ANALYTICAL METHODS FOR ENGINEERING

Dec. 2021

Exercise 1. Let , ,

+oo —Ex _ ,—x
F(&) = I £ 7
0 X

1) Determine the domain of definition D of F.
ii) Determine for which ¢ € D there exists d:F and compute it.
iii) Determine F(¢) explicitly.

Exercise 2. On C'([0, 1]), define

1 ’
| /" (x)]
Il = |
0o Vx
i) Check that || - ||. is a well defined norm on V.
ii) Prove that || - ||, is stronger than || - ||c.

iii) Forn > 1, let

1.3/2 1 1/2

—zn/(x—%)+n/, O0<x<y,
Jn(x) =

1 1

Check that (f,) c V, compute || f,||- and || f,||cc and deduce something on || - || and
[l oo

Exercise 3. Let |
— COSX
x)=—— a>0.
fa( ) az +x2 =

i) Check that f, € L'(R) for every a > 0. o
ii) For a > 0, compute f, (it may be useful to remind that cos x = %). Deduce

L+°° fulx) dx.

+t° 1 —cosx 4
0

iii) Use ii) to compute

iv) (extra question) Compute ]%.
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Exercise 4. Let f,(x) := n’/2xe™, x € [0, +oo].
i) Is (f,) point wise convergent on [0, +co[? If yes, to what?
i) Is (f,) € L*([0,+0c0[)? Is (f;;) convergent in L= ([0, +oo[) and, if yes, to what?
iii) Is (f,) € L'([0,+0o0[)? Is (f,) convergent in L'([0, +co[) and, if yes, to what?
iv) Is (f,) € L%([0,+0o[)? Is (f,) convergent in L?([0, +oco[) and, if yes, to what?

Exercise 5. Let oo
F(1) = J el cosx

2
oo X
1) Determine the domain of definition of F.
ii) Determine F’(t) for all ¢ for which the derivative exists.

Exercise 6. Let H := L*([0, 2]) equipped with usual scalar product (f, g) := foz f(x)g(x) dx.
Let
U={feH : f(x)=f(2-x), a.e.x € [0,2]}.
1) Check that U is a closed linear subspace of H.
ii) Check that the orthogonal projection on U, Iy f, is

f(x), x € [0,1],

f(2-x), xe[l,2]

Iy f(x) :=
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Exercise 7. Let
Ja(x) == Vn = n2x1{0,1/n) (%)
1) Plot quickly the graph of f,,.
i) Is (f,) € L'([0,1])? Is (f) € L*([0,1])?
iii) Is ( f,) convergentin L' ([0, 1]) and, in the case, to what? Is ( f,,) convergentin L>([0, 1])
and, in the case, to what?

Exercise 8. Let oo .
D(s) := J e_”M dx.
0 X
i) Show that ®(s) is well defined for any s > 0.
ii) Show that lim;_, ;. @(s) exists and determine its value.
iii) Show that 3®’(s) for any s > 0.
iv) Deduce, by ii) and iii), the value of ®@(s) for s €]0, +oo[.

Useful formula: j e™ sin(Bx) dx = aﬁﬁZ e (sin(ﬁx) - gcos(ﬁx)) fora # 0.

Exercise 9. Give the Definition of the Fourier Transform and of convolution product f = g for
f,g € L'(R). Prove that

fxg=...
i) Compute the FT of e=**| ¢ > 0. Justifying carefully and invoking the necessary
theorems, deduce the FT of the Cauchy distribution 1 5 (a > 0).

a’+x
1

i1) Use the previous facts to compute the FT of @ (a > 0).
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Exercise 10. Let H = L>([-1, 1]) equipped with usual scalar product

1
(f.g) = J_l f(x)g(x) dx.
Define . 1
S = {feH : J_lf(x) afx:fO f(x) dx}.

1) Check that S is a well defined and closed subspace of H.
i1) Determine the orthogonal projection Ilgf on S of a generic f € H. Compute, in
particular, [Tgx.

Exercise 11. Let g £cosé
siné — & cos
g(¢) = 5—3’ & € R\{0}.
i) Isg € L'(R)? And in L?(R)? Justify carefully.
i1) Discuss the existence of a Fourier original for g.
iii) Show thatég(&) = 0¢ . ... Use this to determine a Fourier original for g. Justify carefully
the general properties you use to answer.

Exercise 12. OnV := {f € €'([0,1]) : f(0) = 0}, define

|f ()] "N ,
171 3= sup S Sl = e = max 101
i) Check that || - ||« is well defined norm on V (it might be useful to remind that, for
fe®([0,1]), £(z) = £(0) + f(0)t + o(t) when t —> 0).
ii) Check that || - ||.. is well defined on V and it fulfils the characteristic properties of a
norm.
iii) What relations hold true between || - || and || - _x? Justify carefully.
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Exercise 13. Let H = {f € L>([0,1]) : 3f € L?*([0,1]), f(1) = 0} equipped with the scalar
product

1
(f.e)u = L f(x)g' (x) dx.
We accept H is a vector space with usual operations of sum and product by scalars on functions.

i) Check that (-, -)y is a well defined scalar product on H with vanishing in the weak form,
thatis (f, f)m = 0iff f =0 a.e..
ii) Let

1
S::{feH : I f(x)a’x:O}.
0

Determine v € H such that § = Span(v)*. (hint: express the characterizing condition
of S in terms of the scalar product of H).

iii) We accept H is an Hilbert space. Determine the orthogonal projection of x — 1 on S.
Justify carefully.

Exercise 14. i) Let f, g € L' (R). What is the convolution of f and g? What important property
of FT holds in connection with convolution? Write a precise statement and provide a proof of it.
Consider now the equation

/lf(x)+jR FO) gy ! !

— > dy= + , x €R.
1+ (x—y)? Y l+2 2422

ii) Assume f € L'(R) be a solution. Determine f Deduce for which values of A the
equation has one and only one solution.
ii1) Determine explicitly the solution in the case A = 2.

Exercise 15. Let (f,) < L'([0,1]), f, > 0 for every n € N. For each of the following
statements, say whether it is true or false. In the first case, provide a proof, in the second provide
a counterexample.

D) If [} fyy — +oo then f, #— O ae.
ii) if £, — O a.e. then [, f, — 0.
iii) if [ f — O then f,, — O a.e.

iv) if [y fyy —> oo then || fyllo —> +oo.



Jury 2023

Exercise 16. Compute

[

9

"1l-en

lim nzj -5 dx.
n—too o x2(x2+1)
Justify carefully, quoting the general results you use. (it might be useful to know that ¢’ > 1 +1¢
for every t € R)

Exercise 17. Let V := €2%([0, 1]) the set of real valued continuous functions f with f” and f”
continuous. We accept (trivial) that V is a vector space with usual operations of sum and product
by scalars. On V we define

£l = 11" lleo + 1f7(O)] + £ (O)].
i) Check that || - ||y is a well defined norm on V.

ii) On V we can also define the uniform norm || - ||. Check that || - ||y is stronger than

uniform norm.
|R13%

iii) True or false: if f, — f then f,(x) — f(x) for every x € [0, 1]? Justify carefully.
iv) Consider the sequence f,(x) := n%x”. Is (f,) € V? Is (f,) convergent in V? What
conclusion can you draw on norms || - ||y and || - ||e0?

Exercise 18. Let
a? b?

1
g(&é) ::é—:

where a, b > 0 and a # b.

i) Is g € L'(R)? Does g have a Fourier original? Justify carefully your answer.
ii) Compute the FT of £g(&).
iii) Determine the Fourier original of g.
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Exercise 19. Let f € L'(R) be such that x f(x) € L'(R). What is the FT of x f(x)? Provide a
proof of your answer.
Let now

g(¢) =¢e¥l ¢ eR.

Discuss the problem of determining a Fourier original for g.

Exercise 20. On V = € ([0, 1]) we consider

1
1= | L2 as

i) Show that || - ||« is a well defined norm on V.

. . . 1

ii) On V we consider also a) the uniform norm || - || and the L' norm || f||; = Io | f(x)|dx.
Establish relations among these norms and || - ||« norm, discussing also if they are
equivalent or not.

Exercise 21. On H = L2( [0, 1]), with usual scalar product, consider

1 1
V= {feH : L xf(x) dx =0, L X3 f(x) dx:O}.

1) Check that V is a well defined and closed subspace of H.
ii) Determine the orthogonal projection on V of g(x) = x2.
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Exercise 22. Let

+00 :
F(1) = J e Y
0 X
1) Determine the domain D of definition for F.

ii) Discuss differentiability of F on D and compute d,F. It may be helpful to know

f e sin(Bx) dx = az‘frﬁz e (sin(,Bx) - gcos(ﬂx)) for a # 0.
iii) Determine F explicitly.

Exercise 23. Let

1
V= {fe%([o,l]) CfN = JO 'f\(/j_i)' dx<+oo}.

Accept that V' is a vector space.
i) Check that || - || isanorm on V.

ii) On V it is also defined the uniform norm || f{lcc = max,c(o,17 |f(x)|. Prove that this is
stronger than || - ||.

iii) Let
Vn, 0<x<i,
Ju(x) =
1 1 <x < 1
é/;, n X X .
Compute || /|| and || f||co. What can you conclude about norms || - || and || - ||co-

Exercise 24. The goal is to compute the FT of f(x) = —

T4+x**
i) Does f exists? If yes, which of the following statements are true/false and why: f €
L'(R); f € L*(R); f € ' (R): f € S(R).
i1) By reducing to suitable Cauchy distributions, compute FT of
1
X2+ V2x+1
. 4 _ (.2 2 | - 1
iii) Noticed that 1 + x" = (’)\c +V2x + 1) (x2 = V2x + 1), express T30 in terms of ISV IE
Use this to determine f.
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Exercise 25. Let

F(£) = JR 1-cos€n)

x2(x2+1)
i) Determine the set D C R, domain of definition for F'.
ii) Determine the set D" C D for which d¢F and compute it.
iii) Determine the set D” C D’ for which there exists GgF (¢) and compute it.

1v) Use FT to express 6§F and to determine F.

Exercise 26. OnV := {f € €'([0,1]) : f(0) = 0}, we define
o 1/2) ¢r
= t 1)|.
(ral max |f ()]

i) Check that || - || is a norm on V.
i1) Define
”Zix, 0<x< %,
Ju(x) =
x— Sa Tx<
Is (f,) € V? If yes, is (f,) convergent in || - || norm?
iii) On V is naturally defined the uniform norm || - ||.. Show that || - || is stronger than || - ||co-

Are they also equivalent? Justify carefully your answer.

