CALcuLus 2

ANSWERS TO LN EXERCISES

1.8.1. By proving the triangular inequality for the Euclidean norm, we got the formula

1%+ 517 = IF12 + 1517 +2 > ;.
J

From this,
1% = 512 = IF17 + 1 = I +2 D i (=) = IFIP+ 1517 =2 > x5
J J
Therefore,
%+ 512+ 1F - 517 = 2 (1917 + 151°) . ©
1.8.2. We start with || - ||;. We have to verify positivity, vanishing, homogeneity and the

triangular inequality.
i) Positivity: [|X|l; = X |x;| > 0 because it is a sum of positive numbers.
i) Vanishing: [|X||; = 0iff X [x;] = 0. Since this is the sum of positive numbers it can be
= 0iff [x;| =0 forevery j = 1,...,d, that is iff x; = 0 ¥, so iff ¥ = 0.
iii) Homogeneity: we have

IAE = > 1o = > 1l =141 ) Jxjl = [Al1F])s.
J J J

(notice we used homogeneity of the modulus, that is |ab| = |a||b|)
iv) Triangular inequality: we have

1%+ 5= > bxj + 1.
J

Now, because of the triangular inequality for the modulus, |a + b| < |a| + |b| we have
e+ vl < Ixjl+ 1yl VJ.
So, summing up on j, we get

1+ 5= b+ vl < D (bl +1yi1) = D Bl + > Iyl = IEl + 151
J

J J J
Let now discuss the case of || - ||. We have to verify the same properties as done above.
i) Positivity: [|X|lo = max; |x; > 0 (maximum of positive numbers is positive).
ii) Vanishing: [|X||c = O iff max;|x;] = 0. Since the maximum is made on positive

numbers, it is clear that it can be = 0 iff |x;| = 0 Vj, thatis x; =0V, soiff X = 0.
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ii1) Homogeneity: we have
[4%]|e0 = max [Ax;| = max [A]|x;].
J J
Now, it is clear that max; c|x;| = ¢ max; |x;| for every ¢ > 0. So [|AX||c0 = [A][|X]]co-
iv) Triangular inequality: we have

1X + ¥lleo = max [x; +y;l.

Now, since

e+ ;1 < gL+ 1y < max ]+ max [ye| = l1x]leo + [15lleo, ¥/,

we have
X + Yoo = max Ix; + v < Xl + ¥lleo. O

1.8.3. i) Let X, := (¢, 1). Since e — 0 and 1 —> 1 we conclude that X, — (0, 1).

ii) Let X, := (n,n?). Here we notice that ||%,]| = Vn2 + n* — +c0, 50 X, —> 0;.

iii) Let %, := (%,%,sinl . Since L — 0, L
n n n n

%, — (0,0,0).

—> 0 and sin% —> 0, we conclude that

2
iv) Let X, := (1,1+%,n). Here, ||X,|| = \/1+(1+%) +n% > V4 = n? — 400, s0
fn—>003.

v) Let ¥, = (tanhn, 105", %) Notice that tanhn = % ~ s oo % =1, so tanhn — 1.

Moreover, since log n =, 0(n), 105" — 0 and clearly — 0. Therefore, ¥, — (1,0,0).

vi) Let X, := ((=1)", (-1)"*!). Here we have that X = (1,-1) — (1,-1) while xox41 =
(-=1,1) — (-1, 1) so we conclude that there is no limit for X, when n — +oo. O

sinn
n

1.84. =—. Assumption: ¥, — ¢ € RY. Thesis: Xpx — Cx forevery k = 1,...,d. By
definition

Ve >0, 3N : ||, —C|| <& Vn>N.

