

ANALYTICAL METHODS FOR ENGINEERING

DEC. 2021

Exercise 1. Let

$$F(\xi) := \int_0^{+\infty} \frac{e^{-\xi x^2} - e^{-x^2}}{x} dx.$$

- i) Determine the domain of definition D of F .
- ii) Determine for which $\xi \in D$ there exists $\partial_\xi F$ and compute it.
- iii) Determine $F(\xi)$ explicitly.

Exercise 2. On $C^1([0, 1])$, define

$$\|f\|_* := |f(1)| + \int_0^1 \frac{|f'(x)|}{\sqrt{x}} dx.$$

- i) Check that $\|\cdot\|_*$ is a well defined norm on V .
- ii) Prove that $\|\cdot\|_*$ is stronger than $\|\cdot\|_\infty$.
- iii) For $n \geq 1$, let

$$f_n(x) := \begin{cases} -\frac{1}{2}n^{3/2} \left(x - \frac{1}{n}\right) + n^{1/2}, & 0 \leq x \leq \frac{1}{n}, \\ \frac{1}{\sqrt{x}}, & \frac{1}{n} \leq x \leq 1. \end{cases}$$

Check that $(f_n) \subset V$, compute $\|f_n\|_*$ and $\|f_n\|_\infty$ and deduce something on $\|\cdot\|_*$ and $\|\cdot\|_\infty$.

Exercise 3. Let

$$f_a(x) := \frac{1 - \cos x}{a^2 + x^2}, \quad a \geq 0.$$

- i) Check that $f_a \in L^1(\mathbb{R})$ for every $a \geq 0$.
- ii) For $a > 0$, compute \widehat{f}_a (it may be useful to remind that $\cos x = \frac{e^{ix} + e^{-ix}}{2}$). Deduce

$$\int_0^{+\infty} f_a(x) dx.$$

- iii) Use ii) to compute

$$\int_0^{+\infty} \frac{1 - \cos x}{x^2} dx.$$

- iv) (extra question) Compute \widehat{f}_0 .

Exercise 4. Let $f_n(x) := n^{3/2} x e^{-nx}$, $x \in [0, +\infty[$.

- i) Is (f_n) point wise convergent on $[0, +\infty[$? If yes, to what?
- ii) Is $(f_n) \subset L^\infty([0, +\infty[)$? Is (f_n) convergent in $L^\infty([0, +\infty[)$ and, if yes, to what?
- iii) Is $(f_n) \subset L^1([0, +\infty[)$? Is (f_n) convergent in $L^1([0, +\infty[)$ and, if yes, to what?
- iv) Is $(f_n) \subset L^2([0, +\infty[)$? Is (f_n) convergent in $L^2([0, +\infty[)$ and, if yes, to what?

Exercise 5. Let

$$F(t) := \int_{-\infty}^{+\infty} e^{-tx^2} \frac{1 - \cos x}{x^2} dx.$$

- i) Determine the domain of definition of F .
- ii) Determine $F'(t)$ for all t for which the derivative exists.

Exercise 6. Let $H := L^2([0, 2])$ equipped with usual scalar product $\langle f, g \rangle := \int_0^2 f(x)g(x) dx$.
Let

$$U := \{f \in H : f(x) = f(2-x), \text{ a.e. } x \in [0, 2]\}.$$

- i) Check that U is a closed linear subspace of H .
- ii) Check that the orthogonal projection on U , $\Pi_U f$, is

$$\Pi_U f(x) := \begin{cases} f(x), & x \in [0, 1], \\ f(2-x), & x \in [1, 2] \end{cases}$$

JULY 2022

Exercise 7. Let

$$f_n(x) := \sqrt{n - n^2 x} \mathbf{1}_{[0, 1/n]}(x).$$

- i) Plot quickly the graph of f_n .
- ii) Is $(f_n) \subset L^1([0, 1])$? Is $(f_n) \subset L^2([0, 1])$?
- iii) Is (f_n) convergent in $L^1([0, 1])$ and, in the case, to what? Is (f_n) convergent in $L^2([0, 1])$ and, in the case, to what?

Exercise 8. Let

$$\Phi(s) := \int_0^{+\infty} e^{-sx} \frac{(\sin x)^2}{x} dx.$$

- i) Show that $\Phi(s)$ is well defined for any $s > 0$.
- ii) Show that $\lim_{s \rightarrow +\infty} \Phi(s)$ exists and determine its value.
- iii) Show that $\exists \Phi'(s)$ for any $s > 0$.
- iv) Deduce, by ii) and iii), the value of $\Phi(s)$ for $s \in]0, +\infty[$.

Useful formula: $\int e^{\alpha x} \sin(\beta x) dx = \frac{\alpha}{\alpha^2 + \beta^2} e^{\alpha x} \left(\sin(\beta x) - \frac{\beta}{\alpha} \cos(\beta x) \right)$ for $\alpha \neq 0$.

Exercise 9. Give the Definition of the Fourier Transform and of convolution product $f * g$ for $f, g \in L^1(\mathbb{R})$. Prove that

$$\widehat{f * g} = \dots$$

- i) Compute the FT of $e^{-a|x|}$, $a > 0$. Justifying carefully and invoking the necessary theorems, deduce the FT of the Cauchy distribution $\frac{1}{a^2 + x^2}$ ($a > 0$).
- ii) Use the previous facts to compute the FT of $\frac{1}{(a^2 + x^2)^2}$ ($a > 0$).

DECEMBER 2022

Exercise 10. Let $H = L^2([-1, 1])$ equipped with usual scalar product

$$\langle f, g \rangle = \int_{-1}^1 f(x)g(x) dx.$$

Define

$$S := \left\{ f \in H : \int_{-1}^0 f(x) dx = \int_0^1 f(x) dx \right\}.$$

- i) Check that S is a well defined and closed subspace of H .
- ii) Determine the orthogonal projection $\Pi_S f$ on S of a generic $f \in H$. Compute, in particular, $\Pi_S x$.

Exercise 11. Let

$$g(\xi) := \frac{\sin \xi - \xi \cos \xi}{\xi^3}, \quad \xi \in \mathbb{R} \setminus \{0\}.$$

- i) Is $g \in L^1(\mathbb{R})$? And in $L^2(\mathbb{R})$? Justify carefully.
- ii) Discuss the existence of a Fourier original for g .
- iii) Show that $\xi g(\xi) = \partial_\xi \dots$. Use this to determine a Fourier original for g . Justify carefully the general properties you use to answer.

Exercise 12. On $V := \{f \in \mathcal{C}^1([0, 1]) : f(0) = 0\}$, define

$$\|f\|_* := \sup_{t \in [0, 1]} \frac{|f(t)|}{\sqrt{t}}, \quad \|f\|_{**} := \|f'\|_\infty \equiv \max_{t \in [0, 1]} |f'(t)|.$$

- i) Check that $\|\cdot\|_*$ is well defined norm on V (it might be useful to remind that, for $f \in \mathcal{C}^1([0, 1])$, $f(t) = f(0) + f'(0)t + o(t)$ when $t \rightarrow 0$).
- ii) Check that $\|\cdot\|_{**}$ is well defined on V and it fulfills the characteristic properties of a norm.
- iii) What relations hold true between $\|\cdot\|_*$ and $\|\cdot\|_{**}$? Justify carefully.

JANUARY 2023

Exercise 13. Let $H = \{f \in L^2([0, 1]) : \exists f' \in L^2([0, 1]), f(1) = 0\}$ equipped with the scalar product

$$\langle f, g \rangle_H = \int_0^1 f'(x)g'(x) dx.$$

We accept H is a vector space with usual operations of sum and product by scalars on functions.

- i) Check that $\langle \cdot, \cdot \rangle_H$ is a well defined scalar product on H with vanishing in the weak form, that is $\langle f, f \rangle_H = 0$ iff $f = 0$ a.e..
- ii) Let

$$S := \left\{ f \in H : \int_0^1 f(x) dx = 0 \right\}.$$

Determine $v \in H$ such that $S = \text{Span}(v)^\perp$. (hint: express the characterizing condition of S in terms of the scalar product of H).

- iii) We accept H is an Hilbert space. Determine the orthogonal projection of $x - 1$ on S . Justify carefully.

Exercise 14. i) Let $f, g \in L^1(\mathbb{R})$. What is the convolution of f and g ? What important property of FT holds in connection with convolution? Write a precise statement and provide a proof of it.

Consider now the equation

$$\lambda f(x) + \int_{\mathbb{R}} \frac{f(y)}{1 + (x - y)^2} dy = \frac{1}{1 + x^2} + \frac{1}{4 + x^2}, \quad x \in \mathbb{R}.$$

- ii) Assume $f \in L^1(\mathbb{R})$ be a solution. Determine \hat{f} . Deduce for which values of λ the equation has one and only one solution.
- iii) Determine explicitly the solution in the case $\lambda = 2\pi$.

Exercise 15. Let $(f_n) \subset L^1([0, 1])$, $f_n \geq 0$ for every $n \in \mathbb{N}$. For each of the following statements, say whether it is true or false. In the first case, provide a proof, in the second provide a counterexample.

- i) If $\int_0^1 f_n \rightarrow +\infty$ then $f_n \not\rightarrow 0$ a.e.
- ii) if $f_n \rightarrow 0$ a.e. then $\int_0^1 f_n \rightarrow 0$.
- iii) if $\int_0^1 f_n \rightarrow 0$ then $f_n \rightarrow 0$ a.e.
- iv) if $\int_0^1 f_n \rightarrow +\infty$ then $\|f_n\|_\infty \rightarrow +\infty$.

JULY 2023

Exercise 16. Compute

$$\lim_{n \rightarrow +\infty} n^2 \int_0^n \frac{1 - e^{-\frac{x^2}{n^2}}}{x^2(x^2 + 1)} dx.$$

Justify carefully, quoting the general results you use. (it might be useful to know that $e^t \geq 1 + t$ for every $t \in \mathbb{R}$)

Exercise 17. Let $V := \mathcal{C}^2([0, 1])$ the set of real valued continuous functions f with f' and f'' continuous. We accept (trivial) that V is a vector space with usual operations of sum and product by scalars. On V we define

$$\|f\|_V := \|f''\|_\infty + |f'(0)| + |f(0)|.$$

- i) Check that $\|\cdot\|_V$ is a well defined norm on V .
- ii) On V we can also define the uniform norm $\|\cdot\|_\infty$. Check that $\|\cdot\|_V$ is stronger than uniform norm.
- iii) True or false: if $f_n \xrightarrow{\|\cdot\|_V} f$ then $f_n(x) \rightarrow f(x)$ for every $x \in [0, 1]$? Justify carefully.
- iv) Consider the sequence $f_n(x) := \frac{1}{n^2}x^n$. Is $(f_n) \subset V$? Is (f_n) convergent in V ? What conclusion can you draw on norms $\|\cdot\|_V$ and $\|\cdot\|_\infty$?

Exercise 18. Let

$$g(\xi) := \frac{1}{\xi} \left(\frac{a^2}{a^2 + \xi^2} - \frac{b^2}{b^2 + \xi^2} \right),$$

where $a, b > 0$ and $a \neq b$.

- i) Is $g \in L^1(\mathbb{R})$? Does g have a Fourier original? Justify carefully your answer.
- ii) Compute the FT of $\xi g(\xi)$.
- iii) Determine the Fourier original of g .

SEPTEMBER 2023

Exercise 19. Let $f \in L^1(\mathbb{R})$ be such that $xf(x) \in L^1(\mathbb{R})$. What is the FT of $xf(x)$? Provide a proof of your answer.

Let now

$$g(\xi) := \xi e^{-|\xi|}, \quad \xi \in \mathbb{R}.$$

Discuss the problem of determining a Fourier original for g .

Exercise 20. On $V = \mathcal{C}([0, 1])$ we consider

$$\|f\|_* := \int_0^1 \frac{|f(x)|}{\sqrt{x}} dx.$$

- i) Show that $\|\cdot\|_*$ is a well defined norm on V .
- ii) On V we consider also a) the uniform norm $\|\cdot\|_\infty$ and the L^1 norm $\|f\|_1 = \int_0^1 |f(x)| dx$. Establish relations among these norms and $\|\cdot\|_*$ norm, discussing also if they are equivalent or not.

Exercise 21. On $H = L^2([0, 1])$, with usual scalar product, consider

$$V := \left\{ f \in H : \int_0^1 xf(x) dx = 0, \int_0^1 x^3 f(x) dx = 0 \right\}.$$

- i) Check that V is a well defined and closed subspace of H .
- ii) Determine the orthogonal projection on V of $g(x) = x^2$.

JANUARY 2024

Exercise 22. Let

$$F(\lambda) := \int_0^{+\infty} e^{-\lambda x} \frac{\sin x}{x} dx.$$

- i) Determine the domain D of definition for F .
- ii) Discuss differentiability of F on D and compute $\partial_\lambda F$. It may be helpful to know $\int e^{\alpha x} \sin(\beta x) dx = \frac{\alpha}{\alpha^2 + \beta^2} e^{\alpha x} \left(\sin(\beta x) - \frac{\beta}{\alpha} \cos(\beta x) \right)$ for $\alpha \neq 0$.
- iii) Determine F explicitly.

Exercise 23. Let

$$V := \left\{ f \in \mathcal{C}([0, 1]) : \|f\| := \int_0^1 \frac{|f(x)|}{\sqrt{x}} dx < +\infty \right\}.$$

Accept that V is a vector space.

- i) Check that $\|\cdot\|$ is a norm on V .
- ii) On V it is also defined the uniform norm $\|f\|_\infty = \max_{x \in [0, 1]} |f(x)|$. Prove that this is stronger than $\|\cdot\|$.
- iii) Let

$$f_n(x) := \begin{cases} \sqrt[n]{n}, & 0 \leq x \leq \frac{1}{n}, \\ \frac{1}{\sqrt[n]{x}}, & \frac{1}{n} \leq x \leq 1. \end{cases}$$

Compute $\|f_n\|$ and $\|f_n\|_\infty$. What can you conclude about norms $\|\cdot\|$ and $\|\cdot\|_\infty$.**Exercise 24.** The goal is to compute the FT of $f(x) = \frac{1}{1+x^4}$.

- i) Does \widehat{f} exists? If yes, which of the following statements are true/false and why: $\widehat{f} \in L^1(\mathbb{R})$; $\widehat{f} \in L^2(\mathbb{R})$; $\widehat{f} \in \mathcal{C}^1(\mathbb{R})$; $\widehat{f} \in \mathcal{S}(\mathbb{R})$.
- ii) By reducing to suitable Cauchy distributions, compute FT of

$$\frac{1}{x^2 \pm \sqrt{2}x + 1}.$$

- iii) Noticed that $1 + x^4 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$, express $\frac{1}{1+x^4}$ in terms of $\frac{1}{x^2 \pm \sqrt{2}x + 1}$. Use this to determine \widehat{f} .

JANUARY 2024

Exercise 25. Let

$$F(\xi) := \int_{\mathbb{R}} \frac{1 - \cos(\xi x)}{x^2(x^2 + 1)} dx.$$

- i) Determine the set $D \subset \mathbb{R}$, domain of definition for F .
- ii) Determine the set $D' \subset D$ for which $\partial_{\xi} F$ and compute it.
- iii) Determine the set $D'' \subset D'$ for which there exists $\partial_{\xi}^2 F(\xi)$ and compute it.
- iv) Use FT to express $\partial_{\xi}^2 F$ and to determine F .

Exercise 26. On $V := \{f \in \mathcal{C}^1([0, 1]) : f(0) = 0\}$, we define

$$\|f\| := \max_{t \in [0, 1]} t^{1/2} |f'(t)|.$$

- i) Check that $\|\cdot\|$ is a norm on V .
- ii) Define

$$f_n(x) := \begin{cases} \frac{n^{3/4}}{4} x, & 0 \leq x \leq \frac{1}{n}, \\ x^{1/4} - \frac{3}{4n^{1/4}}, & \frac{1}{n} \leq x \leq 1. \end{cases}$$

Is $(f_n) \subset V$? If yes, is (f_n) convergent in $\|\cdot\|$ norm?

- iii) On V is naturally defined the uniform norm $\|\cdot\|_{\infty}$. Show that $\|\cdot\|$ is stronger than $\|\cdot\|_{\infty}$. Are they also equivalent? Justify carefully your answer.

Exercise 27. Let

$$H := \left\{ f : [0, +\infty[\longrightarrow \mathbb{R} : f \in L(\mathbb{R}), \int_0^{+\infty} f(x)^2 e^{-x} dx < +\infty \right\}.$$

On H we define

$$\langle f, g \rangle := \int_0^{+\infty} f(x)g(x)e^{-x} dx.$$

- i) Check that $\langle \cdot, \cdot \rangle$ is a well defined scalar product with vanishing in the form $\langle f, f \rangle = 0$ iff $f = 0$ a.e.

Accept H is Hilbert. Let $U := \{u \in H : \int_0^{+\infty} u(x)e^{-x} dx = 0\}$.

- ii) Prove that U a closed subspace of H .
- iii) Determine the orthogonal projection on U of $f(x) = e^{-2x}$.

Exercise 28. Let

$$f_n(x) := \frac{1}{x^{1+1/n}}, \quad x \in [1, +\infty[.$$

- i) Is $(f_n) \subset L^1([1, +\infty[)$? Is $(f_n) \subset L^2([1, +\infty[)$? Is $(f_n) \subset L^\infty([1, +\infty[)$? Justify carefully.
- ii) Discuss convergence of (f_n) in $L^p([1, +\infty[)$ for $p = 1, 2, \infty$.

Exercise 29. Let $\alpha \in \mathbb{C}$ and define

$$f_\alpha(x) := e^{\alpha x} 1_{[0, +\infty[}(x), \quad x \in \mathbb{R}.$$

- i) Under which conditions on $\alpha \in \mathbb{C}$ is \widehat{f}_α well defined? For such α , compute \widehat{f}_α .
- ii) Let $\beta \in \mathbb{C}$, $g_\beta(\xi) := \frac{1}{(\xi + \beta)^2}$. Determine under which conditions on $\beta \in \mathbb{C}$, function g_β has an L^1 or L^2 (or both) Fourier original.
- iii) For $\operatorname{Im} \beta > 0$, explicitly determine (if any) a Fourier original for g_β .
(hint: $g_\beta = \partial_\xi \dots$)

Exercise 30. Let

$$F(x) := \int_0^{+\infty} \frac{1 - e^{-xy^2}}{y^2} dy.$$

- i) Determine the domain D of F . Justify carefully.
- ii) [5] Discuss differentiability of F determining $D' \subset D$ for which $\exists \partial_x F(x)$ for every $x \in D'$.
- iii) Use ii) to determine F explicitly.

