

METODI STATISTICI PER LA BIOINGEGNERIA (B)

PARTE 8: REGRESSIONE LINEARE (PRIMA PARTE)

A.A. 2025-2026

Prof. Martina Vettoretti

ANALISI DELLE RELAZIONI TRA VARIABILI (1/2)

- Nell'analisi di dati sperimentali, spesso siamo interessati a capire se sussiste una **relazione** tra una certa variabile di interesse, Y, e un'altra variabile, X, o un insieme di altre m variabili, X_i , i = 1,...,m.
 - Esempio: abbiamo un insieme di dati raccolti su una popolazione di individui e vogliamo studiare se esiste una relazione tra la pressione sistolica (Y) e due altre variabili, ovvero l'età (X₁) e il peso corporeo (X₂).
- In pratica, siamo interessati a capire se esiste una funzione f che consente di **predire** i valori di Y a partire dai valori delle variabili X_i:

$$Y = f(X_i)$$

Esempio: siamo in grado di predire i valori di pressione sistolica, conoscendo l'età e il peso corporeo degli individui?

ANALISI DELLE RELAZIONI TRA VARIABILI (2/2)

$$Y = f(X_i)$$

- > Stima di f a partire dall'analisi di un campione di valori di Y e dei campioni appaiati di valori delle X_i , $i = 1,...,m \rightarrow$ problema di inferenza statistica.
- \triangleright Se Y è una variabile continua \rightarrow la stima di f è un problema di **regressione**.
- ➤ Se assumiamo che f sia lineare → la stima di f è un problema è di regressione lineare.

IL MODELLO DI REGRESSIONE LINEARE SEMPLICE

> Se vogliamo studiare la relazione tra due sole variabili, e ipotizziamo che questa sia di tipo lineare > modello di regressione lineare semplice

$$Y = \beta \cdot X + \beta_0$$

- Y: variabile dipendente, variabile di uscita, o outcome
- X: variabile indipendente, variabile di ingresso, variabile esplicativa, regressore o predittore
- β , β_0 : coefficienti di regressione, parametri del modello. β_0 è anche detto intercetta.
- \triangleright In realtà la relazione tra le variabili in gioco non sarà mai perfettamente lineare \rightarrow viene incluso nel modello un termine di errore casuale ε

$$Y = \beta \cdot X + \beta_0 + \varepsilon$$

 \blacksquare \mathcal{E} : errore di approssimazione del modello

ESEMPIO

L'emoglobina glicata (HbA1c) è un indicatore legato alla glicemia media negli ultimi 3 mesi, utilizzato nella diagnosi di diabete mellito. Tipicamente se HbA1c>6.5% si sospetta la presenza di diabete.

La misura di HbA1c nel sangue viene prescritta nei soggetti a rischio di diabete, ma non fa parte degli esami del sangue di routine.

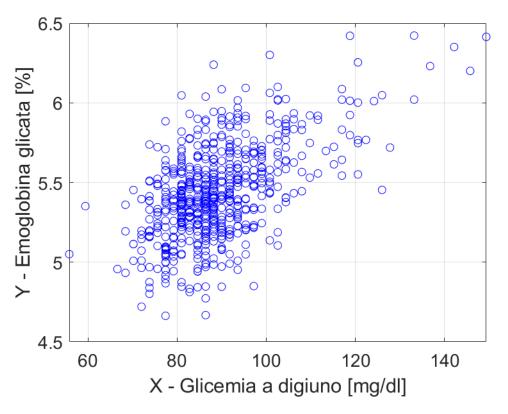
Negli esami di routine si misura tipicamente la glicemia a digiuno.

- Domanda: esiste una relazione tra la glicemia a digiuno (variabile X) e l'emoglobina glicata (variabile Y)? E' possibile predire i valori di emoglobina glicata a partire dalla glicemia a digiuno?
- > Ipotizziamo che la relazione sia di tipo lineare...

Domanda: esiste una relazione lineare tra le variabili X e Y?

1. Raccogliamo un <u>campione bivariato</u> contenente n osservazioni indipendenti di X e di Y appaiate: (x_i, y_i) , i=1,...,n.

Esempio: coppie di valori di glicemia a digiuno (x_i) ed emoglobina glicata (y_i) raccolte in 600 individui privi di diagnosi di diabete (n=600 osservazioni indipendenti).



IL PROBLEMA DI REGRESSIONE LINEARE SEMPLICE (2/3)

Domanda: esiste una relazione lineare tra le variabili X e Y?

2. Consideriamo il modello di regressione lineare semplice per descrivere i dati del campione.

$$Y = \beta \cdot X + \beta_0 + \varepsilon$$
HbA1c Glicemia a digiuno

3. Con i dati a disposizione, stimiamo i parametri del modello di regressione.

$$\rightarrow \hat{\beta}, \hat{\beta}_0$$

Domanda: esiste una relazione lineare tra le variabili X e Y?

- 4. Valutiamo la bontà del modello così identificato.
 - Se il modello descrive bene i dati → possiamo concludere che sussiste una relazione tra X e Y e questa è approssimativamente lineare
 - Se il modello non descrive bene i dati allora:
 - o non c'è alcuna relazione rilevante tra X e Y
 - oppure la relazione sussiste ma non è approssimativamente lineare.

