
Network Science
A.Y. 23/24

ICT for Internet & multimedia, Data science, Physics of data

1



Centrality
Importance of nodes in a network
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The notion of centrality
In Network Science
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>  Communities, countries  
and some key players

United states  28,3%
Unknown  18,24%
United Kingdom  10,69%
Netherlands  10,06%
Germany  9,43%
Spain  7,55%
France   5,03%

Mexico  4,4%
Canada  2,52%
Australia  1,89%
Austria  0,63%
Italy  0,63%
New Zealand  0,63%

The Museum ecosystem on Twitter
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An example of node centrality
museums network
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Can we do this efficiently, i.e., by using 
automatic, reliable, and fast methods?



Degree centrality
Counting the in/out degrees of nodes
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The degree distribution
for an undirected network
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pk = fraction of nodes 
with degree equal to k It is better to use a 

log-log scale

Wide range for the degree k !
Wide range for the probability pk ! plateau



Alternative log representations
for an undirected network
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pki = fraction of nodes with degree in 
the range [ki,ki+1) where ki are uniformly 
distributed in the log-domain, ki+1=ki ⋅Δ

Pk = ∑ pi

kmax

i=k

complementary cumulative
distr. function (CCDF) 



Two degree distributions
for directed networks
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pkin = fraction of nodes with 

input degree equal to kin

pkout = fraction of nodes with 
output degree equal to kout



Pseudocode example
https://snap.stanford.edu/data/wiki-Vote.html
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The power-law
typical behaviour of social networks
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= 2.1

many networks follow 
a power-law

ln(pk) = c - ɣ ⋅ ln(k)     

pk= C ⋅ k -ɣ

how to correctly 
estimate the slope ɣ ?

slope



The power law
approximate expression
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Degree distribution pk = C k -ɣ

Constant C is determined by the (approx.) 
normalization condition

∫ pk dk = C ⋅ kmin
-(ɣ-1) / (ɣ-1) = 1

Target PDF  p(k|ɣ) = (ɣ-1)/kmin ⋅ (k/kmin)-ɣ

kmin

∞



ML estimate for the exponent ɣ
the most reliable approach
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ML criterion: find the ɣ that best fits the data

maxɣ ∑ ln p(ki|ɣ)

where ki is the measured degree of node i

i

f(ɣ) = ∑ ln((ɣ-1)/kmin) - ɣ ln(ki /kmin)

f’(ɣ) = ∑ 1/(ɣ-1) - ln(ki /kmin) = 0

ɣ = 1 + ∑ 1 / ∑ ln(ki /kmin) i i



Pseudocode example
to estimate the exponent
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discard samples in 
the saturation 
region

choose an 
appropriate 

kmin



The value of the exponent ɣ 
in real networks ɣ ∊ [2,5] 
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* = good statistical fit with a power-law
** = good fit for a power-law with an exponential cutoff
Exp = good fit with an exponential distribution e-ak



Explaining the power-law
Preferential attachment
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Random networks
Erdös-Rényi model 1959/60
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q The random network is the simplest model:
pick a probability p, with 0<p<1
activate each link (i,j) with probability p

q The number of links is variable
q There might be isolates
q Easy to calculate fundamental parameters



Binomial distribution
explains the degree distribution for random networks
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P(k;n,p) = probability that k out of 
n trials are positive, where each 

is positive with probability p



Degree distribution
in random networks
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q The number of neighbours is binomially
distributed

P(k;n,p) = probability that a node has exactly k 
neighbours, with number of 
possible neighbours n = N-1

q Average # of neighbours
⟨k⟩ = (N-1)p   à p = ⟨k⟩/(N-1)

q Variance
σx

2 = (N-1)p(1-p) ≃ ⟨k⟩
tight around the mean

p is usually very small (since ⟨k⟩ ≪ N)

this defines p



Poisson approximation
why random networks are called Poisson networks
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q Poisson distribution (easier to use)

q Very good approximation of binomial for 
small p (and at small k) active part
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Are real networks Poisson?
no, they aren’t
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No! Poisson networks are deprived of hubs
… but, nevertheless, Poisson networks capture some aspects



Poisson versus power law
a comparison

21

Power-law is heavy tailed (presence of hubs) -
like Weibull, lognormal, Lévy 

ɣ = 2.1
⟨k⟩ = 11



Preferential attachment
a simple concept that (partially) explains the power-law
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Nodes link to the more connected nodes 
e.g., think of www

This idea has a long history

1923

1925

1931

1941

1955

1968

1976 1999

Matthew effect: “rich gets 
richer”, i.e., high connectivity 
quantifies attractiveness 



The Barabasi-Albert model
Barabási, Albert. "Emergence of scaling in random networks" (1999)
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Start with m0 nodes arbitrarily connected, with ⟨k⟩=m

q Growth
add a node (the Nth) with m links that connect 
the node to nodes in the network

q Preferential attachment
pi = ki /C probability of connecting to node i
pi = 1/C for self-loops

C = 1 + ∑  ki = 1 + 2(N-1)m 



An example
with m=1
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Approximate analysis
evolution of nodes degree
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q Increase in the degree (at each step)
Δki≃ m ⋅ ki / (1+2m(N-1)) ≃ ki / 2N

trials probability per trial

q Integration
ln(ki) = ½ ln(N) + cost. à ki = c N½

½ is the 
dynamic 
exponent

q Approximation in the continuous domain
Δki≃ dki/dN à dki/ki ≃ ½ dN/N

q Recalling that node i joins the network at time N = i
ki (N=i) = m à ki (N) = m (N/i)½



Approximate analysis
degree distribution
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q Recall ki = m (N/i)½

q The number of nodes with degree smaller than k is
ki < k  à m (N/i)½ < k 

à i > N (m/k)2    à N - N (m/k)2

q CDF is Pk = P[ki≤k] = 1 - (m/k)2

q The degree distribution is
dPk /dk =   pk = 2 m2 / k3   



The Barabasi-Albert model
wrap up
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q Depending on the implementation there might 
be self/multiple links

q Most nodes have a small degree (exactly m 
for the youngest ones)

q Hubs appear
q The average degree is 

⟨k⟩ = 2m, and in fact
L = Nm = ½⟨k⟩N

q The resulting degree 
distribution is always 
a power-law with 
exponent ɣ = 3



The Barabasi-Albert model
consequence of ki = m (N/i)½
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q all nodes follow the 
same dynamics

q the growth is sub-
linear: nodes are 
competing with the 
others

q the earlier the node 
is added, the higher 
the degree – “first-
mover advantage”

q older nodes acquire 
more links

q this explains the hub 
formation



Measuring preferential attachment
in real networks
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𝛑(k) = ∑ Δki /ΔN
k under preferential 

attachment 𝛑(k) ~ k2

in the absence 
of p.a 𝛑(k) ~ k

ki



The Bianconi-Barabasi model
Bianconi, Barabási. "Competition and multiscaling 

in evolving networks" (2001)
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The model:
q Growth – at time step N a new node i=N is 

added with m links and fitness 𝜂i

q Attractiveness (or fitness) is a random number 
drawn from a given distribution 𝜌(𝜂) - a quality 
of the individual to attract links

q Preferential attachment - probability of linking 
to node i is proportional to both the degree 
and the attractiveness, i.e., pi = ki𝜂i / ∑ kj𝜂j



