ANALYTICAL METHODS FOR ENGINEERING
ANSWERS TO LN EXERCISES

1.4.1. i) Done in class.

ii) If X is finite, # = P(X), so F is a o —algebra. If X is infinite, then F is not a o—algebra.
Indeed, X ¢ & for example.

iii) If X is uncountable, X ¢ F, so & cannot be a o-—algebra. Let’s consider the case when X is
countable. Then, every subset of X is countable, thus F = 9 (X), so it is a o—algebra. m]

1.4.2. We start noticing that & is not a o-—algebra. Now, any o—algebra containing & must
also contain {a}¢ = {b, c,d} and {a, c}¢ = {b, d} as well as the (countable) unions of its sets.
So, also {a, b, d} must be in the o—algebra, as well as its complementary {a, b, d} = {c}.
Therefore, any o-—algebra containing & must contain

{@,{a},{c}.{a.c},{b,d}.{a,b,d},{D,c,d},{a,b,c,d}}.
Since this is a o—algebra (easy check), we conclude that it is o (S). O

1.4.3. Let F := 0 ({A, B}). We decompose the set X in the following disjoint sets: AN B, AN
B, BN A€, A° N B°. All these sets must belong to o ({A, B}), so all possible finite unions of
these. Among them, notice that we have

A=(ANB)U(ANB), B=(BNA°)U(BNA).

Since these 4 sets are disjoint, it is easy to check that the family & made of all possible finite
unions of them is a o-—algebra that, by construction, must be contained in o-(&’). On the other
hand, since {A, B} ¢ &, and & is a o—algebra, we have (by definition of o (&)), o°(§) C F.
So,

(&) =F = {0, ANB°,ANB,BNA°,A°N B¢, A, B, A°, B,

AUB,AU B, A° U B, A° U B¢, (AAB), (AAB)°}. O

1.4.4. We already proved in class that & is a o—algebra. We may notice that, in this case, for
every A € & only one of A or A¢ can be countable. This because X is uncountable, so if for
example A is countable, then A = X\ A is uncountable and vice versa. This remark is important
because it says that the function u is well defined for every A € &. Indeed: since if A € F only
one of A, A€ can be countable, the value u(A) is well defined.

Now, let’s check whether u is a measure or not. According to the definition we have to check
that u(@) = 0 and countable additivity. Now, since @ has 0 elements, it is countable, thus
u(@) = 0 by definition of u. Let not (A,) C F be a disjoint family. We have to determine if

(%) 4 (|_| An) = > k(A

Since A, € & for every n € N, either A, or A{ is countable. We have the following alternative:
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e cither A, is countable for every n € N,
e or, at least one of A{ is countable, say 3N € N such that AICV is countable.

In the first case, | |, A, is countable (countable union of countable sets), so

| | 4| =0, and ) u(a,)=> 0=0,

and (x) holds in this case. In the second case, | |, A, D Ay, so (L, A»)° C A§, is countable, so

ﬂ(|_|An

n

J7i

= 1.

In the sum ), u(A,) at least u(Ay) = 1, so the sumis > 1. If u(A,) = 0 for n # N we have
the conclusion. Assume for a moment that p(Ay) = 1 for some M # N. Then, A{, would be
countable and

Ay NAy =0, = XZA;[UA]CV’
so X would be the union of countable sets, and therefore X itself would be countable, contra-
dicting the assumption. We conclude that u(A,) = O for all n # N and countable additivity
follows. O
14.7. Let E,F,G € . We have
H(EUFUG)=u(E)+u((FUG)\E) = u(E) + u((F\E) U (G\E)).
We recall that, if A, B € & and u(A N B) < +oo we have
u(AU B) = u(A) + u(B) — u(A N B),
SO
H((F\E) U (G\E)) = u(F\E)+u(G\E) — u((F N G)\E)
= (u(F) —p(ENF))+ (u(G) —u(ENG)) —u((FNG)\E)
= pu(F) +p(G) = (WENF) + w(ENG)) — p((FNG)\E).
provided u(ENF), u(ENG), u(F NG) < +o0o. Now,
p((FNGN\E) =pu(FNG)—u(ENFNG),
because u(ENFNG) < u(ENF) < +00, 50
UWEUFUG) = u(E)+u(F)+u(G)—(M(ENF)+ u(ENG)+u(FNG))+u(ENFNG). 0O



1.4.9. 1) Let’s start from the set S. An element x € S iff x € E; for infinitely many j, that is
dji<j<...: xeﬂEjk.
k=1

Of course, indexes j; depends on the specific point x. So we need to determine a better way to
characterize points of S. We may notice that the previous property is equivalent to

Vn, dj > n, : x € Ej.