CARATTERIZZAZIONE STATISTICA DEL MODELLO

Applicando l'equazione del modello di regressione semplice ai dati del campione si ottiene:

$$Y_i = \beta \cdot x_i + \beta_0 + \varepsilon_i, \qquad i = 1, ..., n$$

- $\rightarrow x_i \rightarrow$ quantità deterministica, nota, non casuale
- $\triangleright \beta$, $\beta_0 \rightarrow$ parametri costanti incogniti
- $\succ \varepsilon_i \rightarrow$ errore casuale \rightarrow variabile aleatoria che assumiamo avere una distribuzione normale con media 0 e varianza σ_i^2 incognita:

$$\varepsilon_i \sim N(0, \sigma_i^2)$$

 \triangleright Noto x_i , Y_i risulta anch'essa una variabile aleatoria normale:

$$Y_i \sim N(\beta \cdot x_i + \beta_0, \sigma_i^2)$$

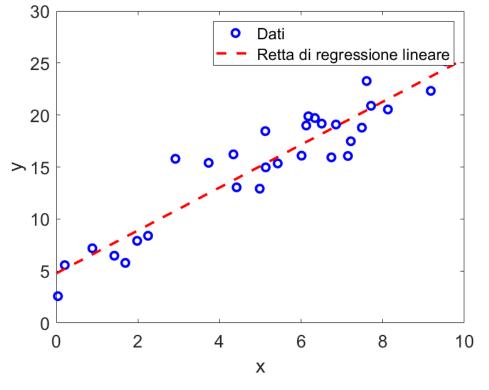
> Assumiamo che le diverse realizzazioni dell'errore siano indipendenti tra loro:

$$Cov(\varepsilon_i, \varepsilon_j) = 0, \quad i \neq j$$

DENTIFICAZIONE DEL MODELLO DI REGRESSIONE LINEARE

Avendo a disposizione **n osservazioni di X e Y**, (x_i, y_i) , i=1,...,n, il problema di identificazione del modello di regressione lineare consiste nello **stimare** i **valori dei parametri** β e β_0 della retta che meglio approssima la relazione

lineare tra X e Y.



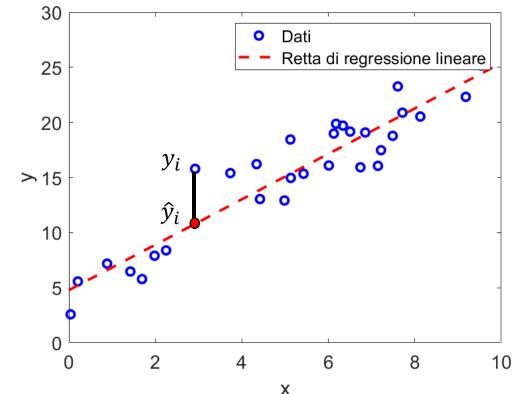
METODO DEI MINIMI QUADRATI LINEARI PER LA STIMA DEI COEFFICIENTI DI REGRESSIONE

- > Assunzione: la varianza dell'errore è costante $\rightarrow Var(\varepsilon_i) = \sigma^2 \ \forall i$.
- Metodo dei minimi quadrati lineari: si stimano i valori di β e β_0 che minimizzano la somma dei quadrati degli scarti tra i valori di uscita reali, y_i , e quelli predetti dal modello, \hat{y}_i .

$$\hat{y}_i = \beta \cdot x_i + \beta_0$$

$$\hat{\beta}, \hat{\beta}_0 = \underset{\beta, \beta_0}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \hat{y}_i)^2 = n$$

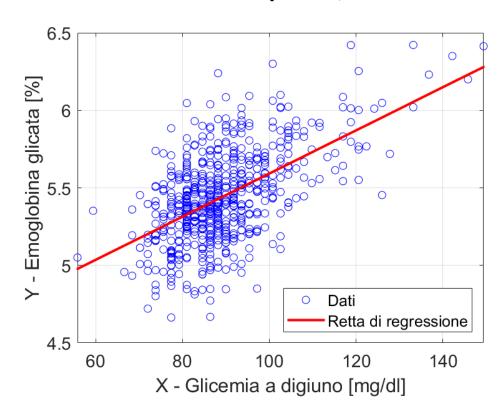
$$= \underset{\beta,\beta_0}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - (\beta \cdot x_i + \beta_0))^2$$



STIMA DEI COEFFICIENTI DI REGRESSIONE: ESEMPIO

Domanda: esiste una relazione lineare tra la glicemia a digiuno (variabile X) e l'emoglobina glicata (variabile Y)?

stimiamo i parametri di un modello di regressione lineare semplice, con il metodo dei minimi quadrati lineari.



$$Y_i = \beta \cdot x_i + \beta_0 + \varepsilon_i$$

Stime dei parametri:

$$\hat{\beta} = 0.0139 \, [1/\text{mg/dl}]$$
 $\hat{\beta}_0 = 4.2006$

Retta di regressione:

$$\hat{y} = \hat{\beta} \cdot x + \hat{\beta}_0$$

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m + \varepsilon$$

- > Y: variabile dipendente, variabile di uscita, o outcome
- $\triangleright X_j$: variabili indipendenti, di ingresso, esplicative, regressori o predittori
- $\triangleright \beta_j$: coefficienti di regressione, parametri del modello. β_0 è anche detto intercetta.
- \triangleright ε : errore di approssimazione del modello

IL PROBLEMA DI REGRESSIONE LINEARE MULTIPLA

Domanda: esiste una relazione lineare tra delle variabili esplicative X_j e una variabile di outcome Y? Ipotizzando che ci sia una dipendenza di tipo lineare tra Y e le variabili X_j , è possibile spiegare (o predire) i valori della variabile Y una volta noti i valori delle variabili X_j ?

- 1. Raccogliamo un campione contenente n osservazioni indipendenti di X_j , $j=1,\ldots,m$ e Y, appaiate tra loro: $(x_{i1},x_{i2},\ldots,x_{im},y_i)$, $i=1,\ldots,n$.
- 2. Consideriamo il modello di regressione lineare multipla per descrivere i dati.
- 3. Con i dati a disposizione, stimiamo i parametri del modello di regressione.
- 4. Valutiamo la bontà del modello.
 - Se il modello descrive bene i dati \rightarrow sussiste una relazione tra Y e le variabili X_j e questa è approssimativamente lineare.
 - Se il modello non descrive bene i dati \rightarrow non c'è alcuna relazione rilevante tra Y e le variabili X_i , oppure la relazione sussiste ma non è approssimativamente lineare.