An example
properties of the Bianconi-Barabasi model
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we guess ki ≃ m (N/i)𝛽(𝜂i) for some 𝛽(𝜂) 

Attractiveness

#fr
ida

ys
4fu

tur
e

#climateaction

#actiononclimate



Approximate analysis
starting point
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q We guess  ki ≃ m (N/i)𝛽(𝜂i) 

q Increase in the degree  Δki≃ m ⋅ ki 𝜂i / ∑ kj 𝜂j

q We show that ∑ kj 𝜂j ≃ m N⋅ C  (see proof)

trials probability per trial



Approximate analysis
the denominator
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q Analysis of denominator ∑ ki 𝜂i

à average value wrt 𝜂

à hypothesis ki ≃ m (N/i)𝛽(𝜂i)

q A = E[ ∑ ki 𝜂i ] = ∑ E[ ki 𝜂i ] ≃ ∫ E[ki 𝜂i] di
q E[ki 𝜂i] = ∫ m(N/i)𝛽(𝜂) 𝜂 ⋅ 𝜌(𝜂) d𝜂
q Swap integrals

A ≃ ∫ m N𝛽(𝜂) [ ∫ i -𝛽(𝜂) di ] 𝜂 ⋅ 𝜌(𝜂) d𝜂

1

N

1

N

i

q Integrate
A ≃ m N⋅ ∫ (1 – N𝛽(𝜂)-1) 𝜂 𝜌(𝜂) d𝜂

1-𝛽(𝜂)

constant C

negligible for large N if 0 < 𝛽 < 1



Approximate analysis
evolution of nodes degrees
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q We guess  ki ≃ m (N/i)𝛽(𝜂i) 

q Increase in the degree  Δki≃ m ⋅ ki 𝜂i / ∑ kj 𝜂j

q It is ∑ kj 𝜂j ≃ m N⋅ C 
Hence:
1. By inspection of the above

Δki≃ m (N/i)𝛽(𝜂i) 𝜂i / N C
2. By continuum theory

Δki≃ dki /dN ≃ m 𝛽(𝜂i) N 𝛽(𝜂i) - 1 i -𝛽(𝜂i)

3. By combining the results  𝛽(𝜂i) ≃ 𝜂i /C
We conclude  ki ≃ m (N/i)𝜂i/C



Approximate analysis
constant C
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𝛽(𝜂) ≃ 𝜂 /C
C = ∫  𝜂 𝜌(𝜂) d𝜂 à 1 = ∫ (C - 𝜂)-1 𝜂 𝜌(𝜂) d𝜂

1-𝛽(𝜂) 0

𝜂max

it is  C > 𝜂max , i.e., 𝛽<1, à the integral makes sense

growth with 
exponent <1

this identifies C for a given 𝜌(𝜂)

it also is  C ≤ 2𝜂max



Approximate analysis
degree distribution
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Want to identify Pk = P[ki ≤ k] = 1 – P[ki > k]
q ki > k and ki = m (N/i)𝜂i/C à i < N (m/k) C/𝜂i

q Hence P[ki > k|𝜂i] = (m/k) C/𝜂i

q and P[ki ≤ k|𝜂i] = 1 - (m/k) C/𝜂i

q We have Pk = 1 – ∫ (m/k) C/𝜂 𝜌(𝜂) d𝜂

The degree distribution is 

pk = Pk’ =   C ∫ k -(C/𝜂+1) mC/𝜂 𝜂-1 𝜌(𝜂) d𝜂
0

𝜂max

weighted combination of power laws with 
exponent in [2,∞) since 𝜂max < C



Equal fitness
the Barabasi-Albert model

37

What if 𝜌(𝜂) = 𝛿(𝜂-1) ?
q Coefficient C = 2 since

∫    (C/𝜂 - 1)-1 𝛿(𝜂-1) d𝜂 = (C - 1)-1 = 1

q Exponential degree ki ≃ m (N/i) ½ 

0

𝜂max

Degree distribution

pk =  C ∫ 𝜂-1 mC/𝜂 k -(C/𝜂+1) 𝛿(𝜂-1) d𝜂 = 2 m2 k -3
0

𝜂max



Uniform fitness
the model
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What if 𝜌(𝜂) = 1 and 𝜂max = 1 ?
q Coefficient C = 1.255 since

∫   (C/𝜂 - 1)-1 d𝜂 = 1  à e-2/C = 1-1/C 
q Exponential degree ki ≃ m (N/i) 𝜂i/C

q Each node has its own dynamic exponent !!!

0

1

Degree distribution

pk =  C/k  ∫ 𝜂-1 e -C ln(k/m)/𝜂 d𝜂 ∼ k -(1+C) / ln(k)
0

1

e-b – b E1(b) ,  b = C ln(k/m)
exponential integral E1



Uniform fitness
the measured data
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degree distribution pk ∼ k -2.255 / ln(k)
corrective term

C = 1.255



Exponential fitness
the model
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What if 𝜌(𝜂) = a e-a𝜂 / (1-e-a) and 𝜂max = 1 ?
q C rapidly converges to C=1

∫   (C/𝜂 - 1)-1 𝜌(𝜂) d𝜂 = 1

q Exponential degree ki ≃ m (N/i) 𝜂i/C

q Each node has its own dynamic exponent !!!

0

1

Degree distribution

pk =  C/k  ∫ 𝜂-1 e -C ln(k/m)/𝜂 𝜌(𝜂) d𝜂 ∼ k -(1+C) / ln(k)
0

1

exponential integral E1



Exponential fitness
the www
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degree distribution pk ∼ k -2 / ln(k)

a = 4.6
C = 1



Other ideas for extension
of the Albert-Barabasi model
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A.L. Barabási, Network science
http://barabasi.com/networksciencebook

Ch.3 “Random networks”

Ch.4 “The scale-free property”

Ch.5 “The Barabási-Albert model”

Ch.6 “Evolving networks”

http://barabasi.com/networksciencebook


Properties of the power-law
scale-free and random networks
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The largest hub
natural cutoff under the power-law
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The size of the largest hub is captured by
∫  pk dk = C ⋅ kmax

-(ɣ-1) / (ɣ-1) = 1/N
kmax

∞

Degree distribution pk = C k-ɣ with C = (ɣ-1) kmin
ɣ-1 

kmax = kmin N 1/(ɣ -1)   is the natural cutoff
it explains large hubs



Moments
of the power-law
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q ⟨kn⟩ = ∫ kn pk dk with pk = C k -ɣ

= C ⋅ (kmax
n-ɣ+1 - kmin

n-ɣ+1)/(n-ɣ+1)
= C kmin

n-ɣ+1 ⋅ (N -1+n/(ɣ-1)  - 1) / (n-ɣ+1)

q They diverge with N if ɣ < n+1
mean (n=1) doesn’t diverge for ɣ ≥ 2
variance (n=2) diverges for ɣ < 3
and the network does not have a scale 

(scale-free regime) 

kmin

kmax



The scale-free regime
for 2<ɣ<3
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large hubs 
radically 

shrink 
distances

hubs 
are not 

significantly 
large



Small world property
Watts, Strogatz, «Collective dynamics of 

small-world networks», (1998)
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In real networks distance between two randomly 
chosen nodes is generally short
Milgram [1967]: 6 degrees of separation

What does this mean? 
We are more connected than we think



Distances in random graphs
theoretical result
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q we reach ⟨k⟩ nodes in one hop, ⟨k⟩2 in two, ⟨k⟩3
in three, etc.