In this way
xes, VneN,erEj, — xeﬂUEj.
j=n n jzn
So,
s=JEs
n o jzn

and since this is a set operation on the (E;) C % we get S € F.
i1) To determine the measure of S we have to compute

p(S) = p (ﬂUEJ

n jzn

Call F,, := Uj% E;. Itis clear that F;,, D Fy.1, so F, \,. So, S is a decreasing limit of (F,)
and the idea could be to apply continuity from above to compute u(S). This is feasible if
u(Fy) < +o0. But,

u(Fo) = p UEJ' <Z,u(Ej)<+oo,
Jj=0 J
because of the assumption. Therefore, continuity from above applies and

u(S) = lim p(Fy).

Finally,

u(Fy) = p

JE
j=n

being this the tail of a convergent series. O

< Z,U(Ej) — 0,

j=n

2.3.1. Suppose, by contradiction, that N¢ is not dense in R, that is
Ala,b[Cc R, N°N]a,b[= 2.
Then Ja,b[C N,s00=A(N) > A(]a, b[) = b —a > 0, which is impossible. O

2.3.2 We first notice that each C,, is made of a finite union of closed intervals, thus it is a closed
set. Therefore, C,, € .#, for every n, hence C := (), C, € #,. In alternative, we may also
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notice that in general, an infinite intersection of closed sets is closed, so C is closed. Since the
Lebesgue class .# contains both open and closed sets, we deduce C € /.

About A(C) we may notice that 0 < A(C) < A(C,) for every n. Now, each C,, is the union of
2" disjoint intervals each of length 3% so A(Cy) = 2”3%,, from which A(C) < % = (%) — 0
when n — +co. Thus, necessarily, 1(C) < 0, from which A(C) = 0. O
2.3.5. Let

Epnn:={(x,y) : mx+ny=0},
with (m, n) € NxN\{(0,0)}. Since (m,n) # (0,0), E,, , is a plane straight line, so A (E,;, ) = 0,

and
E=  |J)  Ewnm
(m,n)eN?\{(0,0)}
is a countable union. Therefore, by sub-additivity, A2(E) < 3, , A2(Ep.») = 0. m|

2.3.6. By definition,
Ve > 0, 30,,0, open : 1*(0,\B) < &, 1*(0,\A) < &,
2.3.7. The assumption says that A((ANB) U (ANC)U (BNC)) = 1. The thesis is to

prove that at least one of A1(A), A(B)A(C) must be > % If the conclusion were false, then
A(A),A(B),A(C) < % Now, we notice that

MEUFUG) =A(EUF)+A(G)-A((EUF)NG)
=AUE)+AF)+A(G) - AENF)—(AUENG)+A(FNG) - A(ENFNG))

=UE)+AF)+AG)—(HENF)+A(ENG)+A(FNG))+A(ENFNG).
We apply this a firsttimeto E = A, F = Band G = C and asecondtimeto E = ANB,F = ANC
and G = BN C. In this last case, by the assumption, we get
I1=A(ANB)+A(ANC)+A(BNC)-31(ANBNC)+A(ANBNC)
that is
AANB)+A(ANC)+A(BNC)=1+221(ANBNC),
and since, of course, A(A U BU C) = 1, we have
1=A2(A)+A(B)+A(C) = (1 +2A(ANBNC))+A(ANBNC),
from which
A(A) +A(B)+A(C) =2+ A(ANBNC).
Now, if 1(A), A(B),A(C) < % then we would have

2
2<2+A(ANBNC) = A(A) + AB) +A(C) <35 =2,



which is impossible! O
2.3.8. Let N c [0, 1] with A(N) = 0. The goal is to prove that 1(N?) = 0 where N? = {x2

x € N}. Since
0= A(N) :inf{z II,| : N c Ul}

by the characteristics of inf we have that
Ve >0, 35, : Nc| JI5, Y IEl<e
n n

Since N c [0, 1], we may assume that /5 C [0, 1]. Otherwise, wereplace IZ with J¢ = IN[0, 1]:
J¢ is still an interval, being intersection of intervals,