1. RACCOLTA DEL CAMPIONE

- \triangleright Raccogliamo un campione m+1-variato contenente n osservazioni appaiate per la variabile Y e le variabili X_i .
 - I dati del campione possono essere rappresentati in una tabella del tipo:

	Variabili							
Individui	Y	X_1	X_2	•••	X _m			
	y ₁	X ₁₁	X ₁₂		X _{1m}			
	y ₂	X ₂₁	X ₂₂	•••	X _{2m}			
		•••	•••		•••			
	y _n	X _{n1}	X _{n2}	•••	X _{nm}			

 Ogni colonna riporta una variabile e ogni riga riporta le osservazioni delle m+1 variabili appaiate (es. raccolte sullo stesso individuo/unità statistica).

2. IL MODELLO DI REGRESSIONE LINEARE MULTIPLA APPLICATO AI DATI RACCOLTI

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_m x_{im} + \varepsilon_i, \qquad i = 1, \dots, n$$

Forma matrice-vettore:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ 1 & x_{21} & \cdots & x_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$Y = X \cdot \beta + \varepsilon$$

CARATTERIZZAZIONE STATISTICA DEL MODELLO

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_m x_{im} + \varepsilon_i, i = 1, \dots, n$$

- $\rightarrow x_{ij} \rightarrow$ quantità note, deterministiche
- $\succ \varepsilon_i \rightarrow$ errore del modello casuale e distribuito come una normale a media 0 $\varepsilon_i \sim N(0, \sigma_i^2)$
- $\succ Y_i \rightarrow$ variabili aleatorie normali:

$$Y_i \sim N(\beta_0 + \sum_{j=1}^m \beta_j \cdot \mathbf{x}_{ij}, \sigma_i^2)$$

 \triangleright Assunzione: le variabili aleatorie ε_i sono tra loro indipendenti

$$Cov(\varepsilon_i, \varepsilon_i) = 0, \qquad i \neq j$$

3. STIMA DEI PARAMETRI DEL MODELLO MEDIANTE I MINIMI QUADRATI LINEARI (1/2)

Assunzione: la varianza dell'errore è costante $\rightarrow Var(\varepsilon_i) = \sigma^2 \ \forall i$

Metodo dei minimi quadrati lineari: si seleziona la combinazione di parametri β_j tale per cui risulta minima la somma dei quadrati degli scarti tra i valori della variabile di uscita realmente osservati, y_i , e quelli predetti dal modello, \hat{y}_i .

$$\hat{y}_i = \beta_0 + \sum_{j=1}^m \beta_j x_{nj}$$

$$\hat{\beta}_0, \hat{\beta}_1, \dots \hat{\beta}_m = \underset{\beta_0, \beta_1, \dots, \beta_m}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

 $y_i - \hat{y}_i$ sono detti **residui**

3. STIMA DEI PARAMETRI DEL MODELLO MEDIANTE I MINIMI QUADRATI LINEARI (2/2)

$$\hat{\beta}_{0}, \hat{\beta}_{1}, \dots \hat{\beta}_{m} = \underset{\beta_{0}, \beta_{1}, \dots, \beta_{m}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} =$$

$$= \underset{\beta_{0}, \beta_{1}, \dots, \beta_{m}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{i} - (\beta_{0} + \sum_{j=1}^{m} \beta_{j} x_{ij}))^{2}$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} (Y - X \cdot \beta)^{T} (Y - X \cdot \beta)$$

Somma dei residui al quadrato o sum of squared error (SSE)

STIMATORE VS FUNZIONE OBIETTIVO

- ➤ Il problema di identificazione del modello di regressione lineare multipla è un problema di stima parametrica lineare → si stimano i parametri incogniti di una funzione lineare nei parametri
- La stima avviene minimizzando i valori di una funzione obiettivo (loss function) \rightarrow funzione dei parametri incogniti: $F(\beta)$
- \succ Il vettore dei parametri che minimizza la funzione obiettivo, $\widehat{m{eta}}$, è detto stimatore.

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}} F(\boldsymbol{\beta})$$
Stimatore
Funzione obiettivo

$$F(\boldsymbol{\beta}) = (\boldsymbol{Y} - \boldsymbol{X} \cdot \boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X} \cdot \boldsymbol{\beta})$$

LO STIMATORE DEI PARAMETRI

 \triangleright Se la matrice X^TX è <u>invertibile</u>, la soluzione del problema di ottimizzazione precedente è:

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

- $\triangleright \widehat{\pmb{\beta}}$ è il vettore contenente le stime dei parametri β_j del modello di regressione lineare multipla nelle variabili X_j che minimizza SSE, ovvero che meglio approssima i dati.
- Nota: la stima $\widehat{\beta}$ è definita solo se X^TX è invertibile, ovvero ha rango pieno o determinante $\neq 0$. Ciò si verifica solo se le colonne di X sono linearmente indipendenti \rightarrow nessuna variabile è combinazione lineare delle altre.

DIMOSTRAZIONE (BONUS)

$$SSE = (\mathbf{Y} - \mathbf{X} \cdot \boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X} \cdot \boldsymbol{\beta}) = \mathbf{Y}^T \mathbf{Y} - \mathbf{Y}^T \mathbf{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{Y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} =$$
Scalari di uguale valore

$$= \mathbf{Y}^T \mathbf{Y} - 2 \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{Y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta}$$

Per trovare il minimo, deriviamo SSE rispetto a β e poniamo il risultato a 0:

$$\frac{\partial SSE}{\partial \boldsymbol{\beta}} = -2\boldsymbol{X}^T\boldsymbol{Y} + 2\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\beta} = 0$$
$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y}$$

PROPRIETA' DELLO STIMATORE AI MINIMI QUADRATUS

Poiché Y è un vettore aleatorio di distribuzione normale, lo stimatore

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

è anch'esso un vettore aleatorio normale.