q an estimate of the average distance ⟨d⟩ is 
found by solving for N = ⟨k⟩⟨d⟩ to have

⟨d⟩ = ln(N) / ln(⟨k⟩)

q ⟨d⟩ is often taken as an estimate of the network 
diameter dmax

e.g.: on earth we are N=7⋅109 individuals, 
with ⟨k⟩=1000 acquaintances each à ⟨d⟩ = 3.28



Distances in random graphs
fitting with real data
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Very good fit ! Correct at least as order of magnitude

✓

✓

✓

✓

✓

✓



Distances in scale-free networks
the ultra-small-world
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q The average distance increases as ln(ln(N)), 
much slower than N or ln(N)

e.g. in www N=7⋅109, ln(N)=22.7, ln(ln(N))=3.12 (very small)

q The large hubs radically shrink the distance 
between nodes à ultra small world

distance of a node of 
degree ⟨k⟩ from a node 

of degree ktarget



Curiosity
wrong perception of the ultra-small-world
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In many social experiments people avoided 
hubs for entirely perceptual reasons (e.g., they 
assumed they are busy, better use them only if 
really needed)

We live in a ultra-small-world, but we perceive 
that we are more distant from others than we 
really are!



Friendship paradox
my friends are more popular than me (Feld 1991)
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q Can be observed in the ultra-small-world
under the presence of big hubs

q Rationale: a node is very likely to be 
connected to a big hub, having a very large 
number of connections

q # of friends (in the average) = ⟨k⟩
q # of friends of friends ≃ N



Takeaways
for degree centrality
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q Do not use it for resizing nodes according to 
their importance (will use PageRank for this)

q Provide useful information in the form of a 
degree distribution

q Always plot degree distributions in the log scale
q Always evaluate their slope ɣ, but please use 

the ML approach: ɣ provides useful insights on 
the network

q Preferential attachment and attractiveness can 
be measured if you have temporal info on the 
network



PageRank centrality
Google’s approach to centrality
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How to organise the web?
links as votes
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q the higher (and stronger) 
the number of incoming 
links, the more important 
a node

q the more important a    
node, the more valuable
the output links



The Google’s view
quoting                
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q PageRank works by counting the number and 
quality of links to a page to determine a rough 
estimate of how important the website is

q The underlying assumption is that more important 
websites are likely to receive more links from 
other websites



A random walk on www
the rationale behind PageRank
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q at time t, a web surfer is at page i with probability pt,i

q let the surfer choose with equal probability one of the 
sites linked by site i

q this identifies a Markov chain

q after a while probabilities settle to a steady state = the 
PageRank vector

i

1      

2

3
pt,i

⅓ pt,i

⅓ pt,i

⅓ pt,i
i

3

pt,i
⅓ pt,i

⅛ pt,k

kj
⅕ pt,j

pt+1,3 = ⅓ pt,i + ⅕ pt,j+ ⅛ pt,k



Example
of the random walk effect on a friends’ network
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1
2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

0.1667    0.1806    0.1991    0.1723    0.2025
0.1667    0.0972    0.1505    0.1040    0.1436
0.1667    0.0972    0.1366    0.1179    0.1287
0.1667    0.2222    0.1574    0.2168    0.1614
0.1667    0.3056    0.2060    0.2851    0.2203
0.1667    0.0972    0.1505    0.1040    0.1436

0.1783    0.1848    0.1874    0.1875    0.1875
0.1153    0.1222    0.1249    0.1250    0.1250
0.1242    0.1248    0.1250    0.1250    0.1250
0.2020    0.1917    0.1876    0.1875    0.1875
0.2649    0.2543    0.2501    0.2500    0.2500
0.1153    0.1222    0.1249    0.1250    0.1250

t=1 2 3 4 5

10 20 50 75 100

Sarah
Anna

Thomas
Oliver
Marc
Giulia

Equal to 
(normalized) 

degree centrality 
in undirected 
networks !!!



Introduction Hubs and Authorities Page Rank Applications Speeding up

Understanding PageRank (Gantmacher, ‘Matrix theory,” 1989)

Quick review on nonnegative matrix theory

The condensation graph ordering induces a block lower-triangular
structure on the adjacency matrix (A or M)

M =

2

6666666666666666666664

1

3

1
1

1

2
1

2
1

3

1

2
1

2

1

2

1

3
1

3

1

2
1

3
1

2
1 1

3
1

3
0

1

3

1

3
1 1

1

2
1

3

7777777777777777777775

3 2 5 1 2

... matrices in the diagonal are (by construction) irreducible (no
block lower-triangular form)

36 / 94

Matrix formalization
of the random walk

62

q pt+1 = M pt

q pt stochastic vector 
(positive entries which sum 
up to 1)

q M normalized adjacency 
matrix (column stochastic)

q M = A diag-1(d) 
q d = AT 1 output degree 

vector
q p∞ = M p∞ converges to an 

eigenvector of M (with 
eigenvalue 1)

q p∞ = d for undirected 
networks where A = AT columns sum to 1



Problems in the random walk
dead ends and spider traps

63

With high probability the surfer ends in:
q Dead ends: some nodes do not have a way out 

= zero valued columns of M
q Spider traps: some set of nodes do not have a 

way out, and further induce a periodic
behaviour

???



Teleportation
as a method to overcome problems

64

Idea: 

q the surfer does not necessarily 
move to one of the links of the 
page she/he is viewing

q with a certain probability, might jump to a random 
page

q pt+1 = c M pt + (1-c) q

damping factor, typically c = 0.85, 
meaning that 85% of the times the 
surfer moves to one of the links of 
the page 

the remaining 1 - c = 15% of the times
the surfer moves at random according 
to a probability vector q independent 
of the node she/he is in, e.g., q = 1/N 
for uniform probability



PageRank with restart
or simply PageRank

65

dead ends

M1 = c M + (1-c) q 1T

original adjacency matrix
(can be fractional)

no dead ends

normalization

no spider traps

A0

A = A0 + b eT

M = A diag-1(d),       d = AT1

indicating vector 
of dead ends

teleportation

equivalent formulation
matrix is no more sparse

pt+1 = M1 ptMarkov chain

PageRank equation r = c M r + (1-c) q, r = p∞

PageRank centrality vector



Example
of PageRank with restart on a friends’ network

66

1
2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

t=1 2 3 4 5

10 20 50 75 100

Sarah
Anna

Thomas
Oliver
Marc
Giulia

not anymore 
identical to 

degree 
centrality !!!

0.1667    0.1785    0.1919    0.1754    0.1912
0.1667    0.1076    0.1461    0.1176    0.1382
0.1667    0.1076    0.1361    0.1246    0.1302
0.1667    0.2139    0.1671    0.2035    0.1746
0.1667    0.2847    0.2128    0.2614    0.2276
0.1667    0.1076    0.1461    0.1176    0.1382

0.1820    0.1839    0.1840    0.1840    0.1840
0.1273    0.1293    0.1294    0.1294    0.1294
0.1283    0.1285    0.1285    0.1285    0.1285
0.1902    0.1873    0.1871    0.1871    0.1871
0.2449    0.2419    0.2417    0.2417    0.2417
0.1273    0.1293    0.1294    0.1294    0.1294



Convergence properies of PageRank
an overview

67

q The               vector is the 
probability pt for large t

q It corresponds to the stationary
behaviour of the Markov chain

q p∞ is unique 
q p∞ is a stochastic vector (with 

positive entries summing to 1)
q p∞ depends on the choice of the 

teleportation vector q (and of c)
q p∞ converges in few iterations, 

typically p40 ≃ p∞

6834 pages

341170

683400



Hubs and Authorities
what we can get from PageRank

68

q Authority (quality as a content provider) 
nodes that contain useful 
information, or having 
a high number of edges
pointing to them 
(e.g., course homepages)
= PageRank vector
(related to the in-degree of nodes)

q Hub (quality as an expert)
trustworthy nodes, or nodes that link 
to many authorities (e.g., course bulletin) 
= PageRank vector starting from A0

T

(related to the out-degree of nodes)

authority or hub?



