ESERCIZI

Spazi vettoriali, basi, intersezione, somma

Esercizio 1. Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = (0, 2, 0, -1)$ e $u_2 = (1, 1, 1, 0)$. Sia V il sottospazio di \mathbb{R}^4 costituito dalle soluzioni del seguente sistema:

$$\begin{cases} x_1 + x_3 = x_2 + x_4 \\ x_3 + x_4 = 0. \end{cases}$$

- (a) Determinare una base di U e una base di V.
- (b) Determinare la dimensione e una base di $U \cap V$.
- (c) Determinare la dimensione e una base di U + V.

Esercizio 2. Nello spazio vettoriale \mathbb{R}^4 siano U il sottospazio generato dai vettori $u_1 = (3,4,-1,1), u_2 = (1,-2,-1,-3)$ e W il sottospazio definito dalle equazioni $x_1-2x_2+x_3-x_4=0$ e $2x_1+3x_3+x_4=0$.

- (a) Determinare una base di U e una base di V.
- (b) Si stabilisca se la somma di U e W è diretta e si determinino delle basi di U+W e di $U\cap W$.

Esercizio 3. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1 = (2, 0, -1, 1)$, $u_2 = (1, 2, 0, 2)$ e $u_3 = (0, 1, -2, -1)$.

- (a) Si determini la dimensione di U.
- (b) Si determini una base di un sottospazio W tale che $U \oplus W = \mathbb{R}^4$ e si dica se un tale sottospazio W è unico.
- (c) Dato il vettore $u_t = (t, -1, 0, -1)$, si stabilisca per quale valore di t si ha $u_t \in U$.

Esercizio 4. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1=(3,0,-1,2), u_2=(-2,1,2,-1), u_3=(0,3,4,1).$

Sia $W \subset \mathbb{R}^4$ il sottospazio di equazioni

$$W: \begin{cases} x_1 + 2x_2 - x_4 = 0 \\ -3x_2 + 2x_3 + x_4 = 0 \end{cases}$$

- (a) Si determini la dimensione e una base di U, la dimensione e una base di W.
- (b) Si determini una base di $U \cap W$ e una base di U + W.

Esercizio 5. Nello spazio vettoriale \mathbb{R}^4 sia V il sottospazio generato dai vettori $v_1 = (0, 3, -1, 2)$, $v_2 = (1, 2, -2, 0)$ e $v_3 = (2, 1, t, -2)$.

- (a) Determinare la dimensione di V, al variare di $t \in \mathbb{R}$.
- (b) Sia U il sottospazio di \mathbb{R}^4 di equazione $x_1+x_2+2x_4=0$. Si scriva una base di U.

Esercizio 6. In \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1 = (2, -1, 0, 3), u_2 = (1, 4, -3, 3), u_3 = (1, -2, 1, 1)$ e sia W il sottospazio di equazioni $3x_1 + x_3 = 0, x_1 - x_2 - x_3 = 0$.

- (a) Si trovi una base di U e una base di W.
- (b) Si trovi una base di $U \cap W$ e una base di U + W.

Esercizio 7. Sia $U \subset \mathbb{R}^4$ il sottospazio di equazioni

$$U: \begin{cases} 2x_1 - x_2 - 3x_4 = 0\\ 2x_1 + x_3 + x_4 = 0 \end{cases}$$

e sia $W = \{(a+2b, -a+b, -2b+c, a+c) \mid a, b, c \in \mathbb{R}\}.$

- (a) Determinare una base di U e una base di W.
- (b) Scrivere un'equazione nelle incognite x_1, x_2, x_3, x_4 il cui insieme delle soluzioni sia il sottospazio W.
- (c) Determinare la dimensione e una base di $U \cap W$ e di U + W.

Esercizio 8. In \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1 = (1, 0, -1, 2), u_2 = (0, 2, -1, 1), u_3 = (3, -4, -1, 4), u_4 = (2, -6, 1, 0).$

- (a) Verificare che dim U=3 e trovare una base di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazioni $x_1 = 0$, $x_2 = 0$. Trovare una base di W e una base di $U \cap W$.

Esercizio 9. Sia U il sottospazio di \mathbb{R}^4 di equazioni:

$$\begin{cases} 2x_1 + 2x_2 + x_4 = 0 \\ 2x_1 - x_3 - x_4 = 0 \end{cases}$$

e W il sottospazio generato da $w_1 = (1, 0, 4, -2), w_2 = (1, 1, 1, 0).$

- (a) Determinare una base di U.
- (b) Determinare una base di $U \cap W$ e una base di U + W.
- (c) Per ogni vettore della base di $U \cap W$, determinare le sue coordinate rispetto alla base di U trovata in (a).

Esercizio 10. Si considerino i seguenti vettori in \mathbb{R}^3 :

$$u = (0, 1, 1)$$
 $v = (1, -1, 0)$ $w = (1, 0, -1)$

- (a) Si dimostri che l'insieme $\mathscr{B} = \{u, v, w\}$ è una base di \mathbb{R}^3 .
- (b) Si trovino le coordinate dell'elemento k = (1, 1, 1) nella base \mathcal{B} .
- (c) Si trovi il valore del parametro t che garantisca che il vettore (-2, t, 5) appartenga al sottospazio generato da u e w.

Esercizio 11. Si considerino i seguenti vettori in \mathbb{R}^4

$$u = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \quad v = \begin{pmatrix} 3 \\ 2 \\ -2 \\ 1 \end{pmatrix} \quad w = \begin{pmatrix} -8 \\ 0 \\ 6 \\ 4 \end{pmatrix} \quad p = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Sia K il sottospazio di \mathbb{R}^4 generato da $u, v, w \in p$.

- (a) I vettori u, v, w e p sono linearmente indipendenti? Si giustifichi la risposta.
- (b) Si determini una base per K.

Esercizio 12. Sia U il sottospazio di \mathbb{R}^4 generato dai seguenti vettori:

$$u_1 = (1, 1, 0, -2)$$
 $u_2 = (0, 2, 1, -1)$

- (a) Determinare le equazioni cartesiane di U.
- (b) Determinare se il vettore u = (3, -1, -2, -4) appartiene a U e determinare le coordinate di u rispetto alla base $\mathscr{B} = \{u_1, u_2\}$ di U.
- (c) Completare \mathscr{B} a una base di \mathbb{R}^4 .

Esercizio 13. Sia U il sottospazio di \mathbb{R}^4 generato dai 3 vettori:

$$v_1 = (1, 0, 2, -1),$$
 $v_2 = (0, 2, 1, 1),$ $v_3 = (2, 2, 5, -1)$

- (a) Determinare se v_1, v_2, v_3 sono linearmente indipendenti. In caso negativo, trovare una relazione di dipendenza lineare tra di essi.
- (b) Estrarre una base \mathcal{B} di U dall'insieme di generatori $\{v_1, v_2, v_3\}$. Determinare la dimensione di U.
- (c) Determinare le equazioni cartesiane di U.
- (d) Determinare se $u=(-1,-2,-3,0)\in U$ e, in caso affermativo, trovare le sue coordinate rispetto a \mathcal{B} e completarlo ad una base di U.