Proprietà:

- $\triangleright E[\hat{\beta}_i] = \beta_i \rightarrow$ lo stimatore è corretto (non distorto)
- $\triangleright Cov(\widehat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$

STANDARD ERROR E COEFFICIENTE DI VARIAZIONE

$$Cov(\widehat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$$

- u La varianze degli stimatori \hat{eta}_j sono gli elementi sulla diagonale di $Cov(\widehat{m{eta}})$.
- Per calcolarle abbiamo bisogno di **X** (nota) e σ^2 , tipicamente incognita \rightarrow σ^2 si può stimare a posteriori (= dopo la stima dei β_i)
- ightharpoonup La deviazione standard dello stimatore \hat{eta}_j viene detta **standard error (SE)** del parametro $\hat{oldsymbol{eta}}_i$, SE_i .
- ightharpoonup Coefficiente di variazione delle stime dei parametri: $CV_j = \frac{SE_j}{|\widehat{\beta}_j|} \cdot 100$
- $ightharpoonup SE_j$ e CV_j rappresentano l'incertezza sulla stima di β_j .

STIMA DELLA VARIANZA DELL'ERRORE

 \blacktriangleright La varianza dell'errore del modello, σ^2 , può essere stimata a posteriori usando lo stimatore:

$$\hat{\sigma}^2 = \frac{SSE}{n - m - 1} = \frac{1}{n - m - 1} \sum_{i=1}^{n} (Y_i - \hat{y}_i)^2$$

Nota: la divisione per n-m-1 anziché per n garantisce che lo stimatore sia non distorto, ovvero che $E[\hat{\sigma}^2] = \sigma^2$.

ESEMPIO

- Obesità, ipertensione e ipercolesterolemia sono condizioni spesso associate al diabete mellito.
- Domanda: vogliamo investigare se sussiste una relazione lineare tra l'emoglobina glicata (Y) e un insieme di altre 6 variabili:
 - X₁: glicemia a digiuno [mg/dl]
 - X_2 : indice di massa corporea (IMC) [Kg/m²]
 - X₃: colesterolo totale [mg/dl]
 - X_A: colesterolo HDL [mg/dl]
 - X₅: pressione arteriosa sistolica [mmHg]
 - X₆: pressione arteriosa diastolica [mmHg]

ESEMPIO: IL DATASET

▶ **Dataset**: misure delle variabili X_1 - X_6 e Y raccolte in 600 diversi individui privi di diagnosi di diabete (n=600 osservazioni indipendenti).

Individuo	Emoglobina glicata Y [%]	Glicemia a digiuno X ₁ [mg/dl]	$\begin{array}{c} \text{IMC} \\ \text{X}_2 \\ \text{[Kg/m}^2] \end{array}$	Colesterolo totale X ₃ [mg/dl]	Colesterolo HDL X ₄ [mg/dl]	Pressione sistolica X ₅ [mmHg]	Pressione diastolica X ₆ [mmHg]
1	5.4	102.4	24.5	191.3	80.3	149.4	89.5
2	5.6	99.8	23.6	202.3	67.8	108.5	71.5
3	6.2	110.3	27.3	231.1	37.4	152.3	86.3
4	5.5	78.4	24.9	210.3	65.2	110.5	65.8
5	6.5	138.5	30.4	275.4	39.2	144.1	83.4
•••	•••	•••	•••	•••	•••	• • •	•••

ESEMPIO: IL MODELLO DI REGRESSIONE

> Ipotizziamo il seguente modello di regressione lineare multipla:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \varepsilon$$

Stimiamo i parametri del modello con i dati a disposizione mediante il metodo dei minimi quadrati lineari.

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

$$\hat{\beta}_{0} = (X^{T}X)^{-1}X^{T}Y$$

$$\hat{\beta}_{1} = 0.0115 [1/\text{mg/dl}]$$

$$\hat{\beta}_{2} = 0.0145 [1/\text{Kg/m}^{2}]$$

$$\hat{\beta}_{3} = 0.0007 [1/\text{mg/dl}]$$

$$\hat{\beta}_{4} = -0.0029 [1/\text{mg/dl}]$$

$$\hat{\beta}_{5} = 0.0029 [1/\text{mmHg}]$$

$$\hat{\beta}_{6} = -0.0032 [1/\text{mmHg}]$$

>
$$SSE = 76.68$$

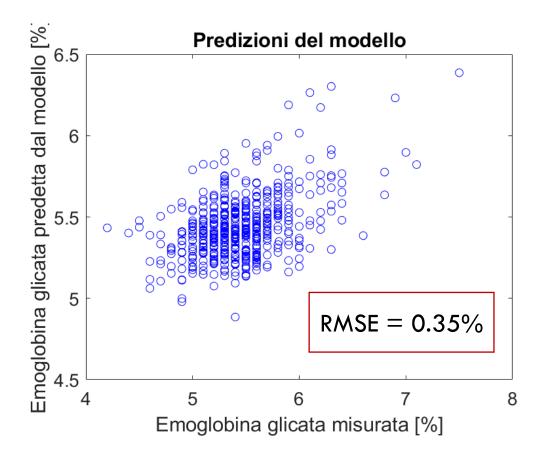
> $\hat{\sigma}^2 = \frac{SSE}{n-m-1} = \frac{76.68}{600-7} = 0.1293$

4. VALUTAZIONE DELLA BONTA' DEL MODELLO

- Dopo aver stimato i parametri del modello è importante chiedersi se il modello risultante descrive i dati in maniera soddisfacente, ovvero approssima in maniera soddisfacente la relazione tra le variabili considerate.
- Criteri per valutare la bontà del modello:
 - A. Confronto tra i valori dell'outcome reali e quelli predetti
 - B. Coefficiente di determinazione
 - C. F test
 - D. Analisi dei residui

A. CONFRONTO TRA I VALORI DELL'OUTCOME REALI E

Possiamo confrontare in una grafico a dispersione i valori dell'outcome predetti dal modello (asse y) con quelli realmente misurati (asse x).