NcU18,=>N NN[0,1] UIE 0.1 =| JJs
n
DEI< Y g <e
n n

Now, writing J3 = [a%, bf] C [O 1], we would have

2c U(ﬁ)2 U [(a5)?, (b))

and
Z (J5)?] = Z ((bi)2 - (af,)z) = Z (bE - af) (b +af) < 22 (b% - af) = 22 lJZ| < 2e.

n g n n

and moreover

From this and by the definition of A, we get
A(N?) < 2¢

and since & can be made arbitrarily small, this shows that A(N?) = 0

In N is bounded, N c [—=R, R], the previous argument leads to a similar bound A(N?) < 2Re,
so we conclude similarly.

Finally, if N is generic, define Ng := N N [—R, R]. It is clear that lee = N?2n[0,R*] T N?
(when R — +c0) and since /1(N123) = (0 for every R, by the continuity from below of 1 we obtain
also A(N?) = 0. O
3.4.1. Let f : R — R be, for example, increasing, so f(x) < f(y) when x < y. We prove that
{f < a} is measurable. Intuitively, { f < a} should be an interval of type oo, @[ or | — oo, ]

where @ := sup{x : f(x) < a}. Indeed: let a be defined as above. Either @ = +o0 or a < +o0.
In the first case, f(x) < a for all x € R, so {f < a} = R. In the second case, we claim that

| —oo,a[Cc {f <a}C]—o0,a].
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Indeed: if x < « then, by definition of sup, there exists S > x such that f(8) < a. But then,
being f increasing, f(x) < f(B) < a, sox € {f < a}. This proves that | — co,¢[C {f < a}.
To prove the second inclusion we prove that, if x > « it cannot be x € {f < a}. Otherwise,
f(x) <a,so

b

a=sup{x : f(x) <a}>x>a,
obtaining a contradiction. Conclusion: {f < a} can be only | — oo, @[ or | — oo, ], in both
cases it is an interval, so it is a measurable set. m]
3.4.2. We have to prove that i) is equivalent to ii) where

1) f is measurable
i) {f >a} € F forevery a € Q.

Since i) is equivalent to {f > a} € & forevery a € R, i) = ii).
Let’s prove that ii) = 1), that is, let’s prove that { f > a} € & for every a € R. By ii), this is
true if a € Q. So let a € Q° (irrational). We notice that, if g € Q is such that g > a, then

{f>q} c{f>a}
Since this happens for every g € Q, g > a, we can say that
| (r>atcir>a)
q€Q, g>a

At left, we have a countable union of measurable sets, so the union is a measurable set. So, if
we prove that = holds, we are done! That is, the goal is reduced to prove that

{f>atc | {£>qh
q€Q, g>a

Pick x € {f > a}. So, f(x) > a. Because of the density of rationals in reals, there exists
r € Q such that f(x) > r > a, sox € {f > r} C Ueq, g>«{f > q}. This means that

{f > a} € Ugeq, g>alf > g} as claimed. O
3.4.4. Notice that

{fge>at={fg>a, g>0n{fg>a, g=0Nn{fg>a, g <0}

Let’s analyze the three sets, starting by the second one (easier), and the first and the third ones
being similar. We have

o eF, a >0,

{fg>a, g=0y={0>a, g=0} =
{g=0}eZF, a<0



For the first set we have

{fg>a,g>0}={f>9,g>0}=U{f>q>9,g>o}=U{f>q}n{g>o,g>f}
& q€Q & q€Q 1
€F
€F

from which we see that { fg > a, g > 0} € %. Similar argument for the third set. From this
the conclusion follows. O

3.4.6. i) Claim: f,(x) — Oforevery x € R. Taken > [x] + 1. Then x < [x] + 1 < n, from
which f,(x) = 0. This means that ( f,(x)) is constantly = O for n large, thus f,(x) — O.
ii) Claim: f,(x) — ljp+c0[(x) for every x. Indeed: if x < 0, f,(x) =0 — 0. If x > 0,

singsa % — 0 gnd n — +oo, for n large enough rll <x<mnsof(x)=1—1.
iii) We notice that

for(x) = 10,1721 (%)s foaks1(x) = 112,17 (%).

