
Calculus 2

Answers to LN Exercises

1.8.1. By proving the triangular inequality for the Euclidean norm, we got the formula

∥®𝑥 + ®𝑦∥2 = ∥®𝑥∥2 + ∥®𝑦∥2 + 2
∑︁
𝑗

𝑥 𝑗 𝑦 𝑗 .

From this,

∥®𝑥 − ®𝑦∥2 = ∥®𝑥∥2 + ∥ − ®𝑦∥2 + 2
∑︁
𝑗

𝑥 𝑗 (−𝑦 𝑗 ) = ∥®𝑥∥2 + ∥®𝑦∥2 − 2
∑︁
𝑗

𝑥 𝑗 𝑦 𝑗 .

Therefore,
∥®𝑥 + ®𝑦∥2 + ∥®𝑥 − ®𝑦∥2 = 2

(
∥®𝑥∥2 + ∥®𝑦∥2

)
. □

1.8.2. We start with ∥ · ∥1. We have to verify positivity, vanishing, homogeneity and the
triangular inequality.

i) Positivity: ∥®𝑥∥1 =
∑
𝑗 |𝑥 𝑗 | ⩾ 0 because it is a sum of positive numbers.

ii) Vanishing: ∥®𝑥∥1 = 0 iff
∑
𝑗 |𝑥 𝑗 | = 0. Since this is the sum of positive numbers it can be

= 0 iff |𝑥 𝑗 | = 0 for every 𝑗 = 1, . . . , 𝑑, that is iff 𝑥 𝑗 = 0 ∀ 𝑗 , so iff ®𝑥 = ®0.
iii) Homogeneity: we have

∥𝜆®𝑥∥1 =
∑︁
𝑗

|𝜆𝑥 𝑗 | =
∑︁
𝑗

|𝜆 | |𝑥 𝑗 | = |𝜆 |
∑︁
𝑗

|𝑥 𝑗 | = |𝜆 |∥®𝑥∥1.

(notice we used homogeneity of the modulus, that is |𝑎𝑏 | = |𝑎 | |𝑏 |)
iv) Triangular inequality: we have

∥®𝑥 + ®𝑦∥1 =
∑︁
𝑗

|𝑥 𝑗 + 𝑦 𝑗 |.

Now, because of the triangular inequality for the modulus, |𝑎 + 𝑏 | ⩽ |𝑎 | + |𝑏 | we have

|𝑥 𝑗 + 𝑦 𝑗 | ⩽ |𝑥 𝑗 | + |𝑦 𝑗 |, ∀ 𝑗 .
So, summing up on 𝑗 , we get

∥®𝑥 + ®𝑦∥1 =
∑︁
𝑗

|𝑥 𝑗 + 𝑦 𝑗 | ⩽
∑︁
𝑗

(
|𝑥 𝑗 | + |𝑦 𝑗 |

)
=
∑︁
𝑗

|𝑥 𝑗 | +
∑︁
𝑗

|𝑦 𝑗 | = ∥®𝑥∥1 + ∥®𝑦∥1.

Let now discuss the case of ∥ · ∥∞. We have to verify the same properties as done above.
i) Positivity: ∥®𝑥∥∞ = max 𝑗 |𝑥 𝑗 ⩾ 0 (maximum of positive numbers is positive).

ii) Vanishing: ∥®𝑥∥∞ = 0 iff max 𝑗 |𝑥 𝑗 | = 0. Since the maximum is made on positive
numbers, it is clear that it can be = 0 iff |𝑥 𝑗 | = 0 ∀ 𝑗 , that is 𝑥 𝑗 = 0 ∀ 𝑗 , so iff ®𝑥 = ®0.
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iii) Homogeneity: we have

∥𝜆®𝑥∥∞ = max
𝑗

|𝜆𝑥 𝑗 | = max
𝑗

|𝜆 | |𝑥 𝑗 |.

Now, it is clear that max 𝑗 𝑐 |𝑥 𝑗 | = 𝑐max 𝑗 |𝑥 𝑗 | for every 𝑐 ⩾ 0. So ∥𝜆®𝑥∥∞ = |𝜆 |∥®𝑥∥∞.
iv) Triangular inequality: we have

∥®𝑥 + ®𝑦∥∞ = max
𝑗

|𝑥 𝑗 + 𝑦 𝑗 |.