Exercise 27. Let
+00
H := {f . [0, +0[— R : f € L(R), J f(x)2e™ dx < +oo}.
0

On H we define o
(o= | Fge an
i) Check that (-, -) is a well defined scalar product with vanishing in the form (f, f) =0
iff f=0ae.
Accept H is Hilbert. Let U :={u € H : fgoo u(x)e ™ dx = 0}.

11) Prove that U a closed subspace of H.

iii) Determine the orthogonal projection on U of f(x) = ™.
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Exercise 28. Let :
fn(x) = xl-l-—l/n’ X € [1,+OO[.

i) Is (f,) € LY([1,+00[)? Is (f,) € L2([1,+00[)? Is (f,) < L¥([1,+c0[)? Justify
carefully.
i1) Discuss convergence of (f,) in LP ([1,+co[) for p = 1,2, co.

Exercise 29. Let o € C and define
fa(x) == ™ 1[0 400[ (x), x €R.

1) Under which conditions on @ € C is f; well defined? For such a, compute ﬁ,
ii) Let B € C, gg(¢) = W Determine under which conditions on 5 € C, function gg

has an L' or L? (or both) Fourier original.
iii) For Im § > 0, explicitly determine (if any) a Fourier original for gg.
(hint: gg =0 ...)

Exercise 30. Let
S I
F(X) = ‘[ — Q5 dy
0 y
i) Determine the domain D of F. Justify carefully.
i1) [5] Discuss differentiability of F determining D’ c D for which 39, F(x) for every
xebD.
iii) Use ii) to determine F explicitly.
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Exercise 31. Let
g&) = (1= (f), £ eR.
i) Discuss the problem of existence of a Fourier original f for g with f € L! and/or f € L?.
Justify your answers with care.
i1) Determine f explicitly.

Exercise 32. On V := {f e €'([0,1]) : [} F(x) dx = o} define

1
11l == L 177G dy (1 f s 2= 11Lf -

i) Check that || - ||« and || - ||+« are well defined norms on V.
1) Let
\nx, 0<x< %
gn(x) = 1 1
WWx -5 psxsl
Determine ¢, € R in such a way that f, := g, —c, € V. Compute then || f,,|| and || 5, || -
iii) Discuss relations between || - ||« and || - |]..

Exercise 33. Let

+00 1 _
F(x) = J ey 1 E08Y dy.
0 y
i) Determine the domain of definition of F, that is the set of x € R such that F(x) is well

defined.
ii) Determine the set of x for which 3F’(x) and compute it.
iii) Use ii) to explicitly determine F.



12

NovEMBER 2024

Exercise 34. Let X := L=([0, +oo[). For a > 0 define

1flla = L ¢~ £ ()] d.

i) Check that || - ||, is a well defined norm on X for every a > 0.
i1) Show that, fora < b, || - ||, is stronger than || - ||
iii) Are || - ||, and || - ||, equivalent? Justify carefully.

Exercise 35. Let (X, %, 1) be a measure space, and H := L?(X) be the Hilbert space w.r.t. the
usual scalar product

(f.g)n = L fg du
Let also E € & and define
U:={feH : f=0, ae onE}.

i) Check that U is a closed linear subspace of H.
ii) Define Iy f := f1g. Show that Iy f is the orthogonal projection of f on U.

Exercise 36. Let a, b > 0 real numbers with a # b, and
e_alfl — e_b|§|

gab(£) = e & € R\{0}.

i) Is gup € L' (R)? Is g4 € L?>(R)? Determine whether g, , has a Fourier original £, ;
in L' (R) and/or in L?(R).
ii) For the case(s) (L' and/or L?) for which there is a Fourier original, determine it.
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Exercise 37. Let oo _
F(1) = J iy
0 X
i) Determine A € R for which F'(1) makes sense as Lebesgue integral.
ii) Determine A € R for which 39, F (1) and compute it.
iii) Determine F (A1) for A at 1).

Exercise 38. Let
fu(x) :=ne ™ (1 —e™), x € I:=]0,+o0].
i) Is (f,) point-wise convergent?
ii) Is (f,) convergent in L*(1)?
iii) Is (f,) convergent in L' (I)?
iv) Is (f,) convergent in L>(1)?

Exercise 39. Let .

@r@+p) t T

g(é) =

witha,b > 0and a # b.
i) Discuss the problem of existence of a Fourier original for g in L' and in L? cases. Is the
Fourier original also L*? Justify carefully and determine the Fourier original explicitly.
ii) Show that #g(#) has a Fourier original in L? and find it in term of the original f of g.
Justify carefully your answer.
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Exercise 40. Let V := {f e L'([0,1]) : fol x| f(x)] dx < +oo}. We accept V is a vector space
on R with usual definitions of sum and product by scalars. On V we define

1
If] = L 2| ()] d.

i) Check that || - || is a norm on V with vanishing in the weak form || f|| = 0 iff f =0 a.e..
ii) Define

fn(x) =
}C, % <x <1
Is (f,) € V? Is (f,) convergent in V respect to || - ||? If yes, to what?
iii) By definition, V c L'([0, 1]), so on V we can consider also the || - ||; norm. Is there any
relation between || - || and || - ||; norms? Justify carefully your answers.

iv) Is V, equipped with || - || norm a Banach space?

Exercise 41. Let H := L>(R) equipped with usual scalar product (f, g) := IR f(x)g(x) dx. Let
U={ueH : u(—x)=-u(x), a.e.x > 0}.

i) Check that U is a closed linear subspace of H.
1) Check that the orthogonal projection on U, Iy f, is

[Ny f100) = 5 (F() = f(-) ., x €

Exercise 42. i) What is the convolution f * g and when is it well defined and in L' (R)?
ii) Show s remarkable formula for the FT of f * g.
iii) Given g € L' (R), consider the equation in the unknown f € L' (R):
(f*f)x)=g(x), ae.x €R.
Discuss whether or not is solvable and, in this case, determine all the possible solutions

when g(x) = e,
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Exercise 43 (11). Let x € R be fixed and set

F(y) = J e~ gy
R

1) [5] Check that F is well defined for every y € R.
ii) [6] Show that F is differentiable for every y € R, and compute d,F (y). Use this to educe

F(y).

Exercise 44 (11). Let. We define

:{feL([o,+oo[) £l —J %d < ree }

i) [3] Check that || - || is a well defined norm on V (that is || f|| < +oo for every f € V) with
vanishing in the weak form || f|| = 0 iff f =0 a.e..
ii) [2] Check that LZ([O, +o0o[) € V and that || - ||, is stronger than || - ||.
iii) [4] Let f,(x) := \/)_Cl[l/n,n] (x). Is (f,) € L*([0,+co[)? Is (f,) convergent in || - [|2? Is

(fu) € V? Is (f,) convergent in || - ||? In case of affirmative answer(s), determine also
the limit(s) function.
iv) [2] Are || - || and || - || equivalent?

Exercise 45 (11). Let
@=L
8 = )
(1+¢ 2)3
i) [4] Discuss the problem of the existence of a Fourier original of g in L' (R) and in L?(R).

ii) [7] Compute 85“1 152 and determine a relation between this derivative and g. Use this

to determine a Fourier original of g. (here 8; stands for the second partial derivative
respect to &)

& eR.
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Exercise 46. Let e ) 5
Fx) = J log(+xy7) .
0 1+y?
1) Determine the domain D of definition of F.
ii) Determine the domain D’ where F’ is well defined. Is D’ = D? Justify carefully.
ii1) Use ii) to explicitly determine F.

Exercise 47. Let X := {f € €'([0,1]) : f(0) = 0} and define

1
11l = L O ge 11l 2= 1 e

X

i) Check that || || and || f||. are well defined norms on X (it might be useful to remind that
f(x) = f(0) + f/(0)x + o(x)).

ii) Prove that || - || is stronger than || - ||.
iii) Compute || f,,|| and || .||« for f,(x) = x", n > 1. What can be drawn by this calculation?

Exercise 48. .

1) What is the convolution product f = g of two functions f, g? Under which conditions is
f = g is well defined? Show that m = f g.
ii) True or false: if g has a Fourier original and 4 := g2, then /4 has a unique Fourier original.
Justify your answer.
iii) Consider the equation

+00

Determine for which values of a there exists a unique solution f € L"(R). For such a,
determine f.



SoLuTIONS

Exercise 1. 1) Let

_§x2 _ _xz
f(x,¢) = ﬁ, x €]0, +oo.
X

We have to check for which & we have f(#,&)L([0,+co[). Since f(#,&) € €(]0,+oo[) we
have to check the behaviour at x = 0 and x = +o0. Recalling that ¢” = 1 + y + o(y) we have
(1 =éx?+0(x?)) = (1 =x*+0(x?)) 3

f(x,¢é) = P =—(¢-Dx+o(x) —0, x —0.

In particular, f (4, ) is integrable at x = O for every £ € R. At +co, for & > 0 we have
f(E)] < e +e™, Va1,

and since both e“fxz, e~ are integrable at +oo we conclude that f(#, £) is integrable at +co.
Thus, f(#,&) € L' ([0, +oo[) for every & > 0. For & = 0 we have

l—e™

f(x,0) =

ot = f50) € L([0,+000).

For & < 0, f(x,&) — +oo for x —> +oo thus certainly f(#,&) ¢ L'([0,+oo[). Conclusion: F
is well defined for & €]0, +co].
i1) We apply differentiation theorem to deduce

6§F(§) = JO 8§f(x,§) dx.

To this aim we may notice that
o F0:f(x,&) = %e‘fxz(—xz) = —xe V& € R, Vx > 0 (thus a.e. x € [0, +oo0[);
o |0:f(x,8)| = xe % < xe v = g(x) forevery ¢ > >0, Vx > 0.

Since g € L' ([0, +oo[) we may conclude that 30 F (&) for every & € [&, +oo[, and this for every
g > 0. Since € > 0 is arbitrary, we conclude that, for every & > 0,

OcF (&) Jma fré)d JM 6 g = - Jma & gy = e~ 1
= X, X = —Xeé - X = — € - X = —\|€ ~ = —-—.
¢ o ° 0 28 Jo 2£ x=0 26
1i1) Since
1 1
0:F () = —E, = F(¢) = —Elog§+ c, V¢ > 0.