- Metriche per valutare lo scostamento tra outcome predetta e outcome reale:
 - Mean square error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Root mean square error (RMSE)

$$RMSE = \sqrt{MSE}$$

Che unità di misura hanno MSE e RMSE?

SCOMPOSIZIONE DELLA DEVIANZA DELL'OUTCOME

ightharpoonup Total sum of squares (SST): devianza campionaria di $y_i
ightharpoonup$ rappresenta la variabilità della variabile di uscita

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

> SST si può scrivere come somma di due componenti:

$$SST = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Sum of squared errors (SSE): devianza dei residui, componente di variabilità della variabile di uscita dovuta all'errore

Regression sum of squares (SSR): componente di variabilità della variabile di uscita spiegata dalle variabili di ingresso X_i

B. IL COEFFICIENTE DI DETERMINAZIONE R²

Coefficiente di determinazione R²: frazione della variabilità della variabile di uscita spiegata dalle variabili di ingresso (adimensionale).

$$R^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}$$

- > R² varia tra 0 e 1 ed è tanto maggiore quanto più il modello di regressione lineare è in grado di spiegare i valori della variabile di uscita.
 - $R^2=1$ → la relazione tra le variabili di ingresso e di uscita è perfettamente lineare
 - R²=0 → la variabile di uscita non è affatto spiegabile con una regressione lineare delle variabili di ingresso

ESEMPIO: R²

Per valutare la bontà del modello di regressione lineare multipla identificato nell'esempio precedente, calcoliamo il coefficiente R².

•
$$SSE = 76.68$$

$$SST = 109.80$$

$$R^2 = 1 - \frac{SSE}{SST} = 0.3016$$

Le variabili X₁-X₆ considerate sono in grado di spiegare circa il 30% della variabilità di Y.

Si tratta di una frazione significativa?

C. F TEST (1/2)

- \triangleright Quando R^2 è basso, viene spontaneo chiedersi se esso sia significativamente diverso da 0. Questo equivale a chiedersi se almeno uno dei coefficienti β_i associati alle variabili x_i sia significativamente diverso da 0.
- > Rispondiamo a questa domanda con un test di verifica di ipotesi: F test.
- \triangleright Assunzioni: i termini di errore ε_i hanno distribuzione normale.
- > Sistema di ipotesi:
 - H_0 : $\beta_1 = \beta_2 = \cdots = \beta_m = 0$
 - H_1 : almeno un coefficiente $\beta_i \neq 0$, $i \neq 0$

C. F TEST (2/2)

Statistica del test:

$$F = \frac{SSR/m}{SSE/(n-m-1)} = \frac{(SST-SSE)/m}{SSE/(n-m-1)}$$

- \triangleright Quando vale H_0 , F ha una distribuzione F di Fisher con gradi di libertà m e n-m-1.
- > Regola decisionale (test a una coda destro, ci interessa capire se il numeratore di F è significativamente maggiore del denominatore):
 - Se $F > F_{\alpha,m,n-m-1} \rightarrow$ rifiutiamo H_0
 - Se $F \leq F_{\alpha,m,n-m-1}$ → non possiamo rifiutare H_0

ESEMPIO: F TEST

- ➤ Il modello è in grado di spiegare una porzione significativamente diversa da 0 della variabilità di Y? → F test
- Sistema di ipotesi:
 - H_0 : $\beta_1 = \beta_2 = \cdots = \beta_6 = 0$
 - H_1 : almeno un coefficiente $\beta_i \neq 0$, $j \neq 0$
- Valore osservato per la statistica F:

$$F_{oss} = \frac{(SST - SSE)/m}{SSE/(n - m - 1)} = \frac{(109.80 - 76.68)/6}{76.68/(600 - 7)} = 42.7$$

- \triangleright Possiamo rifiutare l'ipotesi nulla con livello di significatività $\alpha=5\%$?
 - $F_{\alpha,m,n-m-1} = F_{0.05,6,600-7} = 2.11$
 - $p value = 2.44 * 10^{-44}$

Rifiutiamo $H_0 \rightarrow$ almeno uno dei coefficienti β_j è significativamente $\neq 0$, e il modello predice una porzione significativa della variabilità di Y.

D. ANALISI DEI RESIDUI

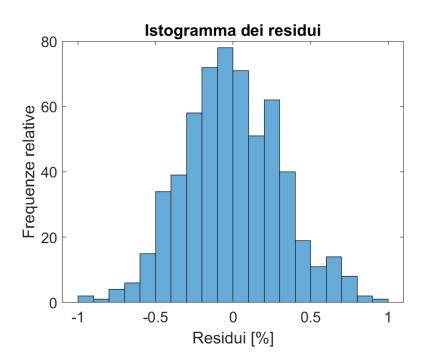
> Residui: differenza tra i valori osservati di Y e le predizioni modello

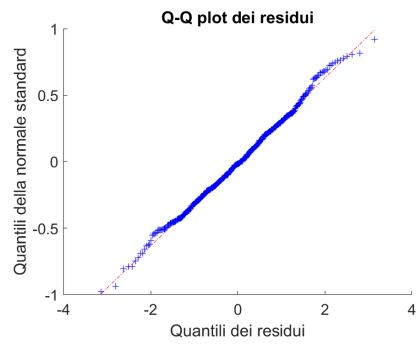
$$r_i = y_i - \hat{y}_i, \qquad i = 1, \dots, n$$

- \succ Se il modello di regressione lineare è una buona approssimazione per descrivere i dati, i residui devono presentare le proprietà statistiche dell'errore del modello ε_i .
 - 1. I residui devono avere distribuzione approssimativamente normale.
 - 2. I residui devono avere media nulla.
 - 3. I residui devono essere scorrelati.
 - 4. I residui devono avere varianza omogenea.