Now, since

|𝑥 𝑗 + 𝑦 𝑗 | ⩽ |𝑥 𝑗 | + |𝑦 𝑗 | ⩽ max
𝑘

|𝑥𝑘 | + max
𝑘

|𝑦𝑘 | = ∥®𝑥∥∞ + ∥®𝑦∥∞, ∀ 𝑗 ,

we have
∥®𝑥 + ®𝑦∥∞ = max

𝑗
|𝑥 𝑗 + 𝑦 𝑗 | ⩽ ∥®𝑥∥∞ + ∥®𝑦∥∞. □

1.8.3. i) Let ®𝑥𝑛 := (𝑒−𝑛, 1). Since 𝑒−𝑛 −→ 0 and 1 −→ 1 we conclude that ®𝑥𝑛 −→ (0, 1).
ii) Let ®𝑥𝑛 :=

(
𝑛, 𝑛2) . Here we notice that ∥®𝑥𝑛∥ =

√
𝑛2 + 𝑛4 −→ +∞, so ®𝑥𝑛 −→ ∞2.

iii) Let ®𝑥𝑛 :=
(

1
𝑛
, 1
𝑛2 , sin 1

𝑛

)
. Since 1

𝑛
−→ 0, 1

𝑛2 −→ 0 and sin 1
𝑛
−→ 0, we conclude that

®𝑥𝑛 −→ (0, 0, 0).

iv) Let ®𝑥𝑛 :=
(
1, 1 + 1

𝑛
, 𝑛

)
. Here, ∥®𝑥𝑛∥ =

√︂
1 +

(
1 + 1

𝑛

)2
+ 𝑛4 ⩾

√
𝑛4 = 𝑛2 −→ +∞, so

®𝑥𝑛 −→ ∞3.
v) Let ®𝑥𝑛 :=

(
tanh 𝑛, log 𝑛

𝑛
, sin 𝑛

𝑛

)
. Notice that tanh 𝑛 = sinh 𝑛

cosh 𝑛 ∼𝑛→+∞
𝑒𝑛/2
𝑒𝑛/2 = 1, so tanh 𝑛 −→ 1.

Moreover, since log 𝑛 =+∞ 𝑜(𝑛), log 𝑛
𝑛

−→ 0 and clearly sin 𝑛
𝑛

−→ 0. Therefore, ®𝑥𝑛 −→ (1, 0, 0).
vi) Let ®𝑥𝑛 :=

(
(−1)𝑛, (−1)𝑛+1) . Here we have that ®𝑥2𝑘 ≡ (1,−1) −→ (1,−1) while 𝑥2𝑘+1 ≡

(−1, 1) −→ (−1, 1) so we conclude that there is no limit for ®𝑥𝑛 when 𝑛→ +∞. □

1.8.4. =⇒. Assumption: ®𝑥𝑛 −→ ®ℓ ∈ R𝑑 . Thesis: 𝑥𝑛,𝑘 −→ ℓ𝑘 for every 𝑘 = 1, . . . , 𝑑. By
definition

∀𝜀 > 0, ∃𝑁 : ∥®𝑥𝑛 − ®ℓ∥ ⩽ 𝜀, ∀𝑛 ⩾ 𝑁.
Now,

∥®𝑥𝑛 − ®ℓ∥ =

√√√
𝑑∑︁
𝑘=1

(𝑥𝑛,𝑘 − ℓ𝑘 )2 ⩾
√︃
(𝑥𝑛,𝑘 − ℓ𝑘 )2 = |𝑥𝑛,𝑘 − ℓ𝑘 |, ∀𝑘 = 1, . . . , 𝑑.