Clearly F (1) = 0 by which ¢ = 0. ]
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Exercise 2. i) If f € €'([0,1]), f* € €([0,1]) thus, in particular, | f'(x)| < ||f’|le for
every x € [0, 1]. Therefore

@ 1
L - \L = \Ilfllooj dx <+

This shows that || f||. is well defined for every f € V. Clearly, || f||. > 0. We have to check the
characteristic properties of any norm:
o vanishing: || f|l. = 0iff £(1) =0 and [, % dx = 0. By this f” = 0 on [0, 1], thus f
is constant, and since f(1) = 0 we conclude f = 0.
. 1 ’ 1
o homogeneity: [laf . = laf(D)]+[y N ax = jal (1£(D)1+ [y L2 dix) = Jal | £]..
e triangular inequality: straightforward.

i1) We have to prove that
3C >0, : [Iflle <Clflls, Vf € V.

Let f € V = €'(]0,1]). Notice that, according to the Fundamental Theorem of Integral
Calculus,

1 1
f(l)—f(x)=J £ ) dy, = f(x>=f(1)—j £(v) d.

Therefore

LG
\/_

1 1
£l < £ +J O dy < 1F(1)] + L FO)ldy < 17 (D) +J dy = IIf1.

iii) Easily f, € € ([0, 1]) and since

fa(x) =

easily we see that f;, € €([0, 1]), thus, in conclusion, f, € V for every n. Computing norms,
since f, < 0 we have

1
niloo = n = nO = —n!/?
Iill = max 1,01 = 1£:(0)] = 3



On the other hand
1 n 1/ —3/2
Wl = 1 [y O e = 14 332 [0 L e 4] 22
— 1432 [xl/z]x 1/"+l [_x_l]x=1
2 x=1/n

:l+n1/2+%(n—l).
By this it follows that || - || and || - ||« cannot be equivalent. Otherwise, there would be a constant
C such that
ille < Cllflle, ¥n, = T4nl? 42 (n= 1) < S,
which is manifestly impossible. O

Exercise 3. i) We have
1
|fa(x)| <« =—— € LY(R), Va > 0.

For a = 0 this bound cannot be used globally, but since

o) < =

integrability at +oo is ensured. It remains to check the behaviour at x = 0: since cosx =
2
-5+ o(x?),
2
. - (1-5+0(d) 2.06)

fO X) = xz - xz ~0 25

thus f; is integrable also at x = 0. We conclude fy € L'(R).
i1) To compute f, we notice that

A’_\

I
el

osﬁ

fa(6) = ¢

Recall that

&) =5

a2+li2

Moreover, cos x = % (e™ + e™™) thus

conBg(6) = 5 (eM5() + e g(©)) = 3 (€~ 1) +E(E+1).
Hence
U ate1 L alen)
cosﬁ 1:Tz(f) ( > t5¢ )
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In conclusion
—~ 1 _ | _
fa(g) = E (e alel _ E (6 alg-1| + e a|§+1|))
Finally, being f, even,
+00 1 +00 1 . 1 1 u u
0 fa(x)dxzi . fa(x)dxzzfa(o):@ 1_5(6 te ) =

ii1) Ideally, we have to take a = 0. We consider

1-—e™

4a

l—e 1
limj fa(x) dx = lim c -

a—0+ da 4

Let us check that

lim J fa(x) dx = L ali)rg+ fa(x) dx = L Jfo(x) dx.

a—0+ Jg

The unique issue concerns the swap between limit and integral. This might be ensured by both
monotone or dominated convergence. Clearly

lim f,(x) = fo(x), Vx > 0.
a—0+
Moreover ! | 1 |
— COSX — COSX
as+x X

By this the conclusion follows.
iv). To compute fy(&) we follow the idea exploited in iii). First:

7€) = | fotoe i dx= [ lim fune de= tim [ e ar

Last identity must be justified applying a limit theorem. By what we checked in Q3 we may
easily see that dominated convergence applies: indeed

|[fa()e™ ] = | fu(2)] < g(x).

Therefore

Fo(€) = limaor fa(€) = limgoos (ﬁ (e—am ! (e—a|§—1| N e—a|§+1|)))
D L timg g0 (~Jgle 1 = 1 (=1 = 1] et = ¢ 1] emale-1))

= -3 (1e1- S e =11+ 1g+ 1)

=3 (=D 1@, o



21

Exercise 4. i) For x =0, f,(0) =0 — 0. Forx > 0,

3/2

. . n
lim f,(x) =x lim =0,
n—+oo n—+oo X

being n*/? = o(e™). Thus f, converges point wise to 0 on [0, +co].
ii) Clearly f,,(x) > 0 on [0, +co[. Moreover

fa(x) = 2 (e™ —nxe ™) =™ (1-nx) 20, & 1-mx>0, & x<

S| =

Thus f, attains a global maximum at x = % Therefore

i )
il = sup 101 = (;) 2671 < oo,

[0,+c0

that is (f,,) € L=([0, +oo[. However, since || f; || = g —> +oo0, (f,) cannot converge in L*.
iii) Let’s compute

+00 1 +00 1 +00
1flls = J a0 dx = —j nxe ™ d(nx) = —J ye dy < +oo,
0 Vn Jo Vn Jo

1
thus (f,) € L'([0,+oo[). By this it follows also that f, L, 0 because

C
1 fulh = — — 0.

\Vn
iv) Let’s compute

+00 —nx +00
||fn||§=j e gy f e dy < oo
0 0

2
thus (f,) € L2([0,+co[). If f, N f, then there would be (f;,) such that f,, — f a.e. and

2
since f, — 0 everywhere, we conclude f = 0 a.e.. Thus the unique possibility is f, LN 0.

However, || f, = Oll2 = || full2 = C > 0 /- 0. O
Exercise 9. See LN for the Definitions and proofs, and of 1).
ii) We have
1 l —=(x 1 1 — X
— _ o-alfl (_) L -alfl 4 p-altl (_) ,
2+ 2a° 2]’ (a2 +x%)2 4a2° e 21

Now, recall that in general, for the 1-dim FT

N

f (%)(f) = 141f(28)
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SO

1 2r — T _, —a
—(a2 " ﬁ2)2 (éf) = @e—aﬁ-ﬂ * e—a|ﬁ|(27(éf) = ﬁe I8 e |ﬁ|(_27.[é:),

thanks to the inversion formula. To close the calculation, we need to compute the convolution

el 4 =l () :J e=alv=ylg=alyl gy
R

Easily we see that, by changing x with —x the output doesn’t change, so we can consider the case
x = 0, for x < 0 we will induce the value by symmetry. We have then

e_alm %k e_aml(x) — IO e_a(x_y)eay dy + Ig e_a(x_y)e_ay dy + J-+OO ea(X—)’)e—ay dy
—o0 x

— —axfoo Zaydy_}_eaxfody_i_eaxf —Zaydy

2a y_o —-2a y=too
— o~ [62;] + xe 9 4 4% [_ezay]
y=—00 y=x
— e—axﬁ +xa~%™ + e;" — e’a
being a > 0. Symmetrizing,
e—a|x|
e s o7l (x) = (1+alx]),
so we conclude that
K
———= (&) = e ¥l (1+2nal¢]). O

( 2 +ﬁ2)2

Exercise 10. i) We notice that

J Jf = Jf(l ~101 — ljo)) =0,

from which, denoted by u := 1[_1 9] — 1[0,1] We have

S={feH : {f,u) =0} = Span(u)™.
Since the orthogonal space of any set U is a closed linear sub-space of H we conclude that S is
closed.
i) Since H is Hilbert and S is closed, there exists I1g f for every f € H. Let U := Span(u).
Then
Usf=f-Iyf,

and since

Oy f = {f, =y

Tl Tl ~ T ||2<f s
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with

1 1
|mW=j ﬁ=j _2,
—1 -1

Mgf = £ = 5¢fouu

we get

In particular,

1 1! 1
IMgx = x — E(x,u)u =x- Ej_l(—l)d) dxu =x+ Su- O

Exercise 11. i) Clearly g € €(R\{0}). At & = 0, recalling that

& &

Sing = ¢ == +0(£), cosé =1--+0(£7),

we have

& 3 & 3 3
E-%+0(&)-E+5+0(E) 1 o(&) -0 1
8(6) = : =+

3 3¢ 3
thus g can be extended by continuity at £ = 0. In other words, we may consider g as a continuous
function on R, integrable on every [a,b] C R. Hence, for the integrability on R, we have to

check the behaviour at +c0. Here we have

18(O)] <

1+ €] 1

€ T e
from which we deduce integrability at +co. In conclusion, g € L'(R). From same arguments
we have that f € L?([a, b]), for every [a, b] and since

1+ & )2 1
1) e
we deduce that |g|? is integrable, thus g € L>(R).

ii) According to the inversion formula, g = f provided g and g are both L' (R) functions. We
remind that this last follows if g, g’,g” € L'(R). About g, this has been checked in Q1. We
check for g’ (the check for g” being similar). We have

E(&sing) —3E%(siné — Ecosé)  2siné - 3(siné — £ cos )
£ B & '

8(&)1* < (

g'(¢) =
At ¢ = 0 we have
E(e-5+0@)-3(e-5+5+0E) -¢+5 - 5)
64

g€ = =cé+o(é),
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“'fg':b Ié—‘lz’ that is g’ € L'(R). A similar

check can e made for g”. We conclude that g € L!, hence inversion formula applies.

The existence of an L? Fourier original is much simpler: since g € L?(R) then, by the
Fourier-Plancherel theorem, g = ffor some f € L*(R).

iii) Following the hint, we notice that

thus g’ is continuous at & = 0. At *oo, |g"(£)] <

£4(6) = -0, 2% = d,iecti(6) = 37w rect (€)= St €).
Now, if g = f,
i£g(&) =i£f(£) = F (&),
from which

-~ 1—
F() = -5erect (©),
and, by uniqueness of the FT,

f(x) = ——xrect1 (x).

From this, it follows that f is constant on | —co, —1] and on [1, +oo[ and since f € L'(R), f =0
on these intervals. Moreover, for x € [—1, 1]

S|
F) = F0) ~ (1) = L Sy dy =30 - D).