For x < 0 and x > 1 we have f,(x) =0 — 0. For x = 1/2 we have also f,(x) =1 — 1. If
however 0 < x < 1/2 we have that (f,(x)) = (1,0, 1,0,...) so there is no limit. Similarly, for
1/2 < x < 1, (f,(x)) has no limit. Since the limit of ( f;,) does not exist forx € [0, 1/2[U]1/2, 1],
which is a positive measure set, we cannot conclude that ( f;;) converges pointwise a.e..

3.4.7. We do the proof in dimension d = 1 for simplicity, the argument is the same for the
general case. Suppose that g(x) > 0 for some x € R. By continuity, there exists a neighborhood
U, of x for which g(y) > 0, Vy € U,. We can always assume that U, = [x — &, x + £]. Therefore

{g#£0} > [x—e,x+e], 0=2{g #0}) > A([x —&,x+¢€]) =2& >0,
which is a contradiction. O
4.3.4. The thesis is to prove that u(f < M) = 0. Suppose u(f < M) > 0. We claim that
e>0,: u(f<M-¢)>0.

This can be proved as follows: since {f < M — %} /" {f < M}, by the continuity from below

1
limu(f<M——):u(f<M)>O,
n n
so, by the permanence of sign, there exists N such that

S pu(f < M)

> , Vn

Vv

N.
n

,U(f<M—l)



But then
f@+J f du

f>M-¢

Mu(E) = Lf du = L

<M-¢
SM-)u(f<M-e)+Mu(f >M-e¢)

=Mu(E) —ep(f < M -¢) < Mu(E),
which is a contradiction. O

4.3.5. The assumption says that

LfW:iLVWM

Lf@=Lm¢L

We show that u(f < 0) = 0 (a similar argument for the other case). Assume, by contradiction,
that u(f < 0) > 0. As in the previous problem, we can find & > 0 such that u(f < —&) > 0.
Then

J!ﬂw=LfW=L$j¢HLyj¢N—wd<ﬂﬁﬂgﬂ@<LVMm

which is a contradiction. m|

Suppose, for example, that

4.3.7. As in the proof of the Chebyshev’s inequality, for @ > 0 we have
u(f 2 a) = J ldu

fra
Now, ¢ is convex and this means that

Pp(Ax+ (1 -2)y) <A¢(x) + (1 -D(y), ¥x,y >0, 4 € [0, 1].
Let’s consider an x for which f(x) > @. Looking at a as convex combination of 0 and f(x),

= (%) Flx) + (1 - %) 0, we have

a a o
¢(a) < mﬁb(f(x)) + (1 - m) ¢(0) = m‘/’(f(x)),
from which
fO) _ (@)
« = ¢la)
Therefore

f ¢(f(x)) 1
Jf?a #S J;’}g a HS Jf?a ¢(Q) H ¢(a) fza ¢(f) H
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From this, the conclusion follows. O

4.3.8. Suppose, by contradiction, that u(f < 0) > 0. As in previous problems, we may always
find £ > 0 such that u(f < —¢) > 0. But then

O<J fd,u<f —edu=-eu(f <-¢)<0,
f<-¢ f<-¢

which is impossible. O

4.3.9. Let’s follow the hint and consider the set E := {f > M + &} with & > 0. By Chebyshev
inequality
! J fdu < ! J |fl du < +
S — 0.
M+ ¢ f>M+s K M+e X #

u(f =>M+eg) <

Moreover,

Lf du| = Lf du > L<M+s> du = (M + £)u(E),

so, because of the assumption, we would get
(M + £)u(E) < Mu(E),

and since, as proved above u(E) < +oo, either u(E) = 0 or M + & < M, which is impossible.
We conclude that u(f > M +¢) = 0 for every € > 0. In a similar way, u(f < -M —¢) = 0.
So, u(|f| = M +¢&) =0forevery e > 0. Whene | 0, {|f| > M +¢&} | {|f| > M}, and since
they have finite measures, continuity from above applies, and

u(lf| >M)=n£nu(|f| >M+%) o,

from which the conclusion follows. O
6.3.3. Let f,,(x) := x(l:l-xz) sin ;. Clearly f, € €(]0,+c0[), so f, € L([0,+0oo[). We apply the
dominated convergence theorem. We have
i)
) o 1 sin(x/n)
ngerfn(x)_ngl}-loo1+x2 _x/n - 1+ x2’ Vx> 0.

