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Exercise 1. Let

𝐹 (𝜉) :=
∫ +∞

0

𝑒−𝜉𝑥
2 − 𝑒−𝑥2

𝑥
𝑑𝑥.

i) Determine the domain of definition 𝐷 of 𝐹.
ii) Determine for which 𝜉 ∈ 𝐷 there exists 𝜕𝜉𝐹 and compute it.

iii) Determine 𝐹 (𝜉) explicitly.

Exercise 2. On 𝐶1( [0, 1]), define

∥ 𝑓 ∥∗ := | 𝑓 (1) | +
∫ 1

0

| 𝑓 ′(𝑥) |
√
𝑥

𝑑𝑥.

i) Check that ∥ · ∥∗ is a well defined norm on 𝑉 .
ii) Prove that ∥ · ∥∗ is stronger than ∥ · ∥∞.

iii) For 𝑛 ⩾ 1, let

𝑓𝑛 (𝑥) :=


−1

2𝑛
3/2

(
𝑥 − 1

𝑛

)
+ 𝑛1/2, 0 ⩽ 𝑥 ⩽ 1

𝑛
,

1√
𝑥
, 1

𝑛
⩽ 𝑥 ⩽ 1.

Check that ( 𝑓𝑛) ⊂ 𝑉 , compute ∥ 𝑓𝑛∥∗ and ∥ 𝑓𝑛∥∞ and deduce something on ∥ · ∥∗ and
∥ · ∥∞.

Exercise 3. Let
𝑓𝑎 (𝑥) :=

1 − cos 𝑥
𝑎2 + 𝑥2 , 𝑎 ⩾ 0.

i) Check that 𝑓𝑎 ∈ 𝐿1(R) for every 𝑎 ⩾ 0.
ii) For 𝑎 > 0, compute 𝑓̂𝑎 (it may be useful to remind that cos 𝑥 = 𝑒𝑖𝑥+𝑒−𝑖𝑥

2 ). Deduce∫ +∞
0

𝑓𝑎 (𝑥) 𝑑𝑥.

iii) Use ii) to compute ∫ +∞
0

1 − cos 𝑥
𝑥2 𝑑𝑥.

iv) (extra question) Compute 𝑓̂0.
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Exercise 4. Let 𝑓𝑛 (𝑥) := 𝑛3/2𝑥𝑒−𝑛𝑥 , 𝑥 ∈ [0, +∞[.
i) Is ( 𝑓𝑛) point wise convergent on [0, +∞[? If yes, to what?

ii) Is ( 𝑓𝑛) ⊂ 𝐿∞( [0, +∞[)? Is ( 𝑓𝑛) convergent in 𝐿∞( [0, +∞[) and, if yes, to what?
iii) Is ( 𝑓𝑛) ⊂ 𝐿1( [0, +∞[)? Is ( 𝑓𝑛) convergent in 𝐿1( [0, +∞[) and, if yes, to what?
iv) Is ( 𝑓𝑛) ⊂ 𝐿2( [0, +∞[)? Is ( 𝑓𝑛) convergent in 𝐿2( [0, +∞[) and, if yes, to what?

Exercise 5. Let
𝐹 (𝑡) :=

∫ +∞
−∞

𝑒−𝑡𝑥
2 1 − cos 𝑥

𝑥2 𝑑𝑥.

i) Determine the domain of definition of 𝐹.
ii) Determine 𝐹′(𝑡) for all 𝑡 for which the derivative exists.

Exercise 6. Let 𝐻 := 𝐿2( [0, 2]) equipped with usual scalar product ⟨ 𝑓 , 𝑔⟩ :=
∫ 2

0 𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥.
Let

𝑈 := { 𝑓 ∈ 𝐻 : 𝑓 (𝑥) = 𝑓 (2 − 𝑥), 𝑎.𝑒. 𝑥 ∈ [0, 2]} .
i) Check that𝑈 is a closed linear subspace of 𝐻.

ii) Check that the orthogonal projection on𝑈, Π𝑈 𝑓 , is

Π𝑈 𝑓 (𝑥) :=

𝑓 (𝑥), 𝑥 ∈ [0, 1],

𝑓 (2 − 𝑥), 𝑥 ∈ [1, 2]
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Exercise 7. Let
𝑓𝑛 (𝑥) :=

√︁
𝑛 − 𝑛2𝑥1[0,1/𝑛] (𝑥).

i) Plot quickly the graph of 𝑓𝑛.
ii) Is ( 𝑓𝑛) ⊂ 𝐿1( [0, 1])? Is ( 𝑓𝑛) ⊂ 𝐿2( [0, 1])?

iii) Is ( 𝑓𝑛) convergent in 𝐿1( [0, 1]) and, in the case, to what? Is ( 𝑓𝑛) convergent in 𝐿2( [0, 1])
and, in the case, to what?

Exercise 8. Let
Φ(𝑠) :=

∫ +∞
0

𝑒−𝑠𝑥
(sin 𝑥)2
𝑥

𝑑𝑥.

i) Show that Φ(𝑠) is well defined for any 𝑠 > 0.
ii) Show that lim𝑠→+∞Φ(𝑠) exists and determine its value.

iii) Show that ∃Φ′(𝑠) for any 𝑠 > 0.
iv) Deduce, by ii) and iii), the value of Φ(𝑠) for 𝑠 ∈]0, +∞[.

Useful formula:
∫
𝑒𝛼𝑥 sin(𝛽𝑥) 𝑑𝑥 = 𝛼

𝛼2+𝛽2 𝑒
𝛼𝑥

(
sin(𝛽𝑥) − 𝛽

𝛼
cos(𝛽𝑥)

)
for 𝛼 ≠ 0.

Exercise 9. Give the Definition of the Fourier Transform and of convolution product 𝑓 ∗ 𝑔 for
𝑓 , 𝑔 ∈ 𝐿1(R). Prove that �𝑓 ∗ 𝑔 = . . .

i) Compute the FT of 𝑒−𝑎 |𝑥 |, 𝑎 > 0. Justifying carefully and invoking the necessary
theorems, deduce the FT of the Cauchy distribution 1

𝑎2+𝑥2 (𝑎 > 0).
ii) Use the previous facts to compute the FT of 1

(𝑎2+𝑥2)2 (𝑎 > 0).
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Exercise 10. Let 𝐻 = 𝐿2( [−1, 1]) equipped with usual scalar product

⟨ 𝑓 , 𝑔⟩ =
∫ 1

−1
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥.

Define

𝑆 :=
{
𝑓 ∈ 𝐻 :

∫ 0

−1
𝑓 (𝑥) 𝑑𝑥 =

∫ 1

0
𝑓 (𝑥) 𝑑𝑥

}
.

i) Check that 𝑆 is a well defined and closed subspace of 𝐻.
ii) Determine the orthogonal projection Π𝑆 𝑓 on 𝑆 of a generic 𝑓 ∈ 𝐻. Compute, in

particular, Π𝑆𝑥.

Exercise 11. Let
𝑔(𝜉) :=

sin 𝜉 − 𝜉 cos 𝜉
𝜉3 , 𝜉 ∈ R\{0}.

i) Is 𝑔 ∈ 𝐿1(R)? And in 𝐿2(R)? Justify carefully.
ii) Discuss the existence of a Fourier original for 𝑔.

iii) Show that 𝜉𝑔(𝜉) = 𝜕𝜉 . . .. Use this to determine a Fourier original for 𝑔. Justify carefully
the general properties you use to answer.

Exercise 12. On 𝑉 := { 𝑓 ∈ 𝒞1( [0, 1]) : 𝑓 (0) = 0}, define

∥ 𝑓 ∥∗ := sup
𝑡∈]0,1]

| 𝑓 (𝑡) |
√
𝑡
, ∥ 𝑓 ∥∗∗ := ∥ 𝑓 ′∥∞ ≡ max

𝑡∈[0,1]
| 𝑓 ′(𝑡) |.

i) Check that ∥ · ∥∗ is well defined norm on 𝑉 (it might be useful to remind that, for
𝑓 ∈ 𝒞1( [0, 1]), 𝑓 (𝑡) = 𝑓 (0) + 𝑓 ′(0)𝑡 + 𝑜(𝑡) when 𝑡 −→ 0).

ii) Check that ∥ · ∥∗∗ is well defined on 𝑉 and it fulfils the characteristic properties of a
norm.

iii) What relations hold true between ∥ · ∥∗ and ∥ · ∗∗? Justify carefully.
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Exercise 13. Let 𝐻 = { 𝑓 ∈ 𝐿2( [0, 1]) : ∃ 𝑓 ′ ∈ 𝐿2( [0, 1]), 𝑓 (1) = 0} equipped with the scalar
product

⟨ 𝑓 , 𝑔⟩𝐻 =

∫ 1

0
𝑓 ′(𝑥)𝑔′(𝑥) 𝑑𝑥.

We accept 𝐻 is a vector space with usual operations of sum and product by scalars on functions.
i) Check that ⟨·, ·⟩𝐻 is a well defined scalar product on 𝐻 with vanishing in the weak form,

that is ⟨ 𝑓 , 𝑓 ⟩𝐻 = 0 iff 𝑓 = 0 a.e..
ii) Let

𝑆 :=
{
𝑓 ∈ 𝐻 :

∫ 1

0
𝑓 (𝑥) 𝑑𝑥 = 0

}
.

Determine 𝑣 ∈ 𝐻 such that 𝑆 = Span(𝑣)⊥. (hint: express the characterizing condition
of 𝑆 in terms of the scalar product of 𝐻).

iii) We accept 𝐻 is an Hilbert space. Determine the orthogonal projection of 𝑥 − 1 on 𝑆.
Justify carefully.

Exercise 14. i) Let 𝑓 , 𝑔 ∈ 𝐿1(R). What is the convolution of 𝑓 and 𝑔? What important property
of FT holds in connection with convolution? Write a precise statement and provide a proof of it.

Consider now the equation

𝜆 𝑓 (𝑥) +
∫
R

𝑓 (𝑦)
1 + (𝑥 − 𝑦)2

𝑑𝑦 =
1

1 + 𝑥2 +
1

4 + 𝑥2 , 𝑥 ∈ R.

ii) Assume 𝑓 ∈ 𝐿1(R) be a solution. Determine 𝑓̂ . Deduce for which values of 𝜆 the
equation has one and only one solution.

iii) Determine explicitly the solution in the case 𝜆 = 2𝜋.

Exercise 15. Let ( 𝑓𝑛) ⊂ 𝐿1( [0, 1]), 𝑓𝑛 ⩾ 0 for every 𝑛 ∈ N. For each of the following
statements, say whether it is true or false. In the first case, provide a proof, in the second provide
a counterexample.

i) If
∫ 1

0 𝑓𝑛 −→ +∞ then 𝑓𝑛 ̸−→ 0 a.e.
ii) if 𝑓𝑛 −→ 0 a.e. then

∫ 1
0 𝑓𝑛 −→ 0.

iii) if
∫ 1

0 𝑓𝑛 −→ 0 then 𝑓𝑛 −→ 0 a.e.
iv) if

∫ 1
0 𝑓𝑛 −→ +∞ then ∥ 𝑓𝑛∥∞ −→ +∞.
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Exercise 16. Compute

lim
𝑛→+∞

𝑛2
∫ 𝑛

0

1 − 𝑒−
𝑥2
𝑛2

𝑥2(𝑥2 + 1)
𝑑𝑥.

Justify carefully, quoting the general results you use. (it might be useful to know that 𝑒𝑡 ⩾ 1 + 𝑡
for every 𝑡 ∈ R)

Exercise 17. Let 𝑉 := 𝒞
2( [0, 1]) the set of real valued continuous functions 𝑓 with 𝑓 ′ and 𝑓 ′′

continuous. We accept (trivial) that𝑉 is a vector space with usual operations of sum and product
by scalars. On 𝑉 we define

∥ 𝑓 ∥𝑉 := ∥ 𝑓 ′′∥∞ + | 𝑓 ′(0) | + | 𝑓 (0) |.
i) Check that ∥ · ∥𝑉 is a well defined norm on 𝑉 .

ii) On 𝑉 we can also define the uniform norm ∥ · ∥∞. Check that ∥ · ∥𝑉 is stronger than
uniform norm.

iii) True or false: if 𝑓𝑛
∥·∥𝑉−→ 𝑓 then 𝑓𝑛 (𝑥) −→ 𝑓 (𝑥) for every 𝑥 ∈ [0, 1]? Justify carefully.

iv) Consider the sequence 𝑓𝑛 (𝑥) := 1
𝑛2 𝑥

𝑛. Is ( 𝑓𝑛) ⊂ 𝑉? Is ( 𝑓𝑛) convergent in 𝑉? What
conclusion can you draw on norms ∥ · ∥𝑉 and ∥ · ∥∞?

Exercise 18. Let
𝑔(𝜉) :=

1
𝜉

(
𝑎2

𝑎2 + 𝜉2 −
𝑏2

𝑏2 + 𝜉2

)
,

where 𝑎, 𝑏 > 0 and 𝑎 ≠ 𝑏.
i) Is 𝑔 ∈ 𝐿1(R)? Does 𝑔 have a Fourier original? Justify carefully your answer.

ii) Compute the FT of 𝜉𝑔(𝜉).
iii) Determine the Fourier original of 𝑔.
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Exercise 19. Let 𝑓 ∈ 𝐿1(R) be such that 𝑥 𝑓 (𝑥) ∈ 𝐿1(R). What is the FT of 𝑥 𝑓 (𝑥)? Provide a
proof of your answer.

Let now
𝑔(𝜉) := 𝜉𝑒−|𝜉 |, 𝜉 ∈ R.

Discuss the problem of determining a Fourier original for 𝑔.

Exercise 20. On 𝑉 = 𝒞( [0, 1]) we consider

∥ 𝑓 ∥∗ :=
∫ 1

0

| 𝑓 (𝑥) |
√
𝑥

𝑑𝑥.

i) Show that ∥ · ∥∗ is a well defined norm on 𝑉 .
ii) On 𝑉 we consider also a) the uniform norm ∥ · ∥∞ and the 𝐿1 norm ∥ 𝑓 ∥1 =

∫ 1
0 | 𝑓 (𝑥) |𝑑𝑥.

Establish relations among these norms and ∥ · ∥∗ norm, discussing also if they are
equivalent or not.

Exercise 21. On 𝐻 = 𝐿2( [0, 1]), with usual scalar product, consider

𝑉 :=
{
𝑓 ∈ 𝐻 :

∫ 1

0
𝑥 𝑓 (𝑥) 𝑑𝑥 = 0,

∫ 1

0
𝑥3 𝑓 (𝑥) 𝑑𝑥 = 0

}
.

i) Check that 𝑉 is a well defined and closed subspace of 𝐻.
ii) Determine the orthogonal projection on 𝑉 of 𝑔(𝑥) = 𝑥2.
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Exercise 22. Let
𝐹 (𝜆) :=

∫ +∞
0

𝑒−𝜆𝑥
sin 𝑥
𝑥

𝑑𝑥.

i) Determine the domain 𝐷 of definition for 𝐹.
ii) Discuss differentiability of 𝐹 on 𝐷 and compute 𝜕𝜆𝐹. It may be helpful to know∫

𝑒𝛼𝑥 sin(𝛽𝑥) 𝑑𝑥 = 𝛼

𝛼2+𝛽2 𝑒
𝛼𝑥

(
sin(𝛽𝑥) − 𝛽

𝛼
cos(𝛽𝑥)

)
for 𝛼 ≠ 0.

iii) Determine 𝐹 explicitly.

Exercise 23. Let

𝑉 :=
{
𝑓 ∈ 𝒞( [0, 1]) : ∥ 𝑓 ∥ :=

∫ 1

0

| 𝑓 (𝑥) |
√
𝑥

𝑑𝑥 < +∞
}
.

Accept that 𝑉 is a vector space.
i) Check that ∥ · ∥ is a norm on 𝑉 .

ii) On 𝑉 it is also defined the uniform norm ∥ 𝑓 ∥∞ = max𝑥∈[0,1] | 𝑓 (𝑥) |. Prove that this is
stronger than ∥ · ∥.

iii) Let

𝑓𝑛 (𝑥) :=


4√𝑛, 0 ⩽ 𝑥 ⩽ 1
𝑛
,

1
4√𝑥 ,

1
𝑛
⩽ 𝑥 ⩽ 1.

Compute ∥ 𝑓𝑛∥ and ∥ 𝑓𝑛∥∞. What can you conclude about norms ∥ · ∥ and ∥ · ∥∞.

Exercise 24. The goal is to compute the FT of 𝑓 (𝑥) = 1
1+𝑥4 .

i) Does 𝑓̂ exists? If yes, which of the following statements are true/false and why: 𝑓̂ ∈
𝐿1(R); 𝑓̂ ∈ 𝐿2(R); 𝑓̂ ∈ 𝒞1(R); 𝑓̂ ∈ 𝒮(R).

ii) By reducing to suitable Cauchy distributions, compute FT of
1

𝑥2 ±
√

2𝑥 + 1
.

iii) Noticed that 1 + 𝑥4 = (𝑥2 +
√

2𝑥 + 1) (𝑥2 −
√

2𝑥 + 1), express 1
1+𝑥4 in terms of 1

𝑥2±
√

2𝑥+1
.

Use this to determine 𝑓̂ .



9

January 2024

Exercise 25. Let
𝐹 (𝜉) :=

∫
R

1 − cos(𝜉𝑥)
𝑥2(𝑥2 + 1)

𝑑𝑥.

i) Determine the set 𝐷 ⊂ R, domain of definition for 𝐹.
ii) Determine the set 𝐷′ ⊂ 𝐷 for which 𝜕𝜉𝐹 and compute it.

iii) Determine the set 𝐷′′ ⊂ 𝐷′ for which there exists 𝜕2
𝜉
𝐹 (𝜉) and compute it.

iv) Use FT to express 𝜕2
𝜉
𝐹 and to determine 𝐹.

Exercise 26. On 𝑉 := { 𝑓 ∈ 𝒞1( [0, 1]) : 𝑓 (0) = 0}, we define
∥ 𝑓 ∥ := max

𝑡∈[0,1]
𝑡1/2 | 𝑓 ′(𝑡) |.

i) Check that ∥ · ∥ is a norm on 𝑉 .
ii) Define

𝑓𝑛 (𝑥) :=


𝑛3/4

4 𝑥, 0 ⩽ 𝑥 ⩽ 1
𝑛
,

𝑥1/4 − 3
4𝑛1/4 ,

1
𝑛
⩽ 𝑥 ⩽ 1.

Is ( 𝑓𝑛) ⊂ 𝑉? If yes, is ( 𝑓𝑛) convergent in ∥ · ∥ norm?
iii) On𝑉 is naturally defined the uniform norm ∥ · ∥∞. Show that ∥ · ∥ is stronger than ∥ · ∥∞.

Are they also equivalent? Justify carefully your answer.

Exercise 27. Let

𝐻 :=
{
𝑓 : [0, +∞[−→ R : 𝑓 ∈ 𝐿 (R),

∫ +∞
0

𝑓 (𝑥)2𝑒−𝑥 𝑑𝑥 < +∞
}
.

On 𝐻 we define
⟨ 𝑓 , 𝑔⟩ :=

∫ +∞
0

𝑓 (𝑥)𝑔(𝑥)𝑒−𝑥 𝑑𝑥.

i) Check that ⟨·, ·⟩ is a well defined scalar product with vanishing in the form ⟨ 𝑓 , 𝑓 ⟩ = 0
iff 𝑓 = 0 a.e.

Accept 𝐻 is Hilbert. Let𝑈 := {𝑢 ∈ 𝐻 :
∫ +∞

0 𝑢(𝑥)𝑒−𝑥 𝑑𝑥 = 0}.
ii) Prove that𝑈 a closed subspace of 𝐻.

iii) Determine the orthogonal projection on𝑈 of 𝑓 (𝑥) = 𝑒−2𝑥 .
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Exercise 28. Let
𝑓𝑛 (𝑥) :=

1
𝑥1+1/𝑛 , 𝑥 ∈ [1, +∞[.

i) Is ( 𝑓𝑛) ⊂ 𝐿1( [1, +∞[)? Is ( 𝑓𝑛) ⊂ 𝐿2( [1, +∞[)? Is ( 𝑓𝑛) ⊂ 𝐿∞( [1, +∞[)? Justify
carefully.

ii) Discuss convergence of ( 𝑓𝑛) in 𝐿𝑝 ( [1, +∞[) for 𝑝 = 1, 2,∞.

Exercise 29. Let 𝛼 ∈ C and define
𝑓𝛼 (𝑥) := 𝑒𝛼𝑥1[0,+∞[ (𝑥), 𝑥 ∈ R.

i) Under which conditions on 𝛼 ∈ C is 𝑓̂𝛼 well defined? For such 𝛼, compute 𝑓̂𝛼.
ii) Let 𝛽 ∈ C, 𝑔𝛽 (𝜉) := 1

(𝜉+𝛽)2 . Determine under which conditions on 𝛽 ∈ C, function 𝑔𝛽
has an 𝐿1 or 𝐿2 (or both) Fourier original.

iii) For Im 𝛽 > 0, explicitly determine (if any) a Fourier original for 𝑔𝛽.
(hint: 𝑔𝛽 = 𝜕𝜉 . . .)

Exercise 30. Let

𝐹 (𝑥) :=
∫ +∞

0

1 − 𝑒−𝑥𝑦2

𝑦2 𝑑𝑦.

i) Determine the domain 𝐷 of 𝐹. Justify carefully.
ii) [5] Discuss differentiability of 𝐹 determining 𝐷′ ⊂ 𝐷 for which ∃𝜕𝑥𝐹 (𝑥) for every
𝑥 ∈ 𝐷′.

iii) Use ii) to determine 𝐹 explicitly.
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Exercise 31. Let
𝑔(𝜉) = (1 − 𝜉2)1[−1,1] (𝜉), 𝜉 ∈ R.

i) Discuss the problem of existence of a Fourier original 𝑓 for 𝑔 with 𝑓 ∈ 𝐿1 and/or 𝑓 ∈ 𝐿2.
Justify your answers with care.

ii) Determine 𝑓 explicitly.