Now,

d
1 = 2l = \[ Dk = )2 >y Conse = €602 = vk = b, VE=1,....d.
k=1

Therefore,
nk — Gl < ||Ru =€l <& VYn>N,Vk=1,....d.

and this means that x,, ; — ¢ forevery k =1,...,d.
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&= Now the Assumption is: x,  — ¢ forevery k = 1,...,d. The thesis is: X, — {eRY,
From the assumption we can say that,
Vk=1,...,d, Ve >0, ANy : ||xnk—€k|| g, Yn > Ny.

Notice we wrote Ny because the initial N will depend on the sequence (x, ), so on k. Now, let
N :=max(Ny,...,Ng). Thenifn > N > Ny forevery k =1,...,d, so

|xnk—€k| £, Vk—l d

Therefore,
_ d
1%, - €| = Z(x"”‘ — )2 < Ve2+ -+ &2 =\de? = Vde, Yn > N.
k=1
This is exactly the thesis (if you like you can replace € by %). O

1.8.5. 1) True, it follows by that proved in 1.8.4.
ii) False: for example X, = (0,n) — ooy butx,; =0 — 0.
iii) True. Indeed, we may notice that

1%l = 5/( Z xi,j =[xy, ;| — +o0.
k=1
iV) False: take )_C)n = (O’ (_1)"), 22/( = (Oa 1) — (O, 1)a )_C)Zk+1 = (09_1) — (0’_1)’ in
particular lim, X, cannot exists. However x,,; = 0 — 0. O

1.8.7. #1,2,4,6 done in class (see slides).

#3. Let f(x,y) = 2+ 2. We have f(x,0) =0 — O whenx — 0, £(0,y) = y—z =1 — 1 when
y — 0.

#5. Let f(x,y) =
Vi+y2-1

T when y — 0, this because of the fundamental limit lim,_,
a=1/2).
1.8.8. #1,3,5 done in class (see slides).

#2 Let f(x,y) :=

xy+\y2+l-1
x2+y?

. We have f(x,0) = 4 =0 — 0 whenx — 0, f(0,y) =

(l+t) -1

= « (here

The limit is a § 0 indeterminate form. Introducing polar coordinates

W
we have < X
@ sin” 0
f(x,y) = f(pcosb, psind) = P CO(S z)jm = pcos’ O sin’ 6,
Je
SO
|f(x,y) =0l =p |00829||sin39| <p=:1g(p) —0, p—>0,

from which we conclude that 3 hm 35S =0.



#4. Let f(x,y) = ;}% When (x,y) — 6, the limit of f yields to an indeterminate form 8.

Let’s write f in polar coords:

p cos B+/p| sin 6] 32 cos 04/ sin 6|

f(x,y) = f(pcosb,psinf) = _
3 . 4 P4/3 3
p*(cos* 0 +sin” 0)

1/6_COS 0+/| sin 6|
:p .

3 .
cos* @ +sin* @

cos? 6 +sin* 9

Since p'/® — 0 when p — 0, we bet on the limit exists and it is equal to 0. To show this we

notice that,
1/6 | cos 6]+/| sin 6| < 16 1
<

o )
3 . 3 .
Veos* 6 +sin* @ cos* @ +sin* @

Let K(60) := Veos# 6 +sin* 6. This is a continuous function on [0,27], so by Weierstrass’
theorem there exists a minimum achieved at some 6,,;, € [0, 2x], that is K(0) > K(0in) =:
Koy > 0. Notice that Ky > 0: if Ky = 0 we would have K (6,,,;,) = 0, so \3/cos4 Opmin + Sin* Opin = 0,
that is cos* Hmin+sin4 Omin = 0. Since both terms are positive, this is possible iff cos* @,uin = 0and
(simultaneously) sin* Omin = 0, that is cos 0,,;, = sin 6,,;;, = 0, which is impossible! Therefore,
K(0) = Ko > 0 for every 6 € [0, 2], so

|f(x,y)=0[=p

1
y) =0 < p'/o—
£(y) =0l < p

From this we deduce that 3 lim =f=0. O
(x,y)—0

=:g(p) — 0, p—> 0.