SEPTEMBER 2024

Exercise 31. Let

$$g(\xi) = (1 - \xi^2)1_{[-1,1]}(\xi), \xi \in \mathbb{R}.$$

- Discuss the problem of existence of a Fourier original f for g with $f \in L^1$ and/or $f \in L^2$.
Justify your answers with care.
- Determine f explicitly.

Exercise 32. On $V := \left\{ f \in \mathcal{C}^1([0, 1]) : \int_0^1 f(x) dx = 0 \right\}$ define

$$\|f\|_* := \int_0^1 |f'(x)| dx, \quad \|f\|_{**} := \|f'\|_\infty.$$

- Check that $\|\cdot\|_*$ and $\|\cdot\|_{**}$ are well defined norms on V .
- Let

$$g_n(x) := \begin{cases} \sqrt{n}x, & 0 \leq x \leq \frac{1}{n}, \\ 2\sqrt{x} - \frac{1}{\sqrt{n}}, & \frac{1}{n} \leq x \leq 1. \end{cases}$$

Determine $c_n \in \mathbb{R}$ in such a way that $f_n := g_n - c_n \in V$. Compute then $\|f_n\|_*$ and $\|f_n\|_{**}$.

- Discuss relations between $\|\cdot\|_*$ and $\|\cdot\|_{**}$.

Exercise 33. Let

$$F(x) := \int_0^{+\infty} e^{-xy} \frac{1 - \cos y}{y} dy.$$

- Determine the domain of definition of F , that is the set of $x \in \mathbb{R}$ such that $F(x)$ is well defined.
- Determine the set of x for which $\exists F'(x)$ and compute it.
- Use ii) to explicitly determine F .

Exercise 34. Let $X := L^\infty([0, +\infty[)$. For $a > 0$ define

$$\|f\|_a := \int_0^{+\infty} e^{-ax} |f(x)| dx.$$

- i) Check that $\|\cdot\|_a$ is a well defined norm on X for every $a > 0$.
- ii) Show that, for $a < b$, $\|\cdot\|_a$ is stronger than $\|\cdot\|_b$
- iii) Are $\|\cdot\|_a$ and $\|\cdot\|_b$ equivalent? Justify carefully.

Exercise 35. Let (X, \mathcal{F}, μ) be a measure space, and $H := L^2(X)$ be the Hilbert space w.r.t. the usual scalar product

$$\langle f, g \rangle_2 = \int_X f g \, d\mu$$

Let also $E \in \mathcal{F}$ and define

$$U := \{f \in H : f = 0, \text{ a.e. on } E^c\}.$$

- i) Check that U is a closed linear subspace of H .
- ii) Define $\Pi_U f := f 1_E$. Show that $\Pi_U f$ is the orthogonal projection of f on U .

Exercise 36. Let $a, b > 0$ real numbers with $a \neq b$, and

$$g_{a,b}(\xi) := \frac{e^{-a|\xi|} - e^{-b|\xi|}}{\xi}, \quad \xi \in \mathbb{R} \setminus \{0\}.$$

- i) Is $g_{a,b} \in L^1(\mathbb{R})$? Is $g_{a,b} \in L^2(\mathbb{R})$? Determine whether $g_{a,b}$ has a Fourier original $f_{a,b}$ in $L^1(\mathbb{R})$ and/or in $L^2(\mathbb{R})$.
- ii) For the case(s) (L^1 and/or L^2) for which there is a Fourier original, determine it.

FEBRUARY 2025

Exercise 37. Let

$$F(\lambda) := \int_0^{+\infty} e^{-\lambda x} \frac{\sin x}{x} dx.$$

- i) Determine $\lambda \in \mathbb{R}$ for which $F(\lambda)$ makes sense as Lebesgue integral.
- ii) Determine $\lambda \in \mathbb{R}$ for which $\exists \partial_\lambda F(\lambda)$ and compute it.
- iii) Determine $F(\lambda)$ for λ at i).

Exercise 38. Let

$$f_n(x) := n e^{-nx} (1 - e^{-x}), \quad x \in I := [0, +\infty[.$$

- i) Is (f_n) point-wise convergent?
- ii) Is (f_n) convergent in $L^\infty(I)$?
- iii) Is (f_n) convergent in $L^1(I)$?
- iv) Is (f_n) convergent in $L^2(I)$?

Exercise 39. Let

$$g(\xi) := \frac{1}{(\xi^2 + a^2)(\xi^2 + b^2)}, \quad \xi \in \mathbb{R},$$

with $a, b > 0$ and $a \neq b$.

- i) Discuss the problem of existence of a Fourier original for g in L^1 and in L^2 cases. Is the Fourier original also L^∞ ? Justify carefully and determine the Fourier original explicitly.
- ii) Show that $\#g(\#)$ has a Fourier original in L^2 and find it in term of the original f of g . Justify carefully your answer.

JULY 2025

Exercise 40. Let $V := \left\{ f \in L^1([0, 1]) : \int_0^1 x|f(x)| dx < +\infty \right\}$. We accept V is a vector space on \mathbb{R} with usual definitions of sum and product by scalars. On V we define

$$\|f\| := \int_0^1 x|f(x)| dx.$$

- i) Check that $\|\cdot\|$ is a norm on V with vanishing in the weak form $\|f\| = 0$ iff $f = 0$ a.e..
- ii) Define

$$f_n(x) := \begin{cases} n, & 0 \leq x \leq \frac{1}{n}, \\ \frac{1}{x}, & \frac{1}{n} \leq x \leq 1. \end{cases}$$

Is $(f_n) \subset V$? Is (f_n) convergent in V respect to $\|\cdot\|$? If yes, to what?

- iii) By definition, $V \subset L^1([0, 1])$, so on V we can consider also the $\|\cdot\|_1$ norm. Is there any relation between $\|\cdot\|$ and $\|\cdot\|_1$ norms? Justify carefully your answers.
- iv) Is V , equipped with $\|\cdot\|$ norm a Banach space?

Exercise 41. Let $H := L^2(\mathbb{R})$ equipped with usual scalar product $\langle f, g \rangle := \int_{\mathbb{R}} f(x)g(x) dx$. Let

$$U := \{u \in H : u(-x) = -u(x), \text{ a.e. } x > 0\}.$$

- i) Check that U is a closed linear subspace of H .
- ii) Check that the orthogonal projection on U , $\Pi_U f$, is

$$[\Pi_U f](x) := \frac{1}{2} (f(x) - f(-x)), \quad x \in \mathbb{R}.$$

Exercise 42. i) What is the convolution $f * g$ and when is it well defined and in $L^1(\mathbb{R})$?

- ii) Show a remarkable formula for the FT of $f * g$.

- iii) Given $g \in L^1(\mathbb{R})$, consider the equation in the unknown $f \in L^1(\mathbb{R})$:

$$(f * f)(x) = g(x), \quad \text{a.e. } x \in \mathbb{R}.$$

Discuss whether or not is solvable and, in this case, determine all the possible solutions when $g(x) = e^{-x^2}$.

SEPTEMBER 2025

Exercise 43 (11). Let $x \in \mathbb{R}$ be fixed and set

$$F(y) := \int_{\mathbb{R}} e^{-(x+iy)^2} dx.$$

- i) [5] Check that F is well defined for every $y \in \mathbb{R}$.
- ii) [6] Show that F is differentiable for every $y \in \mathbb{R}$, and compute $\partial_y F(y)$. Use this to deduce $F(y)$.

Exercise 44 (11). Let. We define

$$V := \left\{ f \in L([0, +\infty[) : \|f\| := \int_0^{+\infty} \frac{|f(x)|}{1+x} dx < +\infty \right\}.$$

- i) [3] Check that $\|\cdot\|$ is a well defined norm on V (that is $\|f\| < +\infty$ for every $f \in V$) with vanishing in the weak form $\|f\| = 0$ iff $f = 0$ a.e..
- ii) [2] Check that $L^2([0, +\infty[) \subset V$ and that $\|\cdot\|_2$ is stronger than $\|\cdot\|$.
- iii) [4] Let $f_n(x) := \frac{1}{\sqrt{x}} 1_{[1/n, n]}(x)$. Is $(f_n) \subset L^2([0, +\infty[)$? Is (f_n) convergent in $\|\cdot\|_2$? Is $(f_n) \subset V$? Is (f_n) convergent in $\|\cdot\|$? In case of affirmative answer(s), determine also the limit(s) function.
- iv) [2] Are $\|\cdot\|_2$ and $\|\cdot\|$ equivalent?

Exercise 45 (11). Let

$$g(\xi) := \frac{3\xi^2 - 1}{(1 + \xi^2)^3}, \quad \xi \in \mathbb{R}.$$

- i) [4] Discuss the problem of the existence of a Fourier original of g in $L^1(\mathbb{R})$ and in $L^2(\mathbb{R})$.
- ii) [7] Compute $\partial_\xi^2 \frac{1}{1+\xi^2}$ and determine a relation between this derivative and g . Use this to determine a Fourier original of g . (here ∂_ξ^2 stands for the second partial derivative respect to ξ)

Exercise 46. Let

$$F(x) := \int_0^{+\infty} \frac{\log(1+x^2y^2)}{1+y^2} dy.$$

- i) Determine the domain D of definition of F .
- ii) Determine the domain D' where F' is well defined. Is $D' = D$? Justify carefully.
- iii) Use ii) to explicitly determine F .

Exercise 47. Let $X := \{f \in \mathcal{C}^1([0, 1]) : f(0) = 0\}$ and define

$$\|f\| := \int_0^1 \frac{|f(x)|}{x} dx, \quad \|f\|_* := \|f'\|_\infty.$$

- i) Check that $\|f\|$ and $\|f\|_*$ are well defined norms on X (it might be useful to remind that $f(x) = f(0) + f'(0)x + o(x)$).
- ii) Prove that $\|\cdot\|_*$ is stronger than $\|\cdot\|$.
- iii) Compute $\|f_n\|$ and $\|f_n\|_*$ for $f_n(x) = x^n$, $n \geq 1$. What can be drawn by this calculation?

Exercise 48. .

- i) What is the convolution product $f * g$ of two functions f, g ? Under which conditions is $f * g$ well defined? Show that $\widehat{f * g} = \widehat{f}\widehat{g}$.
- ii) True or false: if g has a Fourier original and $h := g^2$, then h has a unique Fourier original. Justify your answer.
- iii) Consider the equation

$$\int_{-\infty}^{+\infty} f(x-y)e^{-y^2} dy = xe^{-ax^2}.$$

Determine for which values of a there exists a unique solution $f \in L^1(\mathbb{R})$. For such a , determine f .

SOLUTIONS

Exercise 1. i) Let

$$f(x, \xi) := \frac{e^{-\xi x^2} - e^{-x^2}}{x}, \quad x \in]0, +\infty[.$$

We have to check for which ξ we have $f(\#, \xi) \in L^1([0, +\infty[)$. Since $f(\#, \xi) \in \mathcal{C}(]0, +\infty[)$ we have to check the behaviour at $x = 0$ and $x = +\infty$. Recalling that $e^y = 1 + y + o(y)$ we have

$$f(x, \xi) = \frac{(1 - \xi x^2 + o(x^2)) - (1 - x^2 + o(x^2))}{x} = -(\xi - 1)x + o(x) \rightarrow 0, \quad x \rightarrow 0.$$

In particular, $f(\#, \xi)$ is integrable at $x = 0$ for every $\xi \in \mathbb{R}$. At $+\infty$, for $\xi > 0$ we have

$$|f(x, \xi)| \leq e^{-\xi x^2} + e^{-x^2}, \quad \forall x \geq 1,$$

and since both $e^{-\xi x^2}, e^{-x^2}$ are integrable at $+\infty$ we conclude that $f(\#, \xi)$ is integrable at $+\infty$. Thus, $f(\#, \xi) \in L^1([0, +\infty[)$ for every $\xi > 0$. For $\xi = 0$ we have

$$f(x, 0) = \frac{1 - e^{-x^2}}{x} \sim_{+\infty} \frac{1}{x}, \quad \Rightarrow \quad f(\#, 0) \notin L^1([0, +\infty[).$$

For $\xi < 0$, $f(x, \xi) \rightarrow +\infty$ for $x \rightarrow +\infty$ thus certainly $f(\#, \xi) \notin L^1([0, +\infty[)$. Conclusion: F is well defined for $\xi \in]0, +\infty[$.

ii) We apply differentiation theorem to deduce

$$\partial_\xi F(\xi) = \int_0^{+\infty} \partial_\xi f(x, \xi) \, dx.$$

To this aim we may notice that

- $\exists \partial_\xi f(x, \xi) = \frac{1}{x} e^{-\xi x^2} (-x^2) = -x e^{-\xi x^2}, \forall \xi \in \mathbb{R}, \forall x > 0$ (thus a.e. $x \in [0, +\infty[$);
- $|\partial_\xi f(x, \xi)| = x e^{-\xi x^2} \leq x e^{-\varepsilon x^2} =: g(x)$ for every $\xi \geq \varepsilon > 0, \forall x > 0$.

Since $g \in L^1([0, +\infty[)$ we may conclude that $\exists \partial_\xi F(\xi)$ for every $\xi \in [\varepsilon, +\infty[$, and this for every $\varepsilon > 0$. Since $\varepsilon > 0$ is arbitrary, we conclude that, for every $\xi > 0$,

$$\partial_\xi F(\xi) = \int_0^{+\infty} \partial_\xi f(x, \xi) \, dx = \int_0^{+\infty} -x e^{-\xi x^2} \, dx = \frac{1}{2\xi} \int_0^{+\infty} \partial_x e^{-\xi x^2} \, dx = \frac{1}{2\xi} \left[e^{-\xi x^2} \right]_{x=0}^{x=+\infty} = -\frac{1}{2\xi}.$$

iii) Since

$$\partial_\xi F(\xi) = -\frac{1}{2\xi}, \quad \Rightarrow \quad F(\xi) = -\frac{1}{2} \log \xi + c, \quad \forall \xi > 0.$$

Clearly $F(1) = 0$ by which $c = 0$. \square

Exercise 2. i) If $f \in \mathcal{C}^1([0, 1])$, $f' \in \mathcal{C}([0, 1])$ thus, in particular, $|f'(x)| \leq \|f'\|_\infty$ for every $x \in [0, 1]$. Therefore

$$\int_0^1 \frac{|f'(x)|}{\sqrt{x}} dx \leq \int_0^1 \frac{\|f'\|_\infty}{\sqrt{x}} dx \leq \|f'\|_\infty \int_0^1 \frac{1}{\sqrt{x}} dx < +\infty.$$

This shows that $\|f\|_*$ is well defined for every $f \in V$. Clearly, $\|f\|_* \geq 0$. We have to check the characteristic properties of any norm:

- vanishing: $\|f\|_* = 0$ iff $f(1) = 0$ and $\int_0^1 \frac{|f'(x)|}{\sqrt{x}} dx = 0$. By this $f' \equiv 0$ on $[0, 1]$, thus f is constant, and since $f(1) = 0$ we conclude $f \equiv 0$.
- homogeneity: $\|\alpha f\|_* = |\alpha f(1)| + \int_0^1 \frac{|\alpha f'(x)|}{\sqrt{x}} dx = |\alpha| \left(|f(1)| + \int_0^1 \frac{|f'(x)|}{\sqrt{x}} dx \right) = |\alpha| \|f\|_*$.
- triangular inequality: straightforward.

ii) We have to prove that

$$\exists C > 0, : \|f\|_\infty \leq C \|f\|_*, \forall f \in V.$$

Let $f \in V = \mathcal{C}^1([0, 1])$. Notice that, according to the Fundamental Theorem of Integral Calculus,

$$f(1) - f(x) = \int_x^1 f'(y) dy, \implies f(x) = f(1) - \int_x^1 f'(y) dy.$$

Therefore

$$|f(x)| \leq |f(1)| + \int_x^1 |f'(y)| dy \leq |f(1)| + \int_0^1 |f'(y)| dy \leq |f(1)| + \int_0^1 \frac{|f'(y)|}{\sqrt{y}} dy = \|f\|_*.$$

By this

$$\|f\|_\infty = \max_{x \in [0, 1]} |f(x)| \leq \|f\|_*.$$

iii) Easily $f_n \in \mathcal{C}([0, 1])$ and since

$$f'_n(x) = \begin{cases} -\frac{1}{2}n^{3/2}, & 0 \leq x \leq \frac{1}{n}, \\ -\frac{1}{2}x^{-3/2}, & \frac{1}{n} < x \leq 1, \end{cases}$$

easily we see that $f'_n \in \mathcal{C}([0, 1])$, thus, in conclusion, $f_n \in V$ for every n . Computing norms, since $f'_n < 0$ we have

$$\|f_n\|_\infty = \max_{x \in [0, 1]} |f_n(x)| = |f_n(0)| = \frac{1}{2}n^{1/2}.$$

On the other hand

$$\begin{aligned}
\|f_n\|_* &= 1 + \int_0^1 \frac{|f'_n(x)|}{\sqrt{x}} dx = 1 + \frac{1}{2} n^{3/2} \int_0^{1/n} \frac{1}{\sqrt{x}} dx + \frac{1}{2} \int_{1/n}^1 \frac{x^{-3/2}}{x^{1/2}} dx \\
&= 1 + n^{3/2} \left[x^{1/2} \right]_{x=0}^{x=1/n} + \frac{1}{2} \left[-x^{-1} \right]_{x=1/n}^{x=1} \\
&= 1 + n^{1/2} + \frac{1}{2} (n-1).
\end{aligned}$$

By this it follows that $\|\cdot\|_\infty$ and $\|\cdot\|_*$ cannot be equivalent. Otherwise, there would be a constant C such that

$$\|f_n\|_* \leq C \|f_n\|_\infty, \forall n, \implies 1 + n^{1/2} + \frac{1}{2} (n-1) \leq \frac{C}{2} n^{1/2},$$

which is manifestly impossible. \square

Exercise 3. i) We have

$$|f_a(x)| \leq \frac{1}{a^2 + x^2} \in L^1(\mathbb{R}), \forall a > 0.$$

For $a = 0$ this bound cannot be used globally, but since

$$|f_0(x)| \leq \frac{1}{x^2},$$

integrability at $\pm\infty$ is ensured. It remains to check the behaviour at $x = 0$: since $\cos x = 1 - \frac{x^2}{2} + o(x^2)$,

$$f_0(x) = \frac{1 - \left(1 - \frac{x^2}{2} + o(x^2)\right)}{x^2} = \frac{\frac{x^2}{2} + o(x^2)}{x^2} \sim_0 \frac{1}{2},$$

thus f_0 is integrable also at $x = 0$. We conclude $f_0 \in L^1(\mathbb{R})$.