Example of PageRank centrality
wikipedia administrator elections and vote history data

https://snap.stanford.edu/data/wiki-Vote.html
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Authorities Hubs

https://snap.stanford.edu/data/wiki-Vote.html
https://snap.stanford.edu/data/wiki-Vote.html
https://snap.stanford.edu/data/wiki-Vote.html


PageRank versus degree centrality
wikipedia administrator elections and vote history data
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Authorities Hubs

out-degreein-degree

PageRank hubPageRank authority



PageRank versus degree authorities
wikipedia administrator elections and vote history data
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Degree PageRank



PageRank versus degree authorities
wikipedia administrator elections and vote history data
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Degree PageRank

ɣ = 2.43



PageRank versus degree hubs
wikipedia administrator elections and vote history data
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Degree PageRank



PageRank versus degree hubs
wikipedia administrator elections and vote history data
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Degree PageRank

ɣ = 2.17



PageRank on a semantic network
2019 hashtag network related to #climatechange

(from Twitter, after #gretathunberg)

75



Readings
on PageRank

76

q Brin and Page, “The anatomy of a large-scale hypertextual web 
search engine,” 1998

q Page, Brin, Motwani, Winograd, “The PageRank Citation Ranking: 
Bringing Order to the Web,” 1999

http://ilpubs.stanford.edu/422/1/1999-66.pdf

https://scholar.google.com/

http://ilpubs.stanford.edu/422/1/1999-66.pdf
http://ilpubs.stanford.edu/422/1/1999-66.pdf
http://ilpubs.stanford.edu/422/1/1999-66.pdf
https://scholar.google.com/


Convergence properties
of PageRank power iterations

77



The condensation graph
ordering an adjacency matrix

78

q Strong connectivity induces a 
partition in disjoint strongly 
connected sets 𝒱1,𝒱2, …,𝒱K

q By reinterpreting the sets as 
nodes we obtain a 
condensation graph 𝓖* where 
iàj is an edge if a connection 
exists between sets 𝒱ià𝒱j

i



Properties of the condensation graph
ordering an adjacency matrix

79

q 𝓖* does not contain cycles
otherwise the sets in the cycle would be strongly connected

q 𝓖* has at least one root and one leaf

and every node in the graph can be reached from one 
of the roots

q 𝓖* allows a particular reordering

where node ni does not reach any of the nodes nj with j<i

procedure: identify a root n1 and remove it from the 
network, then identify a new root; cycle until all nodes have 
been selected



Matrix representation
of the condensation graph

80

The condensation graph ordering induces a block-lower-triangular 
matrix structure on the adjacency matrix

M=

blocks in the diagonal are irreducible = no block-diagonal form !



Perron-Frobenius theorem
of the condensation graph

81

M=

the eigenvalues of the diagonal blocks, 
except for the leaves, lie inside the unit 
circle, i.e., |𝜆|<1

each leaf-block has at 
least one eigenvalue in 
the unit circle; 𝜆=1 is 
always available, the 
others are distinct



The teleportation effect
it implies only one leaf

82

4

21

6

3

5Teleport 
set is here

3,4,5

2

1 6

before
after

Hence M1 carries only one eigenvector associated 
with the eigenvalue 𝜆=1



Lemma
on generalized eigenvectors

83

1T M1 V = 1T V
= 1T V J

only one 
value is 0

q PageRank matrix M1 = c M + (1-c) q 1T

q Normalization property 1T M1 = 1T

q Jordan form M1 = V J V -1

1T V (J - I) = 0
𝜌

carries the right (generalized) 
eigenvectors ei of M1

carries the 
eigenvalues of M1

Hence 1T ei = 0 for i>1, i.e., except for the eigenvector 
associated with eigenvalue 1

J =



Main result
for the eigenstructure of the PageRank matrix

84

same eigenvalues of M, 
but multiplied by c !!!

q M1 has one eigenvalue equal to 1
q The remaining eigenvalues satisfy |𝜆| ≤ c

M1 ei = c M ei + (1-c) q 1T ei for i>1

Haveliwala and Kamvar, “The second eigenvalue of the Google matrix,” 2003

http://ilpubs.stanford.edu:8090/582/1/2003-20.pdf  

http://ilpubs.stanford.edu:8090/582/1/2003-20.pdf
http://ilpubs.stanford.edu:8090/582/1/2003-20.pdf
http://ilpubs.stanford.edu:8090/582/1/2003-20.pdf


Convergence properties
of the PageRank power iteration

85

pt = M1 pt-1 = M1
t p0 =  V J t V-1 p0 

q ǁpt-p∞ǁ2 ≲ K ct t m-1∼ K ct

q Triangular inequality: ǁpt+1-ptǁ2 ≲ 2K ct

q Precision 𝜀: ǁpt+1-ptǁ2 < 𝜀
q Iterations required:  t = [ln(2/𝜀) + ln(K)] / ln(1/c)

precision 10-3 à 7.6  c=0.85 à 1/ln(1/c) = 6

Is usually small 
à fast algorithm

max eigenvalue multiplicitygets large for high multiplicity



Local PageRank
measuring similarity/closeness among nodes

86



Idea
q Measure similarity / 

closeness to node i by 
applying PageRank with 
teleport set S={i}, i.e.,     
with q = δi

Result
q Measures direct and 

indirect multiple 
connections, their quality, 
degree or weight

Measuring closeness: LocalPageRank
for the eigenstructure of the PageRank matrix

87



Example
who’s Sara’s best friend?

88

1
2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

t=1 2 3 4 5

10 20 50 75 100

Sarah
Anna

Thomas
Oliver
Marc
Giulia

0    0.2125    0.1222    0.2096    0.1290
0    0.2125    0.0319    0.1705    0.0708
0    0.2125    0.0921    0.1369    0.1127
0         0        0.2408    0.0617    0.2043

1.0000    0.1500    0.4811    0.2508    0.4125
0    0.2125    0.0319    0.1705    0.0708

0.1743    0.1653    0.1647    0.1647    0.1647
0.1238    0.1144    0.1138    0.1138    0.1138
0.1206    0.1199    0.1199    0.1199    0.1199
0.1285    0.1426    0.1434    0.1434    0.1434
0.3290    0.3435    0.3444    0.3444    0.3444
0.1238    0.1144    0.1138     0.1138    0.1138

0.1647

0.
14

34



Example
who’s Giulia’s best friend?
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1
2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

t=1 2 3 4 5

10 20 50 75 100

Sarah
Anna

Thomas
Oliver
Marc
Giulia0.2909    0.2985    0.2989    0.2989    0.2989

0.0848    0.0926    0.0931    0.0931    0.0931
0.1309    0.1313    0.1314    0.1314    0.1314
0.1763    0.1645    0.1638    0.1638    0.1638
0.2324    0.2204    0.2197    0.2197    0.2197
0.0848    0.0926    0.0931    0.0931    0.0931

1.0000      0.1500    0.4109    0.2403    0.3404
0              0     0.1405    0.0467    0.1262
0     0.2833     0.1027    0.1510    0.1275
0     0.2833     0.0425    0.2358    0.1078
0     0.2833     0.1629    0.2795    0.1719
0              0     0.1405    0.0467    0.1262

0.2197

Local PageRank is 
NOT symmetric!