Thus
2

fx) = o). ©

Exercise 12. i) Since f(z) = f(0) + f/(0)t + o(t) = f'(0)t + o(¢) for f € V, we have

|/ (@]

Vi
Thus || f]|. is well posed. Clearly positivity holds. Vanishing:

0 s sp FOI_o . 10
t€10,1] Vi Vi
and since f(0) = 0(f € V) we conclude f = Oon [0, 1]. Homogeneity and triangular inequality
are straightforward.
ii) Since f € V implies, in particular, f € €1([0,1]), || flls+x = || |l is well defined
(f" € €([0,1])). Positivity is evident. Vanishing:

[fllss = 11f'lle =0, & f'=0, & [f=C,

= | (0)|Vr + 7—>o t —> 0.

=0,1€]0,1], & f(t)=0,1¢€]0,1],
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for some constant C. Since f(0) = 0 we deduce C = 0 and f = 0 on [0, 1]. Homogeneity
and triangular inequality are obvious consequences of linearity of the derivative and analogous
properties of || - ||co norm.

iii) We claim that || - ||.« is stronger than || - ||. but they are not equivalent. Indeed: from
fundamental thm of integral calculus, for f € V,

£(1) = £(1) - £(0) = L F/(s) ds,
from which
£ ()] < fo 17(s)] ds < L max ] ds =1/, V1 € [0.1],

Thus

If@)]
ax < max o =1 .
max < max Vil = 111
The vice versa does not hold. Indeed, we may take f,(¢) = ¢". Clearly f, € V for every n > 1.
We have

n

+ = Max — = max ¢
1l = €]01] \7 el

From this we draw that there cannot be a constant ¢ such that || f,||«« < cl||f]l« for every f,
otherwise

n— 1/2: n—l|

1, ||full+« = max |nt =n.
te[0,1]

n=|falls < cllfull =c, VR €N, n > 1,
which is manifestly impossible. O
Exercise 13. i) We check first that (-, -) is well defined. Indeed, this is the standard L>([0, 1])
scalar product of f’,g’. Since they are assumed to be in H, f’, g’ € L*([0, 1]), thus (f, g)n
makes sense. We check now the characteristic properties of a scalar product:
e (positivity) (f, /g = f(; (f)?dx >0
e (vanishing) (f, f)u = 0 iff fol (f)? = 0. Since (f")?> > 0, by a well known result,

(f)? = 0 ae., thatis f/ = 0 a.e., hence f is a.e. constant and since f(1) = 0 we
conclude f =0 a.e.

o (homogeneity) (Af.&)n = [, (1f)'g’ = [, 1f’¢' = A(f. &)
e (symmetry) evident.

1) We notice that

Jd f@) dx = [ () f(x) dx

= {1,

parts

[/ R = o /() de == [ (%) /() dx
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Thus
S={feH : (#*-1,f),=0).
Thus v = x2 — 1.
iii) Let V := Span (x2 - 1) = S+. This is a one dimensional space, hence it is closed. We have

f=lsf+1lyf, VfeH, = Ilsf =f-Tlvf.

1y is easy:
2 2
x-—1 x- =1 1
Iy f={f, YH = (x* =1, fHux>.
182 = Ule " 142 = Ula (182 - 115,
We have
1 B g
||ﬁ2—1||%{:<x2—1,x2—1>ﬂzj 4x* =4 —] =3
0 3 x=0 3
Thus

My = 2072 - 12 - 1),

If f=x-1(e H),
1
(x—1,x>- I)H:J 1-2xdx = [xz]iiéz 1.
0

Therefore
My(#-1) = ?(xz— 1),
and
Hs(ﬁ—l):x—l—nv(ﬁ—n:x—l—?(xz—l):(x—l)(l—?(xﬂ)). O

Exercise 14. i) See Lecture Notes.
ii) Let g,(x) = ﬁ the Cauchy distribution. We may represent the equation under the form

Af(x)+ f*g1(x) = g1(x) + g2(x).
If f € L'(R) is a solution,
AF(O) + F(OZ1(E) = §1(€) + 52(&).

Now, remind that, for a > 0,

Gu(e) = eIl
a

Thus, we obtain the following equation for f

f(&) (/1 + ne—lfl) = e € 4+ ge—2|§| — relél (1 + %e—m) ’
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that is i
—~ 1+ 5e7
_ ¢l 2
F(§) = me ¥l
Now,

e if 1 = 0 we obtain {
F& =145,

in particular f (¢) — 1 when ¢ — =00, according to the RL lemma f cannot be a FT
of an L! function. This means that for 1 = 0 the equation has no solutions in L'.

e if 1 < 0 we see that the denominator of fvanishes até =+ log(—f—r), in particular f is
unbounded at these points, again in contradiction with RL lemma. In particular, no L!
solution is possible for 4 < 0.

e if 4 > 0 then f € ¥ (R), it vanishes at +co and since

f(f) ~+00 %e—|§|’

we have f € L', thus equation makes sense and, by the inversion formula, it has as
unique solution

24l
f(x) = —f(—X) —e W ————(—x).
A+ me MMl
iii) For A = 27 we have
| L 2+4eld | — 1 2 11
= — _MI - = — |ﬁ| = _— _—
fx) i wpnrielalCh A1+ (—x)?  2m1+2

Exercise 15. i) False: take f, = n®1{g 1/, Then

1 21
Ja=n"—=n— +oo,
0 n

but, for every x > 0 fixed, as soon as % < x (thatis n > [1/x] + 1) we have f,(x) =0 — 0.

ii) False: f, = v/nl{o.1/4), same arguments of the previous example.

1
iii) False: see the example shown in class of a sequence (f,) ¢ L'([0, 1]) such that f, L, 0
but (f,(x)) is not convergent for every xin[0, 1].
iv) True: if || fu]lco 7— +o0 it means that there exists a constant K such that || f;||cc < K for
infinitely many n. For these n,

j f < j 1illo = Il < K.

. . 1
50, in particular, fo fo #— +o0. O
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Exercise 17. i) Since f € V = €2([0, 1]), f” € €([0, 1]) thus uniform norm || f”||. makes
sense. Also f”(0) makes sense thus || f||y is well defined. Let’s check the basic properties of a
norm. Vanishing: || flly = O iff || /|| + |f'(0)] +|f(0)] = 0. Since this is the sum of positive
quantities, it can be 0 iff || f” || = |f'(0)| = | f(0)| = 0, thatis f” = 0 and f'(0) =0, f(0) = 0.
From f” = 0 we deduce f’ constant, but since f’(0) = 0 we have f’ = 0. Therefore f is
constant, and since also f(0) = 0 we deduce f = 0. Homogeneity and triangular inequality are
straightforward.

ii) We have to show that

3C >0, : [[flle <Clifllv, ¥feV.
Let’s bound | f(x)| by f”. By the fundamental formula of Integral Calculus,

F) = £(0) + L £(v) dy.

and applying the same to f”,

y
£ = 1(0) + j £(2) dz,
0
thus
X y X ry
£() = £(0) +j (f’(O) +j £2) dz) dy = F(0) + f(O)x + J f £(2) dz dy.
0 0 0 JO
Therefore,
X Py
G <17 0] + |f’<0>|x+j j ()] dz dy
0 JO

and recalling that || f||cc = max,eo,17 [f(x)], we get

1 pl
1/ lleo < LF(O)] + [ (O)] +L L 1/ lleo dz dy = | f(O)] + 1S (O] + 11/ lleo = I fllv-

. -1l . . Il . . . . .
iii) True: since f, = f implies f, — f and this last implies pointwise convergence, we

deduce that also V norm convergence implies pointwise convergence.
iv) Clearly f,(x) = n%x” € %([0,1]) = V. Notice that f,(x) —> 0, for every x € [0, 1].

Thus, by ii1), if f, M f, necessarily f = 0. However,
Il.fu = Olly = | fullv = [£a(O)] + | £, (O)] + 11 £, [l o

and since f](x) = 1x""!and f£7'(x) = Z=1x"2, we deduce f,(0) = £;(0) = O for every n > 2
and

n-1 , n-1
" =

[1/7 lleo = max — 1,

x€[0,1]
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thus ( f;;) cannot converge to 0 in V. Since this is the unique possibility, we deduce that ( f;,) is

. Il
not convergent in V. However clearly, || f,||cc = max,e[o,1] niz|x”| = niz — 0, thus f, — 0. We

deduce that the two norm || - ||y and || - ||o are not equivalent, otherwise they would have the
same convergent sequences. |

Exercise 21. i) We may notice that, setting u; = x and u, = X3,

V={feH : (fiu;)=0, (f,uz) =0}.
V is clearly a linear subspace of H. It is also closed because of the continuity of scalar product.
Indeed, if (f,) C V, f, — £, then

0= {(fu,u1) — (four), = (f,u1)=0,
= feV.

0= <fn’u2> — <f’u2>’ = <f’u2> =0,

ii) It is convenient to determine first the orthogonal projection on U := Span(u1, u3). This is a
finite dimensional subspace of H (thus itis closed by a general fact). If (e, ;) is an orthonormal
basis for U,

2
Myf =) (f.eje;.
j=1
The orthonormal basis can be determined by the Gram-Schmidt algorithm:

o= o= uy — (uz, e1)eq
|’ luz — (uz, erderll’
‘We have
2 by b, 1 x
| =J u :j EF A
0 ! 0 3 \/§
and
3 1 ! 4 3 X
uy —(uz,er)e; =x —g(L y dy)x:x -5
hence,
! 2 1 2 1 808
— 2: 3—i) d:———+—:—
iz = aiz, exje ] L (x 5] 777757675 4725
SO

4725 ( 3 X )
2=V 8os \" T 15/
Now, to compute Iy f it is enough to set

lyf=f-Myf.
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This because Iy f is uniquely characterized by the property
(f-Myf,v)=0,VveV,

that is
Iy f,v)=0, Vv eV.

But this is automatically true being I f € Span(u,u;) and v L uy,up whenv € V. O
Exercise 23. i) Certainly, || - ||. is well defined: indeed RACI R % (]0,1]) and since f €

Vx
€([0,1]), f is bounded, thus ‘% ”{/U“ which is integrable on [0, 1]. Thus || f]|. < +oo for
every f € V.

We now check the key properties of a norm:

e positivity: obvious.

e vanishing: || f]|. = 0 implies |f\5f)| =0ae. x € [0,1], thus f =0 a.e. on [0, 1]. Since
f is continuous, f =0 on [0, 1].

e homogeneity: straightforward, ||Af]|. = fol M{/()_f)l dx = |4| fo |f(x)l dx = ||| f]]+

e triangular inequality: straightforward.

ii) It is easy to verify that the uniform norm is stronger than || -||.. Indeed, since | f(x)| < || f||co>
we have

1 X 1
||f||*:j0 'féj_c)' \J Wd —||f||wj — dv = |l [285] % = 21

Are they equivalent? No! Indeed take

\n, 0<x<%

fn(x) =

%, % <x<1.