1.8.9. #3. Let f be the function of which we aim to compute its limit at 0. The limit is an
indeterminate form 8. We notice that

4 4
f(x,0,0):x_:x—z:xz—>O, x — 0.
X

\/F

So, if a limit exists it must be = 0. Using spherical coordinates
x=psingcosf, y=psingsinfh, z=pcosey,
we get

(p? sin® p cos? 0 + p? sin ¢ sin 6 cos )2 ) (sin? ¢ cos? 0 + sin ¢ sin 6 cos @)

fx,y,2) = =p

\/(p2 sin? (cos2 6 + sin’ 0))2 + p* cos* ¢ \/sin* ¢ + cos ¢




From this we can prove that the limit exists and it is equal to 0: indeed,

, o (1+1)?
\Jsin* @ + cost ¢

Let F(¢) := 4/sin* ¢ + cos* ¢. Clearly F € € ([0, 2x]), so, by Weierstrass’ theorem, there exists
K := min F[g .. Since the minimum is achieved at some ¢,,;, if K = F(¢nin) = 0 we should

have cos ¢min = sin @i, = 0, which is impossible. We conclude that K > 0 and

e (a+0D> 54

P =
. K
\/sin ¢ + cost ¢

#5 We start noticing that (x,y) — (0, 1) iff (u,v) := (x,y — 1) — (0,0), so we are reduced to
the limit

|f(x’y,z)_0| <p

|f(x,y,Z)_0|< =g(p)—>0,p—>0 O

x3sinh(y — 1) - x3 sinh(y — 1) 3 ) u? sinh v

im = m =: lim u,v
()= 0.1) x2+y2 -2y +1 (x,y)—>(0,1) 2+ (y—-1D2  (w)—=00) u®+v? (u,v)—(0,0) flu).

The limit is an indeterminate form . In polar coordinated for (u, v) we have

p> cos? 8 sinh(p sin 6)
02

From this, we guess that the liumit exists and it is equal to 0. Indeed,

|f(u,v) = O] < p|sinh(p sin6).

Reminding of sinh¢ =7 + o(¢), we have

fu,v) = = p cos> 0 sinh(p sin 6).

sinh(p sin#) = psinf + o(p sin6),
SO

| sinh(p sin@)| = |psin€ +o(p)| < p +o(p),

from which

|f(u,v) =0l < p (p+0(p)) = p* +0(p?) =: g(p) — 0, p — 0.
We can now conclude that lim(u V)b f (u, v) = 0, hence the same holds for the limit of f. O
#6 Since (x,y) — (1,1), (u,v) :=(x -1,y =1) — (0,0), so

u?v’

lim  f(x,y) = flu,v).

1 -
(x,y)—(1,1) (u,v)—(0,0) (u? +vz)5/2 (u v)—>(00)
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Clearly, the limit is an indeterminate form 8. Let’s pass to polar coordinates u = p cos#,

v =psinf
9 20 cin’
~ cos“fsin’' 0
f(u,v):p VOEE = p*cos? @ sin’ 6,
Jol

SO _
|f(u,v)=0] < p* — 0, p >0,
and from this it follows that

lim X,y) = hm u,v) = O
(xy)ﬁ(ll)f( y) = m f( ) =

1.8.10 #2 The limit does not exist: indeed, f(x,0) = x* — x> — +oo is |x| — +00. f(x,x) =
0 — 0 when |x| — +oo.

#3 We have f(x,0) = x> — +co when |x| — +oc0. Let’s look at f under polar coordinates: we
get

f(x,y) = p*cos? @sin® 0 + p> — p* cos O sin 6.
Apparently, the first term is the strongest one. However, if one of the two coords vanishes, the
first term is constantly = 0. This suggests that this term is not particularly determinant. Being
also positive, we may notice that

1 1
f(x,y) = p* - p*cosOsind = p (1—§sin(29)) >§p2—>+oo, p — +00.