ii) Let’s determine and integrable dominant: since | sinz| < |¢|, we have

1
S 142

1 sin(x/n)
1+x2 x/n

/()] =

=:g(x), Vx >0, Vn e N,

and clearly g € L'([0, +o]).
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Therefore, the dominated convergence applies and

+

lim ) fu(x) dx = J%o
0

n—+oo 0

X=+00

dx = [arctanx] —;™ =

M| N

1+x2

6.3.4. Let f,(x) := (}:—z) Clearly, f, € €([0,+co[) c L([0,+co[). Being f, continuous,

f. € L'([0, R]) for every R > 0. Thus, the integrability of f, depends on its behavior at +co:
we have

I’UC2 n

+00
B0~ B = i 03[ Il — 3

+00

e dx & 2n-2>1,
that is for n > 2. To compute the limit of integrals fg * f,(x) dx, we apply the dominated
convergence theorem. We have

1 + nx? _{ I, x=0,

hm fu(x) = lim 0. x>0

n—+00 (1 +x2)n B

being, for x > 0, 1 + nx> ~ x>n = o((1 + x>)"). Therefore lim,, f,(x) = 0 a.e. x € [0, +oo[.
Let’s look for an integrable dominant. We notice that

n(n—1)4 2 n(n _1)4

(1+x2)":1+nx2+Tx +...>21+nx +T > 1+ nx? + nx?,
provided n > 3. Therefore, for n > 3,
£u20 1 +nx? 1 1 1 xZ+1
X = < < = = = X).
|fl’l( )l (1+X2)n 1+ nx4 1 nx4 1+ x4 x4+x2+1 g( )
1+nx2 n+nx? 1+x2

Since g € € ([0, +c0[) € L([0, +0[), and g(x) ~4co 2, we have g € L!([0, +oo[). Conclusion:
the dominated convergence theorem applies and

+00

+00 +00
limJ fu(x) dx = J lim f,,(x) dx = J 0dx=0. O
nJo 0 n 0

6.3.6. Let us(E) := JE f du. We already know that s is a measure provided f € L(X), f > 0
Let g = >} ck1E, be simple and positive measurable. Then

[ygduy = [, Spcrle, duy= Yy cipp(Er) = Ty i IEk fdu=3Spcr [ e f du

= _[XZCklEkfdﬂ = Ing dlu
k

————
8
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We now extend this identity to any g € L(X) positive (g > 0). We remind that, 3(s,) sequence
of simple measurable functions such that i) 0 < s, < s,4 for every x € X and Vn € N; ii)
sp(x) — g(x) for every x € X. Now, for s, we have

J snd,ufzf spf du.
X X

We now apply to both sides the Beppo-Levi theorem and we conclude that

J g duy =J gf du.
X X

Finally, if g € L', the previous identity holds for g.. By subracting the corresponding identities
the conclusion follows. O

6.3.7. We remind that, if f € L(X), then
fel(X), = J |f] du < +co.
X
—. Assume f € L'(X). Then

[ 1 dysz 171 du>;L

From this the conclusion follows being fx | f| du < +oo0.

nd,u:Zn,u(n<|f|<n+1).

<|fl<n+l <|fl<n+1

&= The same argument shows that
| 11du < Y vt <151 <.
X n

Now, (n+ Du(n < |f] <n+1) ~nu(n < |f| <n+1), we have that ), nu(n < |f| <n+1)
converges iff ) ,(n+ 1)u(n < |f| < n+ 1), and from this the conclusion follows. O

6.3.8. By assumption,
C
| 1hrae<
X

na
Summing these inequalities, nd applying the monotone convergence for series, we have
C
[ Sialau=Y [ 1nldus Y5 <o

being @ > 1. Therefore IX >onlful du < 400 and from this ), |f,| < +0 a.e. x € X. As
well known, a necessary (but not sufficient) condition for convergence is |f,| — 0, that is
fu — 0. i
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6.3.9. We notice that

j ] dyt = j £ du +j ] du.
E En{|fI<K} En{|f|>K}
‘We have

[ s A= vas > 6,
En{|fI>K} IfI>K
where v(F) := IF | f| du. As well known, v is a measure on (X, %) and since f € L'(X) we

have v(X) = fx |f| dv < +o0, so v is a finite measure. As a consequence of this, continuity
from above applies to v, and since {|f| > K|| | {|f| = +oo} we have