Example
what is the most related conference to ICDM?

90

Top 10 ranking results 

ICDM = international conf. on data mining
KDD = knowledge discovery and data mining



Local PageRank versus degree
authorities

91

Local PageRank 1-hop out-neighbours

neighbours authority score =
local node à neighbours



On the complexity of Local PageRank
approximate PageRank

92

Andersen, Chung, Lang, “Local graph partitioning using 
PageRank vectors,” 2006

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4031383
use institutional Sign In with your unipd credentials

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4031383


Approximate PageRank algorithm
the push operation

93

q Start from u = 0 and v = q

q To all the nodes i satisfying vi > 𝜀 di/D apply the 
push operation

Returns u≃ r with precision |r - u|1 < 𝜀
It is simple

u+ = u + (1-c) 𝛿
v+ = v - 𝛿 + c M 𝛿

degree of node i

sum of the degreesprecision

only one active 
element in position i

with value vi
u constantly 
increases

v always 
positive



Linearity of PageRank
to build a lemma for the proof

94

1T M = 1T

q PageRank equation rq= c M rq + (1-c) q

stochastic Teleport vector

column stochastic matrix

1T q = 1
stochastic ranking vector
1T rq = 1, rq ≥ 0

q Alternative equation rq = (I - c M)-1 (1-c) q

linear in q

rau+bv = a ru + b rv



Modifying the PageRank equation
the lemma for the proof

95

q PageRank equation rq= c rMq + (1-c) q

one-step random walk

q rq = (I - c M)-1 (1-c) q
q rq = (1-c) 𝛴 (c M)k q

q M rq = (1-c) 𝛴 (c M)k M q

q M rq = rMq



Main property of push: rq = u + rv
almost there

96

q At starting point u = 0 and v = q imply rq= 0 + rq

q The following steps are proved by induction 

u+ + rv+ = u + (1-c) 𝛿 + rv - r𝛿 + c rM𝛿

u+ = u + (1-c) 𝛿
v+ = v - 𝛿 + c M 𝛿

by linearity

r𝛿 - (1-c) 𝛿

u+ + rv+ = u + rv = rq



Precision guarantee: |rq - u|1 < 𝜀
and the result is proved

97

q The push property implies rq = u + rv
q Hence |rq - u|1 = |rv|1 = 1T rv

q The PageRank equation is rv= c M rv + (1-c) v
q Hence 1T rv= c 1T M rv + (1-c) 1T v so that 1T rv = 1T v

1T

As a result |rq - u|1 = 1T v < 𝛴 𝜀 di /D = 𝜀



Scalability properties
of Local PageRank using Approximate PageRank

98

(Francesco Barbato & Tommaso Boccato, 2020)

Quasi-linear behaviour = scalability of Local PageRank



Beware of the Lazy PageRank
which is suggested in the paper

99

q Lazy PageRank r = a M2 r + (1-a) q

M2 = b I + (1-b) M

q Lazy because a fraction b of the times the surfer 
stays where she/he is

q Equivalent to r = c M r + (1-c) q

c = a(1-b)/(1-ab) < a

slower algorithm, as its 
convergence speed 

depends on a>c, better 
use c directly! 



Application #1
the link prediction task

100

Given a graph at time 
T, can we output a 
ranked list of links 

that are predicted to 
appear in the graph 

at time T+x ?

Recommendation in social networks



Application #1
random walk with restart (RWR) method

101

Likelihood of activating the link (i,j) 

LRWR(i,j) = rij + rji

ri = c M ri + (1-c) δi

teleportation 
to node i

Local PageRank 
vector

i j

k

m

n

rji
rij

Select the highest values of LRWR 
for recommendation pourposes 



Application #1
the resorse allocation (RA) counterpart

102

i j

k

m

n

LRA(i,j) = ∑  1/dk
k ∊ Ni ⋂ Nj

related to a two-hop RWR

ri ≃ (1-c) Σ (c M)n δi
n=0

to have

2

LRWR(i,j) ≃ (1-c) c2 (1/di +1/dj) LRA(i,j)

rij ≃ (1-c) c2 / di  LRA(i,j) 

common 
neighbours



Application #1
performance metrics

103

fraction of links correctly guessed 
(out of 100 recomendations)

1158 L. Lü, T. Zhou / Physica A 390 (2011) 1150–1170

Table 3

Comparison of algorithms’ accuracy quantified by AUC and precision. For each network, the training set contains 90% of the known links. Each number is
obtained by averaging over 1000 implementations with independently random divisions of training set and probe set. The parameters " = 10�3 for LP (for
USAir, " = �10�3) and c = 0.9 for RWR. The numbers inside the brackets denote the optimal step of LRW and SRW indices. For example, 0.972(2) means
the optimal AUC is obtained at the second step of LRW. The highest accuracy in each line is emphasized in black. For HSM, 5000 samples of dendrograms
for each implementation are generated.

AUC CN RA LP ACT RWR HSM LRW SRW

USAir 0.954 0.972 0.952 0.901 0.977 0.904 0.972(2) 0.978(3)
NetScience 0.978 0.983 0.986 0.934 0.993 0.930 0.989(4) 0.992(3)
Power 0.626 0.626 0.697 0.895 0.760 0.503 0.953(16) 0.963(16)
Yeast 0.915 0.916 0.970 0.900 0.978 0.672 0.974(7) 0.980(8)
C.elegans 0.849 0.871 0.867 0.747 0.889 0.808 0.899(3) 0.906(3)

Precision CN RA LP ACT RWR HSM LRW SRW

USAir 0.59 0.64 0.61 0.49 0.65 0.28 0.64(3) 0.67(3)
NetScience 0.26 0.54 0.30 0.19 0.55 0.25 0.54(2) 0.54(2)
Power 0.11 0.08 0.13 0.08 0.09 0.00 0.08(2) 0.11(3)
Yeast 0.67 0.49 0.68 0.57 0.52 0.84 0.86(3) 0.73(9)
C.elegans 0.12 0.13 0.14 0.07 0.13 0.08 0.14(3) 0.14(3)

where q is the initial configuration function. In Ref. [79] Liu and Lü applied a simple formdetermined by node degree, namely
qx = kx

M . Note that, here we only focus on the few-step randomwalk instead of the stationary state where we have ⇡xy = ky
M

and thus leading to a local index.
(20) Superposed RandomWalk (SRW) [79]. Similar to the RWR index, Liu and Lü [79] proposed the SRW index, where the

random walker is continuously released at the starting point, resulting in a higher similarity between the target node and
the nodes nearby. The mathematical expression reads

sSRWxy (t) =
tX

⌧=1

sLRWxy (⌧ ) =
tX

⌧=1

[qx⇡xy(⌧ ) + qy⇡yx(⌧ )], (30)

where t denotes the time steps.
Liu and Lü [79] systematically compared these two indices, LRW and SRW, with five other indices, including three local

(or quasi-local) indices, CN, RA and LP, and two other random-walk-based global indices, ACT and RWR, as well as the
hierarchical structure method (HSM) proposed by Clauset et al. [80] (see Section 4.1 for the detailed introduction of HSM).
According to the experimental results (see Table 3), LRW and SRW methods perform better than other indices with their
respective optimal walking step positively correlated with the average shortest distance of the network.