D.1 DISTRIBUZIONE NORMALE

Per verificare se la distribuzione dei residui è normale possiamo usare l'istogramma delle frequenze relative, un test di normalità, il q-q plot e gli indici di forma campionaria.





Risultati per il nostro esempio:

- > Test di Lilliefors:
 - P-value = 0.26
- Indice di skewness campionaria: 0.14
- Indice di curtosi campionaria: 3.01

Cosa concludiamo?

D.2 MEDIA NULLA

> Calcoliamo la media campionaria dei residui:

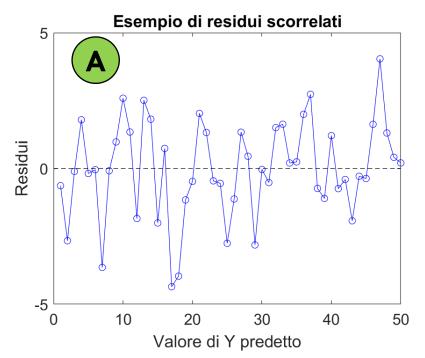
$$\bar{r} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

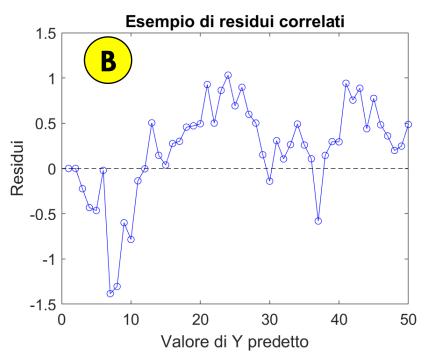
- Applichiamo un **t test** per verificare se la media dei residui è significativamente diversa da 0.
- > Risultati per il nostro esempio:
 - $\bar{r} = -0.0059$
 - P-value del t test: 0.65

Il t test di per sé non mi consente di dire nulla, essendo il risultato negativo. Tuttavia poiché osserviamo una media campionaria molto vicina a 0 (effect size) possiamo pensare che i residui siano ragionevolmente a media nulla.

D.3 AUTOCORRELAZIONE DEI RESIDUI

- Poiché le osservazioni del dataset sono indipendenti, è ragionevole attendersi che i residui siano a campioni scorrelati, ovvero che il valore del residuo kesimo non dipenda dai valori dei residui in posizioni precedenti a k → bianchezza dei residui
- \succ Ispezione visiva: analisi del plot dei residui vs il valore predetto di Y (\hat{y}_i)



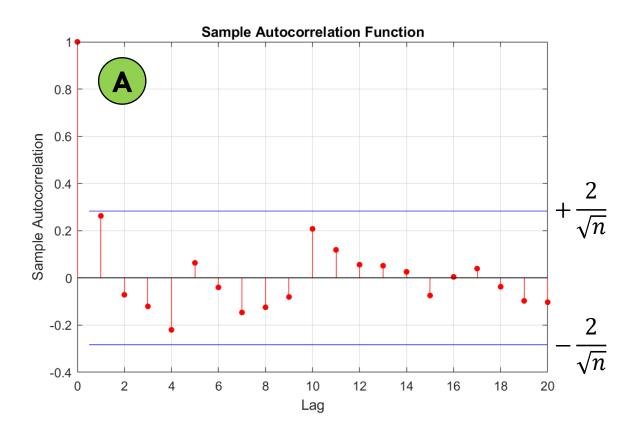


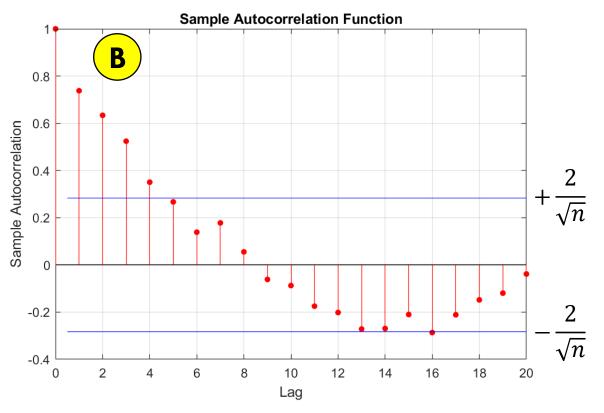
VALUTAZIONE QUANTITATIVA DELLA BIANCHEZZA DEI RESIDUI

- \triangleright Calcoliamo la **funzione di autocorrelazione** dei residui ordinati in base alle predizioni del modello (\hat{y}_i) .
- I valori della funzione di autocorrelazione corrispondono alla correlazione tra il segnale dei residui e la sua versione ritardata di un certo numero di campioni (lag).
 - Lag 0 \rightarrow correlazione del segnale $r_1, r_2, ..., r_n$ correlato con se stesso (sempre pari a 1)
 - Lag 1 \rightarrow correlazione del segnale $r_2, ..., r_n$ con $r_1, r_2, ..., r_{n-1}$
 - Lag 2 \rightarrow correlazione del segnale $r_3, r_2, ..., r_n$ con $r_1, r_2, ..., r_{n-2}$
 - •
 - Lag k \rightarrow correlazione del segnale r_k , r_{k+1} , ..., r_n con r_1 , r_2 , ..., r_{n-k}
- \succ Se il segnale dei residui è scorrelato, ci aspettiamo che i valori della funzione di autocorrelazione stiano all'interno della banda di confidenza $\pm 2/\sqrt{n}$