Therefore,
|𝑥𝑛,𝑘 − ℓ𝑘 | ⩽ ∥®𝑥𝑛 − ®ℓ∥ ⩽ 𝜀, ∀𝑛 ⩾ 𝑁, ∀𝑘 = 1, . . . , 𝑑.

and this means that 𝑥𝑛,𝑘 −→ ℓ𝑘 for every 𝑘 = 1, . . . , 𝑑.
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⇐= Now the Assumption is: 𝑥𝑛,𝑘 −→ ℓ𝑘 for every 𝑘 = 1, . . . , 𝑑. The thesis is: ®𝑥𝑛 −→ ®ℓ ∈ R𝑑 .
From the assumption we can say that,

∀𝑘 = 1, . . . , 𝑑, ∀𝜀 > 0, ∃𝑁𝑘 : ∥®𝑥𝑛𝑘 − ®ℓ𝑘 ∥ ⩽ 𝜀, ∀𝑛 ⩾ 𝑁𝑘 .
Notice we wrote 𝑁𝑘 because the initial 𝑁 will depend on the sequence (𝑥𝑛,𝑘 ), so on 𝑘 . Now, let
𝑁 := max(𝑁1, . . . , 𝑁𝑑). Then if 𝑛 ⩾ 𝑁 ⩾ 𝑁𝑘 for every 𝑘 = 1, . . . , 𝑑, so

|𝑥𝑛,𝑘 − ℓ𝑘 | ⩽ 𝜀, ∀𝑘 = 1, . . . , 𝑑.
Therefore,

∥®𝑥𝑛 − ®ℓ∥ =

√√√
𝑑∑︁
𝑘=1

(𝑥𝑛,𝑘 − ℓ𝑘 )2 ⩽
√︁
𝜀2 + · · · + 𝜀2 =

√︁
𝑑𝜀2 =

√
𝑑𝜀, ∀𝑛 ⩾ 𝑁.

This is exactly the thesis (if you like you can replace 𝜀 by 𝜀√
𝑑

). □

1.8.5. i) True, it follows by that proved in 1.8.4.
ii) False: for example ®𝑥𝑛 = (0, 𝑛) −→ ∞2 but 𝑥𝑛,1 ≡ 0 −→ 0.
iii) True. Indeed, we may notice that

∥®𝑥𝑛∥ =

√√√
𝑑∑︁
𝑘=1

𝑥2
𝑛,𝑘
⩾
√︃
𝑥2
𝑛, 𝑗

= |𝑥𝑛, 𝑗 | −→ +∞.

iv) False: take ®𝑥𝑛 = (0, (−1)𝑛), ®𝑥2𝑘 ≡ (0, 1) −→ (0, 1), ®𝑥2𝑘+1 ≡ (0,−1) −→ (0,−1), in
particular lim𝑛 ®𝑥𝑛 cannot exists. However 𝑥𝑛,1 ≡ 0 −→ 0. □

1.8.7. #1,2,4,6 done in class (see slides).
#3. Let 𝑓 (𝑥, 𝑦) = 𝑦2−𝑥𝑦

𝑥2+𝑦2 . We have 𝑓 (𝑥, 0) ≡ 0 −→ 0 when 𝑥 → 0, 𝑓 (0, 𝑦) = 𝑦2

𝑦2 ≡ 1 −→ 1 when
𝑦 → 0.

#5. Let 𝑓 (𝑥, 𝑦) =
𝑥𝑦+

√
𝑦2+1−1

𝑥2+𝑦2 . We have 𝑓 (𝑥, 0) = 0
𝑥2 ≡ 0 −→ 0 when 𝑥 → 0, 𝑓 (0, 𝑦) =

√
1+𝑦2−1
𝑦2 −→ 1

2 when 𝑦 → 0, this because of the fundamental limit lim𝑡→0
(1+𝑡)𝛼−1

𝑡
= 𝛼 (here

𝛼 = 1/2).
1.8.8. #1,3,5 done in class (see slides).
#2 Let 𝑓 (𝑥, 𝑦) := 𝑥2𝑦3

(𝑥2+𝑦2)2 . The limit is a 0
0 indeterminate form. Introducing polar coordinates

we have

𝑓 (𝑥, 𝑦) = 𝑓 (𝜌 cos 𝜃, 𝜌 sin 𝜃) = 𝜌5 cos2 𝜃 sin3 𝜃

(𝜌2)2 = 𝜌 cos2 𝜃 sin3 𝜃,

so
| 𝑓 (𝑥, 𝑦) − 0| = 𝜌 | cos2 𝜃 | | sin3 𝜃 | ⩽ 𝜌 =: 𝑔(𝜌) −→ 0, 𝜌 → 0,

from which we conclude that ∃ lim(𝑥,𝑦)→®0 𝑓 = 0.
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#4. Let 𝑓 (𝑥, 𝑦) := 𝑥
√
|𝑦 |

3√
𝑥4+𝑦4

. When (𝑥, 𝑦) → ®0, the limit of 𝑓 yields to an indeterminate form 0
0 .