Furthermore, the computational complexity of LRW and SRW is lower than ACT and RWR whose time complexity in
calculating inverse and pseudoinverse is approximately O(N3), while the time complexity of n-steps LRW and SRW are
approximately O(Nhkin), ignoring degree heterogeneity of the network. That is to say, when n is small LRW and SRW
run much faster than other random-walk-based global similarity indices. The advantage of LRW and SRW for their low
computational complexity is prominent especially in the huge size (i.e. large N) and sparse (i.e. small hki) networks. For
example, LRW or SRW for power grid is thousand times faster than ACT, cos+ and RWR, even for n ' 10 [79].

With the similar motivation of LRW and SRW, Mantrach et al. recently proposed a bounded normalized random walk
with restart algorithm (see Eq. (21) for the definition of RWR), and applied it to address the classification problem [81].
With this method both complexities of time and space can be reduced.

4. Maximum likelihood methods

This section will introduce two recently proposed algorithms based on the maximum likelihood estimation. These
algorithms presuppose some organizing principles of the network structure, with the detailed rules and specific parameters
obtained by maximizing the likelihood of the observed structure. Then, the likelihood of any non-observed link can be
calculated according to those rules and parameters.

From the viewpoint of practical applications, an obvious drawback of the maximum likelihood methods is that it is very
time consuming. A well designed algorithm is able to handle networks with up to a few thousand nodes in a reasonable
time, but will definitely fail to deal with the huge online networks that often consist of millions of nodes. In addition, the
maximum likelihood methods are probably not among the most accurate ones (see, for example, the comparison between
hierarchical structure model and some typical similarity-based methods in Table 3). However, the maximum likelihood
methods provide very valuable insights into the network organization, which cannot be gained from the similarity-based
algorithms or the probabilistic models.

4.1. Hierarchical structure model

Empirical evidence indicates that many real networks are hierarchically organized, where nodes can be divided into
groups, further subdivided into groups of groups, and so forth over multiple scales [21] (e.g., metabolic networks [43] and

1158 L. Lü, T. Zhou / Physica A 390 (2011) 1150–1170

Table 3

Comparison of algorithms’ accuracy quantified by AUC and precision. For each network, the training set contains 90% of the known links. Each number is
obtained by averaging over 1000 implementations with independently random divisions of training set and probe set. The parameters " = 10�3 for LP (for
USAir, " = �10�3) and c = 0.9 for RWR. The numbers inside the brackets denote the optimal step of LRW and SRW indices. For example, 0.972(2) means
the optimal AUC is obtained at the second step of LRW. The highest accuracy in each line is emphasized in black. For HSM, 5000 samples of dendrograms
for each implementation are generated.

AUC CN RA LP ACT RWR HSM LRW SRW

USAir 0.954 0.972 0.952 0.901 0.977 0.904 0.972(2) 0.978(3)
NetScience 0.978 0.983 0.986 0.934 0.993 0.930 0.989(4) 0.992(3)
Power 0.626 0.626 0.697 0.895 0.760 0.503 0.953(16) 0.963(16)
Yeast 0.915 0.916 0.970 0.900 0.978 0.672 0.974(7) 0.980(8)
C.elegans 0.849 0.871 0.867 0.747 0.889 0.808 0.899(3) 0.906(3)
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NetScience 0.26 0.54 0.30 0.19 0.55 0.25 0.54(2) 0.54(2)
Power 0.11 0.08 0.13 0.08 0.09 0.00 0.08(2) 0.11(3)
Yeast 0.67 0.49 0.68 0.57 0.52 0.84 0.86(3) 0.73(9)
C.elegans 0.12 0.13 0.14 0.07 0.13 0.08 0.14(3) 0.14(3)

where q is the initial configuration function. In Ref. [79] Liu and Lü applied a simple formdetermined by node degree, namely
qx = kx

M . Note that, here we only focus on the few-step randomwalk instead of the stationary state where we have ⇡xy = ky
M

and thus leading to a local index.
(20) Superposed RandomWalk (SRW) [79]. Similar to the RWR index, Liu and Lü [79] proposed the SRW index, where the

random walker is continuously released at the starting point, resulting in a higher similarity between the target node and
the nodes nearby. The mathematical expression reads

sSRWxy (t) =
tX

⌧=1

sLRWxy (⌧ ) =
tX

⌧=1

[qx⇡xy(⌧ ) + qy⇡yx(⌧ )], (30)

where t denotes the time steps.
Liu and Lü [79] systematically compared these two indices, LRW and SRW, with five other indices, including three local

(or quasi-local) indices, CN, RA and LP, and two other random-walk-based global indices, ACT and RWR, as well as the
hierarchical structure method (HSM) proposed by Clauset et al. [80] (see Section 4.1 for the detailed introduction of HSM).
According to the experimental results (see Table 3), LRW and SRW methods perform better than other indices with their
respective optimal walking step positively correlated with the average shortest distance of the network.

Furthermore, the computational complexity of LRW and SRW is lower than ACT and RWR whose time complexity in
calculating inverse and pseudoinverse is approximately O(N3), while the time complexity of n-steps LRW and SRW are
approximately O(Nhkin), ignoring degree heterogeneity of the network. That is to say, when n is small LRW and SRW
run much faster than other random-walk-based global similarity indices. The advantage of LRW and SRW for their low
computational complexity is prominent especially in the huge size (i.e. large N) and sparse (i.e. small hki) networks. For
example, LRW or SRW for power grid is thousand times faster than ACT, cos+ and RWR, even for n ' 10 [79].

With the similar motivation of LRW and SRW, Mantrach et al. recently proposed a bounded normalized random walk
with restart algorithm (see Eq. (21) for the definition of RWR), and applied it to address the classification problem [81].
With this method both complexities of time and space can be reduced.

4. Maximum likelihood methods

This section will introduce two recently proposed algorithms based on the maximum likelihood estimation. These
algorithms presuppose some organizing principles of the network structure, with the detailed rules and specific parameters
obtained by maximizing the likelihood of the observed structure. Then, the likelihood of any non-observed link can be
calculated according to those rules and parameters.

From the viewpoint of practical applications, an obvious drawback of the maximum likelihood methods is that it is very
time consuming. A well designed algorithm is able to handle networks with up to a few thousand nodes in a reasonable
time, but will definitely fail to deal with the huge online networks that often consist of millions of nodes. In addition, the
maximum likelihood methods are probably not among the most accurate ones (see, for example, the comparison between
hierarchical structure model and some typical similarity-based methods in Table 3). However, the maximum likelihood
methods provide very valuable insights into the network organization, which cannot be gained from the similarity-based
algorithms or the probabilistic models.