Exercise 32. On 𝑉 :=
{
𝑓 ∈ 𝒞1( [0, 1]) :

∫ 1
0 𝑓 (𝑥) 𝑑𝑥 = 0

}
define

∥ 𝑓 ∥∗ :=
∫ 1

0
| 𝑓 ′(𝑥) | 𝑑𝑥, ∥ 𝑓 ∥∗∗ := ∥ 𝑓 ′∥∞.

i) Check that ∥ · ∥∗ and ∥ · ∥∗∗ are well defined norms on 𝑉 .
ii) Let

𝑔𝑛 (𝑥) :=

√
𝑛𝑥, 0 ⩽ 𝑥 ⩽ 1

𝑛
,

2
√
𝑥 − 1√

𝑛
, 1

𝑛
⩽ 𝑥 ⩽ 1.

Determine 𝑐𝑛 ∈ R in such a way that 𝑓𝑛 := 𝑔𝑛− 𝑐𝑛 ∈ 𝑉 . Compute then ∥ 𝑓𝑛∥∗ and ∥ 𝑓𝑛∥∗∗.
iii) Discuss relations between ∥ · ∥∗ and ∥ · ∥∗∗.

Exercise 33. Let
𝐹 (𝑥) :=

∫ +∞
0

𝑒−𝑥𝑦
1 − cos 𝑦

𝑦
𝑑𝑦.

i) Determine the domain of definition of 𝐹, that is the set of 𝑥 ∈ R such that 𝐹 (𝑥) is well
defined.

ii) Determine the set of 𝑥 for which ∃𝐹′(𝑥) and compute it.
iii) Use ii) to explicitly determine 𝐹.
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November 2024

Exercise 34. Let 𝑋 := 𝐿∞( [0, +∞[). For 𝑎 > 0 define

∥ 𝑓 ∥𝑎 :=
∫ +∞

0
𝑒−𝑎𝑥 | 𝑓 (𝑥) | 𝑑𝑥.

i) Check that ∥ · ∥𝑎 is a well defined norm on 𝑋 for every 𝑎 > 0.
ii) Show that, for 𝑎 < 𝑏, ∥ · ∥𝑎 is stronger than ∥ · ∥𝑏

iii) Are ∥ · ∥𝑎 and ∥ · ∥𝑏 equivalent? Justify carefully.

Exercise 35. Let (𝑋,ℱ, 𝜇) be a measure space, and 𝐻 := 𝐿2(𝑋) be the Hilbert space w.r.t. the
usual scalar product

⟨ 𝑓 , 𝑔⟩2 =

∫
𝑋

𝑓 𝑔 𝑑𝜇

Let also 𝐸 ∈ ℱ and define
𝑈 := { 𝑓 ∈ 𝐻 : 𝑓 = 0, 𝑎.𝑒. on 𝐸𝑐} .

i) Check that𝑈 is a closed linear subspace of 𝐻.
ii) Define Π𝑈 𝑓 := 𝑓 1𝐸 . Show that Π𝑈 𝑓 is the orthogonal projection of 𝑓 on𝑈.

Exercise 36. Let 𝑎, 𝑏 > 0 real numbers with 𝑎 ≠ 𝑏, and

𝑔𝑎,𝑏 (𝜉) :=
𝑒−𝑎 |𝜉 | − 𝑒−𝑏 |𝜉 |

𝜉
, 𝜉 ∈ R\{0}.

i) Is 𝑔𝑎,𝑏 ∈ 𝐿1(R)? Is 𝑔𝑎,𝑏 ∈ 𝐿2(R)? Determine whether 𝑔𝑎,𝑏 has a Fourier original 𝑓𝑎,𝑏
in 𝐿1(R) and/or in 𝐿2(R).

ii) For the case(s) (𝐿1 and/or 𝐿2) for which there is a Fourier original, determine it.
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February 2025

Exercise 37. Let
𝐹 (𝜆) :=

∫ +∞
0

𝑒−𝜆𝑥
sin 𝑥
𝑥

𝑑𝑥.

i) Determine 𝜆 ∈ R for which 𝐹 (𝜆) makes sense as Lebesgue integral.
ii) Determine 𝜆 ∈ R for which ∃𝜕𝜆𝐹 (𝜆) and compute it.

iii) Determine 𝐹 (𝜆) for 𝜆 at i).

Exercise 38. Let
𝑓𝑛 (𝑥) := 𝑛𝑒−𝑛𝑥 (1 − 𝑒−𝑥), 𝑥 ∈ 𝐼 := [0, +∞[.

i) Is ( 𝑓𝑛) point-wise convergent?
ii) Is ( 𝑓𝑛) convergent in 𝐿∞(𝐼)?

iii) Is ( 𝑓𝑛) convergent in 𝐿1(𝐼)?
iv) Is ( 𝑓𝑛) convergent in 𝐿2(𝐼)?

Exercise 39. Let
𝑔(𝜉) :=

1
(𝜉2 + 𝑎2) (𝜉2 + 𝑏2)

, 𝜉 ∈ R,

with 𝑎, 𝑏 > 0 and 𝑎 ≠ 𝑏.
i) Discuss the problem of existence of a Fourier original for 𝑔 in 𝐿1 and in 𝐿2 cases. Is the

Fourier original also 𝐿∞? Justify carefully and determine the Fourier original explicitly.
ii) Show that ♯𝑔(♯) has a Fourier original in 𝐿2 and find it in term of the original 𝑓 of 𝑔.

Justify carefully your answer.
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July 2025

Exercise 40. Let 𝑉 :=
{
𝑓 ∈ 𝐿1( [0, 1]) :

∫ 1
0 𝑥 | 𝑓 (𝑥) | 𝑑𝑥 < +∞

}
. We accept 𝑉 is a vector space

on R with usual definitions of sum and product by scalars. On 𝑉 we define

∥ 𝑓 ∥ :=
∫ 1

0
𝑥 | 𝑓 (𝑥) | 𝑑𝑥.

i) Check that ∥ · ∥ is a norm on 𝑉 with vanishing in the weak form ∥ 𝑓 ∥ = 0 iff 𝑓 = 0 a.e..
ii) Define

𝑓𝑛 (𝑥) :=

𝑛, 0 ⩽ 𝑥 ⩽ 1

𝑛
,

1
𝑥
, 1

𝑛
⩽ 𝑥 ⩽ 1.

Is ( 𝑓𝑛) ⊂ 𝑉? Is ( 𝑓𝑛) convergent in 𝑉 respect to ∥ · ∥? If yes, to what?
iii) By definition, 𝑉 ⊂ 𝐿1( [0, 1]), so on 𝑉 we can consider also the ∥ · ∥1 norm. Is there any

relation between ∥ · ∥ and ∥ · ∥1 norms? Justify carefully your answers.
iv) Is 𝑉 , equipped with ∥ · ∥ norm a Banach space?

Exercise 41. Let 𝐻 := 𝐿2(R) equipped with usual scalar product ⟨ 𝑓 , 𝑔⟩ :=
∫
R
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥. Let

𝑈 := {𝑢 ∈ 𝐻 : 𝑢(−𝑥) = −𝑢(𝑥), 𝑎.𝑒. 𝑥 > 0} .
i) Check that𝑈 is a closed linear subspace of 𝐻.

ii) Check that the orthogonal projection on𝑈, Π𝑈 𝑓 , is

[Π𝑈 𝑓 ] (𝑥) :=
1
2
( 𝑓 (𝑥) − 𝑓 (−𝑥)) , 𝑥 ∈ R.

Exercise 42. i) What is the convolution 𝑓 ∗ 𝑔 and when is it well defined and in 𝐿1(R)?
ii) Show s remarkable formula for the FT of 𝑓 ∗ 𝑔.

iii) Given 𝑔 ∈ 𝐿1(R), consider the equation in the unknown 𝑓 ∈ 𝐿1(R):
( 𝑓 ∗ 𝑓 ) (𝑥) = 𝑔(𝑥), a.e. 𝑥 ∈ R.

Discuss whether or not is solvable and, in this case, determine all the possible solutions
when 𝑔(𝑥) = 𝑒−𝑥2 .
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September 2025

Exercise 43 (11). Let 𝑥 ∈ R be fixed and set

𝐹 (𝑦) :=
∫
R
𝑒−(𝑥+𝑖𝑦)

2
𝑑𝑥.

i) [5] Check that 𝐹 is well defined for every 𝑦 ∈ R.
ii) [6] Show that 𝐹 is differentiable for every 𝑦 ∈ R, and compute 𝜕𝑦𝐹 (𝑦). Use this to educe

𝐹 (𝑦).

Exercise 44 (11). Let. We define

𝑉 :=
{
𝑓 ∈ 𝐿 ( [0, +∞[) : ∥ 𝑓 ∥ :=

∫ +∞
0

| 𝑓 (𝑥) |
1 + 𝑥 𝑑𝑥 < +∞

}
.

i) [3] Check that ∥ · ∥ is a well defined norm on 𝑉 (that is ∥ 𝑓 ∥ < +∞ for every 𝑓 ∈ 𝑉) with
vanishing in the weak form ∥ 𝑓 ∥ = 0 iff 𝑓 = 0 a.e..

ii) [2] Check that 𝐿2( [0, +∞[) ⊂ 𝑉 and that ∥ · ∥2 is stronger than ∥ · ∥.
iii) [4] Let 𝑓𝑛 (𝑥) := 1√

𝑥
1[1/𝑛,𝑛] (𝑥). Is ( 𝑓𝑛) ⊂ 𝐿2( [0, +∞[)? Is ( 𝑓𝑛) convergent in ∥ · ∥2? Is

( 𝑓𝑛) ⊂ 𝑉? Is ( 𝑓𝑛) convergent in ∥ · ∥? In case of affirmative answer(s), determine also
the limit(s) function.

iv) [2] Are ∥ · ∥2 and ∥ · ∥ equivalent?

Exercise 45 (11). Let

𝑔(𝜉) :=
3𝜉2 − 1
(1 + 𝜉2)3

, 𝜉 ∈ R.

i) [4] Discuss the problem of the existence of a Fourier original of 𝑔 in 𝐿1(R) and in 𝐿2(R).
ii) [7] Compute 𝜕2

𝜉
1

1+𝜉2 and determine a relation between this derivative and 𝑔. Use this
to determine a Fourier original of 𝑔. (here 𝜕2

𝜉
stands for the second partial derivative

respect to 𝜉)
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November 2025

Exercise 46. Let
𝐹 (𝑥) :=

∫ +∞
0

log(1 + 𝑥2𝑦2)
1 + 𝑦2 𝑑𝑦.

i) Determine the domain 𝐷 of definition of 𝐹.
ii) Determine the domain 𝐷′ where 𝐹′ is well defined. Is 𝐷′ = 𝐷? Justify carefully.

iii) Use ii) to explicitly determine 𝐹.

Exercise 47. Let 𝑋 := { 𝑓 ∈ 𝒞1( [0, 1]) : 𝑓 (0) = 0} and define

∥ 𝑓 ∥ :=
∫ 1

0

| 𝑓 (𝑥) |
𝑥

𝑑𝑥, ∥ 𝑓 ∥∗ := ∥ 𝑓 ′∥∞.

i) Check that ∥ 𝑓 ∥ and ∥ 𝑓 ∥∗ are well defined norms on 𝑋 (it might be useful to remind that
𝑓 (𝑥) = 𝑓 (0) + 𝑓 ′(0)𝑥 + 𝑜(𝑥)).

ii) Prove that ∥ · ∥∗ is stronger than ∥ · ∥.
iii) Compute ∥ 𝑓𝑛∥ and ∥ 𝑓𝑛∥∗ for 𝑓𝑛 (𝑥) = 𝑥𝑛, 𝑛 ⩾ 1. What can be drawn by this calculation?

Exercise 48. .
i) What is the convolution product 𝑓 ∗ 𝑔 of two functions 𝑓 , 𝑔? Under which conditions is
𝑓 ∗ 𝑔 is well defined? Show that �𝑓 ∗ 𝑔 = 𝑓̂ 𝑔̂.

ii) True or false: if 𝑔 has a Fourier original and ℎ := 𝑔2, then ℎ has a unique Fourier original.
Justify your answer.

iii) Consider the equation ∫ +∞
−∞

𝑓 (𝑥 − 𝑦)𝑒−𝑦2
𝑑𝑦 = 𝑥𝑒−𝑎𝑥

2
.

Determine for which values of 𝑎 there exists a unique solution 𝑓 ∈ 𝐿1(R). For such 𝑎,
determine 𝑓 .
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Solutions

Exercise 1. i) Let

𝑓 (𝑥, 𝜉) :=
𝑒−𝜉𝑥

2 − 𝑒−𝑥2

𝑥
, 𝑥 ∈]0, +∞[.

We have to check for which 𝜉 we have 𝑓 (♯, 𝜉)𝐿1( [0, +∞[). Since 𝑓 (♯, 𝜉) ∈ 𝒞(]0, +∞[) we
have to check the behaviour at 𝑥 = 0 and 𝑥 = +∞. Recalling that 𝑒𝑦 = 1 + 𝑦 + 𝑜(𝑦) we have

𝑓 (𝑥, 𝜉) = (1 − 𝜉𝑥
2 + 𝑜(𝑥2)) − (1 − 𝑥2 + 𝑜(𝑥2))

𝑥
= −(𝜉 − 1)𝑥 + 𝑜(𝑥) −→ 0, 𝑥 −→ 0.

In particular, 𝑓 (♯, 𝜉) is integrable at 𝑥 = 0 for every 𝜉 ∈ R. At +∞, for 𝜉 > 0 we have

| 𝑓 (𝑥, 𝜉) | ⩽ 𝑒−𝜉𝑥2 + 𝑒−𝑥2
, ∀𝑥 ⩾ 1,

and since both 𝑒−𝜉𝑥2
, 𝑒−𝑥

2 are integrable at +∞ we conclude that 𝑓 (♯, 𝜉) is integrable at +∞.
Thus, 𝑓 (♯, 𝜉) ∈ 𝐿1( [0, +∞[) for every 𝜉 > 0. For 𝜉 = 0 we have

𝑓 (𝑥, 0) = 1 − 𝑒−𝑥2

𝑥
∼+∞

1
𝑥
, =⇒ 𝑓 (♯, 0) ∉ 𝐿1( [0, +∞[).

For 𝜉 < 0, 𝑓 (𝑥, 𝜉) −→ +∞ for 𝑥 −→ +∞ thus certainly 𝑓 (♯, 𝜉) ∉ 𝐿1( [0, +∞[). Conclusion: 𝐹
is well defined for 𝜉 ∈]0, +∞[.

ii) We apply differentiation theorem to deduce

𝜕𝜉𝐹 (𝜉) =
∫ +∞

0
𝜕𝜉 𝑓 (𝑥, 𝜉) 𝑑𝑥.

To this aim we may notice that

• ∃𝜕𝜉 𝑓 (𝑥, 𝜉) = 1
𝑥
𝑒−𝜉𝑥

2 (−𝑥2) = −𝑥𝑒−𝜉𝑥2 , ∀𝜉 ∈ R, ∀𝑥 > 0 (thus a.e. 𝑥 ∈ [0, +∞[);
• |𝜕𝜉 𝑓 (𝑥, 𝜉) | = 𝑥𝑒−𝜉𝑥

2
⩽ 𝑥𝑒−𝜀𝑥

2
=: 𝑔(𝑥) for every 𝜉 ⩾ 𝜀 > 0, ∀𝑥 > 0.

Since 𝑔 ∈ 𝐿1( [0, +∞[) we may conclude that ∃𝜕𝜉𝐹 (𝜉) for every 𝜉 ∈ [𝜀, +∞[, and this for every
𝜀 > 0. Since 𝜀 > 0 is arbitrary, we conclude that, for every 𝜉 > 0,

𝜕𝜉𝐹 (𝜉) =
∫ +∞

0
𝜕𝜉 𝑓 (𝑥, 𝜉) 𝑑𝑥 =

∫ +∞
0
−𝑥𝑒−𝜉𝑥2

𝑑𝑥 =
1

2𝜉

∫ +∞
0

𝜕𝑥𝑒
−𝜉𝑥2

𝑑𝑥 =
1

2𝜉

[
𝑒−𝜉𝑥

2
]𝑥=+∞
𝑥=0

= − 1
2𝜉
.

iii) Since

𝜕𝜉𝐹 (𝜉) = −
1

2𝜉
, =⇒ 𝐹 (𝜉) = −1

2
log 𝜉 + 𝑐, ∀𝜉 > 0.

Clearly 𝐹 (1) = 0 by which 𝑐 = 0. □
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Exercise 2. i) If 𝑓 ∈ 𝒞
1( [0, 1]), 𝑓 ′ ∈ 𝒞( [0, 1]) thus, in particular, | 𝑓 ′(𝑥) | ⩽ ∥ 𝑓 ′∥∞ for

every 𝑥 ∈ [0, 1]. Therefore∫ 1

0

| 𝑓 ′(𝑥) |
√
𝑥

𝑑𝑥 ⩽

∫ 1

0

∥ 𝑓 ′∥∞√
𝑥

𝑑𝑥 ⩽ ∥ 𝑓 ′∥∞
∫ 1

0

1
√
𝑥
𝑑𝑥 < +∞.

This shows that ∥ 𝑓 ∥∗ is well defined for every 𝑓 ∈ 𝑉 . Clearly, ∥ 𝑓 ∥∗ ⩾ 0. We have to check the
characteristic properties of any norm:

• vanishing: ∥ 𝑓 ∥∗ = 0 iff 𝑓 (1) = 0 and
∫ 1

0
| 𝑓 ′ (𝑥) |√

𝑥
𝑑𝑥 = 0. By this 𝑓 ′ ≡ 0 on [0, 1], thus 𝑓

is constant, and since 𝑓 (1) = 0 we conclude 𝑓 ≡ 0.
• homogeneity: ∥𝛼 𝑓 ∥∗ = |𝛼 𝑓 (1) |+

∫ 1
0
(𝛼 𝑓 )′ (𝑥) |√

𝑥
𝑑𝑥 = |𝛼 |

(
| 𝑓 (1) | +

∫ 1
0
| 𝑓 ′ (𝑥) |√

𝑥
𝑑𝑥

)
= |𝛼 |∥ 𝑓 ∥∗.

• triangular inequality: straightforward.
ii) We have to prove that

∃𝐶 > 0, : ∥ 𝑓 ∥∞ ⩽ 𝐶∥ 𝑓 ∥∗, ∀ 𝑓 ∈ 𝑉.

Let 𝑓 ∈ 𝑉 = 𝒞
1( [0, 1]). Notice that, according to the Fundamental Theorem of Integral

Calculus,

𝑓 (1) − 𝑓 (𝑥) =
∫ 1

𝑥

𝑓 ′(𝑦) 𝑑𝑦, =⇒ 𝑓 (𝑥) = 𝑓 (1) −
∫ 1

𝑥

𝑓 ′(𝑦) 𝑑𝑦.

Therefore

| 𝑓 (𝑥) | ⩽ | 𝑓 (1) | +
∫ 1

𝑥

| 𝑓 ′(𝑦) | 𝑑𝑦 ⩽ | 𝑓 (1) | +
∫ 1

0
| 𝑓 ′(𝑦) |𝑑𝑦 ⩽ | 𝑓 (1) | +

∫ 1

0

| 𝑓 ′(𝑦)
√
𝑦

𝑑𝑦 = ∥ 𝑓 ∥∗.

By this

∥ 𝑓 ∥∞ = max
𝑥∈[0,1]

| 𝑓 (𝑥) | ⩽ ∥ 𝑓 ∥∗.

iii) Easily 𝑓𝑛 ∈ 𝒞( [0, 1]) and since

𝑓 ′𝑛 (𝑥) =

−1

2𝑛
3/2, 0 ⩽ 𝑥 ⩽ 1

𝑛
,

−1
2𝑥
−3/2, 1

𝑛
< 𝑥 ⩽ 1,

easily we see that 𝑓 ′𝑛 ∈ 𝒞( [0, 1]), thus, in conclusion, 𝑓𝑛 ∈ 𝑉 for every 𝑛. Computing norms,
since 𝑓 ′𝑛 < 0 we have

∥ 𝑓𝑛∥∞ = max
𝑥∈[0,1]

| 𝑓𝑛 (𝑥) | = | 𝑓𝑛 (0) | =
1
2
𝑛1/2.
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On the other hand

∥ 𝑓𝑛∥∗ = 1 +
∫ 1

0
| 𝑓 ′𝑛 (𝑥) |√

𝑥
𝑑𝑥 = 1 + 1

2𝑛
3/2

∫ 1/𝑛
0

1√
𝑥
𝑑𝑥 + 1

2

∫ 1
1/𝑛

𝑥−3/2

𝑥1/2 𝑑𝑥

= 1 + 𝑛3/2 [
𝑥1/2]𝑥=1/𝑛

𝑥=0 + 1
2
[
−𝑥−1]𝑥=1

𝑥=1/𝑛

= 1 + 𝑛1/2 + 1
2 (𝑛 − 1) .