Let’s write 𝑓 in polar coords:

𝑓 (𝑥, 𝑦) = 𝑓 (𝜌 cos 𝜃, 𝜌 sin 𝜃) =
𝜌 cos 𝜃

√︁
𝜌 | sin 𝜃 |

3
√︃
𝜌4(cos4 𝜃 + sin4 𝜃)

=
𝜌3/2

𝜌4/3
cos 𝜃

√︁
| sin 𝜃 |

3
√︁

cos4 𝜃 + sin4 𝜃

= 𝜌1/6 cos 𝜃
√︁
| sin 𝜃 |

3
√︁

cos4 𝜃 + sin4 𝜃
.

Since 𝜌1/6 −→ 0 when 𝜌 → 0, we bet on the limit exists and it is equal to 0. To show this we
notice that,

| 𝑓 (𝑥, 𝑦) − 0| = 𝜌1/6 | cos 𝜃 |
√︁
| sin 𝜃 |

3
√︁

cos4 𝜃 + sin4 𝜃
⩽ 𝜌1/6 1

3
√︁

cos4 𝜃 + sin4 𝜃
.

Let 𝐾 (𝜃) := 3
√︁

cos4 𝜃 + sin4 𝜃. This is a continuous function on [0, 2𝜋], so by Weierstrass’
theorem there exists a minimum achieved at some 𝜃𝑚𝑖𝑛 ∈ [0, 2𝜋], that is 𝐾 (𝜃) ⩾ 𝐾 (𝜃𝑚𝑖𝑛) =:
𝐾0 ⩾ 0. Notice that𝐾0 > 0: if𝐾0 = 0 we would have𝐾 (𝜃𝑚𝑖𝑛) = 0, so 3

√︁
cos4 𝜃𝑚𝑖𝑛 + sin4 𝜃𝑚𝑖𝑛 = 0,

that is cos4 𝜃𝑚𝑖𝑛+sin4 𝜃𝑚𝑖𝑛 = 0. Since both terms are positive, this is possible iff cos4 𝜃𝑚𝑖𝑛 = 0 and
(simultaneously) sin4 𝜃𝑚𝑖𝑛 = 0, that is cos 𝜃𝑚𝑖𝑛 = sin 𝜃𝑚𝑖𝑛 = 0, which is impossible! Therefore,
𝐾 (𝜃) ⩾ 𝐾0 > 0 for every 𝜃 ∈ [0, 2𝜋], so

| 𝑓 (𝑥, 𝑦) − 0| ⩽ 𝜌1/6 1
𝐾0

=: 𝑔(𝜌) −→ 0, 𝜌 → 0.

From this we deduce that ∃ lim(𝑥,𝑦)→®0 𝑓 = 0. □

1.8.9. #3. Let 𝑓 be the function of which we aim to compute its limit at ®0. The limit is an
indeterminate form 0

0 . We notice that

𝑓 (𝑥, 0, 0) = 𝑥4
√
𝑥4

=
𝑥4

𝑥2 = 𝑥2 −→ 0, 𝑥 → 0.

So, if a limit exists it must be = 0. Using spherical coordinates

𝑥 = 𝜌 sin 𝜑 cos 𝜃, 𝑦 = 𝜌 sin 𝜑 sin 𝜃, 𝑧 = 𝜌 cos 𝜑,

we get

𝑓 (𝑥, 𝑦, 𝑧) = (𝜌2 sin2 𝜑 cos2 𝜃 + 𝜌2 sin 𝜑 sin 𝜃 cos 𝜑)2√︃
(𝜌2 sin2 𝜑(cos2 𝜃 + sin2 𝜃))2 + 𝜌4 cos4 𝜑

= 𝜌2 (sin2 𝜑 cos2 𝜃 + sin 𝜑 sin 𝜃 cos 𝜑)2√︃
sin4 𝜑 + cos4 𝜑

.
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From this we can prove that the limit exists and it is equal to 0: indeed,

| 𝑓 (𝑥, 𝑦, 𝑧) − 0| ⩽ 𝜌2 (1 + 1)2√︃
sin4 𝜑 + cos4 𝜑

.