4.1. Hierarchical structure model

Empirical evidence indicates that many real networks are hierarchically organized, where nodes can be divided into
groups, further subdivided into groups of groups, and so forth over multiple scales [21] (e.g., metabolic networks [43] and

But not strikingly good compared to simpler 
methods (e.g., RA = resource allocation)

Among the best performance in social networks



Application #2
TopicSpecific PageRank

104

q Bias the random walk towards a topic specific teleport set S
of nodes, i.e., make sure that q is active in S only

q S should contain only pages that are relevant to the topic
Result
q The random walk deterministically ends in a small set E, 

containing S, and being in some sense close to it

S
E

p∞ is active in E only



Application #2
assigning documents to topics in semantic networks

105

1

2

3

Tweets

Hashtags

those who think they are crazy enough to 
change the world eventually do. 
#climatechange #ClimateCrisis 

#ClimateAction #GretaThunberg #Greta
#climatechange 

#GretaThunberg4

5

6

7

8

Hopefully these kids will succeed where 
past generations have failed.

#TheResistance #FBR #ClimateChange  
#Environment  #GlobalWarming  

#GretaThunberg

#GlobalWarming

#Environment

The #environment can have a major effect 
on the human cardiovascular system. A 

new study has found an increase in heat-
induced #heartattack risk in recent years. 
Could #ClimateChange be a risk factor? 

#longevity

#longevity

Topic 1

Tweet 1 is assigned 
to Topic 1 !!!

0.1234

0.1221



Signed PageRank
modifications for signed networks

106



PageRank in signed networks
Jung, Jim, Sael, Kang, “Personalized ranking in signed networks 

using signed random walk with restart,” 2016

107

https://ieeexplore.ieee.org/iel7/7837023/7837813/07837935.pdf

q Identify + (favourable) and – (adversarial) 
paths, i.e., ranking values r+ and r- for 
positive and negative surfers

q Extract positive A+ and negative A-
contributions to A = A+ - A-

q Normalize the absolute value, to 
get M+ and M- (with normalized M++M-)

q Run a signed random walk

r+ = c M+ r+ + c M- r- + (1-c) q

r- = c M- r+ + c M+ r-

https://ieeexplore.ieee.org/iel7/7837023/7837813/07837935.pdf


Signed PageRank
power iteration

108

r = c M r + (1-c) q0 teleportation vector

(column) normalized 
adjacency matrixdamping factor

PageRank vector (centrality)

M+
M = M+

M-

M-

r+r = r-

q
q0 = 0

r+- = r+ - r-signed centrality outcome

r+- = c M+- r+- + (1-c) q

M+- = A diag-1(|A|T1)

can be signed



Example
who’s Giulia’s best friend?
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1
2

3

4

Giulia
5

6

Marc

Oliver

Thomas

Sarah

Anna

t=1 2 3 4 5

10 20 50 75 100

Sarah
Anna

Thomas
Oliver
Marc
Giulia0.2909     0.2985    0.2989    0.2989    0.2989

-0.0848   -0.0926   -0.0931   -0.0931   -0.0931
-0.1309   -0.1313   -0.1314   -0.1314   -0.1314
0.1763     0.1645    0.1638    0.1638    0.1638
0.2324     0.2204    0.2197    0.2197    0.2197

-0.0848   -0.0926   -0.0931   -0.0931   -0.0931

1.0000    0.1500     0.4109    0.2403    0.3404
0             0    -0.1405   -0.0467   -0.1262
0   -0.2833   -0.1027   -0.1510   -0.1275
0    0.2833    0.0425     0.2358    0.1078
0    0.2833    0.1629     0.2795    0.1719
0             0   -0.1405   -0.0467   -0.1262



Preventing spamming
on the role of the teleport vector

110



Spam farm
how to boost PageRank for a web page

111

1. Get as many links as possible 
from accessible pages (e.g., 
blog comments pages) 

2. Construct link farm to get a 
PageRank multiplier effect 

K



Google bombs
in 2004 US elections

112



PageRank analysis
of spam farms

113

inaccessible accessible t owned

inacc.

acc.

t

owned

r = c M r + (1- c) q

ranking due to accessible pages
teleportation value to pages 

owned by the spammer

M =

2

6666666666666664

? ?

0
...
0

0

? ?

0
...
0

0

0 · · · 0 ? · · · ? 0 1 · · · 1

0 0

1
K
...
1
K

0

3

7777777777777775

rt = a+ cKro + (1� c)qo

ro = c 1
K rt + (1� c)qo

K



PageRank outcome
of spam farms
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ranking due to 
accessible pages

scaling factor (≃3.6) spam factor (can be made 
as large as desired)

teleportation value to pages 
owned by the spammer

rt =
a

1� c2
+

cK + 1

1 + c
qo

teleport only to trusted pages (i.e., set qo = 0)
can also be used as a method to identify spam farms

solution



Row-normalized PageRank
For spreading information over the network
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Row-normalized PageRank
an overview
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M = diag-1(d) A, d = A 1

pt+1 = c M pt + (1-c) q
p0    = q

Markov chain

PageRank equation r = c M r + (1-c) q row-normalized 
M 1 = 1

M1 = c M + (1-c) q vT

vT M = vT

vT q = 1

same properties of column-normalized PageRank:
q M1 has one eigenvalue equal to 1
q The remaining eigenvalues satisfy |𝜆| ≤ c



Row-normalized PageRank
interpreting its action
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A node gathers the average value of the neighbour 
nodes pointing to it

i

3

pt,i
⅓ pt,i

⅓ pt,k

kj
⅓ pt,j

pt+1,3 = c ⅓ ( pt,i + pt,j+ pt,k ) + (1-c) q3

It is a way of spreading the original information q over 
the network



Semantic network example
agency = action and goal orientation, sense of which 

is necessary for people to attempt social change 

118

q values of agency (in colour) r values after spreading



Takeaways
for PageRank centrality
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q This is the metric to be used it for resizing nodes 
according to their importance

q Provides elaborate information on the relevance
of nodes in the network

q For directed networks, it can be used in both its 
authority and hub forms

q Can also be put in the form of a PageRank 
distribution

q Can be used in different useful ways, e.g., to 
evaluate similarity or closeness, to spread
information

q Exploit its potential at your best



HITS centrality
a (less interesting) alternative to PageRank
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HITS centrality
hubs and authorities

121

HITS – hubs and authorities
Kleinberg, J.M.
1999
«Authoritative sources in a           
hyperlinked environment»
Journal of the ACM

Conceptually similar to PageRank
Provides scores for authorities and hubs, 
separately, as PageRank can do
We deprecate its use

https://www.cs.cornell.edu/home/kleinber/auth.pdf

https://www.cs.cornell.edu/home/kleinber/auth.pdf


HITS equations
authorities score

122

A2,4 = weight of connection 4 à 2

2

1 4

3

A21 h1

A23 h3

a2 = A21 h1 + A23 h3 + A24 h4

= h1 + h3 + h4

A
24 h

4

5

6

7

8

9

10

h3

h4h1

authority scores hub scores



HITS equations
hubs score

123

2

66666666666664

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

3

77777777777775

=

2

66666666666664

0 1 1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 0 0 1 0 1 1 1 1 1
0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0

3

77777777777775

T

·

2

66666666666664

a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

3

77777777777775

A3,2 = weight of connection 2 à 3

2

1 4

3

A12 a1

A32 a3

h2 = A12 a1 + A32 a3 + A42 a4

= a1 + a3 + a4

A
42 a

4

5

6

7

8

9

10

a3

a4a1

h = ATa



HITS equations
hubs and authorities
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2