By this it follows that ∥ · ∥∞ and ∥ · ∥∗ cannot be equivalent. Otherwise, there would be a constant
𝐶 such that

∥ 𝑓𝑛∥∗ ⩽ 𝐶∥ 𝑓𝑛∥∞, ∀𝑛, =⇒ 1 + 𝑛1/2 + 1
2
(𝑛 − 1) ⩽ 𝐶

2
𝑛1/2,

which is manifestly impossible. □

Exercise 3. i) We have

| 𝑓𝑎 (𝑥) | ⩽
1

𝑎2 + 𝑥2 ∈ 𝐿
1(R), ∀𝑎 > 0.

For 𝑎 = 0 this bound cannot be used globally, but since

| 𝑓0(𝑥) | ⩽
1
𝑥2 ,

integrability at ±∞ is ensured. It remains to check the behaviour at 𝑥 = 0: since cos 𝑥 =

1 − 𝑥2

2 + 𝑜(𝑥
2),

𝑓0(𝑥) =
1 −

(
1 − 𝑥2

2 + 𝑜(𝑥
2)

)
𝑥2 =

𝑥2

2 + 𝑜(𝑥
2)

𝑥2 ∼0
1
2
,

thus 𝑓0 is integrable also at 𝑥 = 0. We conclude 𝑓0 ∈ 𝐿1(R).
ii) To compute 𝑓̂𝑎 we notice that

𝑓̂𝑎 (𝜉) =
�1
𝑎2 + ♯2 (𝜉) −

�
cos ♯

1
𝑎2 + ♯2 (𝜉).

Recall that �1
𝑎2 + ♯2 (𝜉) =

1
2𝑎
𝑒−𝑎 |𝜉 | .

Moreover, cos 𝑥 = 1
2
(
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

)
thus�cos ♯𝑔(𝜉) = 1

2

(
𝑒𝑖♯𝑔(𝜉) +�𝑒−𝑖♯𝑔(𝜉)) = 1

2
(𝑔̂ (𝜉 − 1) + 𝑔̂ (𝜉 + 1)) .

Hence �
cos ♯

1
𝑎2 + ♯2 (𝜉) =

1
2

(
1

2𝑎
𝑒−𝑎 |𝜉−1| + 1

2𝑎
𝑒−𝑎 |𝜉+1|

)
.
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In conclusion
𝑓̂𝑎 (𝜉) =

1
2𝑎

(
𝑒−𝑎 |𝜉 | − 1

2

(
𝑒−𝑎 |𝜉−1| + 𝑒−𝑎 |𝜉+1|

))
Finally, being 𝑓𝑎 even,∫ +∞

0
𝑓𝑎 (𝑥) 𝑑𝑥 =

1
2

∫ +∞
−∞

𝑓𝑎 (𝑥) 𝑑𝑥 =
1
2
𝑓̂𝑎 (0) =

1
4𝑎

(
1 − 1

2
(𝑒−𝑎 + 𝑒−𝑎)

)
=

1 − 𝑒−𝑎
4𝑎

.

iii) Ideally, we have to take 𝑎 = 0. We consider

lim
𝑎→0+

∫ +∞
0

𝑓𝑎 (𝑥) 𝑑𝑥 = lim
𝑎→0+

1 − 𝑒−𝑎
4𝑎

=
1
4
.

Let us check that

lim
𝑎→0+

∫ +∞
0

𝑓𝑎 (𝑥) 𝑑𝑥 =
∫ +∞

0
lim
𝑎→0+

𝑓𝑎 (𝑥) 𝑑𝑥 =
∫ +∞

0
𝑓0(𝑥) 𝑑𝑥.

The unique issue concerns the swap between limit and integral. This might be ensured by both
monotone or dominated convergence. Clearly

lim
𝑎→0+

𝑓𝑎 (𝑥) = 𝑓0(𝑥), ∀𝑥 > 0.

Moreover
| 𝑓𝑎 (𝑥) | =

|1 − cos 𝑥 |
𝑎2 + 𝑥2 ⩽

|1 − cos 𝑥 |
𝑥2 =: 𝑔(𝑥) ∈ 𝐿1( [0, +∞[).

By this the conclusion follows.
iv). To compute 𝑓̂0(𝜉) we follow the idea exploited in iii). First:

𝑓̂0(𝜉) =
∫
R
𝑓0(𝑥)𝑒−𝑖𝜉𝑥 𝑑𝑥 =

∫
R

lim
𝑎→0+

𝑓𝑎 (𝑥)𝑒−𝑖𝜉𝑥 𝑑𝑥 = lim
𝑎→0+

∫
R
𝑓𝑎 (𝑥)𝑒−𝑖𝜉𝑥 𝑑𝑥.

Last identity must be justified applying a limit theorem. By what we checked in Q3 we may
easily see that dominated convergence applies: indeed�� 𝑓𝑎 (𝑥)𝑒−𝑖𝜉𝑥 �� = | 𝑓𝑎 (𝑥) | ⩽ 𝑔(𝑥).
Therefore

𝑓̂0(𝜉) = lim𝑎→0+ 𝑓̂𝑎 (𝜉) = lim𝑎→0+
(

1
2𝑎

(
𝑒−𝑎 |𝜉 | − 1

2

(
𝑒−𝑎 |𝜉−1| + 𝑒−𝑎 |𝜉+1|

)))
(𝐻)
= 1

2 lim𝑎→0+
(
−|𝜉 |𝑒−𝑎 |𝜉 | − 1

2

(
− |𝜉 − 1| 𝑒−𝑎 |𝜉−1| − |𝜉 + 1| 𝑒−𝑎 |𝜉−1|

))
= −1

2

(
|𝜉 | − 1

2 ( |𝜉 − 1| + |𝜉 + 1|)
)

= 1
2 (1 − |𝜉 |) 1[−1,1] (𝜉). □
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Exercise 4. i) For 𝑥 = 0, 𝑓𝑛 (0) = 0 −→ 0. For 𝑥 > 0,

lim
𝑛→+∞

𝑓𝑛 (𝑥) = 𝑥 lim
𝑛→+∞

𝑛3/2

𝑒𝑛𝑥
= 0,

being 𝑛3/2 = 𝑜(𝑒𝑛𝑥). Thus 𝑓𝑛 converges point wise to 0 on [0, +∞[.
ii) Clearly 𝑓𝑛 (𝑥) ⩾ 0 on [0, +∞[. Moreover

𝑓 ′𝑛 (𝑥) = 𝑛3/2 (𝑒−𝑛𝑥 − 𝑛𝑥𝑒−𝑛𝑥) = 𝑛3/2𝑒−𝑛𝑥 (1 − 𝑛𝑥) ⩾ 0, ⇐⇒ 1 − 𝑛𝑥 ⩾ 0, ⇐⇒ 𝑥 ⩽
1
𝑛
.

Thus 𝑓𝑛 attains a global maximum at 𝑥 = 1
𝑛
. Therefore

∥ 𝑓𝑛∥∞ = sup
[0,+∞[

| 𝑓𝑛 (𝑥) | = 𝑓𝑛

(
1
𝑛

)
= 𝑛1/2𝑒−1 < +∞,

that is ( 𝑓𝑛) ⊂ 𝐿∞( [0, +∞[. However, since ∥ 𝑓𝑛∥∞ =
√
𝑛

𝑒
−→ +∞, ( 𝑓𝑛) cannot converge in 𝐿∞.

iii) Let’s compute

∥ 𝑓𝑛∥1 =

∫ +∞
0
| 𝑓𝑛 (𝑥) | 𝑑𝑥 =

1
√
𝑛

∫ +∞
0

𝑛𝑥𝑒−𝑛𝑥𝑑 (𝑛𝑥) = 1
√
𝑛

∫ +∞
0

𝑦𝑒−𝑦 𝑑𝑦 < +∞,

thus ( 𝑓𝑛) ⊂ 𝐿1( [0, +∞[). By this it follows also that 𝑓𝑛
𝐿1

−→ 0 because

∥ 𝑓𝑛∥1 =
𝐶
√
𝑛
−→ 0.

iv) Let’s compute

∥ 𝑓𝑛∥22 =

∫ +∞
0

𝑛3𝑥2𝑒−2𝑛𝑥 𝑑𝑥
𝑦=𝑛𝑥
=

∫ +∞
0

𝑦2𝑒−2𝑦 𝑑𝑦 < +∞,

thus ( 𝑓𝑛) ⊂ 𝐿2( [0, +∞[). If 𝑓𝑛
𝐿2

−→ 𝑓 , then there would be ( 𝑓𝑛𝑘 ) such that 𝑓𝑛𝑘 −→ 𝑓 a.e. and

since 𝑓𝑛 −→ 0 everywhere, we conclude 𝑓 = 0 a.e.. Thus the unique possibility is 𝑓𝑛
𝐿2

−→ 0.
However, ∥ 𝑓𝑛 − 0∥2 = ∥ 𝑓𝑛∥2 ≡ 𝐶 > 0 ̸−→ 0. □

Exercise 9. See LN for the Definitions and proofs, and of i).
ii) We have

1
𝑎2 + 𝑥2 =

1
2𝑎

�𝑒−𝑎 |♯| ( 𝑥
2𝜋

)
, =⇒ 1

(𝑎2 + 𝑥2)2
=

1
4𝑎2

�𝑒−𝑎 |♯| ∗ 𝑒−𝑎 |♯|
( 𝑥
2𝜋

)
.

Now, recall that in general, for the 1-dim FT�
𝑓

(
♯

𝜆

)
(𝜉) = |𝜆 | 𝑓̂ (𝜆𝜉)
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so �1
(𝑎2 + ♯2)2

(𝜉) = 2𝜋
4𝑎2

��𝑒−𝑎 |♯| ∗ 𝑒−𝑎 |♯| (2𝜋𝜉) = 𝜋

2𝑎2 𝑒
−𝑎 |♯| ∗ 𝑒−𝑎 |♯| (−2𝜋𝜉),

thanks to the inversion formula. To close the calculation, we need to compute the convolution

𝑒−𝑎 |♯| ∗ 𝑒−𝑎 |♯| (𝑥) =
∫
R
𝑒−𝑎 |𝑥−𝑦 |𝑒−𝑎 |𝑦 | 𝑑𝑦.

Easily we see that, by changing 𝑥 with −𝑥 the output doesn’t change, so we can consider the case
𝑥 ⩾ 0, for 𝑥 < 0 we will induce the value by symmetry. We have then

𝑒−𝑎 |♯| ∗ 𝑒−𝑎 |♯| (𝑥) =
∫ 0
−∞ 𝑒

−𝑎(𝑥−𝑦)𝑒𝑎𝑦 𝑑𝑦 +
∫ 𝑥

0 𝑒
−𝑎(𝑥−𝑦)𝑒−𝑎𝑦 𝑑𝑦 +

∫ +∞
𝑥

𝑒𝑎(𝑥−𝑦)𝑒−𝑎𝑦 𝑑𝑦

= 𝑒−𝑎𝑥
∫ 0
−∞ 𝑒

2𝑎𝑦 𝑑𝑦 + 𝑒−𝑎𝑥
∫ 𝑥

0 𝑑𝑦 + 𝑒
𝑎𝑥

∫ +∞
𝑥

𝑒−2𝑎𝑦 𝑑𝑦

= 𝑒−𝑎𝑥
[
𝑒2𝑎𝑦

2𝑎

] 𝑦=0

𝑦=−∞
+ 𝑥𝑒−𝑎𝑥 + 𝑒𝑎𝑥

[
− 𝑒−2𝑎𝑦

2𝑎

] 𝑦=+∞
𝑦=𝑥

= 𝑒−𝑎𝑥 1
2𝑎 + 𝑥𝑎

−𝑎𝑥 + 𝑒−𝑎𝑥

2𝑎 = 𝑒−𝑎𝑥

𝑎
(1 + 𝑎𝑥) ,

being 𝑎 > 0. Symmetrizing,

𝑒−𝑎 |♯| ∗ 𝑒−𝑎 |♯| (𝑥) = 𝑒−𝑎 |𝑥 |

𝑎
(1 + 𝑎 |𝑥 |) ,

so we conclude that �1
(𝑎2 + ♯2)2

(𝜉) = 𝜋

2𝑎3 𝑒
−2𝜋𝑎 |𝜉 | (1 + 2𝜋𝑎 |𝜉 |) . □

Exercise 10. i) We notice that∫ 0

−1
𝑓 =

∫ 1

0
𝑓 , ⇐⇒

∫ 1

−1
𝑓 (1[−1,0] − 1[0,1]) = 0,

from which, denoted by 𝑢 := 1[−1,0] − 1[0,1] we have
𝑆 = { 𝑓 ∈ 𝐻 : ⟨ 𝑓 , 𝑢⟩ = 0} = Span(𝑢)⊥.

Since the orthogonal space of any set 𝑈 is a closed linear sub-space of 𝐻 we conclude that 𝑆 is
closed.

ii) Since 𝐻 is Hilbert and 𝑆 is closed, there exists Π𝑆 𝑓 for every 𝑓 ∈ 𝐻. Let 𝑈 := Span(𝑢).
Then

Π𝑆 𝑓 = 𝑓 − Π𝑈 𝑓 ,
and since

Π𝑈 𝑓 = ⟨ 𝑓 ,
𝑢

∥𝑢∥ ⟩
𝑢

∥𝑢∥ =
1
∥𝑢∥2
⟨ 𝑓 , 𝑢⟩𝑢,



23

with

∥𝑢∥2 =

∫ 1

−1
𝑢2 =

∫ 1

−1
1 = 2,

we get

Π𝑆 𝑓 = 𝑓 − 1
2
⟨ 𝑓 , 𝑢⟩𝑢.

In particular,

Π𝑆𝑥 = 𝑥 −
1
2
⟨𝑥, 𝑢⟩𝑢 = 𝑥 − 1

2

∫ 1

−1
(−|𝑥 |) 𝑑𝑥𝑢 = 𝑥 + 1

2
𝑢. □

Exercise 11. i) Clearly 𝑔 ∈ 𝒞(R\{0}). At 𝜉 = 0, recalling that

sin 𝜉 = 𝜉 − 𝜉
3

6
+ 𝑜(𝜉3), cos 𝜉 = 1 − 𝜉

2

2
+ 𝑜(𝜉2),

we have

𝑔(𝜉) =
𝜉 − 𝜉3

6 + 𝑜(𝜉
3) − 𝜉 + 𝜉3

2 + 𝑜(𝜉
3)

𝜉3 =
1
3
+ 𝑜(𝜉

3)
𝜉3

𝜉→0
−→ 1

3
,

thus 𝑔 can be extended by continuity at 𝜉 = 0. In other words, we may consider 𝑔 as a continuous
function on R, integrable on every [𝑎, 𝑏] ⊂ R. Hence, for the integrability on R, we have to
check the behaviour at ±∞. Here we have

|𝑔(𝜉) | ⩽ 1 + |𝜉 |
|𝜉3 |

∼±∞
1
|𝜉 |2

,

from which we deduce integrability at ±∞. In conclusion, 𝑔 ∈ 𝐿1(R). From same arguments
we have that 𝑓 ∈ 𝐿2( [𝑎, 𝑏]), for every [𝑎, 𝑏] and since

|𝑔(𝜉) |2 ⩽
(
1 + |𝜉 |
|𝜉3 |

)2
∼±∞

1
|𝜉 |4

,

we deduce that |𝑔 |2 is integrable, thus 𝑔 ∈ 𝐿2(R).
ii) According to the inversion formula, 𝑔 = 𝑓̂ provided 𝑔 and 𝑔̂ are both 𝐿1(R) functions. We

remind that this last follows if 𝑔, 𝑔′, 𝑔′′ ∈ 𝐿1(R). About 𝑔, this has been checked in Q1. We
check for 𝑔′ (the check for 𝑔′′ being similar). We have

𝑔′(𝜉) = 𝜉3(𝜉 sin 𝜉) − 3𝜉2(sin 𝜉 − 𝜉 cos 𝜉)
𝜉6 =

𝜉2 sin 𝜉 − 3(sin 𝜉 − 𝜉 cos 𝜉)
𝜉4 .

At 𝜉 = 0 we have

𝑔′(𝜉) =
𝜉2

(
𝜉 − 𝜉3

6 + 𝑜(𝜉
3)

)
− 3

(
𝜉 − 𝜉3

6 +
𝜉5

5! + 𝑜(𝜉
5) − 𝜉 + 𝜉3

2 −
𝜉5

24!

)
𝜉4 = 𝑐𝜉 + 𝑜(𝜉),



24

thus 𝑔′ is continuous at 𝜉 = 0. At ±∞, |𝑔′(𝜉) | ⩽ 𝑎 |𝜉 |4+𝑏
|𝜉 |6 ∼ 𝐶

|𝜉 |2 , that is 𝑔′ ∈ 𝐿1(R). A similar
check can e made for 𝑔′′. We conclude that 𝑔̂ ∈ 𝐿1, hence inversion formula applies.

The existence of an 𝐿2 Fourier original is much simpler: since 𝑔 ∈ 𝐿2(R) then, by the
Fourier-Plancherel theorem, 𝑔 = 𝑓̂ for some 𝑓 ∈ 𝐿2(R).

iii) Following the hint, we notice that

𝜉𝑔(𝜉) = −𝜕𝜉
sin 𝜉
𝜉

= −1
2
𝜕𝜉�rect1(𝜉) =

1
2
�𝑖 • rect1(𝜉) =

𝑖

2
�•rect1(𝜉).

Now, if 𝑔 = 𝑓̂ ,
𝑖𝜉𝑔(𝜉) = 𝑖𝜉 𝑓̂ (𝜉) = 𝑓̂ ′(𝜉),

from which
𝑓̂ ′(𝜉) = −1

2
�•rect1(𝜉),

and, by uniqueness of the FT,

𝑓 ′(𝑥) = −1
2
𝑥rect1(𝑥).

From this, it follows that 𝑓 is constant on ] −∞,−1] and on [1, +∞[ and since 𝑓 ∈ 𝐿1(R), 𝑓 ≡ 0
on these intervals. Moreover, for 𝑥 ∈ [−1, 1]

𝑓 (𝑥) = 𝑓 (𝑥) − 𝑓 (−1) =
∫ 𝑥

−1
−1

2
𝑦 𝑑𝑦 = −1

4
(𝑥2 − 1).

Thus

𝑓 (𝑥) = 1 − 𝑥2

4
1[−1,1] (𝑥). □

Exercise 12. i) Since 𝑓 (𝑡) = 𝑓 (0) + 𝑓 ′(0)𝑡 + 𝑜(𝑡) = 𝑓 ′(0)𝑡 + 𝑜(𝑡) for 𝑓 ∈ 𝑉 , we have
| 𝑓 (𝑡) |
√
𝑡

= | 𝑓 ′(0) |
√
𝑡 + 𝑜(𝑡)√

𝑡
−→ 0, 𝑡 −→ 0.

Thus ∥ 𝑓 ∥∗ is well posed. Clearly positivity holds. Vanishing:

∥ 𝑓 ∥∗ = 0, ⇐⇒ sup
𝑡∈]0,1]

| 𝑓 (𝑡) |
√
𝑡

= 0, ⇐⇒ | 𝑓 (𝑡) |
√
𝑡

= 0, 𝑡 ∈]0, 1], ⇐⇒ 𝑓 (𝑡) = 0, 𝑡 ∈]0, 1],

and since 𝑓 (0) = 0 ( 𝑓 ∈ 𝑉) we conclude 𝑓 ≡ 0 on [0, 1]. Homogeneity and triangular inequality
are straightforward.

ii) Since 𝑓 ∈ 𝑉 implies, in particular, 𝑓 ∈ 𝒞
1( [0, 1]), ∥ 𝑓 ∥∗∗ = ∥ 𝑓 ′∥∞ is well defined

( 𝑓 ′ ∈ 𝒞( [0, 1])). Positivity is evident. Vanishing:

∥ 𝑓 ∥∗∗ = ∥ 𝑓 ′∥∞ = 0, ⇐⇒ 𝑓 ′ ≡ 0, ⇐⇒ 𝑓 ≡ 𝐶,
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for some constant 𝐶. Since 𝑓 (0) = 0 we deduce 𝐶 = 0 and 𝑓 ≡ 0 on [0, 1]. Homogeneity
and triangular inequality are obvious consequences of linearity of the derivative and analogous
properties of ∥ · ∥∞ norm.

iii) We claim that ∥ · ∥∗∗ is stronger than ∥ · ∥∗ but they are not equivalent. Indeed: from
fundamental thm of integral calculus, for 𝑓 ∈ 𝑉 ,

𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (0) =
∫ 𝑡

0
𝑓 ′(𝑠) 𝑑𝑠,

from which

| 𝑓 (𝑡) | ⩽
∫ 𝑡

0
| 𝑓 ′(𝑠) | 𝑑𝑠 ⩽

∫ 𝑡

0
max
[0,1]
| 𝑓 ′| 𝑑𝑠 = ∥ 𝑓 ∥∗∗𝑡, ∀𝑡 ∈ [0, 1] .

Thus
max
𝑡∈]0,1]

| 𝑓 (𝑡) |
√
𝑡
⩽ max
𝑡∈]0,1]

√
𝑡∥ 𝑓 ∥∗∗ = 1 · ∥ 𝑓 ∥∗∗.

The vice versa does not hold. Indeed, we may take 𝑓𝑛 (𝑡) = 𝑡𝑛. Clearly 𝑓𝑛 ∈ 𝑉 for every 𝑛 ⩾ 1.
We have

∥ 𝑓𝑛∥∗ = max
𝑡∈]0,1]

|𝑡𝑛 |
√
𝑡
= max
𝑡∈]0,1]

𝑡𝑛−1/2 = 1, ∥ 𝑓𝑛∥∗∗ = max
𝑡∈[0,1]

|𝑛𝑡𝑛−1 | = 𝑛.