ii) To compute \widehat{f}_a we notice that

$$\widehat{f}_a(\xi) = \widehat{\frac{1}{a^2 + \sharp^2}}(\xi) - \cos \widehat{\frac{1}{a^2 + \sharp^2}}(\xi).$$

Recall that

$$\widehat{\frac{1}{a^2 + \sharp^2}}(\xi) = \frac{1}{2a} e^{-a|\xi|}.$$

Moreover, $\cos x = \frac{1}{2} (e^{ix} + e^{-ix})$ thus

$$\widehat{\cos \sharp g}(\xi) = \frac{1}{2} \left(\widehat{e^{i\sharp} g}(\xi) + \widehat{e^{-i\sharp} g}(\xi) \right) = \frac{1}{2} (\widehat{g}(\xi - 1) + \widehat{g}(\xi + 1)).$$

Hence

$$\widehat{\cos \sharp \frac{1}{a^2 + \sharp^2}}(\xi) = \frac{1}{2} \left(\frac{1}{2a} e^{-a|\xi-1|} + \frac{1}{2a} e^{-a|\xi+1|} \right).$$

In conclusion

$$\widehat{f}_a(\xi) = \frac{1}{2a} \left(e^{-a|\xi|} - \frac{1}{2} (e^{-a|\xi-1|} + e^{-a|\xi+1|}) \right)$$

Finally, being f_a even,

$$\int_0^{+\infty} f_a(x) dx = \frac{1}{2} \int_{-\infty}^{+\infty} f_a(x) dx = \frac{1}{2} \widehat{f}_a(0) = \frac{1}{4a} \left(1 - \frac{1}{2} (e^{-a} + e^{-a}) \right) = \frac{1 - e^{-a}}{4a}.$$

iii) Ideally, we have to take $a = 0$. We consider

$$\lim_{a \rightarrow 0+} \int_0^{+\infty} f_a(x) dx = \lim_{a \rightarrow 0+} \frac{1 - e^{-a}}{4a} = \frac{1}{4}.$$

Let us check that

$$\lim_{a \rightarrow 0+} \int_0^{+\infty} f_a(x) dx = \int_0^{+\infty} \lim_{a \rightarrow 0+} f_a(x) dx = \int_0^{+\infty} f_0(x) dx.$$

The unique issue concerns the swap between limit and integral. This might be ensured by both monotone or dominated convergence. Clearly

$$\lim_{a \rightarrow 0+} f_a(x) = f_0(x), \quad \forall x > 0.$$

Moreover

$$|f_a(x)| = \frac{|1 - \cos x|}{a^2 + x^2} \leq \frac{|1 - \cos x|}{x^2} =: g(x) \in L^1([0, +\infty[).$$

By this the conclusion follows.

iv). To compute $\widehat{f}_0(\xi)$ we follow the idea exploited in iii). First:

$$\widehat{f}_0(\xi) = \int_{\mathbb{R}} f_0(x) e^{-i\xi x} dx = \int_{\mathbb{R}} \lim_{a \rightarrow 0+} f_a(x) e^{-i\xi x} dx = \lim_{a \rightarrow 0+} \int_{\mathbb{R}} f_a(x) e^{-i\xi x} dx.$$

Last identity must be justified applying a limit theorem. By what we checked in Q3 we may easily see that dominated convergence applies: indeed

$$|f_a(x) e^{-i\xi x}| = |f_a(x)| \leq g(x).$$

Therefore

$$\begin{aligned} \widehat{f}_0(\xi) &= \lim_{a \rightarrow 0+} \widehat{f}_a(\xi) = \lim_{a \rightarrow 0+} \left(\frac{1}{2a} \left(e^{-a|\xi|} - \frac{1}{2} (e^{-a|\xi-1|} + e^{-a|\xi+1|}) \right) \right) \\ &\stackrel{(H)}{=} \frac{1}{2} \lim_{a \rightarrow 0+} \left(-|\xi| e^{-a|\xi|} - \frac{1}{2} \left(-|\xi-1| e^{-a|\xi-1|} - |\xi+1| e^{-a|\xi+1|} \right) \right) \\ &= -\frac{1}{2} \left(|\xi| - \frac{1}{2} (|\xi-1| + |\xi+1|) \right) \\ &= \frac{1}{2} (1 - |\xi|) 1_{[-1,1]}(\xi). \quad \square \end{aligned}$$

Exercise 4. i) For $x = 0$, $f_n(0) = 0 \rightarrow 0$. For $x > 0$,

$$\lim_{n \rightarrow +\infty} f_n(x) = x \lim_{n \rightarrow +\infty} \frac{n^{3/2}}{e^{nx}} = 0,$$

being $n^{3/2} = o(e^{nx})$. Thus f_n converges point wise to 0 on $[0, +\infty[$.

ii) Clearly $f_n(x) \geq 0$ on $[0, +\infty[$. Moreover

$$f'_n(x) = n^{3/2} (e^{-nx} - nxe^{-nx}) = n^{3/2} e^{-nx} (1 - nx) \geq 0, \iff 1 - nx \geq 0, \iff x \leq \frac{1}{n}.$$

Thus f_n attains a global maximum at $x = \frac{1}{n}$. Therefore

$$\|f_n\|_\infty = \sup_{[0, +\infty[} |f_n(x)| = f_n\left(\frac{1}{n}\right) = n^{1/2} e^{-1} < +\infty,$$

that is $(f_n) \subset L^\infty([0, +\infty[$. However, since $\|f_n\|_\infty = \frac{\sqrt{n}}{e} \rightarrow +\infty$, (f_n) cannot converge in L^∞ .

iii) Let's compute

$$\|f_n\|_1 = \int_0^{+\infty} |f_n(x)| dx = \frac{1}{\sqrt{n}} \int_0^{+\infty} nxe^{-nx} d(nx) = \frac{1}{\sqrt{n}} \int_0^{+\infty} ye^{-y} dy < +\infty,$$

thus $(f_n) \subset L^1([0, +\infty[)$. By this it follows also that $f_n \xrightarrow{L^1} 0$ because

$$\|f_n\|_1 = \frac{C}{\sqrt{n}} \rightarrow 0.$$

iv) Let's compute

$$\|f_n\|_2^2 = \int_0^{+\infty} n^3 x^2 e^{-2nx} dx \stackrel{y=nx}{=} \int_0^{+\infty} y^2 e^{-2y} dy < +\infty,$$

thus $(f_n) \subset L^2([0, +\infty[)$. If $f_n \xrightarrow{L^2} f$, then there would be (f_{n_k}) such that $f_{n_k} \rightarrow f$ a.e. and since $f_n \rightarrow 0$ everywhere, we conclude $f = 0$ a.e.. Thus the unique possibility is $f_n \xrightarrow{L^2} 0$. However, $\|f_n - 0\|_2 = \|f_n\|_2 \equiv C > 0 \not\rightarrow 0$. \square

Exercise 9. See LN for the Definitions and proofs, and of i).

ii) We have

$$\frac{1}{a^2 + x^2} = \frac{1}{2a} \widehat{e^{-a|\#|}}\left(\frac{x}{2\pi}\right), \implies \frac{1}{(a^2 + x^2)^2} = \frac{1}{4a^2} \widehat{e^{-a|\#|} * e^{-a|\#|}}\left(\frac{x}{2\pi}\right).$$

Now, recall that in general, for the 1-dim FT

$$\widehat{f\left(\frac{\#}{\lambda}\right)}(\xi) = |\lambda| \widehat{f}(\lambda \xi)$$

so

$$\widehat{\frac{1}{(a^2 + \sharp^2)^2}}(\xi) = \frac{2\pi}{4a^2} \widehat{e^{-a|\sharp|}} * \widehat{e^{-a|\sharp|}}(2\pi\xi) = \frac{\pi}{2a^2} e^{-a|\sharp|} * e^{-a|\sharp|}(-2\pi\xi),$$

thanks to the inversion formula. To close the calculation, we need to compute the convolution

$$e^{-a|\sharp|} * e^{-a|\sharp|}(x) = \int_{\mathbb{R}} e^{-a|x-y|} e^{-a|y|} dy.$$

Easily we see that, by changing x with $-x$ the output doesn't change, so we can consider the case $x \geq 0$, for $x < 0$ we will induce the value by symmetry. We have then

$$\begin{aligned} e^{-a|\sharp|} * e^{-a|\sharp|}(x) &= \int_{-\infty}^0 e^{-a(x-y)} e^{ay} dy + \int_0^x e^{-a(x-y)} e^{-ay} dy + \int_x^{+\infty} e^{a(x-y)} e^{-ay} dy \\ &= e^{-ax} \int_{-\infty}^0 e^{2ay} dy + e^{-ax} \int_0^x dy + e^{ax} \int_x^{+\infty} e^{-2ay} dy \\ &= e^{-ax} \left[\frac{e^{2ay}}{2a} \right]_{y=-\infty}^{y=0} + xe^{-ax} + e^{ax} \left[-\frac{e^{-2ay}}{2a} \right]_{y=x}^{y=+\infty} \\ &= e^{-ax} \frac{1}{2a} + xa^{-ax} + \frac{e^{-ax}}{2a} = \frac{e^{-ax}}{a} (1 + ax), \end{aligned}$$

being $a > 0$. Symmetrizing,

$$e^{-a|\sharp|} * e^{-a|\sharp|}(x) = \frac{e^{-a|x|}}{a} (1 + a|x|),$$

so we conclude that

$$\widehat{\frac{1}{(a^2 + \sharp^2)^2}}(\xi) = \frac{\pi}{2a^3} e^{-2\pi a |\xi|} (1 + 2\pi a |\xi|). \quad \square$$

Exercise 10. i) We notice that

$$\int_{-1}^0 f = \int_0^1 f, \iff \int_{-1}^1 f(1_{[-1,0]} - 1_{[0,1]}) = 0,$$

from which, denoted by $u := 1_{[-1,0]} - 1_{[0,1]}$ we have

$$S = \{f \in H : \langle f, u \rangle = 0\} = \text{Span}(u)^\perp.$$

Since the orthogonal space of any set U is a closed linear sub-space of H we conclude that S is closed.

ii) Since H is Hilbert and S is closed, there exists $\Pi_S f$ for every $f \in H$. Let $U := \text{Span}(u)$. Then

$$\Pi_S f = f - \Pi_U f,$$

and since

$$\Pi_U f = \langle f, \frac{u}{\|u\|} \rangle \frac{u}{\|u\|} = \frac{1}{\|u\|^2} \langle f, u \rangle u,$$

with

$$\|u\|^2 = \int_{-1}^1 u^2 = \int_{-1}^1 1 = 2,$$

we get

$$\Pi_S f = f - \frac{1}{2} \langle f, u \rangle u.$$

In particular,

$$\Pi_S x = x - \frac{1}{2} \langle x, u \rangle u = x - \frac{1}{2} \int_{-1}^1 (-|x|) dx u = x + \frac{1}{2} u. \quad \square$$

Exercise 11. i) Clearly $g \in \mathcal{C}(\mathbb{R} \setminus \{0\})$. At $\xi = 0$, recalling that

$$\sin \xi = \xi - \frac{\xi^3}{6} + o(\xi^3), \quad \cos \xi = 1 - \frac{\xi^2}{2} + o(\xi^2),$$

we have

$$g(\xi) = \frac{\xi - \frac{\xi^3}{6} + o(\xi^3) - \xi + \frac{\xi^3}{2} + o(\xi^3)}{\xi^3} = \frac{1}{3} + \frac{o(\xi^3)}{\xi^3} \xrightarrow{\xi \rightarrow 0} \frac{1}{3},$$

thus g can be extended by continuity at $\xi = 0$. In other words, we may consider g as a continuous function on \mathbb{R} , integrable on every $[a, b] \subset \mathbb{R}$. Hence, for the integrability on \mathbb{R} , we have to check the behaviour at $\pm\infty$. Here we have

$$|g(\xi)| \leq \frac{1 + |\xi|}{|\xi^3|} \sim_{\pm\infty} \frac{1}{|\xi|^2},$$

from which we deduce integrability at $\pm\infty$. In conclusion, $g \in L^1(\mathbb{R})$. From same arguments we have that $f \in L^2([a, b])$, for every $[a, b]$ and since

$$|g(\xi)|^2 \leq \left(\frac{1 + |\xi|}{|\xi^3|} \right)^2 \sim_{\pm\infty} \frac{1}{|\xi|^4},$$

we deduce that $|g|^2$ is integrable, thus $g \in L^2(\mathbb{R})$.

ii) According to the inversion formula, $g = \widehat{f}$ provided g and \widehat{g} are both $L^1(\mathbb{R})$ functions. We remind that this last follows if $g, g', g'' \in L^1(\mathbb{R})$. About g , this has been checked in Q1. We check for g' (the check for g'' being similar). We have

$$g'(\xi) = \frac{\xi^3(\xi \sin \xi) - 3\xi^2(\sin \xi - \xi \cos \xi)}{\xi^6} = \frac{\xi^2 \sin \xi - 3(\sin \xi - \xi \cos \xi)}{\xi^4}.$$

At $\xi = 0$ we have

$$g'(\xi) = \frac{\xi^2 \left(\xi - \frac{\xi^3}{6} + o(\xi^3) \right) - 3 \left(\xi - \frac{\xi^3}{6} + \frac{\xi^5}{5!} + o(\xi^5) - \xi + \frac{\xi^3}{2} - \frac{\xi^5}{24!} \right)}{\xi^4} = c\xi + o(\xi),$$

thus g' is continuous at $\xi = 0$. At $\pm\infty$, $|g'(\xi)| \leq \frac{a|\xi|^4+b}{|\xi|^6} \sim \frac{C}{|\xi|^2}$, that is $g' \in L^1(\mathbb{R})$. A similar check can be made for g'' . We conclude that $\widehat{g} \in L^1$, hence inversion formula applies.

The existence of an L^2 Fourier original is much simpler: since $g \in L^2(\mathbb{R})$ then, by the Fourier-Plancherel theorem, $g = \widehat{f}$ for some $f \in L^2(\mathbb{R})$.

iii) Following the hint, we notice that

$$\xi g(\xi) = -\partial_\xi \frac{\sin \xi}{\xi} = -\frac{1}{2} \partial_\xi \widehat{\text{rect}_1}(\xi) = \frac{1}{2} i \widehat{i \bullet \text{rect}_1}(\xi) = \frac{i}{2} \widehat{\bullet \text{rect}_1}(\xi).$$

Now, if $g = \widehat{f}$,

$$i\xi g(\xi) = i\xi \widehat{f}(\xi) = \widehat{f}'(\xi),$$

from which

$$\widehat{f}'(\xi) = -\frac{1}{2} \widehat{\bullet \text{rect}_1}(\xi),$$

and, by uniqueness of the FT,

$$f'(x) = -\frac{1}{2} x \text{rect}_1(x).$$

From this, it follows that f is constant on $]-\infty, -1]$ and on $[1, +\infty[$ and since $f \in L^1(\mathbb{R})$, $f \equiv 0$ on these intervals. Moreover, for $x \in [-1, 1]$

$$f(x) = f(x) - f(-1) = \int_{-1}^x -\frac{1}{2} y \, dy = -\frac{1}{4} (x^2 - 1).$$

Thus

$$f(x) = \frac{1-x^2}{4} \mathbf{1}_{[-1,1]}(x). \quad \square$$

Exercise 12. i) Since $f(t) = f(0) + f'(0)t + o(t) = f'(0)t + o(t)$ for $f \in V$, we have

$$\frac{|f(t)|}{\sqrt{t}} = |f'(0)|\sqrt{t} + \frac{o(t)}{\sqrt{t}} \longrightarrow 0, \quad t \longrightarrow 0.$$

Thus $\|f\|_*$ is well posed. Clearly positivity holds. Vanishing:

$$\|f\|_* = 0, \iff \sup_{t \in]0,1]} \frac{|f(t)|}{\sqrt{t}} = 0, \iff \frac{|f(t)|}{\sqrt{t}} = 0, \quad t \in]0,1], \iff f(t) = 0, \quad t \in]0,1],$$

and since $f(0) = 0$ ($f \in V$) we conclude $f \equiv 0$ on $[0, 1]$. Homogeneity and triangular inequality are straightforward.

ii) Since $f \in V$ implies, in particular, $f \in \mathcal{C}^1([0, 1])$, $\|f\|_{**} = \|f'\|_\infty$ is well defined ($f' \in \mathcal{C}([0, 1])$). Positivity is evident. Vanishing:

$$\|f\|_{**} = \|f'\|_\infty = 0, \iff f' \equiv 0, \iff f \equiv C,$$

for some constant C . Since $f(0) = 0$ we deduce $C = 0$ and $f \equiv 0$ on $[0, 1]$. Homogeneity and triangular inequality are obvious consequences of linearity of the derivative and analogous properties of $\|\cdot\|_\infty$ norm.

iii) We claim that $\|\cdot\|_{**}$ is stronger than $\|\cdot\|_*$ but they are not equivalent. Indeed: from fundamental thm of integral calculus, for $f \in V$,

$$f(t) = f(t) - f(0) = \int_0^t f'(s) \, ds,$$

from which

$$|f(t)| \leq \int_0^t |f'(s)| \, ds \leq \int_0^t \max_{[0,1]} |f'| \, ds = \|f\|_{**} t, \quad \forall t \in [0, 1].$$

Thus

$$\max_{t \in [0,1]} \frac{|f(t)|}{\sqrt{t}} \leq \max_{t \in [0,1]} \sqrt{t} \|f\|_{**} = 1 \cdot \|f\|_{**}.$$

The vice versa does not hold. Indeed, we may take $f_n(t) = t^n$. Clearly $f_n \in V$ for every $n \geq 1$. We have

$$\|f_n\|_* = \max_{t \in [0,1]} \frac{|t^n|}{\sqrt{t}} = \max_{t \in [0,1]} t^{n-1/2} = 1, \quad \|f_n\|_{**} = \max_{t \in [0,1]} |nt^{n-1}| = n.$$