Clearly f,, € €([0,1]) =V. We have
[ falleo = Vn,
while
1
I
”f”*:J |f(x>| < /\/_d = —dX— M < 400,
Vx 0 0 x3/4

If || - || is stronger than || - ||, We have

V=l fallo < Cllfull- < CM, Vn €N,

which is impossible.
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About the || - ||; norm, we may notice that, since for x €]0, 1] we have % > 1, then
: L)l
1A= 1f()ldx < dx = || fll+,
0 0o Vx
thus || - || is stronger than || - ||;. Are they equivalent? No! Here we consider,

Vi, 0<x<i

fu(x) =

<x< 1.

S |=

L
Vx’
1

Clearly, since 0 < f(x) < =

1 -
I fulli = L | fn(x)] dx < Jo % dx =2 M < +co.

On the other hand,

1 1
1 1
[l foll- >J 7o) dx:J —dx =logl —log — =logn,
I/n \/)_C l/nx n

thus, if || - ||; were stronger than || - ||, we would have that
logn < || full« < Cllfulli <CM, ¥Vn e N,n > 1,

but this is impossible. O

Exercise 24. i) Clearly f € L! thus f is well defined. To check f € L', we apply the well
known result: if £, f/, f” € L' then f € L'. We already said f € L'. About f,

4x3 X C

HOEE S €GR). f/(x) ~soo 45

(1+x%) B
which is integrable at +co. Similarly for f”:
" 32 (1 +x*4)2 = 203 (1 + x*)4x3 " -5x10 ¢
f ()C) =-4 € %(R)7 f (X) ~+oo —4— =

(1+xH)4 X167 %6

which is integrable at +co. Is f € L?? Yes, this because f € L? (yet, f € €(R) and
| £ ()]? ~100 % is integrable, thus IR |f|> < +c0) and the FT maps L? into itself. Last: is

f € §(R)? No, this because FT maps the Schwarz space &'(R) into itself, thus f e S(R) iff
f € §(R). Clearly, f € € but, for instance,

x* f(x) £ 0, |x] — oo
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i1) We may notice that

1 1
2 a 2
x2+V2x +1 (xi%) !
thus, recalling that g(ﬂ/-l-\c) = ¢7i¢¢y,
1 1 ey 1 .
(€)= 3 (6) = e (6) = T 2 I
R T Y
T2 V2 V2
iii) Because (1 +x%) = (x2 + V2x + 1)(x2 — V2x + 1) we have
1 1 1 ( 1 1
T+x* 2+ V2 + D) (2 - V2x + 1) 2V2x \x2+V2x+1  x2—V2x+1
thus | | |
—2V2x 1= -
T+x* 242 +1 x2—-V2x+1
hence

—2‘/5(1??) (&) = e VN o WEIINE _ HEININD o EINZ = oo I€1/V2 sin(£/V2),
that is

(E\f)(f) = —i7re_|§|/\/§ sin(f/\/z).

Now, recalling that

(=it)f) = O],
we get,
Ggf(cf) = _ﬂe—lfl/\/i sin(f/\/i).

To determine f, let’s first compute

[ e sin(Be) dg = <= sin(Bg) — [ - Bos(BE) dé

= < sin(Bg) - £ | 1% cos(Be) + [ £ psin(e) de|.
from which,

f " sin(B¢) dé = ———e* (Sin(ﬁf) - gcos(ﬁa) :

a
a?+ (?
Therefore,
£20, —n[ et sin(e/ND) dé + o) = Ze V2 (sm(g/«/i) + cos(g/«/i)) +el,
f& =
£<0, —nfef/‘/i sin(&/V2) dé + ¢, = —%ef/ﬁ (sin(f/\/z) - cos(g/\/z)) + c).
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Since f € L'(R) we have f(f) —> 0 for § — =*oo, from which ¢; = ¢, = 0. Thus

7€) = e N (sin€)/¥2) + cos(lél VD)) @

Exercise 25. i) Let f(x,&) := 1;20(2—325“?)) Clearly f € €(R\{0}) for every & € R.

We may notice that f(x,0) = 0, thus certainly f(§,0) € L'(R). For & # 0, recalling that
cost=1- % + 0(¢?) for t ~ 0, we have that, for x ~ 0,

2.2
o) 1 g g
x2(x2+1)  2x2+1 2’

thus |f(#,&)| is integrable at x = O for every ¢ € R. We need to check integrability at +oo.
Notice that

J(x,8) =

2
|f(x,8) < 2021 D) oo g

therefore | f(, £)| is integrable at +co for every & € R. We conclude that f(#,&) € L'(R) for
every ¢ € R, thus D = R.
i1) We apply differentiation theorem. If this holds,

0F(©) = | 0cf () v g D

To this aim we need to verify hypotheses that are
1. f(#,¢6) € Ll(R), V¢ € D’. This has been checked in i) with D’ = D = R.
2. 30:f (x,€) = SN for every ¢ € R.

x(x2+1)
3. 3g = g(x) € L'(R) such that |9; f(x,£)| < g(x), a.e. x € R, V& € D’. Here we may
notice that, since | sin¢| < |¢| we have

sin(éx) 1 1 R
0 O\ = < < = ,a.e.x €R, V¢ € [-R,R].
06 (x.£)] S| <l < 5 = gk, ae.x € R, VE € [<R.R]
Thus, fixed R > 0, we may apply the theorem on D’ = [-R, R] and deduce that
sin(&x)
0:F (&) = | —=——=dx, Y¢ € [-R,R].
eF(E) = | S ds e € R )

And since R > 0 is arbitrary, we can conclude that the previous identity actually holds for every
& € R. Thus, at the end, we can consider D’ = R.

iii) Let g(x, &) := 53(2?1)) To compute (')SEF we apply again differentiation theorem to

BeF (&) = jRgu,f) dx.

To this aim, we need to verify that
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1. g(4,¢) € LY(R), V& € D”. This is a consequence of 3. of ii), from which we get that
D” =R.
2. 30g(x, &) = B ae. x € R (actually, Vx # 0) and V€ € D” = R.

3. 3h = h(x) € L'(R) for which [dzg(x,xi)| < h(x), a.e. x € R and V¢ € D”. Here we

may notice that
s, = DN ¢ L) e L), aex R ve e D =R
’ X

x2+1
Thus, differentiation theorem applies and

1

2 _ [ cos(éx)
GEF (&) = JR oo d VEER

iv) From previous discussion, and recalling that cosz = Re ¢"’, we have

1
1+42

=—Xx

| B ) 1 ,
6§F(f) =Re J 2—€l§x dx = Re J —Ze_lfy dy = Re
’ rRX-+1 R1+y

Then

(€) = me k.

fﬂe'f dé+ci=-ne+cy, €20,
OcF (&) =
fﬂe§d§+czzﬂe§+02, £ <0.
Since 9¢F is differentiable it must be continuous, in particular at & = 0. This leads to
—m+c1 =0:F(0) =1+ ¢,
and since also d:F(0) = O (trivial) we obtain ¢ = 7 and ¢, = —7. In conclusion

—me ¢+, &E20,
0:F (&) =
net —m, &<0.
Therefore
neS +né+cy, €0,

F(&) =

7T€§—7T§+Cz, & <0.
Again, by continuity at £ = 0 and noticed that F(0) = 0, we have ¢; = - = ¢», thus
ne‘§+7r§—7r, >0,

F(¢) = =n(e—|f|+|g|—1). o
net —né—m, &<O.

Exercise 26. i) Clearly || || is well defined (f” € €([0, 1]), hence x'/2f” € € ([0, 1])). Let’s
check the characteristic properties of a norm:

e positivity: || f]| > 0, trivial.
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e vanishing: ||f|| = 0 means x'/2|f’(x)| = 0 on [0, 1], thus in particular f’ = 0 on ]0, 1]
and because f’ € €, f' =0on [0, 1]. In particular, f is constant and because f(0) =0
(f € V), we conclude f = 0.

e homogeneity: ||Af]| = maxx!/2|(Af) (x)| = maxx'/2|2||f (x)| = |2 maxx'/2|f’'(x)| =
alivale
e triangular inequality: notice first that if f, g € V we have
[(f+8)' ()] =1f'(x) +& )| < [f ()] + g (X1,

thus
A+ ) )] < PP + X2 0] < IIfI+ llgll, Vx e [0,1],

hence, taxing maximum, || f + g|| < [|.f]| + ||gll-

ii) We check first that f,, € V. Easily, f, € ([0, 1]) and

3/4 1
nT, 0<X<Z,

fa(x) =
é—le_3/4, % <x<l1
We have that lim,_, 1/, f,(x) = @ = limy_,1/p4 f,,(x), thus 3f;(1/n) = %/4 and f, €

% ([0,1]). And since clearly f,(0) = 0 we have f, € V forevery n > 1.
To discuss convergence of ( f;) we may notice that

3/4
%xl/z’ O < X < %’ 1
1/2 . 1/2 1/4
22U fr0) = = [lfull = max &' f@)] = 7' — oo,
S VL r€[0.1]
4x ’ 7 X L.