This is sufficient to establish that 31imy ) e, f(X,y) = +00.

#4. We have f(x,0,0) = x* — +00 when |x| — +00, so if a limit exists it must be = +co. To
compute the limit, an idea could be to use spherical coordinates. This, however, does not simplify
the term x* + y* + z*. We might expect that this term is somehow correlated to (x? + y? + z%)?
and indeed
2+ ) =xr+yt v ey 1 2 v 29?2 e vyt
This is an upper bound for x* + y* + z*. To get a more useful lower bound we remind of the
elementary inequality 2ab < a® + b2, so
Py +)?=xt vyt 4 2x2y? +2x°722 +2y°2% <3(x*P 4yt + Y,
—— SN~ ——
<(x2)24(y2)2=xt+yt <zt gt
SO

1 2
x4+y4+z4>§(x2+y2+z2) .

Now, with this we can say that, in spherical coordinates

2 1 1
fx,y,2) > (x +y +z2) —xyz—gp —p sin’ pcosgsinfcosb > §p4—p3—>+oo



7

when p — +o0. This shows that I1imy y ;) c0y f = +00. O
#5 Notice that f(x,0,0) = x? — 400 when |x| — +co. So, if a limit exists, it must be equal to
+00. Before applying the spherical coordinates, we write

f(X,y,Z) :x2+y2+Z2_xZ+Z4—Z2.

Let’s focus on the first part x> + y? + z2 — xz. Using spherical coords, we have

21

1
x2+y?+ 722 —xz=p? - p*singcosfcos g = p? l—isin(Zgo)cosH >p >

On the other side, we notice that there exists a constant C such that z* — z2 > C for every z € R.
Indeed, if h(z) = 74 — 72, for z > 0 we have
1
W(z) =42 -22=2z222-1) >0, & 22-120, & 7> —.
V2
This means that 2 X\, on [0, %] and & " on [lz,+oo[, S0 7 = % is a minimum for 4 on
[0, +oo[. Since h(—z) = h(z) we have that it is also a minimum for all z € R. Thus,

1 I 1 1 1
)2 h(—)=--==-, & *-72>-——
() (\/5) 17577 -z 1
We can now put the pieces together. Combining the two bounds we have
p* 1
> >3
From this 31imy y ;) c0; [ = +00. m]

#6. Also here we have f(0,0,z) = z2 — z — +oco when |z] — +0c0. So, the possible candidate
limit is +c0. Before applying spherical coords, we notice that

f(x,y,2) = X2+ 2+ 2| + (zz—z— |z|).

Now, let h(z) := z> — z — |z]. As in the previous exercise, / is bounded from below. Indeed: for
72<0,h(z) =22,s0h>0;forz>0,h(z) =22-2z, W(z) =2z-2=2(z—1),s0z=1isa
global minimum with a(1) = —1, so h(z) > —1 for every z € R. On the other hand, by using
spherical coords,

X2+ Y2+ 1z = {p?sin® @ + p| cos ¢ = p (| sing| + ]| cos @) .

The coefficient C(¢) := | sin ¢|+]| cos ¢| is continuous for [0, 7], so by Weierstrass’ theorem there
exists the minimum of C. Since C(¢) > 0 forevery ¢, we deduce that C(¢) > C(@min) =: K > 0,
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Therefore, merging the two arguments,

fx,y,2) =/x2+y*+ |z|+(z2 -z- Izl) >Kp—1=:g(p) — +00, p — +00.
—————————— ,
<Kp >-1

We conclude that 1imy, y 7)o, f = +00. O

#7. Here we might have some suspect about the existence of the limit. The root term is positive
and of size p2, while the xyz is or order p> with variable sign. Take

Flx,x,x) = Vaxt +x4 = x> = V52 - X3 —

—00, X — +o00,

400, X — —o0o0.
We conclude that Alimy y ;)—c0; /- O

Next: do ex. 1.8.12/13/14/15