From this we draw that there cannot be a constant c such that $\|f_n\|_{**} \leq c\|f\|_*$ for every f , otherwise

$$n = \|f_n\|_{**} \leq c\|f_n\|_* = c, \quad \forall n \in \mathbb{N}, \quad n \geq 1,$$

which is manifestly impossible. \square

Exercise 13. i) We check first that $\langle \cdot, \cdot \rangle$ is well defined. Indeed, this is the standard $L^2([0, 1])$ scalar product of f', g' . Since they are assumed to be in H , $f', g' \in L^2([0, 1])$, thus $\langle f, g \rangle_H$ makes sense. We check now the characteristic properties of a scalar product:

- (positivity) $\langle f, f \rangle_H = \int_0^1 (f')^2 \, dx \geq 0$.
- (vanishing) $\langle f, f \rangle_H = 0$ iff $\int_0^1 (f')^2 \, dx = 0$. Since $(f')^2 \geq 0$, by a well known result, $(f')^2 = 0$ a.e., that is $f' = 0$ a.e., hence f is a.e. constant and since $f(1) = 0$ we conclude $f = 0$ a.e.
- (homogeneity) $\langle \lambda f, g \rangle_H = \int_0^1 (\lambda f)' g' \, dx = \int_0^1 \lambda f' g' \, dx = \lambda \langle f, g \rangle_H$.
- (symmetry) evident.

ii) We notice that

$$\begin{aligned} \int_0^1 f(x) \, dx &= \int_0^1 (x)' f(x) \, dx \stackrel{\text{parts}}{=} [xf(x)]_{x=0}^{x=1} - \int_0^1 x f'(x) \, dx = - \int_0^1 \left(\frac{x^2}{2}\right)' f'(x) \, dx \\ &= - \left\langle \frac{x^2-1}{2}, f \right\rangle_H. \end{aligned}$$

Thus

$$S = \{f \in H : \langle \sharp^2 - 1, f \rangle_H = 0\}.$$

Thus $v = x^2 - 1$.

iii) Let $V := \text{Span}(x^2 - 1) = S^\perp$. This is a one dimensional space, hence it is closed. We have

$$f = \Pi_S f + \Pi_V f, \forall f \in H, \implies \Pi_S f = f - \Pi_V f.$$

Π_V is easy:

$$\Pi_V f = \langle f, \frac{x^2 - 1}{\|\sharp^2 - 1\|_H} \rangle_H \frac{x^2 - 1}{\|\sharp^2 - 1\|_H} = \frac{1}{\|\sharp^2 - 1\|_H^2} \langle x^2 - 1, f \rangle_H x^2.$$

We have

$$\|\sharp^2 - 1\|_H^2 = \langle x^2 - 1, x^2 - 1 \rangle_H = \int_0^1 4x^2 dx = 4 \left[\frac{x^3}{3} \right]_{x=0}^{x=1} = \frac{4}{3}.$$

Thus

$$\Pi_V f = \frac{\sqrt{3}}{2} \langle f, x^2 - 1 \rangle_H (x^2 - 1).$$

If $f = x - 1 (\in H)$,

$$\langle x - 1, x^2 - 1 \rangle_H = \int_0^1 1 \cdot 2x dx = [x^2]_{x=0}^{x=1} = 1.$$

Therefore

$$\Pi_V(\sharp - 1) = \frac{\sqrt{3}}{2} (x^2 - 1),$$

and

$$\Pi_S(\sharp - 1) = x - 1 - \Pi_V(\sharp - 1) = x - 1 - \frac{\sqrt{3}}{2} (x^2 - 1) = (x - 1) \left(1 - \frac{\sqrt{3}}{2} (x + 1) \right). \quad \square$$

Exercise 14. i) See Lecture Notes.

ii) Let $g_a(x) = \frac{1}{a^2+x^2}$ the Cauchy distribution. We may represent the equation under the form

$$\lambda f(x) + f * g_1(x) = g_1(x) + g_2(x).$$

If $f \in L^1(\mathbb{R})$ is a solution,

$$\lambda \widehat{f}(\xi) + \widehat{f}(\xi) \widehat{g}_1(\xi) = \widehat{g}_1(\xi) + \widehat{g}_2(\xi).$$

Now, remind that, for $a > 0$,

$$\widehat{g}_a(\xi) = \frac{\pi}{a} e^{-a|\xi|}.$$

Thus, we obtain the following equation for \widehat{f} :

$$\widehat{f}(\xi) \left(\lambda + \pi e^{-|\xi|} \right) = \pi e^{-|\xi|} + \frac{\pi}{2} e^{-2|\xi|} = \pi e^{-|\xi|} \left(1 + \frac{1}{2} e^{-|\xi|} \right),$$

that is

$$\widehat{f}(\xi) = \pi e^{-|\xi|} \frac{1 + \frac{1}{2}e^{-|\xi|}}{\lambda + \pi e^{-|\xi|}}.$$

Now,

- if $\lambda = 0$ we obtain

$$\widehat{f}(\xi) = 1 + \frac{1}{2}e^{-|\xi|},$$

in particular $\widehat{f}(\xi) \rightarrow 1$ when $\xi \rightarrow \pm\infty$, according to the RL lemma \widehat{f} cannot be a FT of an L^1 function. This means that for $\lambda = 0$ the equation has no solutions in L^1 .

- if $\lambda < 0$ we see that the denominator of \widehat{f} vanishes at $\xi = \pm \log(-\frac{\lambda}{\pi})$, in particular \widehat{f} is unbounded at these points, again in contradiction with RL lemma. In particular, no L^1 solution is possible for $\lambda < 0$.
- if $\lambda > 0$ then $\widehat{f} \in \mathcal{C}(\mathbb{R})$, it vanishes at $\pm\infty$ and since

$$\widehat{f}(\xi) \sim_{\pm\infty} \frac{\pi}{\lambda} e^{-|\xi|},$$

we have $\widehat{f} \in L^1$, thus equation makes sense and, by the inversion formula, it has a unique solution

$$f(x) = \frac{1}{2\pi} \widehat{f}(-x) = \frac{1}{4} e^{-|\#|} \widehat{\frac{2 + e^{-|\#|}}{\lambda + \pi e^{-|\#|}}}(-x).$$

iii) For $\lambda = 2\pi$ we have

$$f(x) = \frac{1}{4\pi} e^{-|\#|} \widehat{\frac{2 + e^{-|\#|}}{2 + e^{-|\#|}}}(-x) = \frac{1}{4\pi} e^{-|\#|}(-x) = \frac{1}{4\pi} \frac{2}{1 + (-x)^2} = \frac{1}{2\pi} \frac{1}{1 + x^2}. \quad \square$$

Exercise 15. i) False: take $f_n = n^2 1_{[0, 1/n]}$. Then

$$\int_0^1 f_n = n^2 \frac{1}{n} = n \rightarrow +\infty,$$

but, for every $x > 0$ fixed, as soon as $\frac{1}{n} < x$ (that is $n > [1/x] + 1$) we have $f_n(x) = 0 \rightarrow 0$.

ii) False: $f_n = \sqrt{n} 1_{[0, 1/n]}$, same arguments of the previous example.

iii) False: see the example shown in class of a sequence $(f_n) \subset L^1([0, 1])$ such that $f_n \xrightarrow{L^1} 0$ but $(f_n(x))$ is not convergent for every $x \in [0, 1]$.

iv) True: if $\|f_n\|_\infty \not\rightarrow +\infty$ it means that there exists a constant K such that $\|f_n\|_\infty \leq K$ for infinitely many n . For these n ,

$$\int_0^1 f_n \leq \int_0^1 \|f_n\|_\infty = \|f_n\|_\infty \leq K,$$

so, in particular, $\int_0^1 f_n \not\rightarrow +\infty$. \square

Exercise 17. i) Since $f \in V = \mathcal{C}^2([0, 1])$, $f'' \in \mathcal{C}([0, 1])$ thus uniform norm $\|f''\|_\infty$ makes sense. Also $f'(0)$ makes sense thus $\|f\|_V$ is well defined. Let's check the basic properties of a norm. Vanishing: $\|f\|_V = 0$ iff $\|f''\|_\infty + |f'(0)| + |f(0)| = 0$. Since this is the sum of positive quantities, it can be 0 iff $\|f''\|_\infty = |f'(0)| = |f(0)| = 0$, that is $f'' \equiv 0$ and $f'(0) = 0$, $f(0) = 0$. From $f'' \equiv 0$ we deduce f' constant, but since $f'(0) = 0$ we have $f' \equiv 0$. Therefore f is constant, and since also $f(0) = 0$ we deduce $f \equiv 0$. Homogeneity and triangular inequality are straightforward.

ii) We have to show that

$$\exists C > 0, : \|f\|_\infty \leq C\|f\|_V, \forall f \in V.$$

Let's bound $|f(x)|$ by f'' . By the fundamental formula of Integral Calculus,

$$f(x) = f(0) + \int_0^x f'(y) dy,$$

and applying the same to f' ,

$$f'(y) = f'(0) + \int_0^y f''(z) dz,$$

thus

$$f(x) = f(0) + \int_0^x \left(f'(0) + \int_0^y f''(z) dz \right) dy = f(0) + f'(0)x + \int_0^x \int_0^y f''(z) dz dy.$$

Therefore,

$$|f(x)| \leq |f(0)| + |f'(0)|x + \int_0^x \int_0^y |f''(z)| dz dy$$

and recalling that $\|f\|_\infty = \max_{x \in [0, 1]} |f(x)|$, we get

$$\|f\|_\infty \leq |f(0)| + |f'(0)| + \int_0^1 \int_0^1 \|f''\|_\infty dz dy = |f(0)| + |f'(0)| + \|f''\|_\infty = \|f\|_V.$$

iii) True: since $f_n \xrightarrow{\|\cdot\|_V} f$ implies $f_n \xrightarrow{\|\cdot\|_\infty} f$ and this last implies pointwise convergence, we deduce that also V norm convergence implies pointwise convergence.

iv) Clearly $f_n(x) = \frac{1}{n^2}x^n \in \mathcal{C}^2([0, 1]) = V$. Notice that $f_n(x) \rightarrow 0$, for every $x \in [0, 1]$.

Thus, by iii), if $f_n \xrightarrow{\|\cdot\|_V} f$, necessarily $f = 0$. However,

$$\|f_n - 0\|_V = \|f_n\|_V = |f_n(0)| + |f'_n(0)| + \|f''_n\|_\infty,$$

and since $f'_n(x) = \frac{1}{n}x^{n-1}$ and $f''_n(x) = \frac{n-1}{n}x^{n-2}$, we deduce $f_n(0) = f'_n(0) = 0$ for every $n \geq 2$ and

$$\|f''_n\|_\infty = \max_{x \in [0, 1]} \frac{n-1}{n}|x^n| = \frac{n-1}{n} \rightarrow 1,$$

thus (f_n) cannot converge to 0 in V . Since this is the unique possibility, we deduce that (f_n) is not convergent in V . However clearly, $\|f_n\|_\infty = \max_{x \in [0,1]} \frac{1}{n^2} |x^n| = \frac{1}{n^2} \rightarrow 0$, thus $f_n \xrightarrow{\|\cdot\|_\infty} 0$. We deduce that the two norm $\|\cdot\|_V$ and $\|\cdot\|_\infty$ are not equivalent, otherwise they would have the same convergent sequences. \square

Exercise 21. i) We may notice that, setting $u_1 = x$ and $u_2 = x^3$,

$$V = \{f \in H : \langle f, u_1 \rangle = 0, \langle f, u_2 \rangle = 0\}.$$

V is clearly a linear subspace of H . It is also closed because of the continuity of scalar product. Indeed, if $(f_n) \subset V$, $f_n \xrightarrow{H} f$, then

$$\begin{cases} 0 = \langle f_n, u_1 \rangle \rightarrow \langle f, u_1 \rangle, \implies \langle f, u_1 \rangle = 0, \\ 0 = \langle f_n, u_2 \rangle \rightarrow \langle f, u_2 \rangle, \implies \langle f, u_2 \rangle = 0, \end{cases} \implies f \in V.$$

ii) It is convenient to determine first the orthogonal projection on $U := \text{Span}(u_1, u_2)$. This is a finite dimensional subspace of H (thus it is closed by a general fact). If (e_1, e_2) is an orthonormal basis for U ,

$$\Pi_U f = \sum_{j=1}^2 \langle f, e_j \rangle e_j.$$

The orthonormal basis can be determined by the Gram-Schmidt algorithm:

$$e_1 = \frac{u_1}{\|u_1\|}, \quad e_2 = \frac{u_2 - \langle u_2, e_1 \rangle e_1}{\|u_2 - \langle u_2, e_1 \rangle e_1\|}.$$

We have

$$\|u_1\|^2 = \int_0^1 u_1^2 dx = \int_0^1 x^2 dx = \frac{1}{3}, \implies e_1 = \frac{x}{\sqrt{3}},$$

and

$$u_2 - \langle u_2, e_1 \rangle e_1 = x^3 - \frac{1}{3} \left(\int_0^1 y^4 dy \right) x = x^3 - \frac{x}{15},$$

hence,

$$\|u_2 - \langle u_2, e_1 \rangle e_1\|^2 = \int_0^1 \left(x^3 - \frac{x}{15} \right)^2 dx = \frac{1}{7} - \frac{2}{75} + \frac{1}{675} = \frac{808}{4725}$$

so

$$e_2 = \sqrt{\frac{4725}{808}} \left(x^3 - \frac{x}{15} \right).$$

Now, to compute $\Pi_V f$ it is enough to set

$$\Pi_V f = f - \Pi_U f.$$

This because $\Pi_V f$ is uniquely characterized by the property

$$\langle f - \Pi_V f, v \rangle = 0, \forall v \in V,$$

that is

$$\langle \Pi_U f, v \rangle = 0, \forall v \in V.$$

But this is automatically true being $\Pi_U f \in \text{Span}(u_1, u_2)$ and $v \perp u_1, u_2$ when $v \in V$. \square

Exercise 23. i) Certainly, $\|\cdot\|_*$ is well defined: indeed $\frac{f(x)}{\sqrt{x}} \in \mathcal{C}([0, 1])$ and since $f \in \mathcal{C}([0, 1])$, f is bounded, thus $\left| \frac{f(x)}{\sqrt{x}} \right| \leq \frac{\|f\|_\infty}{\sqrt{x}}$ which is integrable on $[0, 1]$. Thus $\|f\|_* < +\infty$ for every $f \in V$.

We now check the key properties of a norm:

- positivity: obvious.
- vanishing: $\|f\|_* = 0$ implies $\frac{|f(x)|}{\sqrt{x}} = 0$ a.e. $x \in [0, 1]$, thus $f = 0$ a.e. on $[0, 1]$. Since f is continuous, $f \equiv 0$ on $[0, 1]$.
- homogeneity: straightforward, $\|\lambda f\|_* = \int_0^1 \frac{|\lambda f(x)|}{\sqrt{x}} dx = |\lambda| \int_0^1 \frac{|f(x)|}{\sqrt{x}} dx = |\lambda| \|f\|_*$.
- triangular inequality: straightforward.

ii) It is easy to verify that the uniform norm is stronger than $\|\cdot\|_*$. Indeed, since $|f(x)| \leq \|f\|_\infty$, we have

$$\|f\|_* = \int_0^1 \frac{|f(x)|}{\sqrt{x}} dx \leq \int_0^1 \frac{\|f\|_\infty}{\sqrt{x}} dx = \|f\|_\infty \int_0^1 \frac{1}{\sqrt{x}} dx = \|f\|_\infty [2\sqrt{x}]_{x=0}^{x=1} = 2\|f\|_\infty.$$

Are they equivalent? No! Indeed take

$$f_n(x) := \begin{cases} \sqrt[4]{n}, & 0 \leq x \leq \frac{1}{n}, \\ \frac{1}{\sqrt[4]{x}}, & \frac{1}{n} < x \leq 1. \end{cases}$$

Clearly $f_n \in \mathcal{C}([0, 1]) = V$. We have

$$\|f_n\|_\infty = \sqrt[4]{n},$$

while

$$\|f\|_* = \int_0^1 \frac{|f(x)|}{\sqrt{x}} dx \leq \int_0^1 \frac{1/\sqrt[4]{x}}{\sqrt{x}} dx = \int_0^1 \frac{1}{x^{3/4}} dx = M < +\infty.$$

If $\|\cdot\|_*$ is stronger than $\|\cdot\|_\infty$, we have

$$\sqrt[4]{n} = \|f_n\|_\infty \leq C \|f_n\|_* \leq CM, \forall n \in \mathbb{N},$$

which is impossible.