Let 𝐹 (𝜑) :=
√︃

sin4 𝜑 + cos4 𝜑. Clearly 𝐹 ∈ 𝒞( [0, 2𝜋]), so, by Weierstrass’ theorem, there exists
𝐾 := min 𝐹[0,2𝜋] . Since the minimum is achieved at some 𝜑𝑚𝑖𝑛 if 𝐾 = 𝐹 (𝜑𝑚𝑖𝑛) = 0 we should
have cos 𝜑min = sin 𝜑𝑚𝑖𝑛 = 0, which is impossible. We conclude that 𝐾 > 0 and

| 𝑓 (𝑥, 𝑦, 𝑧) − 0| ⩽ 𝜌2 (1 + 1)2√︃
sin4 𝜑 + cos4 𝜑

⩽ 𝜌2 4
𝐾

=: 𝑔(𝜌) −→ 0, 𝜌 → 0. □

#5 We start noticing that (𝑥, 𝑦) → (0, 1) iff (𝑢, 𝑣) := (𝑥, 𝑦 − 1) → (0, 0), so we are reduced to
the limit

lim
(𝑥,𝑦)→(0,1)

𝑥3 sinh(𝑦 − 1)
𝑥2 + 𝑦2 − 2𝑦 + 1

= lim
(𝑥,𝑦)→(0,1)

𝑥3 sinh(𝑦 − 1)
𝑥2 + (𝑦 − 1)2 = lim

(𝑢,𝑣)→(0,0)

𝑢3 sinh 𝑣
𝑢2 + 𝑣2 =: lim

(𝑢,𝑣)→(0,0)
𝑓̃ (𝑢, 𝑣).

The limit is an indeterminate form 0
0 . In polar coordinated for (𝑢, 𝑣) we have

𝑓̃ (𝑢, 𝑣) = 𝜌3 cos3 𝜃 sinh(𝜌 sin 𝜃)
𝜌2 = 𝜌 cos3 𝜃 sinh(𝜌 sin 𝜃).

From this, we guess that the liumit exists and it is equal to 0. Indeed,

| 𝑓̃ (𝑢, 𝑣) − 0| ⩽ 𝜌 | sinh(𝜌 sin 𝜃) |.

Reminding of sinh 𝑡 = 𝑡 + 𝑜(𝑡), we have

sinh(𝜌 sin 𝜃) = 𝜌 sin 𝜃 + 𝑜(𝜌 sin 𝜃),

so
| sinh(𝜌 sin 𝜃) | = |𝜌 sin 𝜃 + 𝑜(𝜌) | ⩽ 𝜌 + 𝑜(𝜌),

from which

| 𝑓̃ (𝑢, 𝑣) − 0| ⩽ 𝜌 (𝜌 + 𝑜(𝜌)) = 𝜌2 + 𝑜(𝜌2) =: 𝑔(𝜌) −→ 0, 𝜌 → 0.

We can now conclude that lim(𝑢,𝑣)→®0 𝑓̃ (𝑢, 𝑣) = 0, hence the same holds for the limit of 𝑓 . □

#6 Since (𝑥, 𝑦) → (1, 1), (𝑢, 𝑣) := (𝑥 − 1, 𝑦 − 1) → (0, 0), so

lim
(𝑥,𝑦)→(1,1)

𝑓 (𝑥, 𝑦) = lim
(𝑢,𝑣)→(0,0)

𝑢2𝑣7

(𝑢2 + 𝑣2)5/2 =: lim
(𝑢,𝑣)→(0,0)

𝑓̃ (𝑢, 𝑣).
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Clearly, the limit is an indeterminate form 0
0 . Let’s pass to polar coordinates 𝑢 = 𝜌 cos 𝜃,

𝑣 = 𝜌 sin 𝜃

𝑓̃ (𝑢, 𝑣) = 𝜌9 cos2 𝜃 sin7 𝜃

(𝜌2)5/2 = 𝜌4 cos2 𝜃 sin7 𝜃,

so
| 𝑓̃ (𝑢, 𝑣) − 0| ⩽ 𝜌4 −→ 0, 𝜌 → 0,

and from this it follows that
lim

(𝑥,𝑦)→(1,1)
𝑓 (𝑥, 𝑦) = lim

(𝑢,𝑣)→(0,0)
𝑓̃ (𝑢, 𝑣) = 0. □

1.8.10 #2 The limit does not exist: indeed, 𝑓 (𝑥, 0) = 𝑥4 − 𝑥2 −→ +∞ is |𝑥 | → +∞. 𝑓 (𝑥, 𝑥) ≡
0 −→ 0 when |𝑥 | → +∞.
#3 We have 𝑓 (𝑥, 0) = 𝑥2 −→ +∞ when |𝑥 | → +∞. Let’s look at 𝑓 under polar coordinates: we
get