From this we draw that there cannot be a constant 𝑐 such that ∥ 𝑓𝑛∥∗∗ ⩽ 𝑐∥ 𝑓 ∥∗ for every 𝑓 ,
otherwise

𝑛 = ∥ 𝑓𝑛∥∗∗ ⩽ 𝑐∥ 𝑓𝑛∥∗ = 𝑐, ∀𝑛 ∈ N, 𝑛 ⩾ 1,
which is manifestly impossible. □

Exercise 13. i) We check first that ⟨·, ·⟩ is well defined. Indeed, this is the standard 𝐿2( [0, 1])
scalar product of 𝑓 ′, 𝑔′. Since they are assumed to be in 𝐻, 𝑓 ′, 𝑔′ ∈ 𝐿2( [0, 1]), thus ⟨ 𝑓 , 𝑔⟩𝐻
makes sense. We check now the characteristic properties of a scalar product:

• (positivity) ⟨ 𝑓 , 𝑓 ⟩𝐻 =
∫ 1

0 ( 𝑓
′)2 𝑑𝑥 ⩾ 0.

• (vanishing) ⟨ 𝑓 , 𝑓 ⟩𝐻 = 0 iff
∫ 1

0 ( 𝑓
′)2 = 0. Since ( 𝑓 ′)2 ⩾ 0, by a well known result,

( 𝑓 ′)2 = 0 a.e., that is 𝑓 ′ = 0 a.e., hence 𝑓 is a.e. constant and since 𝑓 (1) = 0 we
conclude 𝑓 = 0 a.e.
• (homogeneity) ⟨𝜆 𝑓 , 𝑔⟩𝐻 =

∫ 1
0 (𝜆 𝑓 )

′𝑔′ =
∫ 1

0 𝜆 𝑓
′𝑔′ = 𝜆⟨ 𝑓 , 𝑔⟩𝐻 .

• (symmetry) evident.
ii) We notice that∫ 1

0 𝑓 (𝑥) 𝑑𝑥 =
∫ 1

0 (𝑥)
′ 𝑓 (𝑥) 𝑑𝑥 𝑝𝑎𝑟𝑡𝑠

= [𝑥 𝑓 (𝑥)]𝑥=1
𝑥=0 −

∫ 1
0 𝑥 𝑓

′(𝑥) 𝑑𝑥 = −
∫ 1

0

(
𝑥2

2

)′
𝑓 ′(𝑥) 𝑑𝑥

= −
〈
𝑥2−1

2 , 𝑓

〉
𝐻
.
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Thus
𝑆 =

{
𝑓 ∈ 𝐻 :

〈
♯2 − 1, 𝑓

〉
𝐻
= 0

〉
.

Thus 𝑣 = 𝑥2 − 1.
iii) Let𝑉 := Span

(
𝑥2 − 1

)
= 𝑆⊥. This is a one dimensional space, hence it is closed. We have

𝑓 = Π𝑆 𝑓 + Π𝑉 𝑓 , ∀ 𝑓 ∈ 𝐻, =⇒ Π𝑆 𝑓 = 𝑓 − Π𝑉 𝑓 .
Π𝑉 is easy:

Π𝑉 𝑓 = ⟨ 𝑓 ,
𝑥2 − 1
∥♯2 − 1∥𝐻

⟩𝐻
𝑥2 − 1
∥♯2 − 1∥𝐻

=
1

∥♯2 − 1∥2
𝐻

⟨𝑥2 − 1, 𝑓 ⟩𝐻𝑥2.

We have

∥♯2 − 1∥2𝐻 = ⟨𝑥2 − 1, 𝑥2 − 1⟩𝐻 =

∫ 1

0
4𝑥2 = 4

[
𝑥3

3

]𝑥=1

𝑥=0
=

4
3
.

Thus

Π𝑉 𝑓 =

√
3

2
⟨ 𝑓 , 𝑥2 − 1⟩𝐻 (𝑥2 − 1).

If 𝑓 = 𝑥 − 1(∈ 𝐻),

⟨𝑥 − 1, 𝑥2 − 1⟩𝐻 =

∫ 1

0
1 · 2𝑥 𝑑𝑥 = [𝑥2]𝑥=1

𝑥=0 = 1.

Therefore

Π𝑉 (♯ − 1) =
√

3
2
(𝑥2 − 1),

and

Π𝑆 (♯ − 1) = 𝑥 − 1 − Π𝑉 (♯ − 1) = 𝑥 − 1 −
√

3
2
(𝑥2 − 1) = (𝑥 − 1)

(
1 −
√

3
2
(𝑥 + 1)

)
. □

Exercise 14. i) See Lecture Notes.
ii) Let 𝑔𝑎 (𝑥) = 1

𝑎2+𝑥2 the Cauchy distribution. We may represent the equation under the form

𝜆 𝑓 (𝑥) + 𝑓 ∗ 𝑔1(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥).
If 𝑓 ∈ 𝐿1(R) is a solution,

𝜆 𝑓̂ (𝜉) + 𝑓̂ (𝜉)𝑔̂1(𝜉) = 𝑔1(𝜉) + 𝑔2(𝜉).
Now, remind that, for 𝑎 > 0,

𝑔𝑎 (𝜉) =
𝜋

𝑎
𝑒−𝑎 |𝜉 | .

Thus, we obtain the following equation for 𝑓̂ :

𝑓̂ (𝜉)
(
𝜆 + 𝜋𝑒−|𝜉 |

)
= 𝜋𝑒−|𝜉 | + 𝜋

2
𝑒−2|𝜉 | = 𝜋𝑒−|𝜉 |

(
1 + 1

2
𝑒−|𝜉 |

)
,
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that is

𝑓̂ (𝜉) = 𝜋𝑒−|𝜉 |
1 + 1

2𝑒
−|𝜉 |

𝜆 + 𝜋𝑒−|𝜉 |
.

Now,
• if 𝜆 = 0 we obtain

𝑓̂ (𝜉) = 1 + 1
2
𝑒−|𝜉 |,

in particular 𝑓̂ (𝜉) −→ 1 when 𝜉 −→ ±∞, according to the RL lemma 𝑓̂ cannot be a FT
of an 𝐿1 function. This means that for 𝜆 = 0 the equation has no solutions in 𝐿1.
• if 𝜆 < 0 we see that the denominator of 𝑓̂ vanishes at 𝜉 = ± log(−𝜆

𝜋
), in particular 𝑓̂ is

unbounded at these points, again in contradiction with RL lemma. In particular, no 𝐿1

solution is possible for 𝜆 < 0.
• if 𝜆 > 0 then 𝑓̂ ∈ 𝒞(R), it vanishes at ±∞ and since

𝑓̂ (𝜉) ∼±∞
𝜋

𝜆
𝑒−|𝜉 |,

we have 𝑓̂ ∈ 𝐿1, thus equation makes sense and, by the inversion formula, it has as
unique solution

𝑓 (𝑥) = 1
2𝜋

̂̂
𝑓 (−𝑥) = 1

4

�
𝑒−|♯|

2 + 𝑒−|♯|
𝜆 + 𝜋𝑒−|♯|

(−𝑥).

iii) For 𝜆 = 2𝜋 we have

𝑓 (𝑥) = 1
4𝜋

�
𝑒−|♯|

2 + 𝑒−|♯|
2 + 𝑒−|♯|

(−𝑥). = 1
4𝜋
𝑒−|♯| (−𝑥) = 1

4𝜋
2

1 + (−𝑥)2
=

1
2𝜋

1
1 + 𝑥2 . □

Exercise 15. i) False: take 𝑓𝑛 = 𝑛21[0,1/𝑛] . Then∫ 1

0
𝑓𝑛 = 𝑛

2 1
𝑛
= 𝑛 −→ +∞,

but, for every 𝑥 > 0 fixed, as soon as 1
𝑛
< 𝑥 (that is 𝑛 > [1/𝑥] + 1) we have 𝑓𝑛 (𝑥) = 0 −→ 0.

ii) False: 𝑓𝑛 =
√
𝑛1[0,1/𝑛] , same arguments of the previous example.

iii) False: see the example shown in class of a sequence ( 𝑓𝑛) ⊂ 𝐿1( [0, 1]) such that 𝑓𝑛
𝐿1

−→ 0
but ( 𝑓𝑛 (𝑥)) is not convergent for every 𝑥𝑖𝑛[0, 1].

iv) True: if ∥ 𝑓𝑛∥∞ ̸−→ +∞ it means that there exists a constant 𝐾 such that ∥ 𝑓𝑛∥∞ ⩽ 𝐾 for
infinitely many 𝑛. For these 𝑛, ∫ 1

0
𝑓𝑛 ⩽

∫ 1

0
∥ 𝑓𝑛∥∞ = ∥ 𝑓𝑛∥∞ ⩽ 𝐾,

so, in particular,
∫ 1

0 𝑓𝑛 ̸−→ +∞. □
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Exercise 17. i) Since 𝑓 ∈ 𝑉 = 𝒞
2( [0, 1]), 𝑓 ′′ ∈ 𝒞( [0, 1]) thus uniform norm ∥ 𝑓 ′′∥∞ makes

sense. Also 𝑓 ′(0) makes sense thus ∥ 𝑓 ∥𝑉 is well defined. Let’s check the basic properties of a
norm. Vanishing: ∥ 𝑓 ∥𝑉 = 0 iff ∥ 𝑓 ′′∥∞ + | 𝑓 ′(0) | + | 𝑓 (0) | = 0. Since this is the sum of positive
quantities, it can be 0 iff ∥ 𝑓 ′′∥∞ = | 𝑓 ′(0) | = | 𝑓 (0) | = 0, that is 𝑓 ′′ ≡ 0 and 𝑓 ′(0) = 0, 𝑓 (0) = 0.
From 𝑓 ′′ ≡ 0 we deduce 𝑓 ′ constant, but since 𝑓 ′(0) = 0 we have 𝑓 ′ ≡ 0. Therefore 𝑓 is
constant, and since also 𝑓 (0) = 0 we deduce 𝑓 ≡ 0. Homogeneity and triangular inequality are
straightforward.

ii) We have to show that

∃𝐶 > 0, : ∥ 𝑓 ∥∞ ⩽ 𝐶∥ 𝑓 ∥𝑉 , ∀ 𝑓 ∈ 𝑉.
Let’s bound | 𝑓 (𝑥) | by 𝑓 ′′. By the fundamental formula of Integral Calculus,

𝑓 (𝑥) = 𝑓 (0) +
∫ 𝑥

0
𝑓 ′(𝑦) 𝑑𝑦,

and applying the same to 𝑓 ′,

𝑓 ′(𝑦) = 𝑓 ′(0) +
∫ 𝑦

0
𝑓 ′′(𝑧) 𝑑𝑧,

thus

𝑓 (𝑥) = 𝑓 (0) +
∫ 𝑥

0

(
𝑓 ′(0) +

∫ 𝑦

0
𝑓 ′′(𝑧) 𝑑𝑧

)
𝑑𝑦 = 𝑓 (0) + 𝑓 ′(0)𝑥 +

∫ 𝑥

0

∫ 𝑦

0
𝑓 ′′(𝑧) 𝑑𝑧 𝑑𝑦.

Therefore,

| 𝑓 (𝑥) | ⩽ | 𝑓 (0) | + | 𝑓 ′(0) |𝑥 +
∫ 𝑥

0

∫ 𝑦

0
| 𝑓 ′′(𝑧) | 𝑑𝑧 𝑑𝑦

and recalling that ∥ 𝑓 ∥∞ = max𝑥∈[0,1] | 𝑓 (𝑥) |, we get

∥ 𝑓 ∥∞ ⩽ | 𝑓 (0) | + | 𝑓 ′(0) | +
∫ 1

0

∫ 1

0
∥ 𝑓 ′′∥∞ 𝑑𝑧 𝑑𝑦 = | 𝑓 (0) | + | 𝑓 ′(0) | + ∥ 𝑓 ′′∥∞ = ∥ 𝑓 ∥𝑉 .

iii) True: since 𝑓𝑛
∥·∥𝑉−→ 𝑓 implies 𝑓𝑛

∥·∥∞−→ 𝑓 and this last implies pointwise convergence, we
deduce that also 𝑉 norm convergence implies pointwise convergence.

iv) Clearly 𝑓𝑛 (𝑥) = 1
𝑛2 𝑥

𝑛 ∈ 𝒞
2( [0, 1]) = 𝑉 . Notice that 𝑓𝑛 (𝑥) −→ 0, for every 𝑥 ∈ [0, 1].

Thus, by iii), if 𝑓𝑛
∥·∥𝑉−→ 𝑓 , necessarily 𝑓 = 0. However,

∥ 𝑓𝑛 − 0∥𝑉 = ∥ 𝑓𝑛∥𝑉 = | 𝑓𝑛 (0) | + | 𝑓 ′𝑛 (0) | + ∥ 𝑓 ′′𝑛 ∥∞,

and since 𝑓 ′𝑛 (𝑥) = 1
𝑛
𝑥𝑛−1 and 𝑓 ′′𝑛 (𝑥) = 𝑛−1

𝑛
𝑥𝑛−2, we deduce 𝑓𝑛 (0) = 𝑓 ′𝑛 (0) = 0 for every 𝑛 ⩾ 2

and
∥ 𝑓 ′′𝑛 ∥∞ = max

𝑥∈[0,1]

𝑛 − 1
𝑛
|𝑥𝑛 | = 𝑛 − 1

𝑛
−→ 1,
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thus ( 𝑓𝑛) cannot converge to 0 in 𝑉 . Since this is the unique possibility, we deduce that ( 𝑓𝑛) is
not convergent in 𝑉 . However clearly, ∥ 𝑓𝑛∥∞ = max𝑥∈[0,1] 1

𝑛2 |𝑥𝑛 | = 1
𝑛2 −→ 0, thus 𝑓𝑛

∥·∥∞−→ 0. We
deduce that the two norm ∥ · ∥𝑉 and ∥ · ∥∞ are not equivalent, otherwise they would have the
same convergent sequences. □

Exercise 21. i) We may notice that, setting 𝑢1 = 𝑥 and 𝑢2 = 𝑥3,

𝑉 = { 𝑓 ∈ 𝐻 : ⟨ 𝑓 , 𝑢1⟩ = 0, ⟨ 𝑓 , 𝑢2⟩ = 0}.
𝑉 is clearly a linear subspace of 𝐻. It is also closed because of the continuity of scalar product.
Indeed, if ( 𝑓𝑛) ⊂ 𝑉 , 𝑓𝑛

𝐻−→ 𝑓 , then
0 = ⟨ 𝑓𝑛, 𝑢1⟩ −→ ⟨ 𝑓 , 𝑢1⟩, =⇒ ⟨ 𝑓 , 𝑢1⟩ = 0,

0 = ⟨ 𝑓𝑛, 𝑢2⟩ −→ ⟨ 𝑓 , 𝑢2⟩, =⇒ ⟨ 𝑓 , 𝑢2⟩ = 0,
=⇒ 𝑓 ∈ 𝑉.

ii) It is convenient to determine first the orthogonal projection on 𝑈 := Span(𝑢1, 𝑢2). This is a
finite dimensional subspace of𝐻 (thus it is closed by a general fact). If (𝑒1, 𝑒2) is an orthonormal
basis for𝑈,

Π𝑈 𝑓 =

2∑︁
𝑗=1
⟨ 𝑓 , 𝑒 𝑗 ⟩𝑒 𝑗 .

The orthonormal basis can be determined by the Gram-Schmidt algorithm:

𝑒1 =
𝑢1
∥𝑢1∥

, 𝑒2 =
𝑢2 − ⟨𝑢2, 𝑒1⟩𝑒1
∥𝑢2 − ⟨𝑢2, 𝑒1⟩𝑒1∥

.

We have

∥𝑢1∥2 =

∫ 1

0
𝑢2

1 =

∫ 1

0
𝑥2 𝑑𝑥 =

1
3
, =⇒ 𝑒1 =

𝑥
√

3
,

and

𝑢2 − ⟨𝑢2, 𝑒1⟩𝑒1 = 𝑥3 − 1
3

(∫ 1

0
𝑦4 𝑑𝑦

)
𝑥 = 𝑥3 − 𝑥

15
,

hence,

∥𝑢2 − ⟨𝑢2, 𝑒1⟩𝑒1∥2 =

∫ 1

0

(
𝑥3 − 𝑥

15

)2
𝑑𝑥 =

1
7
− 2

75
+ 1

675
=

808
4725

so

𝑒2 =

√︂
4725
808

(
𝑥3 − 𝑥

15

)
.

Now, to compute Π𝑉 𝑓 it is enough to set

Π𝑉 𝑓 = 𝑓 − Π𝑈 𝑓 .
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This because Π𝑉 𝑓 is uniquely characterized by the property

⟨ 𝑓 − Π𝑉 𝑓 , 𝑣⟩ = 0, ∀𝑣 ∈ 𝑉,

that is
⟨Π𝑈 𝑓 , 𝑣⟩ = 0, ∀𝑣 ∈ 𝑉.

But this is automatically true being Π𝑈 𝑓 ∈ Span(𝑢1, 𝑢2) and 𝑣 ⊥ 𝑢1, 𝑢2 when 𝑣 ∈ 𝑉 . □

Exercise 23. i) Certainly, ∥ · ∥∗ is well defined: indeed 𝑓 (𝑥)√
𝑥
∈ 𝒞(]0, 1]) and since 𝑓 ∈

𝒞( [0, 1]), 𝑓 is bounded, thus
��� 𝑓 (𝑥)√

𝑥

��� ⩽ ∥ 𝑓 ∥∞√
𝑥

which is integrable on [0, 1]. Thus ∥ 𝑓 ∥∗ < +∞ for
every 𝑓 ∈ 𝑉 .

We now check the key properties of a norm:
• positivity: obvious.
• vanishing: ∥ 𝑓 ∥∗ = 0 implies | 𝑓 (𝑥) |√

𝑥
= 0 a.e. 𝑥 ∈ [0, 1], thus 𝑓 = 0 a.e. on [0, 1]. Since

𝑓 is continuous, 𝑓 ≡ 0 on [0, 1].
• homogeneity: straightforward, ∥𝜆 𝑓 ∥∗ =

∫ 1
0
|𝜆 𝑓 (𝑥) |√

𝑥
𝑑𝑥 = |𝜆 |

∫ 1
0
| 𝑓 (𝑥) |√
𝑥
𝑑𝑥 = |𝜆 |∥ 𝑓 ∥∗.

• triangular inequality: straightforward.
ii) It is easy to verify that the uniform norm is stronger than ∥ ·∥∗. Indeed, since | 𝑓 (𝑥) | ⩽ ∥ 𝑓 ∥∞,

we have

∥ 𝑓 ∥∗ =
∫ 1

0

| 𝑓 (𝑥) |
√
𝑥

𝑑𝑥 ⩽

∫ 1

0

∥ 𝑓 ∥∞√
𝑥

𝑑𝑥 = ∥ 𝑓 ∥∞
∫ 1

0

1
√
𝑥
𝑑𝑥 = ∥ 𝑓 ∥∞

[
2
√
𝑥
]𝑥=1
𝑥=0 = 2∥ 𝑓 ∥∞.

Are they equivalent? No! Indeed take

𝑓𝑛 (𝑥) :=


4√𝑛, 0 ⩽ 𝑥 ⩽ 1
𝑛
,

1
4√𝑥 ,

1
𝑛
< 𝑥 ⩽ 1.

Clearly 𝑓𝑛 ∈ 𝒞( [0, 1]) = 𝑉 . We have

∥ 𝑓𝑛∥∞ = 4√𝑛,

while

∥ 𝑓 ∥∗ =
∫ 1

0

| 𝑓 (𝑥) |
√
𝑥

𝑑𝑥 ⩽

∫ 1

0

1/ 4√𝑥
√
𝑥

𝑑𝑥 =

∫ 1

0

1
𝑥3/4 𝑑𝑥 =: 𝑀 < +∞.

If ∥ · ∥∗ is stronger than ∥ · ∥∞, we have
4√𝑛 = ∥ 𝑓𝑛∥∞ ⩽ 𝐶∥ 𝑓𝑛∥∗ ⩽ 𝐶𝑀, ∀𝑛 ∈ N,

which is impossible.
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About the ∥ · ∥1 norm, we may notice that, since for 𝑥 ∈]0, 1] we have 1√
𝑥
⩾ 1, then

∥ 𝑓 ∥1 =

∫ 1

0
| 𝑓 (𝑥) | 𝑑𝑥 ⩽

∫ 1

0

| 𝑓 (𝑥) |
√
𝑥

𝑑𝑥 = ∥ 𝑓 ∥∗,

thus ∥ · ∥∗ is stronger than ∥ · ∥1. Are they equivalent? No! Here we consider,

𝑓𝑛 (𝑥) :=

√
𝑛, 0 ⩽ 𝑥 ⩽ 1

𝑛
,

1√
𝑥
, 1

𝑛
< 𝑥 ⩽ 1.

Clearly, since 0 ⩽ 𝑓 (𝑥) ⩽ 1√
𝑥

∥ 𝑓𝑛∥1 =

∫ 1

0
| 𝑓𝑛 (𝑥) | 𝑑𝑥 ⩽

∫ 1

0

1
√
𝑥
𝑑𝑥 =: 𝑀 < +∞.

