bounded continuous function g it holds

EpgpXnqq Ñ EpgpXqq.

So, taking for every t, gtpyq “ eity (which is bounded and continuous), we get φXnptq Ñ φXptq.

(ii) We prove this part theorem only in the case of absolutely continuous random variables Xn, with
associated densities fn. The general case can be obtained similarly.

We claim that Xn are tight. If the claim is true, then by Theorem 1.9.3, up to a subsequence we
get that Xnk converge in distribution to a random variable X. By (i), we get that φXnk ptq Ñ φXptq
for every t and so φptq “ φXptq. Since the limit is unique (does not depend on subsequences), we
conclude the convergence of the whole sequence of Xn.

So to conclude it is sufficient to show that Xn are tight. Since we are assuming Xn to have a density
fn, we get that φXnptq “ f̂nptq. Fix δ ą 0 and consider

1

2δ

ż δ

´δ

p1´ φXnptqqdt “
1

2δ

ż δ

´δ

p1´ f̂nptqqdt “
1

2δ

ż δ

´δ

ż

R
p1´ eiytqfnpyqdydt

“
1

2δ

ż

R

ż δ

´δ

p1´ eiytqdtfnpyqdy “
1

2δ

ż

R

„

2δ ´
2 sin δy

y



fnpyqdy “

ż

R

„

1´
sin δy

δy



fnpyqdy
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ě
1

2

ż

|δy|ě2

fnpyqdy “
1

2
P
ˆ

|Xn| ě
2

δ

˙

.

Hence

P
ˆ

|Xn| ě
2

δ

˙

ď
1

δ

ż δ

´δ

p1´ φXnptqqdtÑ
1

δ

ż δ

´δ

p1´ φptqqdt.

Since φ is continuous and φp0q “ 1, we get that for every ε ą 0 there exists δ such that p1´φptqq ď ε{4
for t P r´δ, δs. So

1

δ

ż δ

´δ

p1´ φptqqdt ď
ε

2
.

We fix ε ą 0, we choose δ as above, and Kε “ t|x| ď
2
δ
u and then we choose n̄ such that 1

δ

şδ

´δ
p1´

φXnptqqdt ď ε for all n ě n̄. This gives the desired tightness: P p|Xn| P Kεq ě 1´ ε for all n ě n̄.

3.4 The Central Limit Theorem

We conclude showing that actually the Central Limit theorem can be interpreted as a result in Fourier
analysis. The theorem says that if we have a sufficiently large sample of observations- randomly produced
in a way that does not depend on the values of the other observations- the probability distribution of the
observed averages will closely approximate a normal distribution.

Theorem 3.4.1 (Central Limit theorem). Let Xn be independent identically distributed random variables
with (common) mean µ and a variance σ. Then X1`¨¨¨`Xn´µ?

nσ
converges in distribution to the normal

random variable with mean 0 and variance 1.

We are not going to prove in full generality this theorem, but we are just giving an idea of what is
going on in the case in which every Xi is an absolutely continuous random variable with density f . Up to
a renormalization we may assume that the mean of Xi is 0 and the variance is 1.

Proposition 3.4.2. Let f : RÑ r0,`8q such that

ż

R
fpxqdx “ 1,

ż

R
xfpxqdx “ 0

ż

R
x2fpxqdx “ 1.

Let f˚n :“ f ˚ ¨ ¨ ¨ ˚ f (the convolution of f by itself n times).

Then fnpxq :“
?
nf˚np

?
nxq converges vaguely as nÑ `8 to e´x

2{2
?

2π
.

Proof. The first assumption on f implies that pfp0q “ 1. Moreover, recalling Proposition 3.2.2, item ii, we
get that the second and third assumption on f imply that f P C2. Moreover

ydxfp0q “

ż

R
piyqfpyqdy “ 0 yd2

xfp0q “

ż

R
p´iyq2fpyqdy “ ´1.

By Taylor theorem we conclude that for xÑ 0,

f̂pxq “ 1´
1

2
x2
` opx2

q.

We compute now xfnpxq. We have that

xfnpxq “

ż

R
fnpyqe

ixydy “

ż

R

?
nf˚np

?
nyqeixydy “

changing variable z “
?
ny

“

ż

R
f˚npzqe

ix z?
n dz “

ż

R
f˚npzqe

i x?
n
z
dz “ yf˚n

ˆ

x
?
n

˙

and recalling by Proposition 3.2.2, item i, that yf˚npxq “ p pfpxqqn we conclude that

xfnpxq “ yf˚n
ˆ

x
?
n

˙

“

ˆ

pf

ˆ

x
?
n

˙˙n

.
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So, we get for x fixed and nÑ `8

xfnpxq “

ˆ

pf

ˆ

x
?
n

˙˙n

“

ˆ

1´
x2

2n
` o

ˆ

1

n

˙˙n

“ e
n log

ˆ

1´ x
2

2n
`op 1

n q
˙

.