𝑓 (𝑥, 𝑦) = 𝜌4 cos2 𝜃 sin2 𝜃 + 𝜌2 − 𝜌2 cos 𝜃 sin 𝜃.
Apparently, the first term is the strongest one. However, if one of the two coords vanishes, the
first term is constantly = 0. This suggests that this term is not particularly determinant. Being
also positive, we may notice that

𝑓 (𝑥, 𝑦) ⩾ 𝜌2 − 𝜌2 cos 𝜃 sin 𝜃 = 𝜌2
(
1 − 1

2
sin(2𝜃)

)
⩾

1
2
𝜌2 −→ +∞, 𝜌 → +∞.

This is sufficient to establish that ∃ lim(𝑥,𝑦)→∞2 𝑓 (𝑥, 𝑦) = +∞.
#4. We have 𝑓 (𝑥, 0, 0) = 𝑥4 −→ +∞ when |𝑥 | → +∞, so if a limit exists it must be = +∞. To
compute the limit, an idea could be to use spherical coordinates. This, however, does not simplify
the term 𝑥4 + 𝑦4 + 𝑧4. We might expect that this term is somehow correlated to (𝑥2 + 𝑦2 + 𝑧2)2

and indeed
(𝑥2 + 𝑦2 + 𝑧2)2 = 𝑥4 + 𝑦4 + 𝑧4 + 2𝑥2𝑦2 + 2𝑥2𝑧2 + 2𝑦2𝑧2 ⩾ 𝑥4 + 𝑦4 + 𝑧4.

This is an upper bound for 𝑥4 + 𝑦4 + 𝑧4. To get a more useful lower bound we remind of the
elementary inequality 2𝑎𝑏 ⩽ 𝑎2 + 𝑏2, so

(𝑥2 + 𝑦2 + 𝑧2)2 = 𝑥4 + 𝑦4 + 𝑧4 + 2𝑥2𝑦2︸︷︷︸
⩽(𝑥2)2+(𝑦2)2=𝑥4+𝑦4

+ 2𝑥2𝑧2︸︷︷︸
⩽𝑥4+𝑧4

+ 2𝑦2𝑧2︸︷︷︸
⩽𝑦4+𝑧4

⩽ 3(𝑥4 + 𝑦4 + 𝑧4),

so
𝑥4 + 𝑦4 + 𝑧4 ⩾

1
3

(
𝑥2 + 𝑦2 + 𝑧2

)2
.

Now, with this we can say that, in spherical coordinates

𝑓 (𝑥, 𝑦, 𝑧) ⩾ 1
3

(
𝑥2 + 𝑦2 + 𝑧2

)2
− 𝑥𝑦𝑧 = 1

3
𝜌4 − 𝜌3 sin2 𝜑 cos 𝜑 sin 𝜃 cos 𝜃 ⩾

1
3
𝜌4 − 𝜌3 −→ +∞
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when 𝜌 → +∞. This shows that ∃ lim(𝑥,𝑦,𝑧)→∞3 𝑓 = +∞. □

#5 Notice that 𝑓 (𝑥, 0, 0) = 𝑥2 −→ +∞ when |𝑥 | → +∞. So, if a limit exists, it must be equal to
+∞. Before applying the spherical coordinates, we write

𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑧 + 𝑧4 − 𝑧2.

Let’s focus on the first part 𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑧. Using spherical coords, we have

𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑧 = 𝜌2 − 𝜌2 sin 𝜑 cos 𝜃 cos 𝜑 = 𝜌2
(
1 − 1

2
sin(2𝜑) cos 𝜃

)
⩾ 𝜌2 1

2
.