On the other hand,

∥ 𝑓𝑛∥∗ ⩾
∫ 1

1/𝑛

| 𝑓 (𝑥) |
√
𝑥

𝑑𝑥 =

∫ 1

1/𝑛

1
𝑥
𝑑𝑥 = log 1 − log

1
𝑛
= log 𝑛,

thus, if ∥ · ∥1 were stronger than ∥ · ∥∗, we would have that

log 𝑛 ⩽ ∥ 𝑓𝑛∥∗ ⩽ 𝐶∥ 𝑓𝑛∥1 ⩽ 𝐶𝑀, ∀𝑛 ∈ N, 𝑛 ⩾ 1,

but this is impossible. □

Exercise 24. i) Clearly 𝑓 ∈ 𝐿1 thus 𝑓̂ is well defined. To check 𝑓̂ ∈ 𝐿1, we apply the well
known result: if 𝑓 , 𝑓 ′, 𝑓 ′′ ∈ 𝐿1 then 𝑓̂ ∈ 𝐿1. We already said 𝑓 ∈ 𝐿1. About 𝑓 ′,

𝑓 ′(𝑥) = − 4𝑥3

(1 + 𝑥4)2
∈ 𝒞(R), 𝑓 ′(𝑥) ∼±∞ −4

𝑥3

𝑥8 =
𝐶

𝑥5 ,

which is integrable at ±∞. Similarly for 𝑓 ′′:

𝑓 ′′(𝑥) = −4
3𝑥2(1 + 𝑥4)2 − 2𝑥3(1 + 𝑥4)4𝑥3

(1 + 𝑥4)4
∈ 𝒞(R), 𝑓 ′′(𝑥) ∼±∞ −4

−5𝑥10

𝑥16 =
𝐶

𝑥6 ,

which is integrable at ±∞. Is 𝑓̂ ∈ 𝐿2? Yes, this because 𝑓 ∈ 𝐿2 (yet, 𝑓 ∈ 𝒞(R) and
| 𝑓 (𝑥) |2 ∼±∞ 1

𝑥8 is integrable, thus
∫
R
| 𝑓 |2 < +∞) and the FT maps 𝐿2 into itself. Last: is

𝑓̂ ∈ 𝒮(R)? No, this because FT maps the Schwarz space 𝒮(R) into itself, thus 𝑓̂ ∈ 𝒮(R) iff
𝑓 ∈ 𝒮(R). Clearly, 𝑓 ∈ 𝒞∞ but, for instance,

𝑥4 𝑓 (𝑥) ̸−→ 0, |𝑥 | −→ ±∞.
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ii) We may notice that
1

𝑥2 ±
√

2𝑥 + 1
=

1(
𝑥 ± 1√

2

)2
+ 1

2

,

thus, recalling that �𝑔(♯ + 𝑐) = 𝑒−𝑖𝑐𝜉 𝑔̂,�1
♯2 ±
√

2♯ + 1
(𝜉) =

�1(
♯ ± 1√

2

)2
+

(
1√
2

)2 (𝜉) = 𝑒
∓𝑖𝜉/
√

2
�1

♯2 +
(

1√
2

)2 (𝜉) = 𝑒
∓𝑖𝜉/
√

2√2𝜋𝑒−|𝜉 |/
√

2

iii) Because (1 + 𝑥4) = (𝑥2 +
√

2𝑥 + 1) (𝑥2 −
√

2𝑥 + 1) we have
1

1 + 𝑥4 =
1

(𝑥2 +
√

2𝑥 + 1) (𝑥2 −
√

2𝑥 + 1)
= − 1

2
√

2𝑥

(
1

𝑥2 +
√

2𝑥 + 1
− 1
𝑥2 −
√

2𝑥 + 1

)
thus

−2
√

2𝑥
1

1 + 𝑥4 =
1

𝑥2 +
√

2𝑥 + 1
− 1
𝑥2 −
√

2𝑥 + 1
hence
−2
√

2 (̂♯ 𝑓 ) (𝜉) = 𝑒−𝑖𝜉/
√

2√2𝜋𝑒−|𝜉 |/
√

2 − 𝑒+𝑖𝜉/
√

2√2𝜋𝑒−|𝜉 |/
√

2 = −2𝑖
√

2𝜋𝑒−|𝜉 |/
√

2 sin(𝜉/
√

2),
that is

(̂♯ 𝑓 ) (𝜉) = −𝑖𝜋𝑒−|𝜉 |/
√

2 sin(𝜉/
√

2).
Now, recalling that �(−𝑖♯) 𝑓 ) = 𝜕𝜉 𝑓̂ ,
we get,

𝜕𝜉 𝑓̂ (𝜉) = −𝜋𝑒−|𝜉 |/
√

2 sin(𝜉/
√

2).
To determine 𝑓̂ , let’s first compute∫

𝑒𝛼𝜉 sin(𝛽𝜉) 𝑑𝜉 = 𝑒𝛼𝜉

𝛼
sin(𝛽𝜉) −

∫
𝑒𝛼𝜉

𝛼
𝛽 cos(𝛽𝜉) 𝑑𝜉

= 𝑒𝛼𝜉

𝛼
sin(𝛽𝜉) − 𝛽

𝛼

[
𝑒𝛼𝜉

𝛼
cos(𝛽𝜉) +

∫
𝑒𝛼𝜉

𝛼
𝛽 sin(𝛽𝜉) 𝑑𝜉

]
,

from which, ∫
𝑒𝛼𝜉 sin(𝛽𝜉) 𝑑𝜉 = 𝛼

𝛼2 + 𝛽2 𝑒
𝛼𝜉

(
sin(𝛽𝜉) − 𝛽

𝛼
cos(𝛽𝜉)

)
.

Therefore,

𝑓̂ (𝜉) =


𝜉 ⩾ 0, −𝜋

∫
𝑒−𝜉/

√
2 sin(𝜉/

√
2) 𝑑𝜉 + 𝑐1 = 𝜋√

2
𝑒−𝜉/

√
2
(
sin(𝜉/

√
2) + cos(𝜉/

√
2)

)
+ 𝑐1,

𝜉 < 0, −𝜋
∫
𝑒𝜉/
√

2 sin(𝜉/
√

2) 𝑑𝜉 + 𝑐2 = − 𝜋√
2
𝑒𝜉/
√

2
(
sin(𝜉/

√
2) − cos(𝜉/

√
2)

)
+ 𝑐2.
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Since 𝑓 ∈ 𝐿1(R) we have 𝑓̂ (𝜉) −→ 0 for 𝜉 −→ ±∞, from which 𝑐1 = 𝑐2 = 0. Thus

𝑓̂ (𝜉) = 𝜋
√

2
𝑒−|𝜉 |/

√
2
(
sin( |𝜉 |/

√
2) + cos( |𝜉 |/

√
2)

)
. □

Exercise 25. i) Let 𝑓 (𝑥, 𝜉) := 1−cos(𝜉𝑥)
𝑥2 (𝑥2+1) . Clearly 𝑓 ∈ 𝒞(R\{0}) for every 𝜉 ∈ R.

We may notice that 𝑓 (𝑥, 0) ≡ 0, thus certainly 𝑓 (♯, 0) ∈ 𝐿1(R). For 𝜉 ≠ 0, recalling that
cos 𝑡 = 1 − 𝑡2

2 + 𝑜(𝑡
2) for 𝑡 ∼ 0, we have that, for 𝑥 ∼ 0,

𝑓 (𝑥, 𝜉) =
𝑥𝑖2𝑥2

2 + 𝑜(𝑥
2)

𝑥2(𝑥2 + 1)
∼ 1

2
𝜉2

𝑥2 + 1
∼ 𝜉

2

2
,

thus | 𝑓 (♯, 𝜉) | is integrable at 𝑥 = 0 for every 𝜉 ∈ R. We need to check integrability at ±∞.
Notice that

| 𝑓 (𝑥, 𝜉) | ⩽ 2
𝑥2(𝑥2 + 1)

∼±∞
2
𝑥4 ,

therefore | 𝑓 (♯, 𝜉) | is integrable at ±∞ for every 𝜉 ∈ R. We conclude that 𝑓 (♯, 𝜉) ∈ 𝐿1(R) for
every 𝜉 ∈ R, thus 𝐷 = R.

ii) We apply differentiation theorem. If this holds,

𝜕𝜉𝐹 (𝜉) =
∫
R
𝜕𝜉 𝑓 (𝑥, 𝜉) 𝑑𝑥, 𝜉 ∈ 𝐷′.

To this aim we need to verify hypotheses that are
1. 𝑓 (♯, 𝜉) ∈ 𝐿1(R), ∀𝜉 ∈ 𝐷′. This has been checked in i) with 𝐷′ = 𝐷 = R.
2. ∃𝜕𝜉 𝑓 (𝑥, 𝜉) = sin(𝜉𝑥)

𝑥(𝑥2+1) for every 𝜉 ∈ R.
3. ∃𝑔 = 𝑔(𝑥) ∈ 𝐿1(R) such that |𝜕𝜉 𝑓 (𝑥, 𝜉) | ⩽ 𝑔(𝑥), a.e. 𝑥 ∈ R, ∀𝜉 ∈ 𝐷′. Here we may

notice that, since | sin 𝑡 | ⩽ |𝑡 | we have

|𝜕𝜉 𝑓 (𝑥, 𝜉) | =
����sin(𝜉𝑥)

𝑥

1
𝑥2 + 1

���� ⩽ |𝜉 | 1
𝑥2 + 1

⩽
𝑅

𝑥2 + 1
=: 𝑔𝑅 (𝑥), 𝑎.𝑒. 𝑥 ∈ R, ∀𝜉 ∈ [−𝑅, 𝑅] .

Thus, fixed 𝑅 > 0, we may apply the theorem on 𝐷′ = [−𝑅, 𝑅] and deduce that

𝜕𝜉𝐹 (𝜉) =
∫
R

sin(𝜉𝑥)
𝑥(𝑥2 + 1)

𝑑𝑥, ∀𝜉 ∈ [−𝑅, 𝑅] .

And since 𝑅 > 0 is arbitrary, we can conclude that the previous identity actually holds for every
𝜉 ∈ R. Thus, at the end, we can consider 𝐷′ = R.

iii) Let 𝑔(𝑥, 𝜉) := sin(𝜉𝑥)
𝑥(𝑥2+1) . To compute 𝜕2

𝜉
𝐹 we apply again differentiation theorem to

𝜕𝜉𝐹 (𝜉) =
∫
R
𝑔(𝑥, 𝜉) 𝑑𝑥.

To this aim, we need to verify that
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1. 𝑔(♯, 𝜉) ∈ 𝐿1(R), ∀𝜉 ∈ 𝐷′′. This is a consequence of 3. of ii), from which we get that
𝐷′′ = R.

2. ∃𝜕𝜉𝑔(𝑥, 𝜉) = cos(𝜉𝑥)
𝑥2+1 , a.e. 𝑥 ∈ R (actually, ∀𝑥 ≠ 0) and ∀𝜉 ∈ 𝐷′′ = R.

3. ∃ℎ = ℎ(𝑥) ∈ 𝐿1(R) for which |𝜕𝜉𝑔(𝑥, 𝑥𝑖) | ⩽ ℎ(𝑥), a.e. 𝑥 ∈ R and ∀𝜉 ∈ 𝐷′′. Here we
may notice that

|𝜕𝜉𝑔(𝑥, 𝜉) | =
����cos(𝜉𝑥)
𝑥2 + 1

���� ⩽ 1
𝑥2 + 1

=: ℎ(𝑥) ∈ 𝐿1(R), 𝑎.𝑒. 𝑥 ∈ R, ∀𝜉 ∈ 𝐷′′ = R.

Thus, differentiation theorem applies and

𝜕2
𝜉 𝐹 (𝜉) =

∫
R

cos(𝜉𝑥)
𝑥2 + 1

𝑑𝑥, ∀𝜉 ∈ R.

iv) From previous discussion, and recalling that cos 𝑡 = Re 𝑒𝑖𝑡 , we have

𝜕2
𝜉 𝐹 (𝜉) = Re

∫
R

1
𝑥2 + 1

𝑒𝑖𝜉𝑥 𝑑𝑥
𝑦=−𝑥
= Re

∫
R

1
1 + 𝑦2 𝑒

−𝑖𝜉𝑦 𝑑𝑦 = Re
�1
1 + ♯2 (𝜉) = 𝜋𝑒

−|𝜉 | .

Then

𝜕𝜉𝐹 (𝜉) =


∫
𝜋𝑒−𝜉 𝑑𝜉 + 𝑐1 = −𝜋𝑒−𝜉 + 𝑐1, 𝜉 ⩾ 0,∫
𝜋𝑒𝜉 𝑑𝜉 + 𝑐2 = 𝜋𝑒𝜉 + 𝑐2, 𝜉 ⩽ 0.

Since 𝜕𝜉𝐹 is differentiable it must be continuous, in particular at 𝜉 = 0. This leads to
−𝜋 + 𝑐1 = 𝜕𝜉𝐹 (0) = 𝜋 + 𝑐2,

and since also 𝜕𝜉𝐹 (0) = 0 (trivial) we obtain 𝑐1 = 𝜋 and 𝑐2 = −𝜋. In conclusion

𝜕𝜉𝐹 (𝜉) =

−𝜋𝑒−𝜉 + 𝜋, 𝜉 ⩾ 0,

𝜋𝑒𝜉 − 𝜋, 𝜉 ⩽ 0.
Therefore

𝐹 (𝜉) =

𝜋𝑒−𝜉 + 𝜋𝜉 + 𝑐1, 𝜉 ⩾ 0,

𝜋𝑒𝜉 − 𝜋𝜉 + 𝑐2, 𝜉 < 0.
Again, by continuity at 𝜉 = 0 and noticed that 𝐹 (0) = 0, we have 𝑐1 = −𝜋 = 𝑐2, thus

𝐹 (𝜉) =

𝜋𝑒−𝜉 + 𝜋𝜉 − 𝜋, 𝜉 ⩾ 0,

𝜋𝑒𝜉 − 𝜋𝜉 − 𝜋, 𝜉 < 0.
= 𝜋

(
𝑒−|𝜉 | + |𝜉 | − 1

)
. □

Exercise 26. i) Clearly ∥ 𝑓 ∥ is well defined ( 𝑓 ′ ∈ 𝒞( [0, 1]), hence 𝑥1/2 𝑓 ′ ∈ 𝒞( [0, 1])). Let’s
check the characteristic properties of a norm:

• positivity: ∥ 𝑓 ∥ ⩾ 0, trivial.
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• vanishing: ∥ 𝑓 ∥ = 0 means 𝑥1/2 | 𝑓 ′(𝑥) | ≡ 0 on [0, 1], thus in particular 𝑓 ′ ≡ 0 on ]0, 1]
and because 𝑓 ′ ∈ 𝒞, 𝑓 ′ ≡ 0 on [0, 1]. In particular, 𝑓 is constant and because 𝑓 (0) = 0
( 𝑓 ∈ 𝑉), we conclude 𝑓 ≡ 0.
• homogeneity: ∥𝜆 𝑓 ∥ = max 𝑥1/2 | (𝜆 𝑓 )′(𝑥) | = max 𝑥1/2 |𝜆 | | 𝑓 ′(𝑥) | = |𝜆 |max 𝑥1/2 | 𝑓 ′(𝑥) | =
|𝜆 |∥ 𝑓 ∥.
• triangular inequality: notice first that if 𝑓 , 𝑔 ∈ 𝑉 we have

| ( 𝑓 + 𝑔)′(𝑥) | = | 𝑓 ′(𝑥) + 𝑔′(𝑥) | ⩽ | 𝑓 ′(𝑥) | + |𝑔′(𝑥) |,
thus

𝑥1/2 | ( 𝑓 + 𝑔)′(𝑥) | ⩽ 𝑥1/2 | 𝑓 ′(𝑥) | + 𝑥1/2 |𝑔′(𝑥) | ⩽ ∥ 𝑓 ∥ + ∥𝑔∥, ∀𝑥 ∈ [0, 1],
hence, taxing maximum, ∥ 𝑓 + 𝑔∥ ⩽ ∥ 𝑓 ∥ + ∥𝑔∥.

ii) We check first that 𝑓𝑛 ∈ 𝑉 . Easily, 𝑓𝑛 ∈ 𝒞( [0, 1]) and

𝑓 ′𝑛 (𝑥) :=


𝑛3/4

4 , 0 ⩽ 𝑥 < 1
𝑛
,

1
4𝑥
−3/4, 1

𝑛
< 𝑥 ⩽ 1

We have that lim𝑥→1/𝑛− 𝑓
′
𝑛 (𝑥) = 𝑛3/4

4 = lim𝑥→1/𝑛+ 𝑓
′
𝑛 (𝑥), thus ∃ 𝑓 ′𝑛 (1/𝑛) = 𝑛3/4

4 and 𝑓 ′𝑛 ∈
𝒞( [0, 1]). And since clearly 𝑓𝑛 (0) = 0 we have 𝑓𝑛 ∈ 𝑉 for every 𝑛 ⩾ 1.

To discuss convergence of ( 𝑓𝑛) we may notice that

𝑥1/2 | 𝑓 ′𝑛 (𝑥) | :=


𝑛3/4

4 𝑥1/2, 0 ⩽ 𝑥 ⩽ 1
𝑛
,

1
4𝑥
−1/4, 1

𝑛
⩽ 𝑥 ⩽ 1.

=⇒ ∥ 𝑓𝑛∥ = max
𝑡∈[0,1]

𝑥1/2 | 𝑓 ′𝑛 (𝑥) | =
1
4
𝑛1/4 −→ +∞.

Since ( 𝑓𝑛) is not even bounded in ∥ · ∥, it cannot be convergent.
iii) We have to prove that there exists a universal constant𝐶 such that ∥ 𝑓 ∥∞ ⩽ 𝐶∥ 𝑓 ∥ for every

𝑓 ∈ 𝑋 . We start recalling that

𝑓 (𝑥) = 𝑓 (0) +
∫ 𝑥

0
𝑓 ′(𝑦) 𝑑𝑦 𝑓 ∈𝑉, 𝑓 (0)=0

=

∫ 𝑥

0
𝑓 ′(𝑦) 𝑑𝑦,

therefore

| 𝑓 (𝑥) | =
����∫ 𝑥

0
𝑓 ′(𝑦) 𝑑𝑦

���� ⩽ ∫ 𝑥

0
| 𝑓 ′(𝑦) | 𝑑𝑦 =

∫ 𝑥

0

1
𝑦1/2 𝑦

1/2 | 𝑓 ′(𝑦) | 𝑑𝑦 ⩽
∫ 𝑥

0

1
𝑦1/2 ∥ 𝑓 ∥ 𝑑𝑦 = 2𝑥1/2∥ 𝑓 ∥,

thus, finally
∥ 𝑓 ∥∞ = max

𝑥∈[0,1]
| 𝑓 (𝑥) | ⩽ max

𝑥∈[0,1]
2𝑥1/2∥ 𝑓 ∥ = 2∥ 𝑓 ∥.

The two norms are not equivalent. Indeed, if ∥ · ∥∞ were stronger than ∥ · ∥, we would have

∥ 𝑓 ∥ ⩽ 𝐶∥ 𝑓 ∥∞, ∀ 𝑓 ∈ 𝑉.
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Taking 𝑓 = 𝑓𝑛 and noticed that ∥ 𝑓𝑛∥∞ = 1 (easy), we would have

𝑛1/4

4
= ∥ 𝑓𝑛∥ ⩽ 𝐶∥ 𝑓𝑛∥∞ = 𝐶, ∀𝑛 ⩾ 1,

which is clearly impossible. □

Exercise 27. i) We first check that if 𝑓 , 𝑔 ∈ 𝐻 then ⟨ 𝑓 , 𝑔⟩ is well defined. We have to show
that 𝑓 (𝑥)𝑔(𝑥)𝑒−𝑥 ∈ 𝐿1( [0, +∞[). The argument is similar to the standard 𝐿2 product:∫ +∞

0 | 𝑓 (𝑥)𝑔(𝑥)𝑒−𝑥 | 𝑑𝑥 =
∫ +∞

0 | 𝑓 | |𝑔 |𝑒−𝑥 ⩽
∫ +∞

0
1
2 ( 𝑓

2 + 𝑔2)𝑒−𝑥

= 1
2

(∫ +∞
0 𝑓 2𝑒−𝑥 +

∫ +∞
0 𝑔2𝑒−𝑥

)
< +∞,

provided 𝑓 , 𝑔 ∈ 𝐻. Thus ⟨ 𝑓 , 𝑔⟩ is well defined. The check of scalar product properties is
standard:

• vanishing: 0 = ⟨ 𝑓 , 𝑓 ⟩ =
∫ +∞

0 𝑓 2𝑒−𝑥 that is 𝑓 (𝑥)2𝑒−𝑥 = 0 a.e., that is 𝑓 = 0 a.e..
• linearity, symmetry: straightforward.

ii) We may notice that𝑈 = {𝑢 ∈ 𝐻 : ⟨𝑢, 1⟩ = 0}. Indeed,

1 ∈ 𝐻, ⇐⇒
∫ +∞

0
𝑒−𝑥 𝑑𝑥 < +∞,

which clearly true. Therefore, 𝑈 is closed because of well known continuity properties of the
scalar product. Indeed: if (𝑢𝑛) ⊂ 𝑈 is such that 𝑢𝑛 −→ 𝑢, then, since ⟨𝑢𝑛, 1⟩ = 0 for all 𝑛 and
⟨𝑢𝑛, 1⟩ −→ ⟨𝑢, 1⟩ we conclude that ⟨𝑢, 1⟩ = 0.

iii) Since𝑈 is closed, Π𝑈 𝑓 is well defined for every 𝑓 ∈ 𝐻. However,𝑈 is likely to be infinite
dimensional, it seems not easy to determine a basis for 𝑈. Nonetheless, 𝑈 is the space of 𝑢
perpendicular to 1, so define 𝑉 := Span(1). Clearly 𝑉 is one dimensional, hence Π𝑉 is well
defined. Take 𝑒0 = 1

∥1∥ where ∥1∥2 =
∫ +∞

0 12𝑒−𝑥 𝑑𝑥 =
∫ +∞

0 𝑒−𝑥𝑑𝑥 = 1, that is 𝑒0 = 1. Thus
Π𝑉 𝑓 = ⟨ 𝑓 , 1⟩1 and since 𝑓 − Π𝑉 𝑓 ⊥ 1, we have 𝑓 − Π𝑉 𝑓 ∈ 𝑈. We claim Π𝑈 𝑓 = 𝑓 − Π𝑉 𝑓 .
Indeed:

⟨ 𝑓 − Π𝑈 𝑓 , 𝑔⟩ = ⟨ 𝑓 − ( 𝑓 − Π𝑉 𝑓 ), 𝑔⟩ = ⟨Π𝑉 𝑓 , 𝑔⟩ = ⟨ 𝑓 , 1⟩⟨1, 𝑔⟩ = 0, ∀𝑔 ∈ 𝑈,
and since this characterized Π𝑈 𝑓 we have the conclusion. In particular,

Π𝑈𝑒
−2𝑥 = 𝑒−2𝑥 − ⟨𝑒−2𝑥 , 1⟩1 = 𝑒−2𝑥 −

∫ +∞
0

𝑒−3𝑦 𝑑𝑦 = 𝑒−2𝑥 − 1
3
. □

Exercise 29. i) To have FT, 𝑓𝛼 needs to be either 𝐿1(R) or 𝐿2(R). In the first case, writing
𝛼 = 𝑎 + 𝑖𝑏,∫
R
| 𝑓𝛼 (𝑥) | 𝑑𝑥 =

∫ +∞
0
|𝑒𝛼𝑥 | 𝑑𝑥 =

∫ +∞
0
|𝑒𝑎𝑥𝑒𝑖𝑏𝑥 | 𝑑𝑥 =

∫ +∞
0

𝑒𝑎𝑥 𝑑𝑥 < +∞, ⇐⇒ 𝑎 = Re 𝛼 < 0.
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Same conclusion for 𝐿2. Thus: 𝑓 has a FT iff Re 𝛼 < 0. For such 𝛼 we have

𝑓̂𝛼 (𝜉) =
∫ +∞

0
𝑒𝛼𝑥𝑒−𝑖𝜉𝑥 𝑑𝑥 =

∫ +∞
0

𝑒(𝛼−𝑖𝜉)𝑥 𝑑𝑥 =

[
𝑒(𝛼−𝑖𝜉)𝑥

𝛼 − 𝑖𝜉

]𝑥=+∞
𝑥=0

.