About the $\|\cdot\|_1$ norm, we may notice that, since for $x \in]0, 1]$ we have $\frac{1}{\sqrt{x}} \geq 1$, then

$$\|f\|_1 = \int_0^1 |f(x)| dx \leq \int_0^1 \frac{|f(x)|}{\sqrt{x}} dx = \|f\|_*,$$

thus $\|\cdot\|_*$ is stronger than $\|\cdot\|_1$. Are they equivalent? No! Here we consider,

$$f_n(x) := \begin{cases} \sqrt{n}, & 0 \leq x \leq \frac{1}{n}, \\ \frac{1}{\sqrt{x}}, & \frac{1}{n} < x \leq 1. \end{cases}$$

Clearly, since $0 \leq f(x) \leq \frac{1}{\sqrt{x}}$

$$\|f_n\|_1 = \int_0^1 |f_n(x)| dx \leq \int_0^1 \frac{1}{\sqrt{x}} dx =: M < +\infty.$$

On the other hand,

$$\|f_n\|_* \geq \int_{1/n}^1 \frac{|f_n(x)|}{\sqrt{x}} dx = \int_{1/n}^1 \frac{1}{x} dx = \log 1 - \log \frac{1}{n} = \log n,$$

thus, if $\|\cdot\|_1$ were stronger than $\|\cdot\|_*$, we would have that

$$\log n \leq \|f_n\|_* \leq C \|f_n\|_1 \leq CM, \forall n \in \mathbb{N}, n \geq 1,$$

but this is impossible. \square

Exercise 24. i) Clearly $f \in L^1$ thus \widehat{f} is well defined. To check $\widehat{f} \in L^1$, we apply the well known result: if $f, f', f'' \in L^1$ then $\widehat{f} \in L^1$. We already said $f \in L^1$. About f' ,

$$f'(x) = -\frac{4x^3}{(1+x^4)^2} \in \mathcal{C}(\mathbb{R}), f'(x) \sim_{\pm\infty} -4\frac{x^3}{x^8} = \frac{C}{x^5},$$

which is integrable at $\pm\infty$. Similarly for f'' :

$$f''(x) = -4\frac{3x^2(1+x^4)^2 - 2x^3(1+x^4)4x^3}{(1+x^4)^4} \in \mathcal{C}(\mathbb{R}), f''(x) \sim_{\pm\infty} -4\frac{-5x^{10}}{x^{16}} = \frac{C}{x^6},$$

which is integrable at $\pm\infty$. Is $\widehat{f} \in L^2$? Yes, this because $f \in L^2$ (yet, $f \in \mathcal{C}(\mathbb{R})$ and $|f(x)|^2 \sim_{\pm\infty} \frac{1}{x^8}$ is integrable, thus $\int_{\mathbb{R}} |f|^2 < +\infty$) and the FT maps L^2 into itself. Last: is $\widehat{f} \in \mathcal{S}(\mathbb{R})$? No, this because FT maps the Schwarz space $\mathcal{S}(\mathbb{R})$ into itself, thus $\widehat{f} \in \mathcal{S}(\mathbb{R})$ iff $f \in \mathcal{S}(\mathbb{R})$. Clearly, $f \in \mathcal{C}^\infty$ but, for instance,

$$x^4 f(x) \not\rightarrow 0, |x| \rightarrow \pm\infty.$$

ii) We may notice that

$$\frac{1}{x^2 \pm \sqrt{2}x + 1} = \frac{1}{\left(x \pm \frac{1}{\sqrt{2}}\right)^2 + \frac{1}{2}},$$

thus, recalling that $\widehat{g(\# + c)} = e^{-ic\xi} \widehat{g}$,

$$\widehat{\frac{1}{\#^2 \pm \sqrt{2}\# + 1}}(\xi) = \widehat{\frac{1}{\left(\# \pm \frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2}}(\xi) = e^{\mp i\xi/\sqrt{2}} \widehat{\frac{1}{\#^2 + \left(\frac{1}{\sqrt{2}}\right)^2}}(\xi) = e^{\mp i\xi/\sqrt{2}} \sqrt{2}\pi e^{-|\xi|/\sqrt{2}}$$

iii) Because $(1 + x^4) = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$ we have

$$\frac{1}{1 + x^4} = \frac{1}{(x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)} = -\frac{1}{2\sqrt{2}x} \left(\frac{1}{x^2 + \sqrt{2}x + 1} - \frac{1}{x^2 - \sqrt{2}x + 1} \right)$$

thus

$$-2\sqrt{2}x \frac{1}{1 + x^4} = \frac{1}{x^2 + \sqrt{2}x + 1} - \frac{1}{x^2 - \sqrt{2}x + 1}$$

hence

$$-2\sqrt{2}(\widehat{\#f})(\xi) = e^{-i\xi/\sqrt{2}} \sqrt{2}\pi e^{-|\xi|/\sqrt{2}} - e^{+i\xi/\sqrt{2}} \sqrt{2}\pi e^{-|\xi|/\sqrt{2}} = -2i\sqrt{2}\pi e^{-|\xi|/\sqrt{2}} \sin(\xi/\sqrt{2}),$$

that is

$$(\widehat{\#f})(\xi) = -i\pi e^{-|\xi|/\sqrt{2}} \sin(\xi/\sqrt{2}).$$

Now, recalling that

$$\widehat{(-i\#f)} = \partial_\xi \widehat{f},$$

we get,

$$\partial_\xi \widehat{f}(\xi) = -\pi e^{-|\xi|/\sqrt{2}} \sin(\xi/\sqrt{2}).$$

To determine \widehat{f} , let's first compute

$$\begin{aligned} \int e^{\alpha\xi} \sin(\beta\xi) d\xi &= \frac{e^{\alpha\xi}}{\alpha} \sin(\beta\xi) - \int \frac{e^{\alpha\xi}}{\alpha} \beta \cos(\beta\xi) d\xi \\ &= \frac{e^{\alpha\xi}}{\alpha} \sin(\beta\xi) - \frac{\beta}{\alpha} \left[\frac{e^{\alpha\xi}}{\alpha} \cos(\beta\xi) + \int \frac{e^{\alpha\xi}}{\alpha} \beta \sin(\beta\xi) d\xi \right], \end{aligned}$$

from which,

$$\int e^{\alpha\xi} \sin(\beta\xi) d\xi = \frac{\alpha}{\alpha^2 + \beta^2} e^{\alpha\xi} \left(\sin(\beta\xi) - \frac{\beta}{\alpha} \cos(\beta\xi) \right).$$

Therefore,

$$\widehat{f}(\xi) = \begin{cases} \xi \geq 0, & -\pi \int e^{-\xi/\sqrt{2}} \sin(\xi/\sqrt{2}) d\xi + c_1 = \frac{\pi}{\sqrt{2}} e^{-\xi/\sqrt{2}} \left(\sin(\xi/\sqrt{2}) + \cos(\xi/\sqrt{2}) \right) + c_1, \\ \xi < 0, & -\pi \int e^{\xi/\sqrt{2}} \sin(\xi/\sqrt{2}) d\xi + c_2 = -\frac{\pi}{\sqrt{2}} e^{\xi/\sqrt{2}} \left(\sin(\xi/\sqrt{2}) - \cos(\xi/\sqrt{2}) \right) + c_2. \end{cases}$$

Since $f \in L^1(\mathbb{R})$ we have $\widehat{f}(\xi) \rightarrow 0$ for $\xi \rightarrow \pm\infty$, from which $c_1 = c_2 = 0$. Thus

$$\widehat{f}(\xi) = \frac{\pi}{\sqrt{2}} e^{-|\xi|/\sqrt{2}} \left(\sin(|\xi|/\sqrt{2}) + \cos(|\xi|/\sqrt{2}) \right). \quad \square$$

Exercise 25. i) Let $f(x, \xi) := \frac{1-\cos(\xi x)}{x^2(x^2+1)}$. Clearly $f \in \mathcal{C}(\mathbb{R} \setminus \{0\})$ for every $\xi \in \mathbb{R}$. We may notice that $f(x, 0) \equiv 0$, thus certainly $f(\#, 0) \in L^1(\mathbb{R})$. For $\xi \neq 0$, recalling that $\cos t = 1 - \frac{t^2}{2} + o(t^2)$ for $t \sim 0$, we have that, for $x \sim 0$,

$$f(x, \xi) = \frac{\frac{x t^2 x^2}{2} + o(x^2)}{x^2(x^2+1)} \sim \frac{1}{2} \frac{\xi^2}{x^2+1} \sim \frac{\xi^2}{2},$$

thus $|f(\#, \xi)|$ is integrable at $x = 0$ for every $\xi \in \mathbb{R}$. We need to check integrability at $\pm\infty$. Notice that

$$|f(x, \xi)| \leq \frac{2}{x^2(x^2+1)} \sim_{\pm\infty} \frac{2}{x^4},$$

therefore $|f(\#, \xi)|$ is integrable at $\pm\infty$ for every $\xi \in \mathbb{R}$. We conclude that $f(\#, \xi) \in L^1(\mathbb{R})$ for every $\xi \in \mathbb{R}$, thus $D = \mathbb{R}$.

ii) We apply differentiation theorem. If this holds,

$$\partial_\xi F(\xi) = \int_{\mathbb{R}} \partial_\xi f(x, \xi) \, dx, \quad \xi \in D'.$$

To this aim we need to verify hypotheses that are

1. $f(\#, \xi) \in L^1(\mathbb{R})$, $\forall \xi \in D'$. This has been checked in i) with $D' = D = \mathbb{R}$.
2. $\exists \partial_\xi f(x, \xi) = \frac{\sin(\xi x)}{x(x^2+1)}$ for every $\xi \in \mathbb{R}$.
3. $\exists g = g(x) \in L^1(\mathbb{R})$ such that $|\partial_\xi f(x, \xi)| \leq g(x)$, a.e. $x \in \mathbb{R}$, $\forall \xi \in D'$. Here we may notice that, since $|\sin t| \leq |t|$ we have

$$|\partial_\xi f(x, \xi)| = \left| \frac{\sin(\xi x)}{x} \frac{1}{x^2+1} \right| \leq |\xi| \frac{1}{x^2+1} \leq \frac{R}{x^2+1} =: g_R(x), \quad \text{a.e. } x \in \mathbb{R}, \quad \forall \xi \in [-R, R].$$

Thus, fixed $R > 0$, we may apply the theorem on $D' = [-R, R]$ and deduce that

$$\partial_\xi F(\xi) = \int_{\mathbb{R}} \frac{\sin(\xi x)}{x(x^2+1)} \, dx, \quad \forall \xi \in [-R, R].$$

And since $R > 0$ is arbitrary, we can conclude that the previous identity actually holds for every $\xi \in \mathbb{R}$. Thus, at the end, we can consider $D' = \mathbb{R}$.

iii) Let $g(x, \xi) := \frac{\sin(\xi x)}{x(x^2+1)}$. To compute $\partial_\xi^2 F$ we apply again differentiation theorem to

$$\partial_\xi F(\xi) = \int_{\mathbb{R}} g(x, \xi) \, dx.$$

To this aim, we need to verify that

1. $g(\sharp, \xi) \in L^1(\mathbb{R}), \forall \xi \in D''$. This is a consequence of 3. of ii), from which we get that $D'' = \mathbb{R}$.
2. $\exists \partial_\xi g(x, \xi) = \frac{\cos(\xi x)}{x^2 + 1}$, a.e. $x \in \mathbb{R}$ (actually, $\forall x \neq 0$) and $\forall \xi \in D'' = \mathbb{R}$.
3. $\exists h = h(x) \in L^1(\mathbb{R})$ for which $|\partial_\xi g(x, xi)| \leq h(x)$, a.e. $x \in \mathbb{R}$ and $\forall \xi \in D''$. Here we may notice that

$$|\partial_\xi g(x, \xi)| = \left| \frac{\cos(\xi x)}{x^2 + 1} \right| \leq \frac{1}{x^2 + 1} =: h(x) \in L^1(\mathbb{R}), \text{ a.e. } x \in \mathbb{R}, \forall \xi \in D'' = \mathbb{R}.$$

Thus, differentiation theorem applies and

$$\partial_\xi^2 F(\xi) = \int_{\mathbb{R}} \frac{\cos(\xi x)}{x^2 + 1} dx, \forall \xi \in \mathbb{R}.$$

iv) From previous discussion, and recalling that $\cos t = \operatorname{Re} e^{it}$, we have

$$\partial_\xi^2 F(\xi) = \operatorname{Re} \int_{\mathbb{R}} \frac{1}{x^2 + 1} e^{i\xi x} dx \stackrel{y=-x}{=} \operatorname{Re} \int_{\mathbb{R}} \frac{1}{1+y^2} e^{-i\xi y} dy = \operatorname{Re} \widehat{\frac{1}{1+\sharp^2}}(\xi) = \pi e^{-|\xi|}.$$

Then

$$\partial_\xi F(\xi) = \begin{cases} \int \pi e^{-\xi} d\xi + c_1 = -\pi e^{-\xi} + c_1, & \xi \geq 0, \\ \int \pi e^\xi d\xi + c_2 = \pi e^\xi + c_2, & \xi \leq 0. \end{cases}$$

Since $\partial_\xi F$ is differentiable it must be continuous, in particular at $\xi = 0$. This leads to

$$-\pi + c_1 = \partial_\xi F(0) = \pi + c_2,$$

and since also $\partial_\xi F(0) = 0$ (trivial) we obtain $c_1 = \pi$ and $c_2 = -\pi$. In conclusion

$$\partial_\xi F(\xi) = \begin{cases} -\pi e^{-\xi} + \pi, & \xi \geq 0, \\ \pi e^\xi - \pi, & \xi \leq 0. \end{cases}$$

Therefore

$$F(\xi) = \begin{cases} \pi e^{-\xi} + \pi \xi + c_1, & \xi \geq 0, \\ \pi e^\xi - \pi \xi + c_2, & \xi < 0. \end{cases}$$

Again, by continuity at $\xi = 0$ and noticed that $F(0) = 0$, we have $c_1 = -\pi = c_2$, thus

$$F(\xi) = \begin{cases} \pi e^{-\xi} + \pi \xi - \pi, & \xi \geq 0, \\ \pi e^\xi - \pi \xi - \pi, & \xi < 0. \end{cases} = \pi \left(e^{-|\xi|} + |\xi| - 1 \right). \quad \square$$

Exercise 26. i) Clearly $\|f\|$ is well defined ($f' \in \mathcal{C}([0, 1])$, hence $x^{1/2} f' \in \mathcal{C}([0, 1])$). Let's check the characteristic properties of a norm:

- positivity: $\|f\| \geq 0$, trivial.

- vanishing: $\|f\| = 0$ means $x^{1/2}|f'(x)| \equiv 0$ on $[0, 1]$, thus in particular $f' \equiv 0$ on $[0, 1]$ and because $f' \in \mathcal{C}$, $f' \equiv 0$ on $[0, 1]$. In particular, f is constant and because $f(0) = 0$ ($f \in V$), we conclude $f \equiv 0$.
- homogeneity: $\|\lambda f\| = \max x^{1/2}|(\lambda f)'(x)| = \max x^{1/2}|\lambda||f'(x)| = |\lambda| \max x^{1/2}|f'(x)| = |\lambda|\|f\|$.
- triangular inequality: notice first that if $f, g \in V$ we have

$$|(f + g)'(x)| = |f'(x) + g'(x)| \leq |f'(x)| + |g'(x)|,$$

thus

$$x^{1/2}|(f + g)'(x)| \leq x^{1/2}|f'(x)| + x^{1/2}|g'(x)| \leq \|f\| + \|g\|, \quad \forall x \in [0, 1],$$

hence, taking maximum, $\|f + g\| \leq \|f\| + \|g\|$.

ii) We check first that $f_n \in V$. Easily, $f_n \in \mathcal{C}([0, 1])$ and

$$f_n'(x) := \begin{cases} \frac{n^{3/4}}{4}, & 0 \leq x < \frac{1}{n}, \\ \frac{1}{4}x^{-3/4}, & \frac{1}{n} \leq x \leq 1 \end{cases}$$

We have that $\lim_{x \rightarrow 1/n^-} f_n'(x) = \frac{n^{3/4}}{4} = \lim_{x \rightarrow 1/n^+} f_n'(x)$, thus $\exists f_n'(1/n) = \frac{n^{3/4}}{4}$ and $f_n' \in \mathcal{C}([0, 1])$. And since clearly $f_n(0) = 0$ we have $f_n \in V$ for every $n \geq 1$.

To discuss convergence of (f_n) we may notice that

$$x^{1/2}|f_n'(x)| := \begin{cases} \frac{n^{3/4}}{4}x^{1/2}, & 0 \leq x \leq \frac{1}{n}, \\ \frac{1}{4}x^{-1/4}, & \frac{1}{n} \leq x \leq 1. \end{cases} \implies \|f_n\| = \max_{t \in [0, 1]} x^{1/2}|f_n'(x)| = \frac{1}{4}n^{1/4} \rightarrow +\infty.$$

Since (f_n) is not even bounded in $\|\cdot\|$, it cannot be convergent.

iii) We have to prove that there exists a universal constant C such that $\|f\|_\infty \leq C\|f\|$ for every $f \in X$. We start recalling that

$$f(x) = f(0) + \int_0^x f'(y) dy \stackrel{f \in V, f(0)=0}{=} \int_0^x f'(y) dy,$$

therefore

$$|f(x)| = \left| \int_0^x f'(y) dy \right| \leq \int_0^x |f'(y)| dy = \int_0^x \frac{1}{y^{1/2}} y^{1/2} |f'(y)| dy \leq \int_0^x \frac{1}{y^{1/2}} \|f\| dy = 2x^{1/2} \|f\|,$$

thus, finally

$$\|f\|_\infty = \max_{x \in [0, 1]} |f(x)| \leq \max_{x \in [0, 1]} 2x^{1/2} \|f\| = 2\|f\|.$$

The two norms are not equivalent. Indeed, if $\|\cdot\|_\infty$ were stronger than $\|\cdot\|$, we would have

$$\|f\| \leq C\|f\|_\infty, \quad \forall f \in V.$$

Taking $f = f_n$ and noticed that $\|f_n\|_\infty = 1$ (easy), we would have

$$\frac{n^{1/4}}{4} = \|f_n\| \leq C\|f_n\|_\infty = C, \forall n \geq 1,$$

which is clearly impossible. \square

Exercise 27. i) We first check that if $f, g \in H$ then $\langle f, g \rangle$ is well defined. We have to show that $f(x)g(x)e^{-x} \in L^1([0, +\infty[)$. The argument is similar to the standard L^2 product:

$$\begin{aligned} \int_0^{+\infty} |f(x)g(x)e^{-x}| dx &= \int_0^{+\infty} |f||g|e^{-x} \leq \int_0^{+\infty} \frac{1}{2}(f^2 + g^2)e^{-x} \\ &= \frac{1}{2} \left(\int_0^{+\infty} f^2 e^{-x} + \int_0^{+\infty} g^2 e^{-x} \right) < +\infty, \end{aligned}$$

provided $f, g \in H$. Thus $\langle f, g \rangle$ is well defined. The check of scalar product properties is standard:

- vanishing: $0 = \langle f, f \rangle = \int_0^{+\infty} f^2 e^{-x}$ that is $f(x)^2 e^{-x} = 0$ a.e., that is $f = 0$ a.e..
- linearity, symmetry: straightforward.

ii) We may notice that $U = \{u \in H : \langle u, 1 \rangle = 0\}$. Indeed,

$$1 \in H, \iff \int_0^{+\infty} e^{-x} dx < +\infty,$$

which clearly true. Therefore, U is closed because of well known continuity properties of the scalar product. Indeed: if $(u_n) \subset U$ is such that $u_n \rightarrow u$, then, since $\langle u_n, 1 \rangle = 0$ for all n and $\langle u_n, 1 \rangle \rightarrow \langle u, 1 \rangle$ we conclude that $\langle u, 1 \rangle = 0$.