V(If] > K) —> v(|f] = +00) = j ] du.

|fl=+o0

But since f € L'(X), u(|f] = +00) = 0, so also v(|f| = +o0) = 0. We can then choose K in
such a way

v(If1 > K) <

(SRR

And since

E
— u(E) < — =:0.

E
du <K | 1du=Ku(E) <=,
|f| du JE u=Ku(E) > T

JEﬁ{|f|<K}

7.3.3. Let
1 x.f _ 1 1
F(é) = J L= j £x.6) d,
o logx 0

We notice that f(#,£) is well defined and continuous on |0, 1[, for every & € R. Let’s discuss
absolute integrability at x = 0 and x = 1. We start noticing that

f(x,00=0, = f(#,0) e L'(]0, 1]).

Furthermore,
1
JElogr _ | g 670
L e IS B
es g X
~Togx & <0.
o)

&E>0, Eifo —@ dx = f_oo —% dy, yes!

e(&+Dy

S el = (g0 3] pgdr=] Ledy=-]

_T dy’

— ¢+1>0, & &>-1.



Similarly, recalling that e’ — 1 =t + 0(t) ~;—0 t, we have

¢Elogx
log x

so we conclude that £(#,&) € L'([0,1]) iff & > —1.
To compute 0 F we apply the differentiation under integral sign theorem:

|f (2, )] ~xm = ¢l

1
OF (€) = L 36 (x,£) dr. (%)

To apply this theorem we notice that:
i)
ef logx _ 1 e§ log x logx

06 (6, 8) = O — = = 102 = 8 Yy 50, VE > —1.

In particular, this holds a.e. x € [0, 1], V& > —1.
i1) Integrable dominant:
|0, f (x.6)| = 1x¥] < 1, a.e. x € [0, 1], V& > 0.

If a < ¢ <0 with a fixed and a > —1, we have
0. f (x,8)] = x| < x° = xé eL'([0,1]) & a>-1.
This bound holds for a.e. x € [0, 1] and V& > a. Since x* > 1, we conclude that :
[0 f (x,8)| < %, a.e.x € [0,1], V€ > a.

X

Therefore, we can apply the theorem on D, = [a,+oco[ and conclude that (%) holds
true for all & € D,. Being a > —1 free, we can conclude that the relation holds for
Ee]l—-1,+00].

In particular,

x§+l x=1 1

E+1

0:F (&) —Jle alx§>—_1
¢ 0 =0 é‘:+1

Therefore,

F(&)log(é+1) +k,
where k is a constant, and since F(0) = 0, we deduce 0 = logl + k = k, from which

F(¢) =log(é+1). ]
7.3.5. Let
oo 4 b _ +00 ,—ay’ _ ,~by? +oo ,=by? _ ,—ay?
F(a,b) := J (e‘? - e‘x—z) dx 2 J = j 1
0 0 -y 0 y
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Let’s discuss the existence of the integral F'(a, b). We notice that it is not convenient to split the

integrals, because f0+ oo e;;y dy is divergent at y = 0. However, remembering of ¢’ = 1 +t+0(¢),
we have
—-by? _ —ay? ( _ b) 2
e e a y .
fla,b,y) = T ~y—0 T =(a-D), ifa#+b,

while f(a,a,y) = 0. Thus, f(a,b,y) is L' at y = 0. Since it is also a continuous function on
10, +co[, we discuss the integrability at +co. We notice that if a = b then f(a,a,y) = 0 it is
integrable at +co. If a # b and one of a, b is negative, for example a < b, a < 0, then

e’
fla,b,y) ~y—+o0 7 — +09,

so f(a,b, ) ¢ L'(+c0). Ifa=0and b > 0 (or a > 0 and b = 0), then

l—e® 1 |
f(o’b»y):TNP, = f(0,b,y) € L' (+00).