Now, since Re 𝛼 = 𝑎 < 0,���𝑒(𝛼−𝑖𝜉)𝑥 ��� = |𝑒𝑎𝑥𝑒𝑖(𝑏−𝜉)𝑥 | = 𝑒𝑎𝑥 −→ 0, 𝑥 −→ +∞

we have
𝑓̂𝛼 (𝜉) = −

1
𝛼 − 𝑖𝜉 =

1
𝑖𝜉 + 𝛼 .

ii) To have an 𝐿1 Fourier original, according to RL lemma, 𝑔𝛽 ∈ 𝒞(R) and it must be
bounded. Now, in order 𝑔𝛽 be continuous, we need that 𝜉 + 𝛽 ≠ 0 for every 𝜉 ∈ R. If 𝛽 ∈ R this
is impossible, because 𝜉 + 𝛽 = 0 at 𝜉 = −𝛽. If 𝛽 ∈ C\R however, 𝜉 + 𝛽 ≠ 0 for every 𝜉 ∈ R,
thus 𝑔𝛽 ∈ 𝒞(R). Clearly 𝑔𝛽 would be also bounded in this case. However, 𝑔𝛽 continuous and
bounded is not sufficient to have a Fourier original in 𝐿1. As well known, a sufficient condition
is 𝑔̂𝛽 ∈ 𝐿1. To ensure this, a sufficient condition is 𝑔𝛽, 𝑔′𝛽, 𝑔

′′
𝛽
∈ 𝐿1(R). 𝑔𝛽 ∈ 𝒞(R) and since

|𝑔𝛽 | ∼±∞
1
|𝜉 |2

,

we deduce 𝑔𝛽 ∈ 𝐿1(R) for every 𝛽 ∈ C\R. For 𝑔′
𝛽

the check is similar being

𝑔′𝛽 (𝜉) = −
2

(𝜉 + 𝛽)3

thus 𝑔′
𝛽
∈ 𝒞(R) and |𝑔′

𝛽
| ∼±∞ 2

|𝜉 |3 , integrable at ±∞, thus 𝑔′
𝛽
∈ 𝐿1(R) for every 𝛽 ∈ C\R. Same

check for 𝑔′′
𝛽
.

For 𝐿2 inversion, the discussion is much more easy: it suffices to verify 𝑔𝛽 ∈ 𝐿2(R). Since
𝑔𝛽 ∈ 𝒞(R) and |𝑔𝛽 |2 ∼±∞ 1

|𝜉 |4 , we deduce that 𝑔𝛽 ∈ 𝐿2(R) for every 𝛽 ∈ C\R.
iii) Following the hint,

𝑔𝛽 (𝜉) = −𝜕𝜉
1

𝜉 + 𝛽 = −𝑖𝜕𝜉
1

𝑖𝜉 + 𝑖𝛽 = −𝑖𝜕𝜉
1

𝑖𝜉 + 𝛼,

where 𝛼 = 𝑖𝛽. Now, Re 𝛼 = −Im 𝛽 < 0. Thus, by i),
1

𝑖𝜉 + 𝛼 = �𝑒𝛼♯1[0,+∞[ (𝜉) = �𝑒𝑖𝛽♯1[0,+∞[,
whence

𝑔𝛽 (𝜉) = −𝑖𝜕𝜉 �𝑒𝑖𝛽♯1[0,+∞[ (𝜉) = −𝑖 ( �−𝑖♯𝑒𝑖𝛽♯1[0,+∞[) = − �♯𝑒𝑖𝛽♯1[0,+∞[ (𝜉).
Therefore, the Fourier original of 𝑔𝛽 is 𝑥𝑒𝑖𝛽𝑥1[0,+∞[ (𝑥). □
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Exercise 30. Let 𝑓 (𝑥, 𝑦) := 1−𝑒−𝑥𝑦2

𝑦2 , 𝑦 ∈]0, +∞[. The domain of 𝐹 is

𝐷 :=
{
𝑥 ∈ R : 𝑓 (𝑥, ♯) ∈ 𝐿1( [0, +∞[)

}
We notice that 𝑓 (0, 𝑦) ≡ 0. If 𝑥 ≠ 0, 𝑓 (𝑥, ♯) ∈ 𝒞(]0, +∞[), so we need to check the asymptotic
behavior of 𝑓 (𝑥, 𝑦) when 𝑦 → 0+, +∞. Recalling of 𝑒𝑡 = 1 + 𝑡 + 𝑜(𝑡) when 𝑡 → 0, we have

𝑓 (𝑥, 𝑦) = 1 − (1 − 𝑥𝑦2 + 𝑜(𝑦2))
𝑦2 = 𝑥 + 𝑜(1) −→ 𝑥, 𝑦 → 0+,

so 𝑓 (𝑥, ♯) can be extended by continuity at 𝑦 = 0, in particular, 𝑓 (𝑥, ♯) is integrable at 𝑦 = 0.
When 𝑦 → +∞ we have

𝑓 (𝑥, 𝑦)


−→ −∞, 𝑥 < 0 =⇒ �

∫ +∞
𝑓 (𝑥, 𝑦) 𝑑𝑦.

∼𝑦→+∞ 1
𝑦2 , 𝑥 > 0, =⇒ ∃

∫ +∞
𝑓 (𝑥, 𝑦) 𝑑𝑦.

Conclusion: 𝐷 = [0, +∞[.
ii) We apply the differentiation under integral sign,

𝜕𝑥𝐹 (𝑥) =
∫ +∞

0
𝜕𝑥 𝑓 (𝑥, 𝑦) 𝑑𝑦. (★)

To this aim we notice that:
• ∃𝜕𝑥 𝑓 (𝑥, 𝑦) = −𝑒

−𝑥𝑦2 (−𝑦2)
𝑦2 = 𝑒−𝑥𝑦

2 , ∀𝑦 > 0 (so a.e. 𝑦 ∈ [0, +∞[), ∀𝑥 ⩾ 0.
• |𝜕𝑥 𝑓 (𝑥, 𝑦) | = 𝑒−𝑥𝑦

2
⩽ 𝑒−𝜀𝑦

2
=: 𝑔(𝑦) ∈ 𝐿1( [0, +∞[), ∀𝑦 > 0 (a.e. 𝑦 ∈ [0, +∞[) and

∀𝑥 ⩾ 𝜀.
Let 𝐷𝜀 := [𝜀, +∞[ with 𝜀 > 0. The previous facts say that we can apply the differentiation
theorem on 𝐷𝜀, so (★) holds for every 𝑥 ⩾ 𝜀. Since this 𝜀 is an arbitrary positive number, this
means that (★) actually holds for every 𝑥 > 0. Conclusion: 𝐹 is differentiable on ]0, +∞[ and

𝜕𝑥𝐹 (𝑥) =
∫ +∞

0
𝑒−𝑥𝑦

2
𝑑𝑦.

iii) 𝜕𝑥𝐹 (𝑥) is basically a Gaussian integral

𝜕𝑥𝐹 (𝑥) =
1
2

√︂
𝜋

𝑥
,

from which
𝐹 (𝑥) =

√
𝜋𝑥 + 𝑐.

To determine the value of the constant 𝑐 we notice that 𝐹 is continuous at 𝑥 = 0. This because
• 𝑓 (♯, 𝑦) ∈ 𝒞( [0, +∞[) for all 𝑦 > 0 (thus a.e. 𝑦 ∈ [0, +∞[),
• 0 ⩽ 𝑓 (𝑥, 𝑦) = 1−𝑒−𝑥𝑦2

𝑦2 ⩽ 1−𝑒−𝑦2

𝑦2 =: 𝑔(𝑦) ∈ 𝐿1( [0, +∞[), ∀𝑥 ∈ [0, 1].



39

So we can apply continuity under integral sign to get that 𝐹 is continuous on [0, 1] and, in
particular, at 𝑥 = 0. Therefore

lim
𝑥→0+

𝐹 (𝑥) = 𝐹 (0) = 0, =⇒ 𝑐 = 0.

Therefore 𝐹 (𝑥) =
√
𝜋𝑥 for all 𝑥 ⩾ 0. From this it is also evident that 𝐹 cannot be differentiable

at 𝑥 = 0. □

Exercise 35. i) To check 𝑈 is closed we have to prove that if ( 𝑓𝑛) ⊂ 𝑈 is convergent (in
𝐻) to some 𝑓 ∈ 𝐻 then 𝑓 ∈ 𝑈. So, assume 𝑓𝑛 −→ 𝑓 in 𝐿2(𝑋). By extracting a subsequence,
𝑓𝑛𝑘 (𝑥) −→ 𝑓 (𝑥) 𝜇−a.e. 𝑥 ∈ 𝑋 . That is, modulo a measure zero set 𝑁 , (𝜇(𝑁) = 0),

𝑓𝑛𝑘 (𝑥) −→ 𝑓 (𝑥), ∀𝑥 ∈ 𝑋\𝑁.

Now, each 𝑓𝑛𝑘 = 0 a.e. on 𝐸𝑐 that is 𝑓𝑛𝑘 (𝑥) = 0 for all 𝑥 ∈ 𝐸𝑐\𝑁𝑘 with 𝜇(𝑁𝑘 ) = 0. In particular,

𝑓𝑛𝑘 (𝑥) = 0, ∀𝑥 ∈ 𝐸𝑐\
⋃
𝑘

𝑁𝑘 ,

and since 𝑀 := 𝑁 ∪⋃
𝑘 𝑁𝑘 is a 𝜇− null set (a union of null sets), we have, for 𝑥 ∈ 𝐸𝑐\𝑀

0←− 0 ≡ 𝑓𝑛𝑘 (𝑥) −→ 𝑓 (𝑥),

thus 𝑓 (𝑥) = 0 for every 𝑥 ∈ 𝐸𝑐\𝑀 , that is 𝑓 ∈ 𝑈.

In alternative: since 𝑓𝑛
𝐿2

−→ 𝑓 , then easily also 𝑓𝑛1𝐸𝑐
𝐿2

−→ 𝑓 1𝐸𝑐 (∥ 𝑓𝑛1𝐸𝑐 − 𝑓 1𝐸𝑐 ∥22 =
∫
𝑋
( 𝑓𝑛 −

𝑓 )21𝐸𝑐 𝑑𝜇 ⩽ ∥ 𝑓𝑛 − 𝑓 ∥22), so ∥ 𝑓𝑛1𝐸𝑐 ∥2 −→ ∥ 𝑓 1𝐸𝑐 ∥2. But ∥ 𝑓𝑛1𝐸𝑐 ∥22 =
∫
𝐸𝑐 𝑓

2
𝑛 𝑑𝜇 = 0 for every

𝑛; so ∥ 𝑓 1𝐸𝑐 ∥22 = 0 from which 𝑓 = 0 a.e. on 𝐸𝑐. From this the conclusion follows.
ii) Recall that the orthogonal projection is characterised by the orthogonality relation

⟨𝑢, 𝑓 − Π𝑈 𝑓 ⟩ = 0, ∀𝑢 ∈ 𝑈, ∀ 𝑓 ∈ 𝐻.

Now, since 𝑓 − Π𝑈 𝑓 = 𝑓 − 1𝐸 𝑓 = (1 − 1𝐸 ) 𝑓 = 1𝐸𝑐 𝑓 we have

⟨𝑢, 𝑓 − Π𝑈 𝑓 ⟩ =
∫
𝑋

𝑢1𝐸𝑐 𝑓 𝑑𝜇 =

∫
𝐸𝑐

𝑢 𝑓 𝑑𝜇 = 0

because 𝑢 ∈ 𝑈 is = 0 𝜇−a.e. 𝑥 ∈ 𝐸𝑐. □

Exercise 36. i) Let

𝑔𝑎,𝑏 (𝜉) :=
𝑒−𝑎 |𝜉 | − 𝑒−𝑏 |𝜉 |

𝜉
, 𝜉 ∈ R\{0}.

Here 𝑎, 𝑏 > 0 are fixed. We notice that, being 𝑒𝑡 = 1 + 𝑡 + 𝑜(𝑡),

𝑔𝑎,𝑏 (𝜉) =
1 − 𝑎 |𝜉 | + 𝑜(𝜉) − (1 − 𝑏 |𝜉 | + 𝑜(𝜉)

𝜉
=
(𝑏 − 𝑎) |𝜉 | + 𝑜(𝜉)

𝜉
∼0 (𝑏 − 𝑎)sgn(𝜉),
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which is integrable at 𝜉 = 0. At ±∞ we could say that

|𝑔𝑎,𝑏 (𝜉) | ⩽
(
𝑒−𝑎 |𝜉 | + 𝑒−𝑏 |𝜉 |

)
, ∀|𝜉 | ⩾ 1,

thus 𝑔𝑎,𝑏 is integrable at ±∞. In conclusion 𝑔𝑎,𝑏 ∈ 𝐿1(R). Similarly, |𝑔𝑎,𝑏 |2 ∼0 (𝑏 − 𝑎)2 is
integrable at 𝜉 = 0 while, as above,

|𝑔𝑎,𝑏 (𝜉) |2 ⩽
(
𝑒−𝑎 |𝜉 | + 𝑒−𝑏 |𝜉 |

)2
, ∀|𝜉 | ⩾ 1,

thus easily |𝑔𝑎,𝑏 |2 is integrable at ±∞. In conclusion, 𝑔𝑎,𝑏 ∈ 𝐿2(R).
Let us discuss the inversion problem. Since 𝑔𝑎,𝑏 ∈ 𝐿2(R), then 𝑔𝑎,𝑏 has a Fourier original in

𝐿2(R). The same does not apply for an 𝐿1 original. Indeed, if 𝑔𝑎,𝑏 = 𝑓̂𝑎,𝑏 for some 𝑓𝑎,𝑏 ∈ 𝐿1

then 𝑔𝑎,𝑏 ∈ 𝒞(R). However, 𝑔𝑎,𝑏 (𝜉) ∼0 (𝑏 − 𝑎)sgn(𝜉) which is not continuous at 𝜉 = 0.
ii) If 𝑓𝑎,𝑏 ∈ 𝐿2 is such that 𝑓̂𝑎,𝑏 = 𝑔𝑎,𝑏 then, according to inversion formula,

𝑔𝑎,𝑏 (𝑥) = ̂̂
𝑓𝑎,𝑏 (𝑥) = 2𝜋 𝑓𝑎,𝑏 (−𝑥),

that is 𝑓𝑎,𝑏 (𝑥) = 1
2𝜋𝑔𝑎,𝑏 (−𝑥). We compute then 𝑔𝑎,𝑏. To this aim notice that�♯𝑔𝑎,𝑏 (𝑥) = �𝑒−𝑎 |♯| − 𝑒−𝑏 |♯| (𝑥) = 2𝑎

𝑎2 + 𝑥2 −
2𝑏

𝑏2 + 𝑥2 .

Recalling that �(−𝑖♯)𝑔𝑎,𝑏 = 𝜕𝑥𝑔𝑎,𝑏 we deduce that

𝜕𝑥 𝑔̂𝑎,𝑏 = −𝑖
(

2𝑎
𝑎2 + 𝑥2 −

2𝑏
𝑏2 + 𝑥2

)
.

Thus,
𝑔𝑎,𝑏 (𝑥) = −𝑖

(
2
𝑎

∫
1

1+( 𝑥
𝑎
)2 𝑑𝑥 −

2
𝑏

∫
1

1+( 𝑥
𝑏
)2 𝑑𝑥

)
+ 𝑐

= −𝑖
(
arctan

(
𝑥
𝑎

)
− arctan

(
𝑥
𝑏

) )
+ 𝑐,

where 𝑐 is a suitable constant. Finally, to determine the value of 𝑐, we may notice that letting
𝑥 → +∞, we have

𝑔𝑎,𝑏 (𝑥) −→ −𝑖
(𝜋

2
− 𝜋

2

)
+ 𝑐 = 𝑐,

and because we already know that 𝑔𝑎,𝑏 ∈ 𝐿2, this is possible only if 𝑐 = 0. By this we finally
obtain that the original of 𝑔𝑎,𝑏 is

𝑓𝑎,𝑏 (𝑥) =
𝑖

2𝜋

(
arctan

( 𝑥
𝑏

)
− arctan

( 𝑥
𝑎

))
.

Notice that we can check that 𝑓𝑎,𝑏 ∉ 𝐿1(R). Clearly, 𝑓𝑎,𝑏 ∈ 𝒞(R) so the integrability depends
on the behavior at ±∞. Recall of the remarkable identity

arctan 𝑡 + arctan
1
𝑡
=
𝜋

2
, ∀𝑡 > 0,
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so, for 𝑥 −→ +∞,
arctan

𝑥

𝑏
− arctan

𝑥

𝑎
= arctan

𝑎

𝑥
− arctan

𝑏

𝑥
,

ans since arctan 𝑢 = 𝑢 + 𝑜(𝑢) for 𝑢 −→ 0, we deduce
2𝜋
𝑖
𝑓𝑎,𝑏 (𝑥) = arctan

𝑎

𝑥
− arctan

𝑏

𝑥
=
𝑎 − 𝑏
𝑥

𝑜

(
1
𝑥

)
∼+∞

𝐶

𝑥
∉ 𝐿1.

This confirms once more that 𝑔𝑎,𝑏 cannot have a Fourier original in 𝐿1. □

Exercise 37. i) Let 𝑓 (𝑡, 𝑥) := 𝑒−𝜆𝑥 sin 𝑥
𝑥

. Because sin 𝑥 ∼0 𝑥, we may consider 𝑓 well defined
and continuous at 𝑥 = 0, thus 𝑓 (𝜆, ♯) is integrable at 𝑥 = 0 for every 𝜆 ∈ R. At 𝑥 = +∞, because
| sin 𝑥 | ⩽ |𝑥 |, we have

| 𝑓 (𝜆, 𝑥) | ⩽ 𝑒−𝜆𝑥 ∈ 𝐿1( [0, +∞[), ∀𝜆 > 0.
For 𝜆 = 0,

𝐹 (0) =
∫ +∞

0

sin 𝑥
𝑥

𝑑𝑥

exists (as generalized integral but not in 𝐿1 sense). Thus, we may still consider 𝐹 well defined
at 𝜆 = 0.

ii) We wish to apply differentiation under integral, that is

𝜕𝜆𝐹 =

∫ +∞
0

𝜕𝜆 𝑓 (𝜆, 𝑥) 𝑑𝑥.

To ensure this for every 𝜆 ∈ Λ we need to check a) 𝑓 (𝜆, ♯) ∈ 𝐿1( [0, +∞[) for every 𝜆 ∈ Λ. This
is true with Λ =]0, +∞[. b) ∃𝜕𝜆 𝑓 (𝜆, 𝑥) = −𝑥𝑒−𝜆𝑥 sin 𝑥

𝑥
= −𝑒−𝜆𝑥 sin 𝑥, for every 𝜆 ∈]0, +∞[, a.e.

𝑥 ∈ [0, +∞[. c) there exists 𝑔 ∈ 𝐿1( [0, +∞[) such that
|𝜕𝜆 𝑓 (𝜆, 𝑥) | ⩽ 𝑔(𝑥),∀𝜆 ∈ Λ, a.e. 𝑥 ∈ [0, +∞[.

Now,
|𝜕𝜆 𝑓 (𝜆, 𝑥) | ⩽ 𝑒−𝜆𝑥 ⩽ 𝑒−𝜆0𝑥 ∈ 𝐿1( [0, +∞[), ∀𝜆 ∈ [𝜆0, +∞[.