On the other side, we notice that there exists a constant 𝐶 such that 𝑧4 − 𝑧2 ⩾ 𝐶 for every 𝑧 ∈ R.
Indeed, if ℎ(𝑧) = 𝑧4 − 𝑧2, for 𝑧 > 0 we have

ℎ′(𝑧) = 4𝑧3 − 2𝑧 = 2𝑧(2𝑧2 − 1) ⩾ 0, ⇐⇒ 2𝑧2 − 1 ⩾ 0, ⇐⇒ 𝑧 ⩾
1
√

2
.

This means that ℎ ↘ on [0, 1√
2
] and ℎ ↗ on [ 1√

2
, +∞[, so 𝑧 = 1√

2
is a minimum for ℎ on

[0, +∞[. Since ℎ(−𝑧) = ℎ(𝑧) we have that it is also a minimum for all 𝑧 ∈ R. Thus,

ℎ(𝑧) ⩾ ℎ( 1
√

2
) = 1

4
− 1

2
= −1

4
, ⇐⇒ 𝑧4 − 𝑧2 ⩾ −1

4
.

We can now put the pieces together. Combining the two bounds we have

𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑧︸               ︷︷               ︸
⩾ 𝜌2

2

+ 𝑧4 − 𝑧2︸ ︷︷ ︸
⩾− 1

4

⩾
𝜌2

2
− 1

4
=: 𝑔(𝜌) −→ +∞, 𝜌 → +∞.

From this ∃ lim(𝑥,𝑦,𝑧)→∞3 𝑓 = +∞. □

#6. Also here we have 𝑓 (0, 0, 𝑧) = 𝑧2 − 𝑧 −→ +∞ when |𝑧 | → +∞. So, the possible candidate
limit is +∞. Before applying spherical coords, we notice that

𝑓 (𝑥, 𝑦, 𝑧) =
√︃
𝑥2 + 𝑦2 + |𝑧 | +

(
𝑧2 − 𝑧 − |𝑧 |

)
.

Now, let ℎ(𝑧) := 𝑧2 − 𝑧 − |𝑧 |. As in the previous exercise, ℎ is bounded from below. Indeed: for
𝑧 < 0, ℎ(𝑧) = 𝑧2, so ℎ ⩾ 0; for 𝑧 ⩾ 0, ℎ(𝑧) = 𝑧2 − 2𝑧, ℎ′(𝑧) = 2𝑧 − 2 = 2(𝑧 − 1), so 𝑧 = 1 is a
global minimum with ℎ(1) = −1, so ℎ(𝑧) ⩾ −1 for every 𝑧 ∈ R. On the other hand, by using
spherical coords,√︃

𝑥2 + 𝑦2 + |𝑧 | =
√︃
𝜌2 sin2 𝜑 + 𝜌 | cos 𝜑 | = 𝜌 ( | sin 𝜑 | + | cos 𝜑|) .

The coefficient𝐶 (𝜑) := | sin 𝜑 |+| cos 𝜑 | is continuous for [0, 𝜋], so by Weierstrass’ theorem there
exists the minimum of𝐶. Since𝐶 (𝜑) > 0 for every 𝜑, we deduce that𝐶 (𝜑) ⩾ 𝐶 (𝜑𝑚𝑖𝑛) =: 𝐾 > 0,
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Therefore, merging the two arguments,

𝑓 (𝑥, 𝑦, 𝑧) =
√︃
𝑥2 + 𝑦2 + |𝑧 |︸           ︷︷           ︸
⩽𝐾𝜌

+
(
𝑧2 − 𝑧 − |𝑧 |

)
︸          ︷︷          ︸

⩾−1

⩾ 𝐾𝜌 − 1 =: 𝑔(𝜌) −→ +∞, 𝜌 → +∞.

We conclude that ∃ lim(𝑥,𝑦,𝑧)→∞3 𝑓 = +∞. □

#7. Here we might have some suspect about the existence of the limit. The root term is positive
and of size 𝜌2, while the 𝑥𝑦𝑧 is or order 𝜌3 with variable sign. Take

𝑓 (𝑥, 𝑥, 𝑥) =
√︁

4𝑥4 + 𝑥4 − 𝑥3 =
√

5𝑥2 − 𝑥3 −→


−∞, 𝑥 → +∞,

+∞, 𝑥 → −∞.
We conclude that � lim(𝑥,𝑦,𝑧)→∞3 𝑓 . □

Next: do ex. 1.8.12/13/14/15