ESEMPI DI FUNZIONE DI AUTOCORRELAZIONE

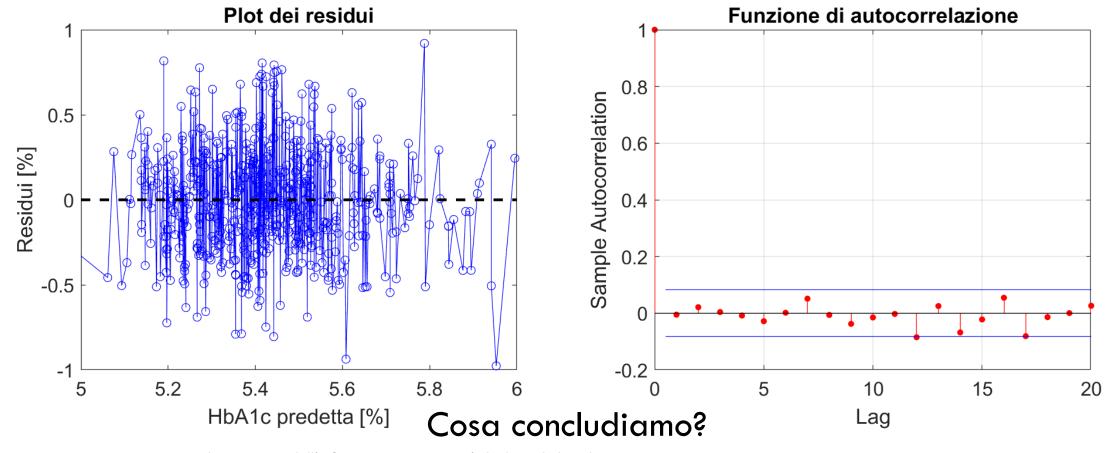
Funzione di autocorrelazione stimata per le due serie di residui di slide 40.





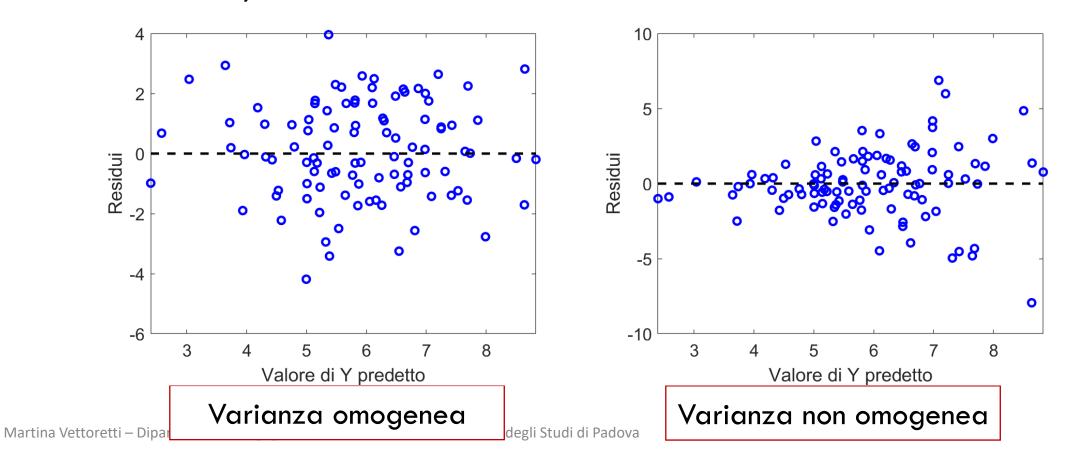
ESEMPIO: ANALISI DELLA BIANCHEZZA DEI RESIDUI

Analizziamo la bianchezza dei residui del modello di regressione lineare multipla per la predizione dell'emoglobina glicata.



D.4 VARIANZA OMOGENEA

- La varianza dei residui deve essere omogenea al variare del valore predetto di Y.
- Valutazione tramite ispezione visiva con un grafico di dispersione avente i valori dei residui sull'asse y e i valori dell'outcome Y sull'asse x.

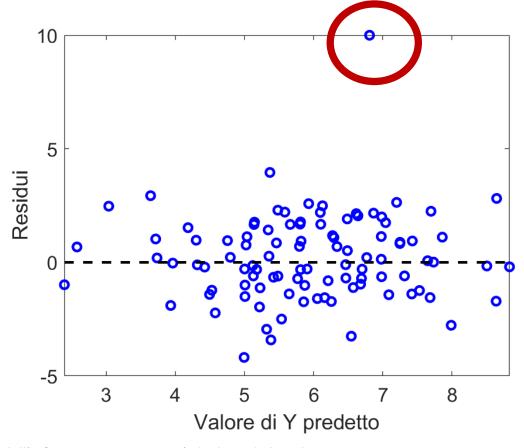


ALTRE ANOMALIE RISCONTRABILI DAL PLOT DEI RESIDUI

- Il plot dei residui al variare del valore predetto di Y ci consente anche di riscontrare eventuali altre anomalie nel comportamento dei residui, quali:
 - Outlier
 - Trend nell'andamento dei residui

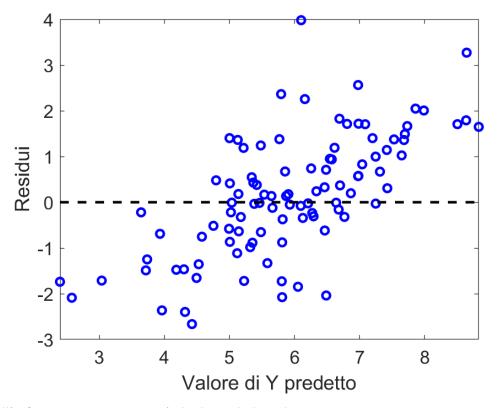
OUTLIER NEI RESIDUI

> Outlier: osservazioni per le quali il modello commette un errore considerevolmente maggiore rispetto alle altre osservazioni.