Thus, on Λ = [𝜆0, +∞[ with 𝜆0 > 0, we can conclude

𝜕𝜆𝐹 (𝜆) =
∫ +∞

0
−𝑒−𝜆𝑥 sin 𝑥 𝑑𝑥, ∀𝜆 ⩾ 𝜆0,

and because 𝜆0 can be chosen arbitrarily > 0, we conclude the previous holds true for every
𝜆 > 0. Recalling that∫

𝑒𝛼𝑥 sin(𝛽𝑥) 𝑑𝑥 = 𝛼

𝛼2 + 𝛽2 𝑒
𝛼𝑥

(
sin(𝛽𝑥) − 𝛽

𝛼
cos(𝛽𝑥)

)
we have

𝜕𝜆𝐹 (𝜆) =
𝜆

𝜆2 + 1

[
𝑒−𝜆𝑥

(
sin 𝑥 + 1

𝜆
cos 𝑥

)]𝑥=+∞
𝑥=0

= − 𝜆

𝜆2 + 1
1
𝜆
= − 1

1 + 𝜆2 .



42

iii) By last calculation,
𝐹 (𝜆) = − arctan𝜆 + 𝑐,

where 𝑐 is a constant. The value of 𝑐 can be determined letting 𝜆 −→ +∞ and computing

lim
𝜆→+∞

𝐹 (𝜆) = lim
𝜆→+∞

∫ +∞
0

𝑒−𝜆𝑥
sin 𝑥
𝑥

𝑑𝑥.

We can invert limit with integral applying the Dominated Convergence noticing that
• lim𝜆→+∞ 𝑓 (𝜆, 𝑥) = 0, for all 𝑥 > 0;
• | 𝑓 (𝜆, 𝑥) | ⩽ 𝑒−𝜆𝑥 ⩽ 𝑒−𝑥 for every 𝜆 ⩾ 1, a.e. 𝑥 ∈ [0, +∞[.

Therefore

lim
𝜆→+∞

𝐹 (𝜆) = lim
𝜆→+∞

∫ +∞
0

𝑒−𝜆𝑥
sin 𝑥
𝑥

𝑑𝑥 =

∫ +∞
0

lim
𝜆→+∞

𝑒−𝜆𝑥
sin 𝑥
𝑥

𝑑𝑥 =

∫ +∞
0

0 𝑑𝑥 = 0.

On the other hand,
lim
𝜆→+∞

𝐹 (𝜆) = lim
𝜆→+∞

(− arctan𝜆 + 𝑐) = −𝜋
2
+ 𝑐,

thus 𝑐 = 𝜋
2 and

𝐹 (𝜆) = 𝜋

2
− arctan𝜆. □

Exercise 38. i) Let 𝑓𝑛 (𝑥) := 𝑛𝑒−𝑛𝑥 (1 − 𝑒−𝑥). We notice that 𝑓𝑛 (0) = 0 −→ 0. For 𝑥 > 0,
clearly 𝑛

𝑒𝑛𝑥
−→ 0 thus 𝑓𝑛 (𝑥) −→ 0 for every 𝑥 > 0. We conclude that ( 𝑓𝑛) goes to 𝑓 = 0 point

wise.
ii) Since 𝑓𝑛 −→ 0 point wise and since if 𝑓𝑛 −→ 𝑓 uniformly, that is in sup norm, it implies

𝑓𝑛 −→ 𝑓 point wise, the unique possibility is 𝑓𝑛 −→ 0 uniformly. To check if this is true we
have to verify if

∥ 𝑓𝑛 − 0∥∞ = ∥ 𝑓𝑛∥∞ = sup
𝑥∈[0,+∞[

| 𝑓𝑛 (𝑥) | −→ 0.

We compute the supremum. Since 𝑓𝑛 ⩾ 0 and it is a regular function, we discuss if 𝑓𝑛 has a
maximum on [0, +∞[. To this aim we may notice that

𝑓 ′𝑛 (𝑥) = −𝑛2𝑒−𝑛𝑥 (1 − 𝑒−𝑥) + 𝑛𝑒−𝑛𝑥𝑒−𝑥 = 𝑛𝑒−𝑛𝑥 (−𝑛(1 − 𝑒−𝑥) + 𝑒−𝑥) = 𝑛𝑒−𝑛𝑥 (−𝑛 + (𝑛 + 1)𝑒−𝑥) .
Hence

𝑓 ′𝑛 ⩾ 0, ⇐⇒ 𝑒−𝑥 ⩾
𝑛

𝑛 + 1
, ⇐⇒ 𝑥 ⩽ − log

𝑛

𝑛 + 1
= log

𝑛 + 1
𝑛

.

Thus 𝑓𝑛 has a global maximum point at 𝑥 = log 𝑛+1
𝑛

with maximum value

∥ 𝑓𝑛∥∞ = 𝑓𝑛

(
log

𝑛 + 1
𝑛

)
= 𝑛𝑒−𝑛 log(1+ 1

𝑛
)
(
1 − 𝑛

𝑛 + 1

)
=

𝑛

𝑛 + 1

(
1 + 1

𝑛

)−𝑛
−→ 𝑒−1 ≠ 0.

Thus confute 𝑓𝑛 −→ 0 uniformly.
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iii) Recall that if 𝑓𝑛
𝐿1

−→ 𝑓 then, extracting a sub-sequence, 𝑓𝑛𝑘 −→ 𝑓 point wise a.e.. By i)
we already know 𝑓𝑛 −→ 0 point wise everywhere. Thus the unique possible candidate to be a
limit is 𝑓 = 0. To check if this is the case we must verify if

∥ 𝑓𝑛 − 0∥1 = ∥ 𝑓𝑛∥1 =

∫ +∞
0
| 𝑓𝑛 (𝑥) | 𝑑𝑥 −→ 0.

Since 𝑓𝑛 ⩾ 0 we have

∥ 𝑓𝑛∥1 =
∫ +∞

0 𝑛𝑒−𝑛𝑥 (1 − 𝑒−𝑥) 𝑑𝑥 = 𝑛
∫ +∞

0

(
𝑒−𝑛𝑥 − 𝑒−(𝑛+1)𝑥

)
𝑑𝑥

= 𝑛

( [
𝑒−𝑛𝑥

−𝑛
]𝑥=+∞
𝑥=0 −

[
𝑒−(𝑛+1)𝑥

−(𝑛+1)

]𝑥=+∞
𝑥=0

)
= 𝑛

(
1
𝑛
− 1
𝑛+1

)
= 1 − 𝑛

𝑛+1 −→ 0.

By this we conclude that 𝑓𝑛
𝐿1

−→ 0.

iv) The calculation is similar to iii). The unique possibility is 𝑓𝑛
𝐿2

→ 0, so we compute ∥ 𝑓𝑛∥2.
We have

∥ 𝑓𝑛∥22 = 𝑛2
∫ +∞

0 𝑒−2𝑛𝑥 (1 = 𝑒−𝑥)2 𝑑𝑥 = 𝑛2
∫ +∞

0

(
𝑒−2𝑛𝑥 − 2𝑒−(2𝑛+1)𝑥 + 𝑒(2𝑛+2)𝑥

)
𝑑𝑥

= 𝑛2
( [
𝑒−2𝑛𝑥

−2𝑛

]𝑥=+∞
𝑥=0

− 2
[
𝑒−(2𝑛+1)𝑥

−(2𝑛+1)

]𝑥=+∞
𝑥=0

+
[
𝑒−(2𝑛+2)𝑥

−(2𝑛+2)

]𝑥=+∞
𝑥=0

)
= 𝑛2

(
1

2𝑛 − 2 1
2𝑛+1 +

1
2𝑛+2

)
= 𝑛2

((
1

2𝑛 −
1

2𝑛+1

)
−

(
1

2𝑛+1 −
1

2𝑛+2

))
= 𝑛2

(
1

2𝑛(2𝑛+1) −
1

(2𝑛+1) (2𝑛+2)

)
−→ 1

4 −
1
4 = 0. □

Exercise 39. i) Clearly 𝑔 ∈ 𝐿2(R). Indeed 𝑔 ∈ 𝒞(R) thus 𝑓 ∈ 𝐿2(𝐼) for every closed and
bounded interval 𝐼. Moreover, |𝑔(𝜉) | ⩽ 1

𝜉4 thus |𝑔(𝜉) |2 ⩽ 1
𝜉8 , thus |𝑔 |2 is integrable at ±∞.

Conclusion: 𝑔 ∈ 𝐿2(R). According to Fourier–Plancherel theorem, 𝑔 has a Fourier original
𝑓 = 𝑔̌. Since 𝑔̌(𝑥) = 𝑔̂(−𝑥), we compute 𝑔̂. To compute this last, we first notice that, since
𝑎2 ≠ 𝑏2,

𝑔(𝜉) = 1
𝑏2 − 𝑎2

(
1

𝜉2 + 𝑎2 −
1

𝜉2 + 𝑏2

)
,

thus

𝑔̂(𝑥) = 1
𝑏2 − 𝑎2

(�1
♯2 + 𝑎2 (𝑥) +

�1
♯2 + 𝑏2 (𝑥)

)
=

1
𝑏2 − 𝑎2

(𝜋
𝑎
𝑒−2𝜋𝑎 |𝑥 | − 𝜋

𝑏
𝑒−2𝜋𝑏 |𝑥 |

)
,
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therefore

𝑓 (𝑥) = 𝑔̂(−𝑥) = 1
𝑏2 − 𝑎2

(𝜋
𝑎
𝑒−2𝜋𝑎 |𝑥 | − 𝜋

𝑏
𝑒−2𝜋𝑏 |𝑥 |

)
.

ii) Again, clearly 𝜉𝑔(𝜉) ∈ 𝐶 (R), thus ♯𝑔 is integrable on every closed and bounded interval 𝐼.
Since |𝜉𝑔(𝜉) |2 ⩽ 1

|𝜉 |7 , ♯𝑔 ∈ 𝐿2(R). Thus also ♯𝑔 has a Fourier original 𝑓̃ (𝑥) = ♯̌𝑔(𝑥) = ♯̂𝑔(−𝑥).
Since also ♯𝑔 ∈ 𝐿1(R) (|𝜉𝑔(𝜉) | ⩽ 1

|𝜉 |3 ) we have

�−𝑖2𝜋♯𝑔(𝑥) = 𝜕𝑥 𝑔̂(𝑥) = 𝜕𝑥 𝑓 (𝑥) = −2𝜋2 sgn 𝑥
𝑏2 − 𝑎2

(
𝑒−2𝜋𝑎 |𝑥 | − 𝑒−2𝜋𝑏 |𝑥 |

)
.

By this we get

♯̂𝑔(𝑥) = −𝑖𝜋 sgn 𝑥
𝑏2 − 𝑎2

(
𝑒−2𝜋𝑎 |𝑥 | − 𝑒−2𝜋𝑏 |𝑥 |

)
. □

Exercise 40. i) Clearly ∥ · ∥ is well defined on 𝑉 . We have ∥ 𝑓 ∥ = 0 iff
∫ 1

0 𝑥 | 𝑓 (𝑥) | 𝑑𝑥 = 0 that
is, 𝑥 | 𝑓 (𝑥) | = 0 a.e. 𝑥 ∈ [0, 1] and this is equivalent to 𝑓 = 0 a.e. 𝑥 ∈ [0, 1]. Homogeneity and
triangular inequality are straightforward.

ii) First 𝑓𝑛 ∈ 𝒞( [0, 1]) ⊂ 𝐿 ( [0, 1]). Moreover

∥ 𝑓𝑛∥ =
∫ 1

0
𝑥 | 𝑓𝑛 (𝑥) | 𝑑𝑥 =

∫ 1/𝑛

0
𝑥𝑛 𝑑𝑥 +

∫ 1

1/𝑛
1 𝑑𝑥 = 𝑛

[
𝑥2

2

]𝑥=1/𝑛

𝑥=0
+ 1 − 1

𝑛
= 1 − 1

2𝑛
,

thus ( 𝑓𝑛) ⊂ 𝑉 . However, this 𝑓 ∉ 𝑉 (this because 𝑓 ∉ 𝐿1( [0, 1])), thus ( 𝑓𝑛) cannot be
convergent to 𝑓 in 𝑉 . Is it possible 𝑓𝑛

𝑉−→ 𝑔 for some other 𝑔 ∈ 𝑉? The answer is no: indeed,

𝑓𝑛
𝑉−→ 𝑔 iff 0 ←− ∥ 𝑓𝑛 − 𝑔∥ =

∫ 1
0 |𝑥 𝑓𝑛 (𝑥) − 𝑥𝑔(𝑥) | 𝑑𝑥 = ∥𝑥 𝑓𝑛 − 𝑥𝑔∥1, that is 𝑥 𝑓𝑛

𝐿1

−→ 𝑥𝑔. In
particular, for a suitable subsequence 𝑥 𝑓𝑛𝑘

𝑎.𝑒.−→ 𝑥𝑔. But 𝑥 𝑓𝑛
𝑎.𝑒.−→ 1 = 𝑥 1

𝑥
thus, necessarily, 𝑔 = 1

𝑥

a.e.. Since such 𝑔 ∉ 𝑉 this says ( 𝑓𝑛) cannot converge in 𝑉 .
iii) Clearly

∥ 𝑓 ∥ =
∫ 1

0
𝑥 | 𝑓 (𝑥) | 𝑑𝑥 ⩽

∫ 1

0
| 𝑓 (𝑥) | 𝑑𝑥 = ∥ 𝑓 ∥1,

so ∥ · ∥1 s stronger than ∥ · ∥. The vice versa is false: if there exists 𝐶 such that ∥ 𝑓 ∥1 ⩽ 𝐶∥ 𝑓 ∥,
then ∥ 𝑓𝑛∥1 ⩽ 𝐶∥ 𝑓𝑛∥ = 𝐶

(
1 − 1

2𝑛

)
. But

∥ 𝑓𝑛∥1 =

∫ 1

0
| 𝑓𝑛 (𝑥) | 𝑑𝑥 =

∫ 1/𝑛

0
𝑛 𝑑𝑥 +

∫ 1

1/𝑛

1
𝑥
𝑑𝑥 = 1 + [log 𝑥]1𝑥=1/𝑛 = 1 − log

1
𝑛
= 1 + log 𝑛,

thus we should have 1 + log 𝑛 ⩽ 𝐶
(
1 − 1

2𝑛

)
which is clearly impossible.
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iv) No: take ( 𝑓𝑛) as in ii). We claim it is a Cauchy sequence. Indeed for 𝑚 > 𝑛,

∥ 𝑓𝑛 − 𝑓𝑚 ∥ =
∫ 1/𝑚

0 𝑥 |𝑛 − 𝑚 | 𝑑𝑥 +
∫ 1/𝑛

1/𝑚 𝑥
��𝑛 − 1

𝑥

�� 𝑑𝑥 = (𝑚 − 𝑛) 1
2𝑚2 +

∫ 1/𝑛
1/𝑚 (1 − 𝑥𝑛) 𝑑𝑥

= 1
2𝑚

(
1 − 𝑛

𝑚

)
+

(
1
𝑛
− 1
𝑚

)
− 𝑛

(
1

2𝑛2 − 1
2𝑚2

)
−→ 0, 𝑛, 𝑚 −→ +∞.

Since ( 𝑓𝑛) cannot be convergent, we have an example of a Cauchy sequence not having limit in
𝑉 . □

Exercise 41. i) Let (𝑢𝑛) ⊂ 𝑈 be such that 𝑢𝑛
𝐿2

−→ 𝑢. The goal is to prove 𝑢 ∈ 𝑈 that is
𝑢(−𝑥) = −𝑢(𝑥) a.e. 𝑥. Since 𝑢𝑛 ∈ 𝑈,

𝑢𝑛 (−𝑥) = −𝑢𝑛 (𝑥), a.e. 𝑥.

Now, since 𝑢𝑛
𝐿2

−→ 𝑢, also 𝑢𝑛 (−♯)
𝐿2

−→ 𝑢(−♯) and −𝑢𝑛
𝐿2

−→ −𝑢, thus 𝑢(−♯) = −𝑢 a.e., that is
𝑢 ∈ 𝑈.

ii) The characteristic property of Π𝑈 𝑓 is the unique element of𝑈 such that

⟨ 𝑓 − Π𝑈 𝑓 , 𝑢⟩ = 0, ∀𝑢 ∈ 𝑈.
To check that Π𝑈 𝑓 (𝑥) = 1

2 ( 𝑓 (𝑥) − 𝑓 (−𝑥)) we first notice that 1
2 ( 𝑓 (𝑥) − 𝑓 (−𝑥)) ∈ 𝑈 (trivial

check). Therefore, to be the orthogonal projection of 𝑓 on𝑈 we have to check that∫
R

(
𝑓 (𝑥) − 1

2
( 𝑓 (𝑥) − 𝑓 (−𝑥))

)
𝑢(𝑥) 𝑑𝑥 = 0, ∀𝑢 ∈ 𝑈.

We notice that∫
R

(
𝑓 (𝑥) − 1

2 ( 𝑓 (𝑥) − 𝑓 (−𝑥))
)
𝑢(𝑥) 𝑑𝑥 = 1

2

∫
R
( 𝑓 (𝑥) + 𝑓 (−𝑥))) 𝑢(𝑥) 𝑑𝑥

= 1
2

(∫
R
𝑓 (𝑥)𝑢(𝑥) 𝑑𝑥 +

∫
R
𝑓 (−𝑥)𝑢(𝑥) 𝑑𝑥

)
.

Because∫
R
𝑓 (−𝑥)𝑢(𝑥) 𝑑𝑥 𝑦=−𝑥

=

∫
R
𝑓 (𝑦)𝑢(−𝑦) 𝑑𝑦 𝑢∈𝑈= −

∫
R
𝑓 (𝑦)𝑢(𝑦) 𝑑𝑦 ≡ −

∫
R
𝑓 (𝑥)𝑢(𝑥) 𝑑𝑥,

the conclusion follows. □

Exercise 42. I0 and ii) see notes.
iii) We consider the equation

𝑓 ∗ 𝑓 (𝑥) = 𝑒−𝑥2
.

By computing the FT to both sides we get�𝑓 ∗ 𝑓 (𝜉) = 𝑒−♯2 (𝜉) =
√
𝜋𝑒−

1
4 𝜉

2
, ⇐⇒ 𝑓̂ (𝜉)2 =

√
𝜋𝑒−

1
4 𝜉

2
.
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Recall now that 𝑓̂ is a pointwise well defined continuous function. Therefore, for each 𝜉 ∈ R,
we have

𝑓̂ (𝜉) = 𝜙(𝜉)𝜋1/4𝑒−
1
8 𝜉

2
,

where 𝜙(𝜉) = ±1 for every 𝜉 ∈ R. Since we can always write

𝜙(𝜉) = 𝜋−1/4𝑒
1
8 𝜉

2
𝑓̂ (𝜉) ∈ 𝒞(R),

and 𝜙 takes values in {−1, +1}, we deduce that either 𝜙 ≡ +1 or 𝜙 ≡ −1. We deduce that,
necessarily,

𝑓̂ (𝜉) = +𝜋1/4𝑒−
1
8 𝜉

2
, or 𝑓̂ (𝜉) = −𝜋1/4𝑒−

1
8 𝜉

2

this yielding to
𝑓 (𝑥) = +𝜋1/4𝑒−2𝑥2

, or 𝑓̂ (𝜉) = −𝜋1/4𝑒−2𝜉2

The conclusion is: the proposed equation has exactly two 𝐿1 solutions. □

Exercise 43. i) Let 𝑓 (𝑥, 𝑦) = 𝑒−(𝑥+𝑖𝑦)
2
= 𝑒−(𝑥

2−𝑦2+𝑖2𝑥𝑦) . Clearly 𝑓 (♯, 𝑦) ∈ 𝒞(R) for every
𝑦 ∈ R, thus 𝑓 (♯, 𝑦) ∈ 𝐿1( [−𝑅, 𝑅]) for every 𝑅 > 0. We have to check the behaviour at ±∞:
since

| 𝑓 (𝑥, 𝑦) | = 𝑒−(𝑥2−𝑦2) = 𝑒−𝑥
2
𝑒𝑦

2

it is integrable in 𝑥 at ±∞. We conclude 𝐹 is well defined for every 𝑦 ∈ R.
ii) We wish to deduce

𝜕𝑦𝐹 (𝑦) =
∫ +∞
−∞

𝜕𝑦 𝑓 (𝑥, 𝑦) 𝑑𝑥. (★)

To do this we need:
• 𝜕𝑦 𝑓 exists: we have 𝜕𝑦 𝑓 (𝑥, 𝑦) = 𝑒−(𝑥

2−𝑦2+𝑖2𝑥𝑦) (2𝑦 + 𝑖2𝑥), this for every 𝑦 ∈ R almost
every 𝑥 ∈ R;
• |𝜕𝑦 𝑓 (𝑥, 𝑦) | = 𝑒−𝑥

2
𝑒𝑦

2
⩽ 𝑒𝑅

2
𝑒−𝑥

2
=: 𝑔(𝑥) ∈ 𝐿1(R) for every 𝑦 ∈ [−𝑅, 𝑅].

Thus, (★) holds true for every 𝑦 ∈ [−𝑅, 𝑅], for any 𝑅 > 0, and because this last is arbitrary, we
deduce that (★) holds true for every 𝑦. In particular,

𝜕𝑦𝐹 (𝑦) =
∫
R
𝑒−(𝑥+𝑖𝑦)

2
2(𝑥 + 𝑖𝑦)𝑖 𝑑𝑥 = 𝑖

∫
R
𝜕𝑥𝑒
−(𝑥+𝑖𝑦)2 𝑑𝑥 = 𝑖

[
𝑒−(𝑥+𝑖𝑦)

2
]𝑥=+∞
𝑥=−∞

= 0.