Recalling that for x fixed and nÑ `8, we get log
´

1´ x2

2n
` o

`

1
n

˘

¯

“ ´ x2

2n
` o

`

1
n

˘

we get

xfnpxq “ e´
x2

2
`op1q

and therefore limn
pfnpxq “ e´

x2

2 . By (3.2.1) with a “ 1
2

we have that
{

e
´ x

2
2

?
2π

“ e´
x2

2 . Therefore

lim
n

xfnpxq “

{

e´
x2

2

?
2π

.

Moreover }fn}1 “ 1 for all n. So, we may apply Theorem 3.2.7 to obtain that fn is converging vaguely to

e
´ x

2

2
?

2π
.

3.5 Problems

(i) Let c ą 0, and

hcpxq “

#

1 |x| ď c

0 elsewhere
.

Compute hc ˚ hc. Then compute hc ˚ hc ˚ hc. What we can say about the regularity of these
functions?

(ii) Let X1, X2, . . . Xn are n independent continuous random variables with the same distribution (and
so with the same density function f). Assume that EpXiq “ µ and EpXi´µq2 “ σ2. Show that the
density function of X1`¨¨¨`Xn´µ?

nσ
is given by

?
nσf˚n px

?
nσ ` µnq, where f˚npxq is the convolution

of f with itself repeated n times.

(iii) (a) Compute the Fourier transform of gpxq “ e´xχp0,`8qpxq.
Recall the following formulas (obtained by integration by parts):

ż

e´y sinpxyqdy “ ´
1

x2 ` 1
e´ypx cosxy ` sinxyq ` c

ż

e´y cospxyqdy “
1

x2 ` 1
e´ypx sinxy ´ cosxyq ` c.

(b) Compute the Fourier transform of fpxq “ xe´xχp0,`8qpxq (that is the characteristic function
of the Gamma distribution).
Use item (a) and Proposition 3.2.2.
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Solutions to problems Chapter 1

(i) Let f : RÑ R be a monotone function. Show that f is Lebesgue measurable.

It is sufficient to show that for all c P R the set tx P R | fpxq ą cu is measurable.

Assume that f is monotone increasing (if it is monotone decreasing the argument is analogous). Let
c P R. If fpxq ď c for all x P R then tx P R | fpxq ą cu is the empty set and we are done.

Assume now that there exists x̄ P R such that fpx̄q ą c. By monotonicity we get that fpyq ą c
for all y ą x̄. We consider now the set Ac “ tx P R |fpxq ą cu. Our aim is to show that this is a
measurable set.

We observed that by monotonicity, if x P Ac, then rx,`8q Ď Ac. So, if Ac is not bounded from
below, this implies that Ac “ R and so we are done. Assume now that Ac is bounded from below
and define xc “ inf Ac. For all x ą xc we get that fpxq ą c and fpxq ď c for all x ă xc. This
implies that Ac “ pxc,`8q if fpxcq ď c, and Ac “ rxc,`8q if fpxcq ą c. In both cases, Ac PM.

Note that actually we get something more: for all c, we get that Ac is a Borel set, so the function
f is Borel measurable.

(ii) Consider the right continuous increasing function on R

F pxq “

#

x x ă 0

x` 1 x ě 0.

Which is the Borel measure associated to this function?

We define µF pa, bs “ F pbq´F paq, and then we extend it to a measure on the Borel σ-algebra. Given
F as in the statement, we get that µF pa, bs “ b´ a if a ă b ă 0, µF pa, bs “ b` 1´ pa` 1q “ b´ a
if 0 ď a ă b, whereas if a ă 0 ě b, then µF pa, bs “ b` 1´ a “ b´ a` 1. Therefore µF “ L` δ0.

Solutions to problems Chapter 2

(i) Banach-Caccioppoli theorem

(a) Let pxnq be a sequence in X which is converging to x. Then 0 ď }F pxnq ´F pxq} ď a}xn´ x},
and so limnÑ`8 F pxnq “ F pxq since limnÑ`8 xn “ x.

(b) By the property of the function F and the definition of the we get that

}xn`1 ´ xn} “ }F pxnq ´ F pxn´1q} ď a}xn ´ xn´1} “

“ a}F pxn´1q ´ F pxn´2q} ď a2
}xn´1 ´ xn´2} ď ... ď an}x1 ´ x0}.
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Let n ą m. Then,by using the triangular inequality, we get

}xn ´ xm} ď }xn ´ xn´1} ` }xn´1 ´ xn´2} ` ¨ ¨ ¨ ` }xm`1 ´ xm}.