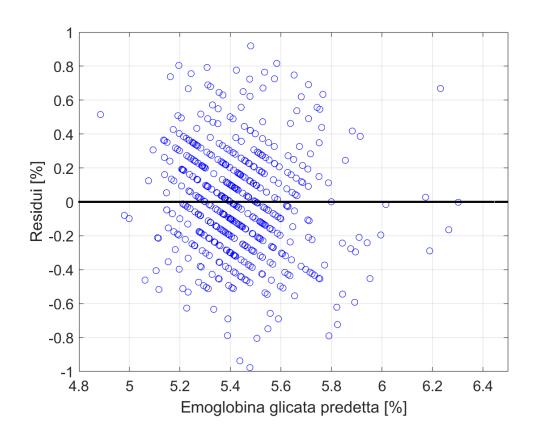
TREND NELL'ANDAMENTO DEI RESIDUI

Trend nell'andamento dei residui: l'errore del modello non è casuale, ma dipende dal valore di Y. Ciò significa che l'approssimazione lineare non è adeguata a descrivere i dati.



ESEMPIO: PLOT DEI RESIDUI VS. Y

Riprendiamo l'esempio sulla regressione lineare multipla dell'emoglobina glicata e visualizziamo il plot dei residui al variare dell'emoglobina glicata.



- La varianza dei residui risulta omogenea?
- Sono visibili significativi outlier o trend nei residui?

NTERPRETAZIONE DEI COEFFICIENTI DI REGRESSIONE

- Una volta appurato che la bontà del modello è soddisfacente possiamo analizzarne i coefficienti per ricavare utili informazioni relativamente all'effetto delle variabili esplicative sull'outcome.
- ightharpoonup Intercetta eta_0 : valore medio di Y quando le variabili X_j sono tutte nulle ightharpoonup componente di Y indipendente dai valori delle X_j
- ightharpoonup Coefficiente $oldsymbol{eta}_j$: l'incremento medio di Y che si ottiene aumentando X_j di 1 unità e tenendo costanti tutte le altre variabili ightharpoonup impatto di X_j su Y
- \triangleright Valore assoluto di β_i :
 - Se β_i è vicino a 0 \rightarrow la variabile X_i ha un impatto trascurabile su Y
 - lacktriangle Se eta_j è significativamente diverso da 0 lacktriangle la variabile X_j ha un impatto significativo su Y
- Segno di β_i:
 - $\beta_i > 0$ \rightarrow all'aumentare di X_i aumenta anche Y
 - $\beta_i < 0$ \rightarrow all'aumentare di X_i diminuisce Y

SIGNIFICATIVITA' STATISTICA DEI COEFFICIENTI DI REGRESSIONE LINEARE

Domanda: il coefficiente β_j è significativamente diverso da 0? La variabile X_j ha un impatto significativo su Y?

- \succ Valutiamo il valore di \hat{eta}_{j} e il suo intervallo di confidenza.
 - Lo stimatore $\hat{\beta}_j$ ha distribuzione normale con deviazione standard $\hat{\sigma}_{\sqrt{v_j}}$, dove v_i è l'elemento in posizione j della diagonale di $(X^TX)^{-1}$.
 - Intervallo di confidenza 95%: $\hat{\beta}_j \pm 1.96 \cdot \hat{\sigma} \sqrt{v_j} \rightarrow$ il valore vero di β_j è compreso in questo intervallo con probabilità circa pari al 95%
- Valutiamo l'ampiezza dell'intervallo di confidenza e se questo comprende lo
 0.

VERIFICA DI IPOTESI SUI COEFFICIENTI DI REGRESSIONE

- NE PROPERTY OF THE PROPERTY OF
- \triangleright **Test statistico** per verificare l'ipotesi che il coefficiente β_i sia significativamente $\ne 0$.
- \succ Assunzioni: gli errori ε_i hanno distribuzione normale con media 0 e varianza σ^2 .
- Sistema di ipotesi:
 - H_0 : $\beta_i = 0$
 - H_1 : $\beta_i \neq 0$
- Statistica del test:

Z-score del coefficiente
$$\beta_j$$
 $z_j = \frac{\hat{\beta}_j}{\sqrt{Var(\hat{\beta}_j)}} = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_j}}$ v_j è l'elemento in posizione j della diagonale di $(X^TX)^{-1}$

- \triangleright Quando vale H_0 , z_i ha distribuzione t di Student con n-m-1 gradi di libertà.
 - Se $|z_j| > t_{\frac{\alpha}{2},n-m-1} \rightarrow$ rifiutiamo H_0
 - Se $|z_j| \le t_{\frac{\alpha}{2},n-m-1}$ non possiamo rifiutare H_0

ESEMPIO: INTERPRETAZIONE DEI COEFFICIENTI DI REGRESSIONE

Analizziamo le stime dei coefficienti del modello di regressione lineare multipla dell'emoglobina glicata.

Variabile	Coefficiente stimato	Intervallo di confidenza al 95%	Z -score	P-value
Glicemia a digiuno	0.0115	[0.097 0.0134]	12.60	1.99*10-32
IMC	0.0145	[0.0075 0.0214]	4.16	3.6*10-5
Colesterolo totale	0.0007	[-0.0001 0.0014]	1.767	0.0777
Colesterolo HDL	-0.0029	[-0.0053 -0.0005]	-2.45	0.0145
Pressione sistolica	0.0029	[0.0008 0.0051]	2.72	0.0067
Pressione diastolica	-0.0032	[-0.0069 0.0005]	-1.71	0.0885

Che commenti possiamo fare?

 $t_{0.025,600-7} = 1.96$