Thus 𝜕𝑦𝐹 (𝑦) ≡ 0 hence 𝐹 (𝑦) ≡ 𝐶. Since 𝐹 (0) =
∫
R
𝑒−𝑥

2
𝑑𝑥 =

√
𝜋 we deduce 𝐹 (𝑦) ≡

√
𝜋. □

Exercise 44. i) Let 𝑓 ∈ 𝐿2( [0, +∞[). By the Cauchy–Schwarz inequality we have

∥ 𝑓 ∥ =
∫ +∞

0

1
1 + 𝑥 | 𝑓 (𝑥) | 𝑑𝑥 ⩽

(∫ +∞
0

1
(1 + 𝑥)2

𝑑𝑥

)1/2 (∫ +∞
0
| 𝑓 (𝑥) |2 𝑑𝑥

)1/2
= 1 · ∥ 𝑓 ∥2.

Thus ∥ 𝑓 ∥ is well defined for 𝑓 ∈ 𝑉 and clearly ∥ 𝑓 ∥ ⩾ 0. We check vanishing:

∥ 𝑓 ∥ = 0, ⇐⇒
∫ +∞

0

| 𝑓 (𝑥) |
1 + 𝑥 𝑑𝑥 = 0, ⇐⇒ | 𝑓 (𝑥) |

1 + 𝑥 = 0, a.e., ⇐⇒ 𝑓 = 0, a.e..
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Homogeneity and triangular inequality are straightforward.
ii) In i) we proved ∥ 𝑓 ∥ ⩽ ∥ 𝑓 ∥2 for every 𝑓 ∈ 𝑉 : this says that ∥ · ∥2 is stronger than ∥ · ∥.
iii) Let

𝑓𝑛 (𝑥) :=
1
√
𝑥

1[1/𝑛,𝑛] (𝑥).

We have 𝑓𝑛 ∈ 𝐿2 ⊂ 𝑉 since

∥ 𝑓𝑛∥2 =

∫ +∞
0
| 𝑓𝑛 (𝑥) |2 𝑑𝑥 =

∫ 𝑛

1/𝑛

1
𝑥
𝑑𝑥 = [log 𝑥]𝑥=𝑛

𝑥=1/𝑛 = 2 log 𝑛 < +∞.

In particular, since ∥ 𝑓𝑛∥2 −→ +∞ we conclude that ( 𝑓𝑛) ⊂ 𝐿2( [0, +∞[) is not convergent
in 𝐿2. We also notice that, if 𝑥 ∈]0, +∞[, we have 1

𝑛
⩽ 𝑥 ⩽ 𝑛 for 𝑛 ⩾ 𝑁 . Therefore,

𝑓𝑛 (𝑥) = 1√
𝑥
−→ 1√

𝑥
=: 𝑓 (𝑥) for every 𝑥 > 0. We notice that such 𝑓 ∈ 𝑉 because

∥ 𝑓 ∥ =

∫ +∞
0

1
1 + 𝑥

1
√
𝑥
𝑑𝑥

𝑦=
√
𝑥, 𝑥=𝑦2

=

∫ +∞
0

1
1 + 𝑦2

1
𝑦

2𝑦 𝑑𝑦 = 2
∫ +∞

0

1
1 + 𝑦2 𝑑𝑦 =

= 2 [arctan 𝑦]𝑦=+∞
𝑦=0 = 2

𝜋

2
= 𝜋.

Furthermore, being 𝑓𝑛 (𝑥) = 1√
𝑥
= 𝑓 (𝑥) for 𝑥 ∈ [1/𝑛, 𝑛], we have

∥ 𝑓𝑛 − 𝑓 ∥ =

∫ +∞
0

1
1 + 𝑥 | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | 𝑑𝑥 =

∫ 1/𝑛

0

1
1 + 𝑥

1
√
𝑥
𝑑𝑥 +

∫ +∞
𝑛

1
1 + 𝑥

1
√
𝑥
𝑑𝑥

= 2 [arctan 𝑦]𝑦=1/
√
𝑛

𝑦=0 + 2 [arctan 𝑦]𝑦=+∞𝑦=𝑛 = 2 arctan
1
√
𝑛
+

(𝜋
2
− arctan 𝑛

)
−→ 0.

We conclude that 𝑓𝑛
𝑉−→ 𝑓 .

iv) Since

∥ 𝑓𝑛∥ =
∫ 𝑛

1/𝑛

1
√
𝑥(1 + 𝑥)

𝑑𝑥 = 2 [arctan 𝑦]𝑥=
√
𝑛

𝑥=1/
√
𝑛
= 2

(
arctan

√
𝑛 − arctan

1
√
𝑛

)
,

if ∥ · ∥ and ∥ · ∥2 were equivalent, we should have

∃𝐶 > 0 : ∥ 𝑓 ∥2 ⩽ 𝐶∥ 𝑓 ∥, ∀ 𝑓 ∈ 𝑉, =⇒ 2 log 𝑛 ⩽ 2𝐶
(
arctan

√
𝑛 − arctan

1
√
𝑛

)
, ∀𝑛 ∈ N.

Letting 𝑛→ +∞ we would have +∞ ⩽ 2𝐶 𝜋
2 < +∞, which is impossible. We conclude that the

two norms are not equivalent. □

Exercise 45. i) We notice that 𝑔 ∈ 𝒞(R). Furthermore,

|𝑔(𝜉) | ∼±∞
3𝜉2

𝜉6 =
3
𝜉4 ,
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so, in particular, 𝑔2 ∼±∞ 9
𝜉8 is integrable at ±∞. Thus, 𝑔 ∈ 𝐿2(R) and, according to the

Fourier–Plancherel theorem, it has a Fourier original 𝑓 ∈ 𝐿2(R),

𝑓 (𝑥) = 1
2𝜋
𝑔̂(−𝑥).

The same conclusion holds with the 𝐿1 FT provided inversion formula applies, that is 𝑔, 𝑔̂ ∈
𝐿1(R). Without computing 𝑔̂, it is sufficient to check if 𝑔, 𝜕𝜉𝑔, 𝜕2

𝜉
𝑔 ∈ 𝐿1. For example

𝜕𝜉𝑔(𝜉) =
6𝜉 (1 + 𝜉2)3 − (3𝜉2 − 1)3(1 + 𝜉2)22𝜉

(1 + 𝜉2)6
∼±∞

6𝜉7 − 18𝜉7

𝜉12 =
−12
𝜉5 ,

from which 𝜕𝜉𝑔 ∈ 𝐿1 at ±∞, and since it is also continuous we conclude that 𝜕𝜉𝑔 ∈ 𝐿1(R).
Same check for 𝜕2

𝜉
𝑔. Therefore, 𝑔̂ ∈ 𝐿1(R) and inversion formula applies, so 𝑔 has a Fourier

original also in 𝐿1.
ii) Following the hint, we have

𝜕2
𝜉

1
1 + 𝜉2 = 𝜕𝜉

(
− 2𝜉
(1 + 𝜉)2

)
=
(−2) (1 + 𝜉2)2 + 2𝜉 · 2(1 + 𝜉2)2𝜉

(1 + 𝜉2)4
=
−2(1 + 𝜉2) + 8𝜉2

(1 + 𝜉2)3

=
6𝜉2 − 2
(1 + 𝜉2)3

= 2𝑔(𝜉).

Therefore,

𝑔̂(𝑥) =
�1

2
𝜕2
𝜉

1
1 + ♯2 (𝑥) =

1
2
(𝑖𝑥)2

�1
1 + ♯2 (𝑥) = −

𝑥2

2
1
2
𝑒−|𝑥 | = −𝑥

2

4
𝑒−|𝑥 | .

From this, we conclude that the 𝐿1 ∩ 𝐿2 Fourier original of 𝑔 is

𝑓 (𝑥) = − 𝑥
2

8𝜋
𝑒−|𝑥 | . □

Exercise 46. i) Let 𝑓 (𝑥, 𝜉) := log(1+𝜉2𝑥2)
1+𝑥2 . We have to discuss 𝑓 (♯, 𝜉) ∈ 𝐿1( [0, +∞[). Clearly

𝑓 (♯, 𝜉) ∈ 𝒞( [0, +∞[), thus the unique problem is to check the behaviour at 𝑥 = +∞. Clearly,
𝑓 (𝑥, 𝜉) −→ 0 for 𝑥 −→ +∞, ∀𝜉 ∈ R, but this is not sufficient to conclude integrability. We may
notice that 𝑓 (𝑥, 0) ≡ 0 thus 𝑓 (♯, 0) ∈ 𝐿1( [0, +∞[), while for 𝜉 ≠ 0,

𝑓 (𝑥, 𝜉) ∼+∞
log 𝑥2

𝑥2 =
2 log 𝑥
𝑥2

and since log 𝑥 ⩽ 𝐶
√
𝑥 for suitable 𝐶, the r.h.s is integrable at +∞. Thus 𝑓 (♯, 𝜉) ∈ 𝐿1( [0, +∞[)

for every 𝜉 ∈ R.
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ii) We apply the differentiation theorem:

𝜕𝜉𝐹 (𝜉) =
∫ +∞

0
𝜕𝜉 𝑓 (𝑥, 𝜉) 𝑑𝑥

provided

• 𝜕𝜉 𝑓 (𝑥, 𝜉) exists: indeed, 𝜕𝜉 𝑓 (𝑥, 𝜉) = 2𝜉𝑥2

1+𝜉2𝑥2
1

1+𝑥2 , ∀𝜉 ∈ R, a.e. 𝑥 ∈ [0, +∞[;
• there exists 𝑔 = 𝑔(𝑥) ∈ 𝐿1( [0, +∞[) such that |𝜕𝜉 𝑓 (𝑥, 𝜉) | ⩽ 𝑔(𝑥): indeed,

|𝜕𝜉 𝑓 (𝑥, 𝜉) | =
2|𝜉 |𝑥2

1 + 𝜉2𝑥2
1

1 + 𝑥2

Notice that, for 𝜉 ≠ 0,

|𝜕𝜉 𝑓 (𝑥, 𝜉) | =
1
|𝜉 |

2|𝜉 |2𝑥2

1 + 𝜉2𝑥2
1

1 + 𝑥2 ⩽
2
|𝜉 |

1
1 + 𝑥2 ⩽

2
𝜀

1
1 + 𝑥2 ∈ 𝐿

1( [0, +∞[), ∀|𝜉 | ⩾ 𝜀.

Thus, for |𝜉 | ⩾ 𝜀 we may differentiate under integral sign. Since 𝜀 > 0 is arbitrary we
conclude that 𝜕𝜉𝐹 exists for every 𝜉 ≠ 0.

Thus

𝜕𝜉𝐹 =
2𝜉
𝜉2+1

∫ +∞
0

(𝜉2+1)𝑥2

(1+𝜉2𝑥2) (1+𝑥2) 𝑑𝑥 =
2𝜉
𝜉2−1

∫ +∞
0

(
1

1+𝑥2 − 1
1+𝜉2𝑥2

)
𝑑𝑥

=
2𝜉
𝜉2−1

(
[arctan 𝑥]𝑥=+∞𝑥=0 − 1

𝜉
[arctan(𝜉𝑥)]𝑥=+∞𝑥=0

)

=


2𝜉
𝜉2−1

(
𝜋
2 −

1
𝜉
𝜋
2

)
= 𝜋

𝜉

𝜉2−1
𝜉−1
𝜉

= 𝜋
𝜉+1 , 𝜉 > 0,

2𝜉
𝜉2−1

(
𝜋
2 +

1
𝜉
𝜋
2

)
= 𝜋

𝜉

𝜉2−1
𝜉+1
𝜉

= 𝜋
𝜉−1 , 𝜉 < 0.

We may notice that 𝜕𝜉𝐹 (0±) = ±𝜋 thus in particular 𝐹 is not differentiable at 𝜉 = 0.
iii) We have

𝐹 (𝜉) =

𝜋 log(𝜉 + 1) + 𝑐1, 𝜉 > 0,

𝜋 log(1 − 𝜉) + 𝑐2, 𝜉 < 0.

In particular 𝐹 (0+) = 𝑐1, 𝐹 (0−) = 𝑐2. On the other side we may compute lim𝜉→0 𝐹 (𝜉): to this
aim we wish to do

lim
𝜉→0

𝐹 (𝜉) =
∫ +∞

0
lim
𝜉→0

𝑓 (𝑥, 𝜉) 𝑑𝑥 =
∫ +∞

0
0 𝑑𝑥 = 0,
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by which it would follow 𝑐1 = 𝑐2 = 0. To justify the passage of limit inside integral we invoke
dominated convergence. Clearly lim𝜉→0 𝑓 (𝑥, 𝜉) = 𝑓 (𝑥, 0) = 0, and moreover, for |𝜉 | ⩽ 1

| 𝑓 (𝑥, 𝜉) | = log(1 + 𝜉2𝑥2)
1 + 𝑥2 ⩽

log(1 + 𝑥2)
1 + 𝑥2 =: 𝑔(𝑥) ∈ 𝐿1( [0, +∞[). □

Exercise 47. i) Let 𝑓 ∈ 𝑋 . Since 𝑓 ∈ 𝒞1( [0, 1]), 𝑓 ′ ∈ 𝒞( [0, 1]) thus ∥ 𝑓 ∥∗ = ∥ 𝑓 ′∥∞ is well
defined. To check that also ∥ 𝑓 ∥ is well defined we have to check that 𝑔(𝑥) := | 𝑓 (𝑥) |

𝑥
is integrable

on [0, 1]. Clearly 𝑔 ∈ 𝒞(]0, 1]). Since 𝑓 (𝑥) = 𝑓 (0) + 𝑓 ′(0)𝑥+𝑜(𝑥) 𝑓 ∈𝑋, =⇒ 𝑓 (0)=0
= 𝑓 ′(0)𝑥+𝑜(𝑥)

thus 𝑔(𝑥) = | 𝑓 ′(0) | + 𝑜(𝑥)
𝑥
−→ | 𝑓 ′(0) | ∈ R when 𝑥 −→ 0+. In particular 𝑔 ∈ 𝒞( [0, 1]) it is

integrable and ∥ 𝑓 ∥ is well defined.
Let’s now check that ∥ · ∥ is a norm. Clearly ∥ 𝑓 ∥ ⩾ 0. Vanishing: if ∥ 𝑓 ∥ = 0 that is∫ 1

0
| 𝑓 (𝑥) |
𝑥

𝑑𝑥 = 0, by a well known lemma | 𝑓 (𝑥) |
𝑥

= 0 for all 𝑥 ∈]0, 1] thus, in particular, 𝑓 ≡ 0 on
]0, 1]. By continuity 𝑓 ≡ 0 on [0, 1]. Homogeneity and triangular inequality are straightforward.

Finally, let’s check that also ∥·∥∗ is a norm. Clearly ∥ 𝑓 ∥∗ ⩾ 0. Vanishing: if 0 = ∥ 𝑓 ∥∗ = ∥ 𝑓 ′∥∞
then 𝑓 ′ ≡ 0 on [0, 1]. Therefore, 𝑓 ≡ 𝐶 and since 𝑓 (0) = 0 we conclude 𝑓 ≡ 0 on [0, 1].
Homogeneity and triangular inequality are straightforward.

ii) We have to prove that there exists a constant 𝐶 such that ∥ 𝑓 ∥ ⩽ 𝐶∥ 𝑓 ∥∗. Notice first that,
according to the fundamental theorem of integral calculus,

𝑓 (𝑥) = 𝑓 (0)+
∫ 𝑥

0
𝑓 ′(𝑦) 𝑑𝑦 =

∫ 𝑥

0
𝑓 ′(𝑦) 𝑑𝑦, =⇒ | 𝑓 (𝑥) | ⩽

∫ 𝑥

0
| 𝑓 ′(𝑦) | 𝑑𝑦 ⩽

∫ 𝑥

0
∥ 𝑓 ′∥∞ 𝑑𝑦 = 𝑥∥ 𝑓 ∥∗,

thus

∥ 𝑓 ∥ =
∫ 1

0

| 𝑓 (𝑥) |
𝑥

𝑑𝑥 ⩽

∫ 1

0

𝑥∥ 𝑓 ∥∗
𝑥

𝑑𝑥 = ∥ 𝑓 ∥∗, ∀ 𝑓 ∈ 𝑋.

iii) Let 𝑓𝑛 (𝑥) = 𝑥𝑛 with 𝑛 ⩾ 1. Clearly 𝑓𝑛 ∈ 𝑋 . We have

∥ 𝑓𝑛∥ =
∫ 1

0

𝑥𝑛

𝑥
𝑑𝑥 =

∫ 1

0
𝑥𝑛−1 𝑑𝑥 =

[
𝑥𝑛

𝑛

]𝑥=1

𝑥=0
=

1
𝑛
,

while
∥ 𝑓𝑛∥∗ = ∥ 𝑓 ′𝑛∥∞ = max

𝑥∈[0,1]
|𝑛𝑥𝑛−1 | = 𝑛.

We may conclude that ∥ · ∥ is not stronger than ∥ · ∥∗ (hence the two are not equivalent). Indeed,
if this were the case, there would be a constant 𝐶 such that ∥ 𝑓 ∥∗ ⩽ 𝐶∥ 𝑓 ∥ for every 𝑓 ∈ 𝑋 . In
particular then

𝑛 = ∥ 𝑓𝑛∥∗ ⩽ 𝐶∥ 𝑓𝑛∥ =
𝐶

𝑛
, ∀𝑛 ⩾ 1,

which is clearly impossible. □

Exercise 48. i) About the convolution and its properties as well as proof see Lecture Notes.
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ii) Let 𝑔 have a Fourier original, that is, 𝑔 = 𝑓̂ for an 𝑓 ∈ 𝐿1(R). Then 𝑔2(𝜉) = ( 𝑓̂ (𝜉))2 =

𝑓̂ (𝜉) 𝑓̂ (𝜉) = �𝑓 ∗ 𝑓 (𝜉) because 𝑓 ∈ 𝐿1(R), so 𝑓 ∗ 𝑓 is well defined and it belongs to 𝐿1(R).
Therefore, 𝑓 ∗ 𝑓 is a Fourier original of 𝑔2, and this shows existence. The Fourier original of 𝑔2

is unique because of the injectivity of the FT.
iii) Consider the equation ∫ +∞

−∞
𝑓 (𝑥 − 𝑦)𝑒−𝑦2

𝑑𝑦 = 𝑥𝑒−𝑎𝑥
2
.

This is a convolution equation
𝑓 ∗ 𝑒−♯2

= 𝑥𝑒−𝑎𝑥
2
.

We start noticing that 𝑎 must bene > 0. Indeed, if 𝑓 ∈ 𝐿1(R) is a solution, since 𝑒−♯2 ∈ 𝐿1(R),
𝑓 ∗ 𝑒−♯2 ∈ 𝐿1(R) by Young’s theorem. So ♯𝑒−𝑎♯2 ∈ 𝐿1(R) and this is possible iff 𝑎 > 0.

So, let 𝑎 > 0. We recall that�
𝑒
− ♯2

2𝜎2 (𝜉) =
√︁

2𝜋𝜎2𝑒−
1
2𝜎

2𝜉2
, =⇒ �𝑒−𝑎♯2 (𝜉) =

√︂
𝜋

𝑎
𝑒−

1
4𝑎 𝜉

2

Since of course 𝑥𝑒−𝑎𝑥2 ∈ 𝐿1(R), we have�−𝑖♯𝑒−𝑎♯2 (𝜉) = 𝜕𝜉�𝑒−𝑎♯2 (𝜉) = 𝜕𝜉
√︂
𝜋

𝑎
𝑒−

1
4𝑎 𝜉

2
=

√︂
𝜋

𝑎

(
− 1

2𝑎
𝜉

)
𝑒−

1
4𝑎 𝜉

2
,

from which �♯𝑒−𝑎♯2 (𝜉) = −𝑖
√︂
𝜋

𝑎

𝜉

2𝑎
𝑒−

1
4𝑎 𝜉

2
.

Therefore, 𝑓 ∈ 𝐿1(R) is a solution iff

𝑓̂ (𝜉)
√
𝜋𝑒−

𝜉2
4 = −𝑖

√︂
𝜋

𝑎

𝜉

2𝑎
𝑒−

1
4𝑎 𝜉

2
, ⇐⇒ 𝑓̂ (𝜉) = − 1

2𝑎3/2 𝑖𝜉𝑒
− 1

4 ( 1
𝑎
−1)𝜉2

.

In order the r.h.s. be the FT of an 𝐿1 function, according to RL lemma, it must be 𝑓̂ (±∞) = 0,
which is possible iff 1

𝑎
− 1 > 0, that is 𝑎 < 1. In this case, being√︄

𝜋

(
1
𝑎
− 1

)
𝑒−

1
4 ( 1

𝑎
−1)𝜉2

=
�
𝑒−

𝑎
1−𝑎 ♯

2 (𝜉),

so

𝑖𝜉

√︄
𝜋

(
1
𝑎
− 1

)
𝑒−

1
4 ( 1

𝑎
−1)𝜉2

= (𝑖𝜉)�𝑒− 𝑎
1−𝑎 ♯

2 (𝜉) = �
𝜕𝑥𝑒
− 𝑎

1−𝑎 ♯
2 (𝜉)

then
𝑓̂ (𝜉) = − 1

2𝑎3/2

√︂
𝑎

(1 − 𝑎)𝜋
�
𝜕𝑥𝑒
− 𝑎

1−𝑎 ♯
2 (𝜉),
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from which, finally,

𝑓 (𝑥) = − 1√︁
4𝜋𝑎2(1 − 𝑎)

𝜕𝑥𝑒
− 𝑎

1−𝑎 𝑥
2
=

1√︁
𝜋(1 − 𝑎)3

𝑥𝑒−
𝑎

1−𝑎 𝑥
2
. □