By using the previous inequality and recalling that
řn
i“0 a

i
“ 1´an`1

1´a
, we get

}xn ´ xm} ď pa
n
` an´1

` ¨ ¨ ¨ ` amq}x0 ´ x1} ď“
am`1

´ an`1

1´ a
|x0 ´ x1}.

Since 0 ă a ă 1, we get that an`1, am`1
Ñ 0 as n,m Ñ `8. So in particular the previous

inequality implies that pxnq is a Cauchy sequence.

(c) Since pxnq is a Cauchy sequence, and the space is complete, it is converging to some point x.
Using the continuity of F we have that limn F pxnq “ F pxq. But we recall that limn F pxnq “
limn xn´1 “ x. So F pxq “ x.

(d) Let x, z such that F pxq “ x and F pzq “ z. The by the property of F , and recalling that a ă 1,

}x´ z} “ }F pxq ´ F pzq} ď a}x´ z} ă }x´ z}.

This is not possible unless }x´ z} “ 0, which implies z “ x.

(ii) – EpXnq “ pXn, 1q Ñ pX, 1q “ EpXq, by continuity of the scalar product (as a consequence of
Cauchy Schwartz inequality).

– pXn, Ynq “ pXn ´ X,Yn ´ Y q ` pX,Ynq ` pXn, Y q ´ pX,Y q. We conclude observing that
pXn ´X,Yn ´ Y q Ñ 0, pXn, Y q Ñ pX,Y q and pX,Ynq Ñ pX,Y q.

– the convergence of covariance and variance are immediate consequences of the first two items.

(iii) Recalling Remark 2.2.15 we have that

LpY |X,Zq “ PrSpY q “ a` bX ` cZ

where S is the space with basis 1, X, Z.

Observe that by the same argument LpZ|Xq “ PrT pZq where T is the space with a basis given by
1, X. In particular by Theorem 2.2.8 we have that Z ´ LpZ|Xq P TK and arguing as in Remark
2.2.15 LpZ|Xq “ EpZq ` CovpX,Zq

V arpXq
pX ´ EpXqq.

An orthonormal basis of S can be therefore obtained by considering an orthonormal basis of T , which
is given by 1, X´EpXq?

V arpXq
as proved in Remark 2.2.15 and then adding the element kpZ ´ LpZ|Xqq

where k is such that EpkpZ ´ LpZ|Xqq2 “ 1. Since EppZ ´ LpZ|Xqq2 “ V arpZqV arpXq´Cov2pX,Zq
V arpXq

as

proved in Remark 2.2.15, we get that k “
?
V arX?

V arpZqV arpXq´Cov2pX,Zq
.

So, as in Remark 2.2.15,

LpY |X,Zq “ EpY q ` CovpX,Y q

V arpXq
pX ´ EpXqqq

`
V arpXqCovpZ, Y q ´ CovpX,ZqCovpX,Y q

V arpZqV arpXq ´ Cov2pX,Zq
pZ ´ LpZ|Xqq

“ EpY q

`
V arpZqCovpX,Y q ´ CovpZ, Y qCovpX,Zq

V arpZqV arpXq ´ Cov2pX,Zq
pX ´ EpXqqq

`
V arpXqCovpZ, Y q ´ CovpX,ZqCovpX,Y q

V arpZqV arpXq ´ Cov2pX,Zq
pZ ´ EpZqq.

Observe that

EpY q ` CovpX,Y q

V arpXq
pX ´ EpXqqq “ LpY |Xq

and moreover

EpY q ` V arpXqCovpZ, Y q ´ CovpX,ZqCovpX,Y q

V arpZqV arpXq ´ CovpX,Zq
pZ ´ LpZ|Xqq “ LpY |Z ´ LpZ|Xqq.

This conclude the proof.
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Solutions to problems Chapter 3

(i) Let c ą 0, and hcpxq “

#

1 |x| ď c

0 elsewhere
. Compute hc ˚ hcpxq. Then compute hc ˚ hc ˚ hc. What we

can say about the regularity of these functions?

By definition of hc

hc ˚ hcpxq “

ż

R
hcpx´ yqhcpyqdy “

ż c

´c

hcpx´ yqdy “ |r´c, cs X rx´ c, x` cs|

where we indicated with |r´c, cs X rx ´ c, x ` cs| the length of the intersection between the two
intervals. Since

r´c, cs X rx´ c, x` cs “

$

’

&

’

%

H x ě 2c or x ď ´2c

r´c, x` cs ´2c ă x ă 0

rx´ c, cs 0 ă x ă 2c

we conclude that

hc ˚ hcpxq “

$

’

&

’

%

0 x ě 2c or x ď ´2c

x` 2c ´2c ă x ă 0

2c´ x 0 ă x ă 2c.