iii) Since U is closed, $\Pi_U f$ is well defined for every $f \in H$. However, U is likely to be infinite dimensional, it seems not easy to determine a basis for U . Nonetheless, U is the space of u perpendicular to 1 , so define $V := \text{Span}(1)$. Clearly V is one dimensional, hence Π_V is well defined. Take $e_0 = \frac{1}{\|1\|}$ where $\|1\|^2 = \int_0^{+\infty} 1^2 e^{-x} dx = \int_0^{+\infty} e^{-x} dx = 1$, that is $e_0 = 1$. Thus $\Pi_V f = \langle f, 1 \rangle 1$ and since $f - \Pi_V f \perp 1$, we have $f - \Pi_V f \in U$. We claim $\Pi_U f = f - \Pi_V f$. Indeed:

$$\langle f - \Pi_U f, g \rangle = \langle f - (f - \Pi_V f), g \rangle = \langle \Pi_V f, g \rangle = \langle f, 1 \rangle \langle 1, g \rangle = 0, \forall g \in U,$$

and since this characterized $\Pi_U f$ we have the conclusion. In particular,

$$\Pi_U e^{-2x} = e^{-2x} - \langle e^{-2x}, 1 \rangle 1 = e^{-2x} - \int_0^{+\infty} e^{-3y} dy = e^{-2x} - \frac{1}{3}. \quad \square$$

Exercise 29. i) To have FT, f_α needs to be either $L^1(\mathbb{R})$ or $L^2(\mathbb{R})$. In the first case, writing $\alpha = a + ib$,

$$\int_{\mathbb{R}} |f_\alpha(x)| dx = \int_0^{+\infty} |e^{\alpha x}| dx = \int_0^{+\infty} |e^{ax} e^{ibx}| dx = \int_0^{+\infty} e^{ax} dx < +\infty, \iff a = \text{Re } \alpha < 0.$$

Same conclusion for L^2 . Thus: f has a FT iff $\operatorname{Re} \alpha < 0$. For such α we have

$$\widehat{f}_\alpha(\xi) = \int_0^{+\infty} e^{\alpha x} e^{-i\xi x} dx = \int_0^{+\infty} e^{(\alpha-i\xi)x} dx = \left[\frac{e^{(\alpha-i\xi)x}}{\alpha - i\xi} \right]_{x=0}^{x=+\infty}.$$

Now, since $\operatorname{Re} \alpha = a < 0$,

$$\left| e^{(\alpha-i\xi)x} \right| = |e^{\alpha x} e^{i(b-\xi)x}| = e^{\alpha x} \rightarrow 0, \quad x \rightarrow +\infty$$

we have

$$\widehat{f}_\alpha(\xi) = -\frac{1}{\alpha - i\xi} = \frac{1}{i\xi + \alpha}.$$

ii) To have an L^1 Fourier original, according to RL lemma, $g_\beta \in \mathcal{C}(\mathbb{R})$ and it must be bounded. Now, in order g_β be continuous, we need that $\xi + \beta \neq 0$ for every $\xi \in \mathbb{R}$. If $\beta \in \mathbb{R}$ this is impossible, because $\xi + \beta = 0$ at $\xi = -\beta$. If $\beta \in \mathbb{C} \setminus \mathbb{R}$ however, $\xi + \beta \neq 0$ for every $\xi \in \mathbb{R}$, thus $g_\beta \in \mathcal{C}(\mathbb{R})$. Clearly g_β would be also bounded in this case. However, g_β continuous and bounded is not sufficient to have a Fourier original in L^1 . As well known, a sufficient condition is $\widehat{g}_\beta \in L^1$. To ensure this, a sufficient condition is $g_\beta, g'_\beta, g''_\beta \in L^1(\mathbb{R})$. $g_\beta \in \mathcal{C}(\mathbb{R})$ and since

$$|g_\beta| \sim_{\pm\infty} \frac{1}{|\xi|^2},$$

we deduce $g_\beta \in L^1(\mathbb{R})$ for every $\beta \in \mathbb{C} \setminus \mathbb{R}$. For g'_β the check is similar being

$$g'_\beta(\xi) = -\frac{2}{(\xi + \beta)^3}$$

thus $g'_\beta \in \mathcal{C}(\mathbb{R})$ and $|g'_\beta| \sim_{\pm\infty} \frac{2}{|\xi|^3}$, integrable at $\pm\infty$, thus $g'_\beta \in L^1(\mathbb{R})$ for every $\beta \in \mathbb{C} \setminus \mathbb{R}$. Same check for g''_β .

For L^2 inversion, the discussion is much more easy: it suffices to verify $g_\beta \in L^2(\mathbb{R})$. Since $g_\beta \in \mathcal{C}(\mathbb{R})$ and $|g_\beta|^2 \sim_{\pm\infty} \frac{1}{|\xi|^4}$, we deduce that $g_\beta \in L^2(\mathbb{R})$ for every $\beta \in \mathbb{C} \setminus \mathbb{R}$.

iii) Following the hint,

$$g_\beta(\xi) = -\partial_\xi \frac{1}{\xi + \beta} = -i\partial_\xi \frac{1}{i\xi + i\beta} = -i\partial_\xi \frac{1}{i\xi + \alpha},$$

where $\alpha = i\beta$. Now, $\operatorname{Re} \alpha = -\operatorname{Im} \beta < 0$. Thus, by i),

$$\frac{1}{i\xi + \alpha} = \widehat{e^{\alpha \#} 1_{[0,+\infty[}}(\xi) = \widehat{e^{i\beta \#} 1_{[0,+\infty[}}(\xi),$$

whence

$$g_\beta(\xi) = -i\partial_\xi \widehat{e^{i\beta \#} 1_{[0,+\infty[}}(\xi) = -i \left(-i \widehat{e^{i\beta \#} 1_{[0,+\infty[}}(\xi) \right) = -\widehat{e^{i\beta \#} 1_{[0,+\infty[}}(\xi).$$

Therefore, the Fourier original of g_β is $xe^{i\beta x} 1_{[0,+\infty[}(x)$. \square

Exercise 30. Let $f(x, y) := \frac{1-e^{-xy^2}}{y^2}$, $y \in]0, +\infty[$. The domain of F is

$$D := \{x \in \mathbb{R} : f(x, \#) \in L^1([0, +\infty[)\}$$

We notice that $f(0, y) \equiv 0$. If $x \neq 0$, $f(x, \#) \in \mathcal{C}([0, +\infty[)$, so we need to check the asymptotic behavior of $f(x, y)$ when $y \rightarrow 0+, +\infty$. Recalling of $e^t = 1 + t + o(t)$ when $t \rightarrow 0$, we have

$$f(x, y) = \frac{1 - (1 - xy^2 + o(y^2))}{y^2} = x + o(1) \rightarrow x, \quad y \rightarrow 0+,$$

so $f(x, \#)$ can be extended by continuity at $y = 0$, in particular, $f(x, \#)$ is integrable at $y = 0$. When $y \rightarrow +\infty$ we have

$$f(x, y) \begin{cases} \rightarrow -\infty, & x < 0 \implies \nexists \int^{+\infty} f(x, y) dy. \\ \sim_{y \rightarrow +\infty} \frac{1}{y^2}, & x > 0, \implies \exists \int^{+\infty} f(x, y) dy. \end{cases}$$

Conclusion: $D = [0, +\infty[$.

ii) We apply the differentiation under integral sign,

$$\partial_x F(x) = \int_0^{+\infty} \partial_x f(x, y) dy. \quad (\star)$$

To this aim we notice that:

- $\exists \partial_x f(x, y) = \frac{-e^{-xy^2}(-y^2)}{y^2} = e^{-xy^2}$, $\forall y > 0$ (so a.e. $y \in [0, +\infty[$), $\forall x \geq 0$.
- $|\partial_x f(x, y)| = e^{-xy^2} \leq e^{-\varepsilon y^2} =: g(y) \in L^1([0, +\infty[)$, $\forall y > 0$ (a.e. $y \in [0, +\infty[$) and $\forall x \geq \varepsilon$.

Let $D_\varepsilon := [\varepsilon, +\infty[$ with $\varepsilon > 0$. The previous facts say that we can apply the differentiation theorem on D_ε , so (\star) holds for every $x \geq \varepsilon$. Since this ε is an arbitrary positive number, this means that (\star) actually holds for every $x > 0$. Conclusion: F is differentiable on $]0, +\infty[$ and

$$\partial_x F(x) = \int_0^{+\infty} e^{-xy^2} dy.$$

iii) $\partial_x F(x)$ is basically a Gaussian integral

$$\partial_x F(x) = \frac{1}{2} \sqrt{\frac{\pi}{x}},$$

from which

$$F(x) = \sqrt{\pi x} + c.$$

To determine the value of the constant c we notice that F is continuous at $x = 0$. This because

- $f(\#, y) \in \mathcal{C}([0, +\infty[)$ for all $y > 0$ (thus a.e. $y \in [0, +\infty[$),
- $0 \leq f(x, y) = \frac{1-e^{-xy^2}}{y^2} \leq \frac{1-e^{-y^2}}{y^2} =: g(y) \in L^1([0, +\infty[)$, $\forall x \in [0, 1]$.

So we can apply continuity under integral sign to get that F is continuous on $[0, 1]$ and, in particular, at $x = 0$. Therefore

$$\lim_{x \rightarrow 0^+} F(x) = F(0) = 0, \implies c = 0.$$

Therefore $F(x) = \sqrt{\pi x}$ for all $x \geq 0$. From this it is also evident that F cannot be differentiable at $x = 0$. \square

Exercise 35. i) To check U is closed we have to prove that if $(f_n) \subset U$ is convergent (in H) to some $f \in H$ then $f \in U$. So, assume $f_n \rightarrow f$ in $L^2(X)$. By extracting a subsequence, $f_{n_k}(x) \rightarrow f(x)$ μ -a.e. $x \in X$. That is, modulo a measure zero set N , ($\mu(N) = 0$),

$$f_{n_k}(x) \rightarrow f(x), \forall x \in X \setminus N.$$

Now, each $f_{n_k} = 0$ a.e. on E^c that is $f_{n_k}(x) = 0$ for all $x \in E^c \setminus N_k$ with $\mu(N_k) = 0$. In particular,

$$f_{n_k}(x) = 0, \forall x \in E^c \setminus \bigcup_k N_k,$$

and since $M := N \cup \bigcup_k N_k$ is a μ -null set (a union of null sets), we have, for $x \in E^c \setminus M$

$$0 \leftarrow 0 \equiv f_{n_k}(x) \rightarrow f(x),$$

thus $f(x) = 0$ for every $x \in E^c \setminus M$, that is $f \in U$.

In alternative: since $f_n \xrightarrow{L^2} f$, then easily also $f_n 1_{E^c} \xrightarrow{L^2} f 1_{E^c}$ ($\|f_n 1_{E^c} - f 1_{E^c}\|_2^2 = \int_X (f_n - f)^2 1_{E^c} d\mu \leq \|f_n - f\|_2^2$, so $\|f_n 1_{E^c}\|_2 \rightarrow \|f 1_{E^c}\|_2$). But $\|f_n 1_{E^c}\|_2^2 = \int_{E^c} f_n^2 d\mu = 0$ for every n ; so $\|f 1_{E^c}\|_2^2 = 0$ from which $f = 0$ a.e. on E^c . From this the conclusion follows.

ii) Recall that the orthogonal projection is characterised by the orthogonality relation

$$\langle u, f - \Pi_U f \rangle = 0, \forall u \in U, \forall f \in H.$$

Now, since $f - \Pi_U f = f - 1_E f = (1 - 1_E)f = 1_{E^c}f$ we have

$$\langle u, f - \Pi_U f \rangle = \int_X u 1_{E^c} f d\mu = \int_{E^c} u f d\mu = 0$$

because $u \in U$ is $= 0$ μ -a.e. $x \in E^c$. \square

Exercise 36. i) Let

$$g_{a,b}(\xi) := \frac{e^{-a|\xi|} - e^{-b|\xi|}}{\xi}, \xi \in \mathbb{R} \setminus \{0\}.$$

Here $a, b > 0$ are fixed. We notice that, being $e^t = 1 + t + o(t)$,

$$g_{a,b}(\xi) = \frac{1 - a|\xi| + o(\xi) - (1 - b|\xi| + o(\xi))}{\xi} = \frac{(b - a)|\xi| + o(\xi)}{\xi} \sim_0 (b - a)\text{sgn}(\xi),$$

which is integrable at $\xi = 0$. At $\pm\infty$ we could say that

$$|g_{a,b}(\xi)| \leq \left(e^{-a|\xi|} + e^{-b|\xi|} \right), \quad \forall |\xi| \geq 1,$$

thus $g_{a,b}$ is integrable at $\pm\infty$. In conclusion $g_{a,b} \in L^1(\mathbb{R})$. Similarly, $|g_{a,b}|^2 \sim_0 (b-a)^2$ is integrable at $\xi = 0$ while, as above,

$$|g_{a,b}(\xi)|^2 \leq \left(e^{-a|\xi|} + e^{-b|\xi|} \right)^2, \quad \forall |\xi| \geq 1,$$

thus easily $|g_{a,b}|^2$ is integrable at $\pm\infty$. In conclusion, $g_{a,b} \in L^2(\mathbb{R})$.

Let us discuss the inversion problem. Since $g_{a,b} \in L^2(\mathbb{R})$, then $g_{a,b}$ has a Fourier original in $L^2(\mathbb{R})$. The same does not apply for an L^1 original. Indeed, if $g_{a,b} = \widehat{f_{a,b}}$ for some $f_{a,b} \in L^1$ then $g_{a,b} \in \mathcal{C}(\mathbb{R})$. However, $g_{a,b}(\xi) \sim_0 (b-a)\text{sgn}(\xi)$ which is not continuous at $\xi = 0$.

ii) If $f_{a,b} \in L^2$ is such that $\widehat{f_{a,b}} = g_{a,b}$ then, according to inversion formula,

$$\widehat{g_{a,b}}(x) = \widehat{\widehat{f_{a,b}}}(x) = 2\pi f_{a,b}(-x),$$

that is $f_{a,b}(x) = \frac{1}{2\pi} \widehat{g_{a,b}}(-x)$. We compute then $\widehat{g_{a,b}}$. To this aim notice that

$$\widehat{\#g_{a,b}}(x) = e^{-a|\#|} - e^{-b|\#|}(x) = \frac{2a}{a^2 + x^2} - \frac{2b}{b^2 + x^2}.$$

Recalling that $(-i\#)\widehat{g_{a,b}} = \partial_x \widehat{g_{a,b}}$ we deduce that

$$\partial_x \widehat{g_{a,b}} = -i \left(\frac{2a}{a^2 + x^2} - \frac{2b}{b^2 + x^2} \right).$$

Thus,

$$\begin{aligned} \widehat{g_{a,b}}(x) &= -i \left(\frac{2}{a} \int \frac{1}{1+(\frac{x}{a})^2} dx - \frac{2}{b} \int \frac{1}{1+(\frac{x}{b})^2} dx \right) + c \\ &= -i \left(\arctan\left(\frac{x}{a}\right) - \arctan\left(\frac{x}{b}\right) \right) + c, \end{aligned}$$

where c is a suitable constant. Finally, to determine the value of c , we may notice that letting $x \rightarrow +\infty$, we have

$$\widehat{g_{a,b}}(x) \longrightarrow -i \left(\frac{\pi}{2} - \frac{\pi}{2} \right) + c = c,$$

and because we already know that $\widehat{g_{a,b}} \in L^2$, this is possible only if $c = 0$. By this we finally obtain that the original of $g_{a,b}$ is

$$f_{a,b}(x) = \frac{i}{2\pi} \left(\arctan\left(\frac{x}{b}\right) - \arctan\left(\frac{x}{a}\right) \right).$$

Notice that we can check that $f_{a,b} \notin L^1(\mathbb{R})$. Clearly, $f_{a,b} \in \mathcal{C}(\mathbb{R})$ so the integrability depends on the behavior at $\pm\infty$. Recall of the remarkable identity

$$\arctan t + \arctan \frac{1}{t} = \frac{\pi}{2}, \quad \forall t > 0,$$

so, for $x \rightarrow +\infty$,

$$\arctan \frac{x}{b} - \arctan \frac{x}{a} = \arctan \frac{a}{x} - \arctan \frac{b}{x},$$

and since $\arctan u = u + o(u)$ for $u \rightarrow 0$, we deduce

$$\frac{2\pi}{i} f_{a,b}(x) = \arctan \frac{a}{x} - \arctan \frac{b}{x} = \frac{a-b}{x} o\left(\frac{1}{x}\right) \sim_{+\infty} \frac{C}{x} \notin L^1.$$

This confirms once more that $g_{a,b}$ cannot have a Fourier original in L^1 . \square

Exercise 37. i) Let $f(t, x) := e^{-\lambda x} \frac{\sin x}{x}$. Because $\sin x \sim_0 x$, we may consider f well defined and continuous at $x = 0$, thus $f(\lambda, \#)$ is integrable at $x = 0$ for every $\lambda \in \mathbb{R}$. At $x = +\infty$, because $|\sin x| \leq |x|$, we have

$$|f(\lambda, x)| \leq e^{-\lambda x} \in L^1([0, +\infty[), \forall \lambda > 0.$$

For $\lambda = 0$,

$$F(0) = \int_0^{+\infty} \frac{\sin x}{x} dx$$

exists (as generalized integral but not in L^1 sense). Thus, we may still consider F well defined at $\lambda = 0$.

ii) We wish to apply differentiation under integral, that is

$$\partial_\lambda F = \int_0^{+\infty} \partial_\lambda f(\lambda, x) dx.$$

To ensure this for every $\lambda \in \Lambda$ we need to check a) $f(\lambda, \#) \in L^1([0, +\infty[)$ for every $\lambda \in \Lambda$. This is true with $\Lambda =]0, +\infty[$. b) $\exists \partial_\lambda f(\lambda, x) = -x e^{-\lambda x} \frac{\sin x}{x} = -e^{-\lambda x} \sin x$, for every $\lambda \in]0, +\infty[$, a.e. $x \in [0, +\infty[$. c) there exists $g \in L^1([0, +\infty[)$ such that

$$|\partial_\lambda f(\lambda, x)| \leq g(x), \forall \lambda \in \Lambda, \text{ a.e. } x \in [0, +\infty[.$$

Now,

$$|\partial_\lambda f(\lambda, x)| \leq e^{-\lambda x} \leq e^{-\lambda_0 x} \in L^1([0, +\infty[), \forall \lambda \in [\lambda_0, +\infty[.$$

Thus, on $\Lambda = [\lambda_0, +\infty[$ with $\lambda_0 > 0$, we can conclude

$$\partial_\lambda F(\lambda) = \int_0^{+\infty} -e^{-\lambda x} \sin x dx, \forall \lambda \geq \lambda_0,$$

and because λ_0 can be chosen arbitrarily > 0 , we conclude the previous holds true for every $\lambda > 0$. Recalling that

$$\int e^{\alpha x} \sin(\beta x) dx = \frac{\alpha}{\alpha^2 + \beta^2} e^{\alpha x} \left(\sin(\beta x) - \frac{\beta}{\alpha} \cos(\beta x) \right)$$

we have

$$\partial_\lambda F(\lambda) = \frac{\lambda}{\lambda^2 + 1} \left[e^{-\lambda x} \left(\sin x + \frac{1}{\lambda} \cos x \right) \right]_{x=0}^{x=+\infty} = -\frac{\lambda}{\lambda^2 + 1} \frac{1}{\lambda} = -\frac{1}{1 + \lambda^2}.$$

iii) By last calculation,

$$F(\lambda) = -\arctan \lambda + c,$$

where c is a constant. The value of c can be determined letting $\lambda \rightarrow +\infty$ and computing

$$\lim_{\lambda \rightarrow +\infty} F(\lambda) = \lim_{\lambda \rightarrow +\infty} \int_0^{+\infty} e^{-\lambda x} \frac{\sin x}{x} dx.$$

We can invert limit with integral applying the Dominated Convergence noticing that

- $\lim_{\lambda \rightarrow +\infty} f(\lambda, x) = 0$, for all $x > 0$;
- $|f(\lambda, x)| \leq e^{-\lambda x} \leq e^{-x}$ for every $\lambda \geq 1$, a.e. $x \in [0, +\infty[$.