Since (f;) is not even bounded in || - ||, it cannot be convergent.

iii) We have to prove that there exists a universal constant C such that || f||c < C||f]| for every
f € X. We start recalling that

£ = £(0) + L F(y) dy T L0 L £(y) dy,

therefore

1f ()] =

Lx () dy

thus, finally

X , X 1 , X 1
<ot = [ e Pirola < [ sl =20,
0 0y 0y

o = < 21211 £11 = 21 711
£ xrerha)%lf(x)l max 2x AN =211l

The two norms are not equivalent. Indeed, if || - ||co Were stronger than || - ||, we would have

I/l < Cllflleo, VS €V.
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Taking f = f, and noticed that || f,||c = 1 (easy), we would have

/4
L=l < Cllfille =€, Va > 1,

which is clearly impossible. |

Exercise 27. i) We first check that if f, g € H then (f, g) is well defined. We have to show
that f(x)g(x)e™ € L'(]0, +co[). The argument is similar to the standard L? product:

[T @g@e™ dx = [[7Ifllgle™ < [~ $(f2+ge™

=1 (IJOO fle ™+ L;roo gze_x) < 400,

provided f,g € H. Thus (f,g) is well defined. The check of scalar product properties is
standard:
e vanishing: 0 = (f, f) = 0+°O f2e™* thatis f(x)?e™* =0a.e., thatis f =0 a.e..
e linearity, symmetry: straightforward.
ii) We may notice that U = {u € H : (u, 1) = 0}. Indeed,

+00
leH J e dx < 400,
0

which clearly true. Therefore, U is closed because of well known continuity properties of the
scalar product. Indeed: if (u,) C U is such that u, — u, then, since {(u,, 1) = 0 for all n and
(un, 1) — (u, 1) we conclude that (u, 1) = 0.

iii) Since U is closed, [1y f is well defined for every f € H. However, U is likely to be infinite
dimensional, it seems not easy to determine a basis for U. Nonetheless, U is the space of u
perpendicular to 1, so define V := Span(1). Clearly V is one dimensional, hence ITy is well
defined. Take eg = iy where ||1]|> = 127 dx = [[7e~*dx = 1, that is eg = 1. Thus
Iy f =(f,1)l andsince f —Ilyf L 1, we have f —Ilyf € U. Weclaim IIy f = f —Ily f.
Indeed:

(f-Myf.g)={f-(f-Tvf),g) =y f,g) = (f, 1)(1,8) =0, Vg € U,

and since this characterized Iy f we have the conclusion. In particular,

+00 1
Hye ™ =™ — (e, 1)l =e > - J e dy=e - 3 O
0

Exercise 29. i) To have FT, £, needs to be either L' (R) or L?>(R). In the first case, writing
a=a+ib,

+00 +00 +00
I |fa(x)|dx:J |e”x|dx:J |e“xeibx|dx:J e dx <400, & a=Rea<0.
R 0 0 0
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Same conclusion for L?. Thus: f has a FT iff Re & < 0. For such a we have

- 400 400 e(a—ié—‘)x X=+00
fa(é) = J e™e N dx = J (@I gy = l _ ]
0 0 a—i& |,
Now, since Re ¢ = a < 0,
e(a—if)x — |eaxei(b—§)x| = o™ 0, X —> +00

we have
1 1

a—ié iEta

fal&) = -

ii) To have an L' Fourier original, according to RL lemma, gs € F(R) and it must be
bounded. Now, in order gg be continuous, we need that £ + 8 # 0 for every £ € R. If 8 € R this
is impossible, because £ + 8 = 0 at £ = —B. If B € C\R however, & + 8 # 0 for every ¢ € R,
thus gg € €(R). Clearly gg would be also bounded in this case. However, gg continuous and
bounded is not sufficient to have a Fourier original in L!. As well known, a sufficient condition
is gp € L'. To ensure this, a sufficient condition is gs» g}_}, g’ﬁ’ e L'(R). gp € €(R) and since

28] ~se0 —
g,B Y400 TLA
BE

we deduce gg € L'(R) for every 8 € C\R. For g; the check is similar being

2
(¢ +B)°
2

thus gb € ¢(R) and |g;3| oo T integrable at +oo, thus g’B e L'(R) for every 8 € C\R. Same

gp(é) =

check for g’ﬁ’ .

For L? inversion, the discussion is much more easy: it suffices to verify gp € L*(R). Since
gp € €(R) and |g[.,e|2 ~ico ﬁ we deduce that gg € L*(R) for every 8 € C\R.

ii1) Following the hint,

1
iE+a’

I S T
gp(é) = —Q‘fm = —l5§i§+iﬁ = —i0

where @ = i3. Now, Re @« = —Im g8 < 0. Thus, by 1),

iEva e 110 400[ (€) = P[0 1ool,

whence

gp(&) = —i0zeP*1 g 4o (£) = —i (—iﬁeiﬁﬁl[o,+m[) = —fe'PR1 [0 1oo[ (£).

Therefore, the Fourier original of gg is xe'Bx] [0,400[ (X). O
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l—e"‘yz

Exercise 30. Let f(x,y) := T €]0, +oo[. The domain of F is

D:={xeR : f(x,#) € L'([0,+0[)}
We notice that £(0,y) = 0. If x # 0, f(x,#) € €(]0, +oo[), so we need to check the asymptotic
behavior of f(x,y) when y — 0+, +oo. Recalling of ¢’ = 1 +1 + 0(¢) when t — 0, we have
1-(1-xy*+0(*)
12
so f(x,#) can be extended by continuity at y = 0, in particular, f(x, ) is integrable at y = 0.
When y — +o0o we have

flx,y) =

=x+o0(l) —x, y > 0+,

— 0, x<0 = A f(x,y)dy.

fx,y)

~y—+oo #9 x>09 == 3f+wf(x’y) dy‘

Conclusion: D = [0, +co].
ii) We apply the differentiation under integral sign,

+00
0F@ = [ ot a0
0
To this aim we notice that:

e (7)) | xy?
© 30, f(x,y) = == = e, Vy > 0(s0ae. y € [0,+00]), Vx > 0.

o |0.f(x,y)| = e < e =i g(y) € L'([0,+c0[), ¥y > 0 (ae. y € [0,+0o[) and
Vx > e.

Let D, := [&,+c0o[ with € > 0. The previous facts say that we can apply the differentiation
theorem on D¢, so (%) holds for every x > ¢. Since this ¢ is an arbitrary positive number, this
means that (x) actually holds for every x > 0. Conclusion: F is differentiable on |0, +co[ and

+00
O F(x) = J e’ dy.
0

iii) 0, F (x) is basically a Gaussian integral

1 Im
B (x) = 5\/;,

F(x) =+nx+c.

from which

To determine the value of the constant ¢ we notice that F is continuous at x = 0. This because
e f(#,y) € B(]0,+oo]) forall y > 0 (thus a.e. y € [0, +c0]),
2 2
° 0< flx,y) = 5 < =5 =g (y) € L1([0,40]), Vx € [0, 1].
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So we can apply continuity under integral sign to get that F' is continuous on [0, 1] and, in
particular, at x = 0. Therefore

lirg F(x)=F(0)=0, = c¢=0.
x—U+

Therefore F(x) = y/zx for all x > 0. From this it is also evident that ' cannot be differentiable
atx =0. |

Exercise 35. i) To check U is closed we have to prove that if (f,) C U is convergent (in
H) to some f € H then f € U. So, assume f, —> f in L?(X). By extracting a subsequence,
S (x) — f(x) u—a.e. x € X. That is, modulo a measure zero set N, (u(N) = 0),

fnk(x) — f(x), Vx € X\N.
Now, each f,, = 0a.e. on E thatis f;, (x) = 0 for all x € E°\Ny with u(Ny) = 0. In particular,

Fue¥) =0, Vx € EX\| Ny,
k

and since M := N U [J; Ny is a u— null set (a union of null sets), we have, for x € E\M
0—0=fy(x) — fx),
thus f(x) = 0 for every x € E\M, thatis f € U.

2 2
In alternative: since f; LN f, then easily also f,1gc -, flge (| fulge — flEe ||% = fx(fn -

PP ge du < | fo = f113), 50 [l falgella — 1 f 1gell2- But || flgell3 = [ f du = 0 for every
n; so || f1ge ||% = 0 from which f = 0 a.e. on E°. From this the conclusion follows.
ii) Recall that the orthogonal projection is characterised by the orthogonality relation
(u, f-Myf)=0,VueU, Vf e H.

Now, since f —Ilyf =f—1gf = (1 —=1g)f = 1gc f we have

u, f =Ty f) = Lulch du =j uf dp=0

because u € Uis =0 u—a.e. x € E€. |

Exercise 36. i) Let
e_alé‘:l — e_b|§|

gab (&) = e & € R\{0}.

Here a, b > 0 are fixed. We notice that, being e’ = 1 +1 + o(1),
1 —algl+0(f) — (A -b[+0(f) _ (b-a)lé|+0($)
& '3

8ab(€) = ~0 (b —a)sgn(é),
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which is integrable at & = 0. At oo we could say that
8ap(©)] < (¥l + 7} vig] > 1,

thus g, is integrable at +co. In conclusion g,, € L'(R). Similarly, |g.,|> ~o (b — a)? is
integrable at & = 0 while, as above,

2
8an(©F < eI+ &), vig) > 1,

thus easily |g,.p|? is integrable at +co. In conclusion, g, , € L*(R).

Let us discuss the inversion problem. Since g, € L>(R), then g, has a Fourier original in
L*(R). The same does not apply for an L' original. Indeed, if g4 = fa for some f,, € L!
then g, € €(R). However, g, (&) ~o (b — a)sgn(¢) which is not continuous at ¢ = 0.

i) If f,p € L? is such that ﬁ; = g4.» then, according to inversion formula,

8ab () = fa (x) = 27 fup(—),
that is f, 5 (x) = %gﬁ(—x). We compute then g, . To this aim notice that

2a 2b
a?+x2  br+4+x?

Bgan (x) = e~albl — ¢bltl (x) =

Recalling that (%b = 0,84.» We deduce that

0.5 . 2a 2b
x8a,b = —1 - .
Bab a’?+x2 b2+x?

Thus,
Gan(x) =i (2] ey dx = 3 [ e dx) + ¢

= —i (arctan (£) — arctan (§)) +c,
where c is a suitable constant. Finally, to determine the value of ¢, we may notice that letting

Xx — 400, we have
A(x)—>—i(£—ﬁ)+c:c
ga,b 2 2 )
and because we already know that g, , € L2, this is possible only if ¢ = 0. By this we finally

obtain that the original of g, 5 is

fap(x) = 21—” (arctan (%) — arctan ()—C)) .

a

Notice that we can check that f,, ¢ L'(R). Clearly, f,, € €(R) so the integrability depends
on the behavior at +co. Recall of the remarkable identity

1 =
arctant + arctan — = 3 vVt > 0,
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so, for x — +o0,

X X a
arctan — — arctan — = arctan — — arctan —,
b a X X

ans since arctanu = u + o(u) for u — 0, we deduce
21 a b a-b (1) C
0

— fap(x) = arctan — — arctan — = ~ioo — ¢ LY
i X X X X

X
This confirms once more that g, ; cannot have a Fourier original in L. O

Exercise 37. i) Let f(,x) := e‘ﬂx“%. Because sinx ~ x, we may consider f well defined
and continuous at x = 0, thus f (4, #) is integrable at x = 0 for every 1 € R. At x = +oo, because
| sin x| < |x|, we have

|f(1,x)] < e e L'([0,+00[), VA > 0.

+00
F(0) = J MY
0 X
exists (as generalized integral but not in L! sense). Thus, we may still consider F well defined
at1=0.