1 4

3

5

6

7

8

9

10

12%12%

15%15%

18%

6%

6%

6%

6%

4%

q The formula says we are interested 
in the (principal) eigenvector of 
matrix M = AT ⋅ A

q Can be obtained by standard linear 
algebra algorithms

a = ca ·Ah

h = ch ·ATa

hubs authorities

h = cMh , M = ATA

c = cach

a = ca ·Ah

h = ch ·ATa



Power iteration method
for HITS

125

0. Start from an 
initial guess  a0

product by a sparse 
matrix (twice)

2. Keep normalizing
(divide at+1 by the sum 
of elements)

1. Let the time go by        
  at+1 = M at

3. Stop when a 
converges (few iterations?)

M = A AT



Convergence properties
for HITS
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q ǁat-a∞ǁ2 ≤ √N ⋅ (𝜆2/𝜆1)t

q 𝜆1 largest eigenvalue of M
q 𝜆2 second largest eigenvalue of M
q Triang. inequality ǁat-at+1ǁ2 ≤ 2√N ⋅(𝜆2/𝜆1)t

Worst case result:
q Precision 𝜀 implies: ǁat-at+1ǁ2 < 𝜀
q Iterations required:  t = [ln(2/𝜀)+½ln(N)] / ln(𝜆1/𝜆2)

10-3 precision à 7.6  

slow if 𝜆2 close to 𝜆1
N = 109 à 10.3



Eigenvector and Kats 
centralities

other (less interesting) alternatives to PageRank

127



Eigenvector and Kats centralities
an overview
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with constant term without constant term

no
rm

al
iz

ed PageRank

r = c M r + (1-c) q

Degree

r = M r

un
no

rm
al

iz
ed Katz

r = c A r + 1

Eigenvector

r = c A r

r = (I - c A)-1 1 
= 𝛴 (c A)k 1

The absence of normalization 
makes them less robust and 
meaningful compared to PageRank

They are deprecated



Eigenvector and Kats centralities
their graphical interpretation
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Degree Eigenvector Katz



Closeness and Harmonic 
centralities

importance of nodes as spreaders of information

130



Closeness centrality
a definition

131

Rationale: th
e node which is the 

easiest to
 reach, th

e one which 

is the best fo
r spreading 

information



An example
on how to calculate closeness centrality
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1
2

3

4

Giulia
5

Marc

Oliver

Thomas

Sarah

Anna

Closeness

Sarah
Anna

Thomas
Oliver
Marc
Giulia0.1429

0.1250
0.1250
0.1429
0.1667
0.1250

C(Giulia) = 1/7 
= 0.1429

6

Sarah is the 
preferred node for 
spreading 
information

count the lengths of the shortest paths 
leading to Giulia

1 + 2 + 1 + 2 + 1 = 7

1
2

1

1 2



Closeness versus degree centrality
a graphical interpretation
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Closeness Degree



Harmonic centrality
a definition

134



Closeness versus harmonic centrality
a graphical interpretation
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Closeness Harmonic



Betweenness centrality
importance of nodes as bridges or brokers
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Betweenness centrality
a definition
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Rationale: th
e node which takes 

you elsewhere

(bridge, broker)



An example
on how to calculate betweenness centrality
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1
2

3

4

Giulia
5

Marc

Oliver

Thomas

Sarah

Anna

Betweenness

Sarah
Anna

Thomas
Oliver
Marc
Giulia

6

count the # of shortest paths 
passing through Sarah

(count a fraction if more than one path)
1 + 1 + 0.5 + 0.5 + 0.5 = 3.5

1.3333
0.3333

0
1.5000
3.5000
0.3333

1
2

3

4

Giulia
5

Marc

Oliver

Thomas

Sarah

Anna

6

1
1

0.5

0.5

0.5



Closeness vs betweenness centrality
a graphical interpretation
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Closeness Betweenness

Betweenness is a measure of 
brokerage (i.e., being a bridge)

Closeness is a measure of center of 
gravity (best node to spread info)

Minnesota road network



Betweenness vs PageRank centrality
wiki vote network
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Betweenness PageRank



Betweenness vs PageRank centrality
a correlation view

141

Betweenness

PageRank



Clustering coefficient
how tightly linked is the network locally
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Clustering coefficient
a definition

143

Rationale: how strongly 

connected is the network locally 

/ general indication of th
e 

graph’s tendency to be 

organized into clusters



Triadic closure
in social networks

144

Triadic closure
q A and C are likely to have the opportunity to meet 

because they have a common friend B
q The fact that A and C is friends with B gives them the 

basis of trusting each other
q B may have the incentive to bring A and C together, as it 

may be hard for B to maintain disjoint relationships 

Forbidden triad
Triadic closure

(A and C are likely to be friends)

Granovetter, The strength of weak ties [1973]
https://www.jstor.org/stable/pdf/2776392.pdf

https://www.jstor.org/stable/pdf/2776392.pdf


Local clustering coefficient
a measure of triadic closures

145

Local Clustering coefficient Ci counts the fraction of 
pairs of neighbours Ni which form a triadic closure with 
node i

Ci =

where tcijk = 1 if the triplet (i,j,k) forms a triadic closure, 
and zero otherwise

equal to diag(A3)



Local clustering coefficient
examples
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2 3

4 5

C1  = 1 =  6 / (4x3/2) 

2 3

4 5

C1  = 0

2 3

4 5

C1  = ½ =  3 / (4x3/2) 

not connected 
neighbourhood

weakly connected 
neighbourhood

strongly connected 
neighbourhood

<C> = 0 <C> = 1<C> = 0.766

C2  = C3 = ⅔

1 1 1

C4  = C5 = 1



Clustering coeff. vs degree centrality
a correlation view
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citation network from arXiv’s High Energy Physics / Phenomenology section

when person has 
many friends, 
these friends 
have less edges 
among them, 
which is to be 
expected since a 
person with many 
friends is likely to 
have friends from 
more diverse 
communities, and 
a paper getting 
cited many times 
is likely to be 
cited by papers 
from more 
diverse areas



Warning
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But clustering coefficient is generally hard to see and 
visual interpretation is considered unreliable



Visual example

149



Takeaways
for Closeness, Betwenness and Clustering coefficient

150

q Closeness, betweenness and clustering 
coefficient are alternative centrality 
measures that have a different view wrt
PageRank

q They provide useful insights especially in 
social networks, as they are linked to 
sociology concepts

q Closeness and betweenness are based on 
distances, that require algorithms that are 
less scalable than PageRank

q Exploit their potential at your best



Wrap-up
on centrality measures
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Takeaways
on centrality measures
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Centrality measure Technical property Meaning

Degree (in/out) Measures number (and 
quality) of direct connections

Cohesion
Entrepreneurship

Attractiveness Measures the speed of 
growing of a node’s degree

Dinamicity
Enterprising

PageRank 
(authorities/hubs)

Measures number (and 
quality) of direct and indirect
connections

Cohesion
Entrepreneurship
Similarity/Friendship 
with a direction à Dependence

Closeness Measures length of shortest 
paths

Visual centrality
Significant spreading points
Outliers/Ostracism

Betweenness Measures number of shortest 
paths

Brokerage
Structural holes

Clustering coeff. Measures number of  triadic 
closures

Centrality in a community
Cohesion of the neighbourhood



More on the meaning
https://reticular.hypotheses.org/1745
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https://reticular.hypotheses.org/1745