Therefore

$$\lim_{\lambda \rightarrow +\infty} F(\lambda) = \lim_{\lambda \rightarrow +\infty} \int_0^{+\infty} e^{-\lambda x} \frac{\sin x}{x} dx = \int_0^{+\infty} \lim_{\lambda \rightarrow +\infty} e^{-\lambda x} \frac{\sin x}{x} dx = \int_0^{+\infty} 0 dx = 0.$$

On the other hand,

$$\lim_{\lambda \rightarrow +\infty} F(\lambda) = \lim_{\lambda \rightarrow +\infty} (-\arctan \lambda + c) = -\frac{\pi}{2} + c,$$

thus $c = \frac{\pi}{2}$ and

$$F(\lambda) = \frac{\pi}{2} - \arctan \lambda. \quad \square$$

Exercise 38. i) Let $f_n(x) := ne^{-nx}(1 - e^{-x})$. We notice that $f_n(0) = 0 \rightarrow 0$. For $x > 0$, clearly $\frac{n}{e^{nx}} \rightarrow 0$ thus $f_n(x) \rightarrow 0$ for every $x > 0$. We conclude that (f_n) goes to $f = 0$ point wise.

ii) Since $f_n \rightarrow 0$ point wise and since if $f_n \rightarrow f$ uniformly, that is in sup norm, it implies $f_n \rightarrow f$ point wise, the unique possibility is $f_n \rightarrow 0$ uniformly. To check if this is true we have to verify if

$$\|f_n - 0\|_\infty = \|f_n\|_\infty = \sup_{x \in [0, +\infty[} |f_n(x)| \rightarrow 0.$$

We compute the supremum. Since $f_n \geq 0$ and it is a regular function, we discuss if f_n has a maximum on $[0, +\infty[$. To this aim we may notice that

$$f'_n(x) = -n^2 e^{-nx}(1 - e^{-x}) + ne^{-nx}e^{-x} = ne^{-nx}(-n(1 - e^{-x}) + e^{-x}) = ne^{-nx}(-n + (n+1)e^{-x}).$$

Hence

$$f'_n \geq 0, \iff e^{-x} \geq \frac{n}{n+1}, \iff x \leq -\log \frac{n}{n+1} = \log \frac{n+1}{n}.$$

Thus f_n has a global maximum point at $x = \log \frac{n+1}{n}$ with maximum value

$$\|f_n\|_\infty = f_n \left(\log \frac{n+1}{n} \right) = ne^{-n \log(1+\frac{1}{n})} \left(1 - \frac{n}{n+1} \right) = \frac{n}{n+1} \left(1 + \frac{1}{n} \right)^{-n} \rightarrow e^{-1} \neq 0.$$

Thus confute $f_n \rightarrow 0$ uniformly.

iii) Recall that if $f_n \xrightarrow{L^1} f$ then, extracting a sub-sequence, $f_{n_k} \rightarrow f$ point wise a.e.. By i) we already know $f_n \rightarrow 0$ point wise everywhere. Thus the unique possible candidate to be a limit is $f = 0$. To check if this is the case we must verify if

$$\|f_n - 0\|_1 = \|f_n\|_1 = \int_0^{+\infty} |f_n(x)| dx \rightarrow 0.$$

Since $f_n \geq 0$ we have

$$\begin{aligned} \|f_n\|_1 &= \int_0^{+\infty} ne^{-nx} (1 - e^{-x}) dx = n \int_0^{+\infty} \left(e^{-nx} - e^{-(n+1)x} \right) dx \\ &= n \left(\left[\frac{e^{-nx}}{-n} \right]_{x=0}^{x=+\infty} - \left[\frac{e^{-(n+1)x}}{-(n+1)} \right]_{x=0}^{x=+\infty} \right) \\ &= n \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{n}{n+1} \rightarrow 0. \end{aligned}$$

By this we conclude that $f_n \xrightarrow{L^1} 0$.

iv) The calculation is similar to iii). The unique possibility is $f_n \xrightarrow{L^2} 0$, so we compute $\|f_n\|_2$. We have

$$\begin{aligned} \|f_n\|_2^2 &= n^2 \int_0^{+\infty} e^{-2nx} (1 - e^{-x})^2 dx = n^2 \int_0^{+\infty} \left(e^{-2nx} - 2e^{-(2n+1)x} + e^{-(2n+2)x} \right) dx \\ &= n^2 \left(\left[\frac{e^{-2nx}}{-2n} \right]_{x=0}^{x=+\infty} - 2 \left[\frac{e^{-(2n+1)x}}{-(2n+1)} \right]_{x=0}^{x=+\infty} + \left[\frac{e^{-(2n+2)x}}{-(2n+2)} \right]_{x=0}^{x=+\infty} \right) \\ &= n^2 \left(\frac{1}{2n} - 2 \frac{1}{2n+1} + \frac{1}{2n+2} \right) = n^2 \left(\left(\frac{1}{2n} - \frac{1}{2n+1} \right) - \left(\frac{1}{2n+1} - \frac{1}{2n+2} \right) \right) \\ &= n^2 \left(\frac{1}{2n(2n+1)} - \frac{1}{(2n+1)(2n+2)} \right) \rightarrow \frac{1}{4} - \frac{1}{4} = 0. \quad \square \end{aligned}$$

Exercise 39. i) Clearly $g \in L^2(\mathbb{R})$. Indeed $g \in \mathcal{C}(\mathbb{R})$ thus $f \in L^2(I)$ for every closed and bounded interval I . Moreover, $|g(\xi)| \leq \frac{1}{\xi^4}$ thus $|g(\xi)|^2 \leq \frac{1}{\xi^8}$, thus $|g|^2$ is integrable at $\pm\infty$. Conclusion: $g \in L^2(\mathbb{R})$. According to Fourier–Plancherel theorem, g has a Fourier original $f = \check{g}$. Since $\check{g}(x) = \widehat{g}(-x)$, we compute \widehat{g} . To compute this last, we first notice that, since $a^2 \neq b^2$,

$$g(\xi) = \frac{1}{b^2 - a^2} \left(\frac{1}{\xi^2 + a^2} - \frac{1}{\xi^2 + b^2} \right),$$

thus

$$\widehat{g}(x) = \frac{1}{b^2 - a^2} \left(\widehat{\frac{1}{\xi^2 + a^2}}(x) + \widehat{\frac{1}{\xi^2 + b^2}}(x) \right) = \frac{1}{b^2 - a^2} \left(\frac{\pi}{a} e^{-2\pi a|x|} - \frac{\pi}{b} e^{-2\pi b|x|} \right),$$

therefore

$$f(x) = \widehat{g}(-x) = \frac{1}{b^2 - a^2} \left(\frac{\pi}{a} e^{-2\pi a|x|} - \frac{\pi}{b} e^{-2\pi b|x|} \right).$$

ii) Again, clearly $\xi g(\xi) \in C(\mathbb{R})$, thus $\#g$ is integrable on every closed and bounded interval I . Since $|\xi g(\xi)|^2 \leq \frac{1}{|\xi|^7}$, $\#g \in L^2(\mathbb{R})$. Thus also $\#g$ has a Fourier original $\tilde{f}(x) = \#g(x) = \widehat{g}(-x)$. Since also $\#g \in L^1(\mathbb{R})$ ($|\xi g(\xi)| \leq \frac{1}{|\xi|^3}$) we have

$$\widehat{-i2\pi\#g}(x) = \partial_x \widehat{g}(x) = \partial_x f(x) = -2\pi^2 \frac{\operatorname{sgn} x}{b^2 - a^2} \left(e^{-2\pi a|x|} - e^{-2\pi b|x|} \right).$$

By this we get

$$\widehat{\#g}(x) = -i\pi \frac{\operatorname{sgn} x}{b^2 - a^2} \left(e^{-2\pi a|x|} - e^{-2\pi b|x|} \right). \quad \square$$

Exercise 40. i) Clearly $\|\cdot\|$ is well defined on V . We have $\|f\| = 0$ iff $\int_0^1 x|f(x)| dx = 0$ that is, $x|f(x)| = 0$ a.e. $x \in [0, 1]$ and this is equivalent to $f = 0$ a.e. $x \in [0, 1]$. Homogeneity and triangular inequality are straightforward.

ii) First $f_n \in \mathcal{C}([0, 1]) \subset L([0, 1])$. Moreover

$$\|f_n\| = \int_0^1 x|f_n(x)| dx = \int_0^{1/n} xn dx + \int_{1/n}^1 1 dx = n \left[\frac{x^2}{2} \right]_{x=0}^{x=1/n} + 1 - \frac{1}{n} = 1 - \frac{1}{2n},$$

thus $(f_n) \subset V$. However, this $f \notin V$ (this because $f \notin L^1([0, 1])$), thus (f_n) cannot be convergent to f in V . Is it possible $f_n \xrightarrow{V} g$ for some other $g \in V$? The answer is no: indeed, $f_n \xrightarrow{V} g$ iff $0 \leftarrow \|f_n - g\| = \int_0^1 |xf_n(x) - xg(x)| dx = \|xf_n - xg\|_1$, that is $xf_n \xrightarrow{L^1} xg$. In particular, for a suitable subsequence $xf_{n_k} \xrightarrow{a.e.} xg$. But $xf_n \xrightarrow{a.e.} 1 = x\frac{1}{x}$ thus, necessarily, $g = \frac{1}{x}$ a.e.. Since such $g \notin V$ this says (f_n) cannot converge in V .

iii) Clearly

$$\|f\| = \int_0^1 x|f(x)| dx \leq \int_0^1 |f(x)| dx = \|f\|_1,$$

so $\|\cdot\|_1$ is stronger than $\|\cdot\|$. The vice versa is false: if there exists C such that $\|f\|_1 \leq C\|f\|$, then $\|f_n\|_1 \leq C\|f_n\| = C\left(1 - \frac{1}{2n}\right)$. But

$$\|f_n\|_1 = \int_0^1 |f_n(x)| dx = \int_0^{1/n} n dx + \int_{1/n}^1 \frac{1}{x} dx = 1 + [\log x]_{x=1/n}^1 = 1 - \log \frac{1}{n} = 1 + \log n,$$

thus we should have $1 + \log n \leq C\left(1 - \frac{1}{2n}\right)$ which is clearly impossible.

iv) No: take (f_n) as in ii). We claim it is a Cauchy sequence. Indeed for $m > n$,

$$\begin{aligned}\|f_n - f_m\| &= \int_0^{1/m} x|n-m| dx + \int_{1/m}^{1/n} x\left|n - \frac{1}{x}\right| dx = (m-n)\frac{1}{2m^2} + \int_{1/m}^{1/n} (1-xn) dx \\ &= \frac{1}{2m} \left(1 - \frac{n}{m}\right) + \left(\frac{1}{n} - \frac{1}{m}\right) - n \left(\frac{1}{2n^2} - \frac{1}{2m^2}\right) \longrightarrow 0, \quad n, m \longrightarrow +\infty.\end{aligned}$$

Since (f_n) cannot be convergent, we have an example of a Cauchy sequence not having limit in V . \square

Exercise 41. i) Let $(u_n) \subset U$ be such that $u_n \xrightarrow{L^2} u$. The goal is to prove $u \in U$ that is $u(-x) = -u(x)$ a.e. x . Since $u_n \in U$,

$$u_n(-x) = -u_n(x), \text{ a.e. } x.$$

Now, since $u_n \xrightarrow{L^2} u$, also $u_n(-\#) \xrightarrow{L^2} u(-\#)$ and $-u_n \xrightarrow{L^2} -u$, thus $u(-\#) = -u$ a.e., that is $u \in U$.

ii) The characteristic property of $\Pi_U f$ is the unique element of U such that

$$\langle f - \Pi_U f, u \rangle = 0, \quad \forall u \in U.$$

To check that $\Pi_U f(x) = \frac{1}{2}(f(x) - f(-x))$ we first notice that $\frac{1}{2}(f(x) - f(-x)) \in U$ (trivial check). Therefore, to be the orthogonal projection of f on U we have to check that

$$\int_{\mathbb{R}} \left(f(x) - \frac{1}{2}(f(x) - f(-x)) \right) u(x) dx = 0, \quad \forall u \in U.$$

We notice that

$$\begin{aligned}\int_{\mathbb{R}} \left(f(x) - \frac{1}{2}(f(x) - f(-x)) \right) u(x) dx &= \frac{1}{2} \int_{\mathbb{R}} (f(x) + f(-x)) u(x) dx \\ &= \frac{1}{2} \left(\int_{\mathbb{R}} f(x) u(x) dx + \int_{\mathbb{R}} f(-x) u(x) dx \right).\end{aligned}$$

Because

$$\int_{\mathbb{R}} f(-x) u(x) dx \stackrel{y=-x}{=} \int_{\mathbb{R}} f(y) u(-y) dy \stackrel{u \in U}{=} - \int_{\mathbb{R}} f(y) u(y) dy \equiv - \int_{\mathbb{R}} f(x) u(x) dx,$$

the conclusion follows. \square

Exercise 42. I0 and ii) see notes.

iii) We consider the equation

$$f * f(x) = e^{-x^2}.$$

By computing the FT to both sides we get

$$\widehat{f * f}(\xi) = \widehat{e^{-\#^2}}(\xi) = \sqrt{\pi} e^{-\frac{1}{4}\xi^2}, \quad \Longleftrightarrow \quad \widehat{f}(\xi)^2 = \sqrt{\pi} e^{-\frac{1}{4}\xi^2}.$$

Recall now that \widehat{f} is a pointwise well defined continuous function. Therefore, for each $\xi \in \mathbb{R}$, we have

$$\widehat{f}(\xi) = \phi(\xi) \pi^{1/4} e^{-\frac{1}{8}\xi^2},$$

where $\phi(\xi) = \pm 1$ for every $\xi \in \mathbb{R}$. Since we can always write

$$\phi(\xi) = \pi^{-1/4} e^{\frac{1}{8}\xi^2} \widehat{f}(\xi) \in \mathcal{C}(\mathbb{R}),$$

and ϕ takes values in $\{-1, +1\}$, we deduce that either $\phi \equiv +1$ or $\phi \equiv -1$. We deduce that, necessarily,

$$\widehat{f}(\xi) = +\pi^{1/4} e^{-\frac{1}{8}\xi^2}, \text{ or } \widehat{f}(\xi) = -\pi^{1/4} e^{-\frac{1}{8}\xi^2}$$

this yielding to

$$f(x) = +\pi^{1/4} e^{-2x^2}, \text{ or } \widehat{f}(\xi) = -\pi^{1/4} e^{-2\xi^2}$$

The conclusion is: the proposed equation has exactly two L^1 solutions. \square

Exercise 43. i) Let $f(x, y) = e^{-(x+iy)^2} = e^{-(x^2-y^2+i2xy)}$. Clearly $f(\#, y) \in \mathcal{C}(\mathbb{R})$ for every $y \in \mathbb{R}$, thus $f(\#, y) \in L^1([-R, R])$ for every $R > 0$. We have to check the behaviour at $\pm\infty$: since

$$|f(x, y)| = e^{-(x^2-y^2)} = e^{-x^2} e^{y^2}$$

it is integrable in x at $\pm\infty$. We conclude F is well defined for every $y \in \mathbb{R}$.

ii) We wish to deduce

$$\partial_y F(y) = \int_{-\infty}^{+\infty} \partial_y f(x, y) dx. \quad (\star)$$

To do this we need:

- $\partial_y f$ exists: we have $\partial_y f(x, y) = e^{-(x^2-y^2+i2xy)}(2y + i2x)$, this for every $y \in \mathbb{R}$ almost every $x \in \mathbb{R}$;
- $|\partial_y f(x, y)| = e^{-x^2} e^{y^2} \leq e^{R^2} e^{-x^2} =: g(x) \in L^1(\mathbb{R})$ for every $y \in [-R, R]$.