Finally, if both a, b > 0 and, for example 0 < a < b (the same for 0 < b < a), then

2
e v

1
f(a,b,y) ~y—c0 7 < F € L1(+oo),

Conclusion: f(a,b,4) € L'([0,+c0[)ifa=bora,b > 0.
To compute F'(a, b) we notice that F(a,a) = 0, while

+00
BuF (a, b) = j duf (a, b, y) dv,
0

provided we can exchange derivative and integral. We notice that
i)

e—by2 _ e—ay2
y2

i) If £ > 0,and a > &, we have

1
30, f(a,b,x) =0, = —2(—e_“y2(—y2)) = e_“yz, Yy > 0(a.e.y € [0,+][), Va, b.
y

|0.f(a,b,x)| = e < e qe. y € [0,+00][, Va > &,

ol
+00 1
30,F(a,b) = J e’ dy = = T
0 2 a

This holds for every a > &, and since € > 0 is arbitrary, we conclude that it holds for
every a > 0.



Similarly,

1
30,F (a,b) = —5\/; Vb > 0.

To determine F(a, b) for a,b > 0, fix b > 0: since

0.F(a,b) = %\/g, = F(a,b) = Vra+ ¢(b),

where ¢(b) is a function of b (constant in a). Taking the derivative w.r.t. b, we have

¢'(b) = 0pF(a,b) = —%\/g, = ¢(b) =—Vnb+k,
where k 1s now a constant. Therefore,
F(a,b) = \/E(\/‘—«/E) +k,
and since F'(a,a) = 0, we deduce k = 0. O

7.3.7. Let
I log(1 + &x)
F = ——— dx.
(é:) J; 1 +x2 o

Let’s determine the domain of definition of F, that is the set
log(1 + &x)

D:={¢eR : f(#.&) e L'([0,1])} where f(x,£) := ..

First notice that f is defined provided 1 + £&x > 0, and since x € [0, 1], f is well defined for
every & > 0, whileforé <0, 1+&x > 1+& > 0iff € > —1. Notice that, if £ = -1, f(x,-1) =
e ¢ &(]0, 1]). Therefore, D € [—1,+oo[. If € > —1, f(1,€) € B([0,1]) < LL([0, 1]).

1+x2

For& =1, f(x,—1) = 2249 c ©(]0, 1]) ¢ L([0, 1]) and since log(1 +1) = £ + o(t),

1+x2

-X
x,—1) ~ = —x,

we have that £ (#,—-1) € L'([0, 1]). We conclude that D = [—1, +co].
We compute 9, F applying the differentiation under integral sign theorem:

1
0F(©) = | s av
We notice that, for -1 < a < &,
1)
aff(x’ ‘f) =

X
Gren(ray welodlve-1.
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ii)

1 X X 1 x
1 x £20, ME o S o S Tra

|0:f (x, ) =

T vEx] 142

“l<a<é<0, <%

1 X

< o sl e L0, 1]).

Therefore, we can apply the differentiability theorem and conclude that

1 X
L (+en(i+x) V2

Since a > —1 is arbitrary, we conclude that the previous formula holds for every & > —1. Now,
according to Hermite’s decomposition,

0:F (&) =

x A +Bx+C _A(1+x%) + (Bx + O)(1 + &x)
(1+&x)(1+x2)  1+éx 1+x2 (1 +&x)(1+x2)
where, as easily checked, A = —%52, B = 1:? and C = %gz Therefore
1 1
1 1
0¢F(é) =- ¢ J dx + J x+& dx
’ 1482 )o 1+&x 1+&2 )0 1+x2

1 i L
Yz [log(1 +£x) 1% + T+ & ([5 log(1+x?)

x=1
+ & [arctan x]ﬁz(l)
x=0

_ log(1+¢) 1 n
T 1+ +1+§2(§10g2+51)'

Therefore, integrating on [0, £]

¢ log(1 + log2
F(¢)-F(0) = —J og(l +x) dx + 8 arctan & + il log(1 +&2).
0 1+ x2 2 8
Now, F(0) = (; ll(lgx L dx = 0 so we finally obtain
“log(1 log?2
F(&) =- L O%(+ :Zx) dx 0§ arctan & + %log(l +&2).
The first integral cannot be further simplified. O