The graph is a triangular.. Then again by definition

hc ˚ hc ˚ hcpxq “

ż

R
phc ˚ hcqpx´ yqhcpyqdy “

ż c

´c

phc ˚ hcqpx´ yqdy

“

ż

r´c,csXrx´2c,x`2cs

phc ˚ hcqpx´ yqdy.

We observe that hc ˚ hc ˚ hcpxq “ hc ˚ hc ˚ hcp´xq so it is sufficient to compute the function for
x positive and then symmetrize it (as an even function). If x ą 3c then hc ˚ hc ˚ hcpxq “ 0. If
x P p2c, 3cq then r´c, cs X rx´ 2c, x` 2cs “ rx´ 2c, cs with x´ 2c ą 0 and so

hc ˚ hc ˚ hcpxq “

ż c

x´2c

hc ˚ hcpyqdy “
p4c´ xq2

2
´
c2

2
.

If x P pc, 2cq then r´c, cs X rx´ 2c, x` 2cs “ rx´ 2c, cs with x´ 2c ă 0 and so

hc ˚ hc ˚ hcpxq “

ż 0

x´2c

hc ˚ hcpyqdy `

ż c

0

hc ˚ hcpyqdy “
4c2 ´ x2

2
`

3

2
c2.

If x P p0, cq then r´c, cs X rx´ 2c, x` 2cs “ r´c, cs and so

hc ˚ hc ˚ hcpxq “

ż c

´c

hc ˚ hcpyqdy “ 3c2.

(ii) Let X1, X2, . . . Xn are n independent continuous random variables with the same distribution (and
so with the same density function f). Assume that EpXiq “ µ and EpXi´µq2 “ σ2. Show that the
density function of X1`¨¨¨`Xn´µ?

nσ
is given by

?
nσf˚n px

?
nσ ` µnq, where f˚npxq is the convolution

of f with itself repeated n times.

By Theorem 3.1.3 we get that the density function associated to the sum of X1, X2 is f ˚ f .
Then again by the theorem, the density function associated to the sum of X1 ` X2 with X3 is
pf ˚ fq ˚ f “ f˚3 and so on.

By linearity EpX1 ` ¨ ¨ ¨ `Xnq “ nµ and by independence we get EppX1 ` ¨ ¨ ¨ `Xn ´ µnq
2
q “ nσ2.

So the sum as Z “ X1`¨¨¨`Xn´µn?
nσ

, we get that Z has EpZq “ 0 and EpZ2
q “ 1 (so it has mean 0

and variance 1).

fn˚ is the density associated to X1 ` . . . Xn, we get that
?
nσf˚n px

?
nσ ` µnq is the density

associated to Z. Indeed we compute, changing variable,
ż

R
x
?
nσf˚n

`

x
?
nσ ` µn

˘

dx “

ż

R

y ´ µn
?
nσ

f˚npyqdy “
1
?
nσ

EpX1 ` ¨ ¨ ¨ `Xn ´ nµq “ 0

ż

R
x2?nσf˚n

`

x
?
nσ ` µn

˘

dx “

ż

R

py ´ µnq2

nσ2
f˚npyqdy “ 1.
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(iii) (a) Compute the Fourier transform of gpxq “ e´xχp0,`8qpxq.
Recall the following formulas (obtained by integration by parts):

ż

e´y sinpxyqdy “ ´
1

x2 ` 1
e´ypx cosxy ` sinxyq ` c

ż

e´y cospxyqdy “
1

x2 ` 1
e´ypx sinxy ´ cosxyq ` c.

(b) Compute the Fourier transform of fpxq “ xe´xχp0,`8qpxq (that is the characteristic function
of the Gamma distribution).
Use item a. and Proposition 3.2.2.

(a) By definition and using the primitive of the functions e´y cosxy and e´y sinxy, we get

ĝpxq “

ż

R
gpyqeixydy “

ż `8

0

e´yeixydy “

ż `8

0

e´y cosxydy ` i

ż `8

0

e´y sinxydy

“
1

x2 ` 1
` i

x

x2 ` 1
.

(b) By Proposition 3.2.2,

dxĝpxq “

ż

R
piyqgpyqeixydy “ i

ż

R
fpyqeixydy “ if̂pxq.

Therefore

f̂pxq “ ´i

ˆ

1

x2 ` 1
` i

x

x2 ` 1

˙1

“ ´i

ˆ

´2x

px2 ` 1q2
´ i

x2
´ 1

px2 ` 1q2

˙

“
1´ x2

px2 ` 1q2
` i

2x

px2 ` 1q2
“

ˆ

1` ix

1` x2

˙2

“ p1´ ixq´2

where the last identity is obtained by using the fact that 1
1´ix

“ 1`ix
1`x2

.

39