1) We wish to apply differentiation under integral, that is

+00
(9,1F = ‘[ aﬂf(/l,x) dx.
0

For A =0,

To ensure this for every 4 € A we need to check a) f(4, #) € L'(]0, +oo]) for every A € A. This
is true with A =]0, +oo[. b) 39, f(4,x) = —xe"b““xﬂ = —e ¥ sinx, for every A €]0, +o0[, a.e.

x € [0, +00]. c) there exists g € L'([0, +oo[) such that
[01f(1,x)] < g(x),VA € A, ae.x € [0,+00].
Now,
10, f(4,%)] < e < e e LY([0, +c0[), VA € [Ag, +o0].
Thus, on A = [Ag, +oo[ with 4¢g > 0, we can conclude

+00

0L F(A) = j —e Y ginx dx, VA > Ao,
0

and because Ay can be chosen arbitrarily > 0, we conclude the previous holds true for every
A > 0. Recalling that

j e™ sin(Bx) dx = az%ﬁze‘” (sin(,Bx) - gcos(ﬁx)
we have

/1 1 X=+00 /1 1 1
0L F(A) = T+l [e“ﬂx (sinx + g cosx)] = T =
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ii1) By last calculation,
F(A) = —arctan A + c,

where c is a constant. The value of ¢ can be determined letting 4 — 400 and computing

+00 :
lim F(1) = lim P di

A—+00 A—+00 0 X

We can invert limit with integral applying the Dominated Convergence noticing that

e lim_,, f(4,x) =0, for all x > 0;
o [f(A,x)] <e™ <e“foreveryd > 1,ae. x € [0, +00].

Therefore
+00 +00 +oo
lim F(1) = lim e xS dx—‘[ lim e~ wdx—‘[ 0dx =0.
A—+00 A—+o0 J X 0 Ao+ X 0
On the other hand,

lim F(1) = lim (—arctand+c) = T c,
A—+00 A—+00 2
thus ¢ = 7 and

F(1) = g —arctand. O

Exercise 38. i) Let f,,(x) := ne™™ (1 — e™*). We notice that f,(0) = 0 — 0. For x > 0,
clearly —ix — 0 thus f,(x) — 0 for every x > 0. We conclude that (f,) goes to f = 0 point
wise.

i) Since f, — 0 point wise and since if f, — f uniformly, that is in sup norm, it implies
J» — [ point wise, the unique possibility is f,, — 0 uniformly. To check if this is true we
have to verify if

1o = Olleo = Il fulleo = sup [ fa(x)| — 0.

x€[0,+00][
We compute the supremum. Since f, > 0 and it is a regular function, we discuss if f, has a
maximum on [0, +oo[. To this aim we may notice that

fr(x) = —n*e™(1l—e ™) +ne™e ™  =ne™ (—n(l —e ) +e ™) =ne ™ (-n+ (n+1)e™).

Hence

" & X —1 1 " 1
. (o) (o)

Thus f, has a global maximum point at x = log == 2tl with maximum value

1):ne_"1°g(l+%)(1— n ): " (1+l) — el £0.

fr>20, & ee*>

n+1 n+1 n

falleo = £ (1og”+

Thus confute f,, — 0 uniformly.
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1
iii) Recall that if f, L, f then, extracting a sub-sequence, f,, — f point wise a.e.. By 1)
we already know f,, — 0 point wise everywhere. Thus the unique possible candidate to be a
limit is f = 0. To check if this is the case we must verify if

1fo =0l = Ifull = L ()] dx — 0.

Since f, > 0 we have

+00

Ifalli = Io ne™(l1—e™*)dx=n Ig‘x’ (e—nx _ e—(n+l)x) dx

[ean]x=+OO _ ef(n+1)x X=+00
n -n 1x=0 —(n+1) =0

n n+l

:n(l—L):l—i—>0.

1
By this we conclude that f; 0.

iv) The calculation is similar to iii). The unique possibility is f, — 0, so we compute || f,,||>.
We have
+00

Ifull2 =n? [ e (1= e de=n? [~ (e—an _ (@t e(2n+2)x) dx

_ n2 (I:e—;nx]x:+oo _9 I:e,—(22n+11)x:|'x:+°O + |:e—(22n+22)x:|x:+oo)
M 1 x=0 —(2n+1) x=0 —(2n+2) x=0

_2 (1 o1 N O R U W S N
=n (2n 22n+1+2n+2)_n ((Zn 2n+1) (2n+1 2n+2))

_ 2 1 1 11 _
=n (2n(2n+l) - (2n+1)(2n+2)) —3-3=0. O

Exercise 39. i) Clearly g € L*(R). Indeed g € €(R) thus f € L?(I) for every closed and
bounded interval I. Moreover, |g(£)] < fl“ thus |g(€)]? < ;—8, thus |g|? is integrable at +co.
Conclusion: g € L?>(R). According to Fourier—Plancherel theorem, g has a Fourier original
f = §. Since g(x) = g(—x), we compute g. To compute this last, we first notice that, since

a’ + b?,

(&) = ! ! - !
§ b2 —a?2 \&2+a?2 £2+b2 ’
thus

—~ _ 1 1 1 _ 1 T —2ralx| T —2xb|x|
g(x)_b2—a2(ﬁ2+a2(x)+—ﬁ2+b2(x))‘bz_az (Ee rall - 2o )
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therefore

— 5(—y) = z —27ra|x|_z —27b|x|
F0) =8(=x) = 75— (e L2l

ii) Again, clearly £g(£) € C(R), thus fig is integrable on every closed and bounded interval 1.
Since |£g(&)|* < #, #g € L>(R). Thus also #g has a Fourier original f(x) = #ig(x) = #ig(—x).
Since also g € L' (R) (|€g(¢€)| < #) we have

. —~ Sen x _2nalx —27blx
~i2fg(x) = AF(x) = 8uf (x) = —2m” o (el - 2

By this we get

Sgn x _ —
g (e 2malx| —e 27Tb|x|)‘ O

g (x) = —im s

Exercise 40. i) Clearly || - || is well defined on V. We have || f|| = 0 iff fol x| f(x)| dx = 0 that
is, x| f(x)| =0 a.e. x € [0, 1] and this is equivalent to f = 0 a.e. x € [0, 1]. Homogeneity and
triangular inequality are straightforward.

it) First f, € €([0,1]) c L([0, 1]). Moreover

! erI/” 1 1

ldx=n|— +l1-==1-—,
* n[Z =0 n 2n

1]l = Ll x| fu(x)| dx = Jol/nxn dx + L/n

thus (f,) ¢ V. However, this f ¢ V (this because f ¢ L'([0,1])), thus (f,) cannot be

convergent to f in V. Is it possible f, Y g for some other g € V? The answer is no: indeed,
|4 . 1 . L!

fo = g iff 0 — [If =gl = [ xfu(x) = xg(0)| dx = |Ixf, - xglly, that is xf, — xg. In

particular, for a suitable subsequence x f;,, 29 xg. Butxf, 2% = x}lC thus, necessarily, g = 1

a.e.. Since such g ¢ V this says ( f;;) cannot converge in V. '
ii1) Clearly

1 1
171 :J xf (0] dx < J GOl dx = IIf I
0 0

so || - ||1 s stronger than || - ||. The vice versa is false: if there exists C such that || f||; < C||f]l,
then || ,lls < Cllfull = C (1= &) But

1 1/n 1 1 1
||f,1||1:f |fn(x)|dx:J na’x+J = dx =1+ [logx];_;,, =1-log— =1+logn,
0 0 1/n X n

thus we should have 1 +logn < C (1 - zln) which is clearly impossible.
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iv) No: take (f,) as in ii). We claim it is a Cauchy sequence. Indeed for m > n,

1/ 1/ 1/
”fn—fm” _ . mx|n—m| dx+f]/:1_x|n— )lc| dx = (m_n)217+fl/;(1 —Xn) dx
= (=8 + (-] -5 - 5) — 0 — e

Since (f,) cannot be convergent, we have an example of a Cauchy sequence not having limit in
V. |

2
Exercise 41. i) Let (u,) C U be such that u, L, 4. The goal is to prove u € U that is
u(—x) = —u(x) a.e. x. Since u, € U,

u,(—x) = —u,(x), a.e. x.
L? L? L?
Now, since u, — u, also u,(-4) — u(-#) and —u, — —u, thus u(-f) = —u a.e., that is

uel.
i1) The characteristic property of I1y f is the unique element of U such that

(f =Ty f,u) =0, Yu € U.

To check that Iy f(x) = %( f(x) = f(=x)) we first notice that %( f(x) = f(=x)) € U (trivial
check). Therefore, to be the orthogonal projection of f on U we have to check that

JR (f(x) - %(f(x) —f(—x))) u(x)dx =0, Vu e U.
We notice that

Jo (£ = 3£ @) = F=xD) w0y d - =4 [ (F) + F(-0) u(x) d

=1 (IR F(x)u(x) dx + fRf(—x)u(x) dx) .

Because
= U
.[waMﬂdefowmvwﬂwf=ijOM@NWE—Jf@MUOM,
R R R R

the conclusion follows. O

Exercise 42. 10 and ii) see notes.

iii) We consider the equation

frfx)=e™.