Thus, (\star) holds true for every $y \in [-R, R]$, for any $R > 0$, and because this last is arbitrary, we deduce that (\star) holds true for every y . In particular,

$$\partial_y F(y) = \int_{\mathbb{R}} e^{-(x+iy)^2} 2(x+iy)i dx = i \int_{\mathbb{R}} \partial_x e^{-(x+iy)^2} dx = i \left[e^{-(x+iy)^2} \right]_{x=-\infty}^{x=+\infty} = 0.$$

Thus $\partial_y F(y) \equiv 0$ hence $F(y) \equiv C$. Since $F(0) = \int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$ we deduce $F(y) \equiv \sqrt{\pi}$. \square

Exercise 44. i) Let $f \in L^2([0, +\infty[)$. By the Cauchy–Schwarz inequality we have

$$\|f\| = \int_0^{+\infty} \frac{1}{1+x} |f(x)| dx \leq \left(\int_0^{+\infty} \frac{1}{(1+x)^2} dx \right)^{1/2} \left(\int_0^{+\infty} |f(x)|^2 dx \right)^{1/2} = 1 \cdot \|f\|_2.$$

Thus $\|f\|$ is well defined for $f \in V$ and clearly $\|f\| \geq 0$. We check vanishing:

$$\|f\| = 0, \iff \int_0^{+\infty} \frac{|f(x)|}{1+x} dx = 0, \iff \frac{|f(x)|}{1+x} = 0, \text{ a.e.}, \iff f = 0, \text{ a.e.}.$$

Homogeneity and triangular inequality are straightforward.

ii) In i) we proved $\|f\| \leq \|f\|_2$ for every $f \in V$: this says that $\|\cdot\|_2$ is stronger than $\|\cdot\|$.

iii) Let

$$f_n(x) := \frac{1}{\sqrt{x}} 1_{[1/n, n]}(x).$$

We have $f_n \in L^2 \subset V$ since

$$\|f_n\|_2 = \int_0^{+\infty} |f_n(x)|^2 dx = \int_{1/n}^n \frac{1}{x} dx = [\log x]_{x=1/n}^{x=n} = 2 \log n < +\infty.$$

In particular, since $\|f_n\|_2 \rightarrow +\infty$ we conclude that $(f_n) \subset L^2([0, +\infty[)$ is not convergent in L^2 . We also notice that, if $x \in]0, +\infty[$, we have $\frac{1}{n} \leq x \leq n$ for $n \geq N$. Therefore, $f_n(x) = \frac{1}{\sqrt{x}} \rightarrow \frac{1}{\sqrt{x}} =: f(x)$ for every $x > 0$. We notice that such $f \in V$ because

$$\begin{aligned} \|f\| &= \int_0^{+\infty} \frac{1}{1+x} \frac{1}{\sqrt{x}} dx \stackrel{y=\sqrt{x}, x=y^2}{=} \int_0^{+\infty} \frac{1}{1+y^2} \frac{1}{y} 2y dy = 2 \int_0^{+\infty} \frac{1}{1+y^2} dy = \\ &= 2 [\arctan y]_{y=0}^{y=+\infty} = 2 \frac{\pi}{2} = \pi. \end{aligned}$$

Furthermore, being $f_n(x) = \frac{1}{\sqrt{x}} = f(x)$ for $x \in [1/n, n]$, we have

$$\begin{aligned} \|f_n - f\| &= \int_0^{+\infty} \frac{1}{1+x} |f_n(x) - f(x)| dx = \int_0^{1/n} \frac{1}{1+x} \frac{1}{\sqrt{x}} dx + \int_n^{+\infty} \frac{1}{1+x} \frac{1}{\sqrt{x}} dx \\ &= 2 [\arctan y]_{y=0}^{y=1/\sqrt{n}} + 2 [\arctan y]_{y=n}^{y=+\infty} = 2 \arctan \frac{1}{\sqrt{n}} + \left(\frac{\pi}{2} - \arctan n \right) \rightarrow 0. \end{aligned}$$

We conclude that $f_n \xrightarrow{V} f$.

iv) Since

$$\|f_n\| = \int_{1/n}^n \frac{1}{\sqrt{x}(1+x)} dx = 2 [\arctan y]_{x=1/\sqrt{n}}^{x=\sqrt{n}} = 2 \left(\arctan \sqrt{n} - \arctan \frac{1}{\sqrt{n}} \right),$$

if $\|\cdot\|$ and $\|\cdot\|_2$ were equivalent, we should have

$$\exists C > 0 : \|f\|_2 \leq C\|f\|, \forall f \in V, \implies 2 \log n \leq 2C \left(\arctan \sqrt{n} - \arctan \frac{1}{\sqrt{n}} \right), \forall n \in \mathbb{N}.$$

Letting $n \rightarrow +\infty$ we would have $+\infty \leq 2C\frac{\pi}{2} < +\infty$, which is impossible. We conclude that the two norms are not equivalent. \square

Exercise 45. i) We notice that $g \in \mathcal{C}(\mathbb{R})$. Furthermore,

$$|g(\xi)| \sim_{\pm\infty} \frac{3\xi^2}{\xi^6} = \frac{3}{\xi^4},$$

so, in particular, $g^2 \sim_{\pm\infty} \frac{9}{\xi^8}$ is integrable at $\pm\infty$. Thus, $g \in L^2(\mathbb{R})$ and, according to the Fourier–Plancherel theorem, it has a Fourier original $f \in L^2(\mathbb{R})$,

$$f(x) = \frac{1}{2\pi} \widehat{g}(-x).$$

The same conclusion holds with the L^1 FT provided inversion formula applies, that is $g, \widehat{g} \in L^1(\mathbb{R})$. Without computing \widehat{g} , it is sufficient to check if $g, \partial_\xi g, \partial_\xi^2 g \in L^1$. For example

$$\partial_\xi g(\xi) = \frac{6\xi(1+\xi^2)^3 - (3\xi^2 - 1)3(1+\xi^2)^2 2\xi}{(1+\xi^2)^6} \sim_{\pm\infty} \frac{6\xi^7 - 18\xi^7}{\xi^{12}} = \frac{-12}{\xi^5},$$

from which $\partial_\xi g \in L^1$ at $\pm\infty$, and since it is also continuous we conclude that $\partial_\xi g \in L^1(\mathbb{R})$. Same check for $\partial_\xi^2 g$. Therefore, $\widehat{g} \in L^1(\mathbb{R})$ and inversion formula applies, so g has a Fourier original also in L^1 .

ii) Following the hint, we have

$$\begin{aligned} \partial_\xi^2 \frac{1}{1+\xi^2} &= \partial_\xi \left(-\frac{2\xi}{(1+\xi^2)^2} \right) = \frac{(-2)(1+\xi^2)^2 + 2\xi \cdot 2(1+\xi^2)2\xi}{(1+\xi^2)^4} = \frac{-2(1+\xi^2) + 8\xi^2}{(1+\xi^2)^3} \\ &= \frac{6\xi^2 - 2}{(1+\xi^2)^3} = 2g(\xi). \end{aligned}$$

Therefore,

$$\widehat{g}(x) = \widehat{\frac{1}{1+\xi^2}}(x) = \frac{1}{2} \widehat{(ix)^2 \frac{1}{1+\xi^2}}(x) = -\frac{x^2}{2} \frac{1}{2} e^{-|x|} = -\frac{x^2}{4} e^{-|x|}.$$

From this, we conclude that the $L^1 \cap L^2$ Fourier original of g is

$$f(x) = -\frac{x^2}{8\pi} e^{-|x|}. \quad \square$$

Exercise 46. i) Let $f(x, \xi) := \frac{\log(1+\xi^2 x^2)}{1+x^2}$. We have to discuss $f(\#, \xi) \in L^1([0, +\infty[)$. Clearly $f(\#, \xi) \in \mathcal{C}([0, +\infty[)$, thus the unique problem is to check the behaviour at $x = +\infty$. Clearly, $f(x, \xi) \rightarrow 0$ for $x \rightarrow +\infty, \forall \xi \in \mathbb{R}$, but this is not sufficient to conclude integrability. We may notice that $f(x, 0) \equiv 0$ thus $f(\#, 0) \in L^1([0, +\infty[)$, while for $\xi \neq 0$,

$$f(x, \xi) \sim_{+\infty} \frac{\log x^2}{x^2} = \frac{2 \log x}{x^2}$$

and since $\log x \leq C\sqrt{x}$ for suitable C , the r.h.s is integrable at $+\infty$. Thus $f(\#, \xi) \in L^1([0, +\infty[)$ for every $\xi \in \mathbb{R}$.

ii) We apply the differentiation theorem:

$$\partial_\xi F(\xi) = \int_0^{+\infty} \partial_\xi f(x, \xi) \, dx$$

provided

- $\partial_\xi f(x, \xi)$ exists: indeed, $\partial_\xi f(x, \xi) = \frac{2\xi x^2}{1+\xi^2 x^2} \frac{1}{1+x^2}$, $\forall \xi \in \mathbb{R}$, a.e. $x \in [0, +\infty[$;
- there exists $g = g(x) \in L^1([0, +\infty[)$ such that $|\partial_\xi f(x, \xi)| \leq g(x)$: indeed,

$$|\partial_\xi f(x, \xi)| = \frac{2|\xi|x^2}{1+\xi^2 x^2} \frac{1}{1+x^2}$$

Notice that, for $\xi \neq 0$,

$$|\partial_\xi f(x, \xi)| = \frac{1}{|\xi|} \frac{2|\xi|^2 x^2}{1+\xi^2 x^2} \frac{1}{1+x^2} \leq \frac{2}{|\xi|} \frac{1}{1+x^2} \leq \frac{2}{\varepsilon} \frac{1}{1+x^2} \in L^1([0, +\infty[), \forall |\xi| \geq \varepsilon.$$

Thus, for $|\xi| \geq \varepsilon$ we may differentiate under integral sign. Since $\varepsilon > 0$ is arbitrary we conclude that $\partial_\xi F$ exists for every $\xi \neq 0$.

Thus

$$\begin{aligned} \partial_\xi F &= \frac{2\xi}{\xi^2+1} \int_0^{+\infty} \frac{(\xi^2+1)x^2}{(1+\xi^2 x^2)(1+x^2)} \, dx = \frac{2\xi}{\xi^2-1} \int_0^{+\infty} \left(\frac{1}{1+x^2} - \frac{1}{1+\xi^2 x^2} \right) \, dx \\ &= \frac{2\xi}{\xi^2-1} \left([\arctan x]_{x=0}^{x=+\infty} - \frac{1}{\xi} [\arctan(\xi x)]_{x=0}^{x=+\infty} \right) \\ &= \begin{cases} \frac{2\xi}{\xi^2-1} \left(\frac{\pi}{2} - \frac{1}{\xi} \frac{\pi}{2} \right) = \pi \frac{\xi}{\xi^2-1} \frac{\xi-1}{\xi} = \frac{\pi}{\xi+1}, & \xi > 0, \\ \frac{2\xi}{\xi^2-1} \left(\frac{\pi}{2} + \frac{1}{\xi} \frac{\pi}{2} \right) = \pi \frac{\xi}{\xi^2-1} \frac{\xi+1}{\xi} = \frac{\pi}{\xi-1}, & \xi < 0. \end{cases} \end{aligned}$$

We may notice that $\partial_\xi F(0\pm) = \pm\pi$ thus in particular F is not differentiable at $\xi = 0$.

iii) We have

$$F(\xi) = \begin{cases} \pi \log(\xi+1) + c_1, & \xi > 0, \\ \pi \log(1-\xi) + c_2, & \xi < 0. \end{cases}$$

In particular $F(0+) = c_1$, $F(0-) = c_2$. On the other side we may compute $\lim_{\xi \rightarrow 0} F(\xi)$: to this aim we wish to do

$$\lim_{\xi \rightarrow 0} F(\xi) = \int_0^{+\infty} \lim_{\xi \rightarrow 0} f(x, \xi) \, dx = \int_0^{+\infty} 0 \, dx = 0,$$

by which it would follow $c_1 = c_2 = 0$. To justify the passage of limit inside integral we invoke dominated convergence. Clearly $\lim_{\xi \rightarrow 0} f(x, \xi) = f(x, 0) = 0$, and moreover, for $|\xi| \leq 1$

$$|f(x, \xi)| = \frac{\log(1 + \xi^2 x^2)}{1 + x^2} \leq \frac{\log(1 + x^2)}{1 + x^2} =: g(x) \in L^1([0, +\infty[). \quad \square$$

Exercise 47. i) Let $f \in X$. Since $f \in \mathcal{C}^1([0, 1])$, $f' \in \mathcal{C}([0, 1])$ thus $\|f\|_* = \|f'\|_\infty$ is well defined. To check that also $\|f\|$ is well defined we have to check that $g(x) := \frac{|f(x)|}{x}$ is integrable on $[0, 1]$. Clearly $g \in \mathcal{C}([0, 1])$. Since $f(x) = f(0) + f'(0)x + o(x) \xrightarrow{f \in X, f'(0)=0} f'(0)x + o(x)$ thus $g(x) = |f'(0)| + \frac{o(x)}{x} \xrightarrow{x \rightarrow 0+} |f'(0)| \in \mathbb{R}$ when $x \rightarrow 0+$. In particular $g \in \mathcal{C}([0, 1])$ it is integrable and $\|f\|$ is well defined.

Let's now check that $\|\cdot\|$ is a norm. Clearly $\|f\| \geq 0$. Vanishing: if $\|f\| = 0$ that is $\int_0^1 \frac{|f(x)|}{x} dx = 0$, by a well known lemma $\frac{|f(x)|}{x} = 0$ for all $x \in]0, 1]$ thus, in particular, $f \equiv 0$ on $[0, 1]$. By continuity $f \equiv 0$ on $[0, 1]$. Homogeneity and triangular inequality are straightforward.

Finally, let's check that also $\|\cdot\|_*$ is a norm. Clearly $\|f\|_* \geq 0$. Vanishing: if $0 = \|f\|_* = \|f'\|_\infty$ then $f' \equiv 0$ on $[0, 1]$. Therefore, $f \equiv C$ and since $f(0) = 0$ we conclude $f \equiv 0$ on $[0, 1]$. Homogeneity and triangular inequality are straightforward.

ii) We have to prove that there exists a constant C such that $\|f\| \leq C\|f\|_*$. Notice first that, according to the fundamental theorem of integral calculus,

$$f(x) = f(0) + \int_0^x f'(y) dy = \int_0^x f'(y) dy, \implies |f(x)| \leq \int_0^x |f'(y)| dy \leq \int_0^x \|f'\|_\infty dy = x\|f\|_*,$$

thus

$$\|f\| = \int_0^1 \frac{|f(x)|}{x} dx \leq \int_0^1 \frac{x\|f\|_*}{x} dx = \|f\|_*, \quad \forall f \in X.$$

iii) Let $f_n(x) = x^n$ with $n \geq 1$. Clearly $f_n \in X$. We have

$$\|f_n\| = \int_0^1 \frac{x^n}{x} dx = \int_0^1 x^{n-1} dx = \left[\frac{x^n}{n} \right]_{x=0}^{x=1} = \frac{1}{n},$$

while

$$\|f_n\|_* = \|f'_n\|_\infty = \max_{x \in [0, 1]} |nx^{n-1}| = n.$$

We may conclude that $\|\cdot\|$ is not stronger than $\|\cdot\|_*$ (hence the two are not equivalent). Indeed, if this were the case, there would be a constant C such that $\|f\|_* \leq C\|f\|$ for every $f \in X$. In particular then

$$n = \|f_n\|_* \leq C\|f_n\| = \frac{C}{n}, \quad \forall n \geq 1,$$

which is clearly impossible. \square

Exercise 48. i) About the convolution and its properties as well as proof see Lecture Notes.

ii) Let g have a Fourier original, that is, $g = \widehat{f}$ for an $f \in L^1(\mathbb{R})$. Then $g^2(\xi) = (\widehat{f}(\xi))^2 = \widehat{f}(\xi)\widehat{f}(\xi) = \widehat{f * f}(\xi)$ because $f \in L^1(\mathbb{R})$, so $f * f$ is well defined and it belongs to $L^1(\mathbb{R})$. Therefore, $f * f$ is a Fourier original of g^2 , and this shows existence. The Fourier original of g^2 is unique because of the injectivity of the FT.

iii) Consider the equation

$$\int_{-\infty}^{+\infty} f(x-y)e^{-y^2} dy = xe^{-ax^2}.$$

This is a convolution equation

$$f * e^{-\sharp^2} = xe^{-ax^2}.$$

We start noticing that a must be $a > 0$. Indeed, if $f \in L^1(\mathbb{R})$ is a solution, since $e^{-\sharp^2} \in L^1(\mathbb{R})$, $f * e^{-\sharp^2} \in L^1(\mathbb{R})$ by Young's theorem. So $\sharp e^{-a\sharp^2} \in L^1(\mathbb{R})$ and this is possible iff $a > 0$.

So, let $a > 0$. We recall that

$$\widehat{e^{-\frac{\sharp^2}{2\sigma^2}}}(\xi) = \sqrt{2\pi\sigma^2}e^{-\frac{1}{2}\sigma^2\xi^2}, \implies \widehat{e^{-a\sharp^2}}(\xi) = \sqrt{\frac{\pi}{a}}e^{-\frac{1}{4a}\xi^2}$$

Since of course $xe^{-ax^2} \in L^1(\mathbb{R})$, we have

$$\widehat{-i\sharp e^{-a\sharp^2}}(\xi) = \partial_\xi \widehat{e^{-a\sharp^2}}(\xi) = \partial_\xi \sqrt{\frac{\pi}{a}}e^{-\frac{1}{4a}\xi^2} = \sqrt{\frac{\pi}{a}}\left(-\frac{1}{2a}\xi\right)e^{-\frac{1}{4a}\xi^2},$$

from which

$$\widehat{\sharp e^{-a\sharp^2}}(\xi) = -i\sqrt{\frac{\pi}{a}}\frac{\xi}{2a}e^{-\frac{1}{4a}\xi^2}.$$

Therefore, $f \in L^1(\mathbb{R})$ is a solution iff

$$\widehat{f}(\xi)\sqrt{\pi}e^{-\frac{\xi^2}{4}} = -i\sqrt{\frac{\pi}{a}}\frac{\xi}{2a}e^{-\frac{1}{4a}\xi^2}, \iff \widehat{f}(\xi) = -\frac{1}{2a^{3/2}}i\xi e^{-\frac{1}{4}(\frac{1}{a}-1)\xi^2}.$$

In order the r.h.s. be the FT of an L^1 function, according to RL lemma, it must be $\widehat{f}(\pm\infty) = 0$, which is possible iff $\frac{1}{a} - 1 > 0$, that is $a < 1$. In this case, being

$$\sqrt{\pi\left(\frac{1}{a}-1\right)}e^{-\frac{1}{4}(\frac{1}{a}-1)\xi^2} = \widehat{e^{-\frac{a}{1-a}\sharp^2}}(\xi),$$

so

$$i\xi\sqrt{\pi\left(\frac{1}{a}-1\right)}e^{-\frac{1}{4}(\frac{1}{a}-1)\xi^2} = (i\xi)\widehat{e^{-\frac{a}{1-a}\sharp^2}}(\xi) = \widehat{\partial_x e^{-\frac{a}{1-a}\sharp^2}}(\xi)$$

then

$$\widehat{f}(\xi) = -\frac{1}{2a^{3/2}}\sqrt{\frac{a}{(1-a)\pi}}\widehat{\partial_x e^{-\frac{a}{1-a}\sharp^2}}(\xi),$$

from which, finally,

$$f(x) = -\frac{1}{\sqrt{4\pi a^2(1-a)}} \partial_x e^{-\frac{a}{1-a}x^2} = \frac{1}{\sqrt{\pi(1-a)^3}} x e^{-\frac{a}{1-a}x^2}. \quad \square$$