By computing the FT to both sides we get
Frf@) =eF (@) =vre i, — [(&)=vre
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Recall now that f is a pointwise well defined continuous function. Therefore, for each ¢ € R,
we have

&) = p(&)m' e,
where ¢(&) = =1 for every £ € R. Since we can always write
p(&) = ) e B(R),

and ¢ takes values in {—1,+1}, we deduce that either ¢ = +1 or ¢ = —1. We deduce that,
necessarily,

F(&) = +n'le™5E or f(g) = —n!lte7iE
this yielding to

flx) = +al/4e™2 ) or (&) = —xll4em2%
The conclusion is: the proposed equation has exactly two L' solutions. O

Exercise 43. i) Let f(x,y) = e’ = ¢=@*+20)  Clearly £(#,y) € €(R) for every

y € R, thus f(#,y) € L'([-R, R]) for every R > 0. We have to check the behaviour at +oco:

since
2

Fayl=e ) =
it is integrable in x at +co. We conclude F is well defined for every y € R.
1) We wish to deduce

OF0) = [ 0. dv. (3

To do this we need:
e 0,f exists: we have 9, f(x,y) = e‘(xz‘yz”zxy)(Zy + i2x), this for every y € R almost
every x € R;
e |0,f(x,y)| = e eV < R = g(x) € L'(R) for every y € [-R, R].
Thus, (%) holds true for every y € [—R, R], for any R > 0, and because this last is arbitrary, we
deduce that (%) holds true for every y. In particular,

; . . X=400
0, F(y) = J e_(x+’y)22(x +iy)idx = iJ (9xe_(x+’w2 dx =i [e_(“’Y)z] =0.
R R

X=—00

Thus 8,F(y) = 0 hence F(y) = C. Since F(0) = IR e™ dx = \r we deduce F(y) =+r. O
Exercise 44. i) Let f € L?([0, +oo[). By the Cauchy—Schwarz inequality we have
+oo +00 1 1/2 / ptoo ) 1/2
= S dx < ——d d. =1- .
= [ rrwtas ([T e (] rera) <
Thus || f|| is well defined for f € V and clearly || f|| > 0. We check vanishing:
+00
|f ()l |f ()l
£l =o0. | dx =0, -

o l+x I+x

0, ae, < [f=0,ae.
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Homogeneity and triangular inequality are straightforward.
i) In 1) we proved || f|| < || f]|2 for every f € V: this says that || - ||, is stronger than || - ||.
iii) Let

1
fn(x) = @1[1/n,n] (x)

We have f, € L> C V since
oo "1 -
o= [ AP dv= [ L = logaliT, =210gn < 4e0
0 1/n

In particular, since || f,|[» — +co we conclude that (f,) < L?([0,+oco[) is not convergent
in L2. We also notice that, if x €]0, +oo[, we have % < x < nforn > N. Therefore,

fulx) = % — % =: f(x) for every x > 0. We notice that such f € V because

+0o0 1 1 y:\/)—c, x=y2 J‘+oo 1 1 Jv+oo
= — —dx’ V= —2ydy=2
171 Io L+x4/x o T2y 0

1 +y?2 dy =

yi+°° — 25 —
y=0 2
1

Vx

= 2 [arctan y] .

Furthermore, being f,,(x) = == = f(x) for x € [1/n, n], we have

1/n 1 1

! d. +J+Oo ! d
— dx — dx
1 +x+/x n L+xq/x

AR |
1511 =] sl - felde= |

= 2 [arctan y]izé/ﬁ +2 [arctan y]3=, " = 2arctan Ln + (z — arctan n) — 0.
We conclude that f, N f.
iv) Since
| £l = Jn 1 dx = 2 [arctan y]x:\/z =2 (arctan \/n — arctan L)
1/n VX(1 +x) x=l/V A
if || - || and || - ||» were equivalent, we should have

1
AC >0 : ||fll2<CI|fll, VfeV, = 210gn<2C(arctan\/ﬁ—arctanT), Vn € N.
n

Letting n — +oco we would have +co < 2C5 < +oo, which is impossible. We conclude that the
two norms are not equivalent. O

Exercise 45. i) We notice that g € €(R). Furthermore,
3¢ 3

18()] ~2e0 s
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so, in particular, g2 ~1oo .5—% is integrable at +co. Thus, g € LZ(R) and, according to the

Fourier—Plancherel theorem, it has a Fourier original f € LZ(R),

F) = 5-8(-x).

The same conclusion holds with the L! FT provided inversion formula applies, that is g,3g €
L'(R). Without computing g, it is sufficient to check if g, 0:8, ﬁsgg € L'. For example
6£(1+&2)3 — (3&2 = 1)3(1 + ¢)%2¢ 6£7 — 1887 -12
(1+&2)6 *oo £ T8
from which d;g € L' at +co0, and since it is also continuous we conclude that O:g € L'(R).
Same check for agg. Therefore, g € L'(R) and inversion formula applies, so g has a Fourier

0:8(&) =

2

original also in L!.
i1) Following the hint, we have

g :a( - ) (=2) (1 +7)2+2¢ - 2(1 46926 -2(1+¢&7) +8¢7

fleg (1+8)? (1+&£2)* (1+&2)3
667 -2
e 2g(£).
Therefore,
1 le “lx x2 Ix
g(X) ﬂz( )__( )2 Ijz( ) _?Ee ||:—Ze ||

From this, we conclude that the L' N L? Fourier original of g is

2
f(x) = —g—ﬂe_lxl. |

Exercise 46. i) Let f(x,¢&) = % We have to discuss f(#,&) € L' ([0, +oo[). Clearly
f(#,&) € ([0, +0[), thus the unique problem is to check the behaviour at x = +o0. Clearly,
f(x,&) — 0 forx — +o0, V¢ € R, but this is not sufficient to conclude integrability. We may

notice that f(x,0) = 0 thus f(#,0) € L'([0, +co[), while for & # 0,
logx 210gx

fx.) ~ >

and since log x < C+/x for suitable C, the r.h.s is integrable at +co. Thus f(#,&) € L' ([0, +oo[)
for every £ € R.
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i1) We apply the differentiation theorem:
+00
%F(©) = | ey v

provided
® O¢f(x,&) exists: indeed, O¢ f(x, &) = li?zcxz s V& eR ae. x € [0, +oof;
e there exists g = g(x) € L'([0, +co[) such that |0¢ f(x, )| < g(x): indeed,

21€x% 1
1+&2x2 1 +x2

|0 f (x,8)| =

Notice that, for & # 0,

1 21&Px* 1 21 2 1
1E1T+E2x2 1422 |€]1+x2  sl+x2

|0 f (x, )] = € L'([0,+o0[), VI¢| > &
Thus, for |£] > & we may differentiate under integral sign. Since & > 0 is arbitrary we
conclude that d¢F exists for every & # 0.

Thus

_ 2 (e (4D =2 el 1
oF =750 Gremas H= 7o (1+x2 l+§2x2) dx

_ % ([arctanx]jﬁ 0" — ¢ larctan(éx)]7Z +°°)

=7
£ 1 & &1 _
25 (5-43) =men = dn £>0
28 o) _ & &+l _
g— %+é_:%) ﬂ.ﬁﬁ_—lT_%’ §<O

We may notice that d¢F(0+) = £ thus in particular F is not differentiable at & = 0.
1ii) We have
nlog(é+1)+cy, &€>0,
F(§) =
mlog(l =¢&)+cy, €<0.
In particular F'(0+) = ¢y, F(0—) = c2. On the other side we may compute limg_,o F'(¢): to this
aim we wish to do

+00

lim F(€) = L lim /(x.8) d = J 0.dx = 0,

0
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by which it would follow ¢; = ¢ = 0. To justify the passage of limit inside integral we invoke
dominated convergence. Clearly lim¢_,o f(x,&) = f(x,0) = 0, and moreover, for |£] < 1

log(1 + £2x?) < log(1 +x?)
1 +x2 S 1 4x2

|f(x,8)] = =:g(x) € L'([0,+00[). O

Exercise 47. i) Let f € X. Since f € €'([0,1]), f* € €([0, 1]) thus || fll+ = || f'|lc is well
defined. To check that also || || is well defined we have to check that g(x) := Ifi_x)l is integrable
on [0, 1]. Clearly g € ©(]0, 1]). Since £(x) = £(0)+ ' (O)x+0(x) " ="V (O)x+0(x)
thus g(x) = |f7(0)] + 22 — | f7(0)] € R when x — O+. In particular g € F([0,1]) it is
integrable and || f|| is well defined.

Let’s now check that || - || is a norm. Clearly ||f|| > 0. Vanishing: if ||f]| = O that is
fol IfEC_X)I dx = 0, by a well known lemma Vi—x)' = 0 for all x €]0, 1] thus, in particular, f = 0 on

10, 1]. By continuity f = Oon [0, 1]. Homogeneity and triangular inequality are straightforward.
Finally, let’s check that also ||| isanorm. Clearly || f||. > 0. Vanishing: if0 = || f|l« = | f'||co
then f/ = 0 on [0, 1]. Therefore, f = C and since f(0) = 0 we conclude f = 0 on [0, 1].
Homogeneity and triangular inequality are straightforward.
ii) We have to prove that there exists a constant C such that || f|| < C||f]|.. Notice first that,
according to the fundamental theorem of integral calculus,

) = f<0>+j0 () dy = L £ dy. = 1f ()] < L Ol dy < L 1 oo dy = %1 £l

thus

1 rl
”f”:L |f ()l dx < x| £l dx = [ fll.. Vf € X.

X Jo X
iii) Let f,(x) = x" withn > 1. Clearly f, € X. We have

lxn rl
||fn||=J A P
0o X J

b

=1
x”}x

0 n x=0 n
while
1fulls = 1f7lleo = max x| = n.
We may conclude that || - || is not stronger than || - || (hence the two are not equivalent). Indeed,

if this were the case, there would be a constant C such that || f||. < C||f]| for every f € X. In
particular then

C
n=falls < Cllfall = . ¥ > 1,
which is clearly impossible. O

Exercise 48. i) About the convolution and its properties as well as proof see Lecture Notes.
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ii) Let g have a Fourier original, that is, g = ffor an f € L'(R). Then g2(¢) = (f(f))2 =
f(f)f(f) = m(f) because f € L'(R), so f * f is well defined and it belongs to L' (R).
Therefore, f * f is a Fourier original of g2, and this shows existence. The Fourier original of g2
is unique because of the injectivity of the FT.

iii) Consider the equation

+00

This is a convolution equation

_#2 2
f>x<eﬂ =xe ™.

We start noticing that ¢ must bene > 0. Indeed, if f € L'(R) is a solution, since e el (R),
f o et e L'(R) by Young’s theorem. So ﬁe‘“ﬁz e L'(R) and this is possible iff a > 0.
So, let a > 0. We recall that

ﬁ2 —_—
e 202 (§) = \/27T0'2€_%0-2§2, = e (¢) = \/je 1t
a

Since of course xe=*" € L! (R), we have
—iﬁe—“ﬁz(g) = (')ge—aﬁz(g) = ag\/je 4u$2 \/Z (——f) e 4a ,
‘ a

fe=a#(£) = —iy| == e 4,
a
Therefore, f € L' (R) is a solution iff
1 g2 1 . 5
N L

In order the r.h.s. be the FT of an L' function, according to RL lemma, it must be f(ioo) =0
which is possible iff é — 1> 0, thatis a < 1. In this case, being

from which

a
so
lfwfﬂ(é—l) DE = (ig)e P () = deF (2)
then
MGEE 2;3 G _aa)ﬂé’xe‘ﬁﬁz(f),
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from which, finally,
flx)=-

1

L}
Vara?(1 - a)