8.3.1. Clearly || (x, y)||. is well defined for every (x, y) € R2. It verifies positivity and vanishing.
It is also homogeneous as easily checked. However, the triangular inequality is not verified. Take
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(1,1) = (1,0) + (0, 1). We have that ||(1, 1)||. = (V1 +V1)? = 4, but ||(1,0)|, = |[(0, D)||. = 1,
so if the triangular inequality were true, we should have

4= [I(1, DIl« = I(1,0) + (0, Dls < [I(L,O)[[« +[[(0, D]l = 1+1 =2,
which is manifestly false. O

8.3.2. We check that || - || is a norm on R (the other check has been done in class). Clearly,
llx|lo = max; |x;|is well defined (it is the maximum of a finite number of numbers).

Positivity: evident by definition.

Vanishing: we have ||x[|c = 0 iff max; [x;| = 0. In particular then, |x;| < O for every j, that
is [x;| = O for every j, so x; = 0 for every j, from which x = (0,0, ...,0).

Homogeneity: we have

llaxloo = max o] = maxiall;| = o} max ;] = |ellix]le.

Triangular inequality: We have

lx + ylleo = max lxj +;l,
and since
i + vl < s+ [y)l < max k| +max |yil = [lxlleo + [[y]lcos
for every j, we have

b+ ylleo = maxhe; +y+ I < llelleo + I¥lleo- @

8.3.3. Let || fllv := | flleo + I/’ llco- Then
£ llv > 11l

which means that || - ||y is stronger than || - ||». To check that they are not equivalent, we have
to find a family (f,) ¢ V = €'([0, 1]) such that || f,]|cc < C but || f,|ly — +o0. Since part of
Il fullv is made of || £, ||co, We look for f, € €' with “big” derivative. Take

fu(x) = sin(nx).
Clearly f, € €'([0, 1]), for every n. Morevoer,

= max |sin(nx)| = max |siny| =1,
fillo = max [sin(ro)l = max fsiny

as soon as n > 2. However,

1 fally = 1 falleo + 1 fallo = 1+ 11 flleos

and since
74
= max |ncos(nx)|=n max |cosy|=n
Il £l oo xe[0,1]| (nx)| ye[O’n]I yl=n,
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we conclude that there cannot be a C such that

£y < Cllflleos VS €V.

Indeed, if this is true, then n = || f;)||y < C, for every n € N. O

835. ) LetV :={f e €' ([a,b]) : f(a) =0} |Ifllv = j{f | f'(x)| dx. Since f € €', f' € €
so also | f’| € €, and || f||v is well defined. We check the characteristic properties fulfilled by
any norm:

e Positivity: evident.
e Vanishing: we have || f||y = 0 iff f: |f'(x)| dx = 0. Since |f’| € €, by a well known
result we have | f'(x)| = 0,so f’ = 0on [a, b]. By a well known property of Differential

Calculus, this implies f = C (constant), and since f(a) = 0, we conclude that f = 0.
e Homogeneity: we have

b b b
laflly = j (@ f) ()] dx = f af ()] di = j lllf (0] dx = [l fllv-

e Triang. inequality: we have

b

b
I +gllv =f £+ (0] dr < J )]+ 18" ()] dx = 1 f 1y + gl

a

ii) We prove that (V.|| - |ly) = (€([a,b]), | - |le). Clearly, V = €' ([a,b]) c €([a,b]).
We need to prove also that || - ||y is stronger than || - ||. Let f € V and x € [a, b]. By the
Fundamental Thm of Integral Calculus,

£ = f(a) +j F(y) dy = f () dy,
SO

|f ()] =

Lx f'(y) dy

< f |f (¥ dy

from which

x b
170k = max 171 < max [ 170 dy= | 17O dy =1l ©

8.3.6. i)LetV :={f € €*([a,b]) : f(a)=f(b)=0}and| fl|ly := I: | f”(x)| dx. Notice that

Il fllv is well defined for f € V (= f" € €, = |f"| € €([a,b]) = ff | f”| makes sense).
Let’s now check the characteristic properties fulfilled by any norm.

e Positivity: evident.
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e Vanishing: || f|ly = 0 iff f: | f”(x)| dx = 0, from which, by a well known property,
|f”(x)] =0on [a,b], thatis f” = 0on [a, b]. Since f” = (f’)’ =0, we deduce f’ = C,
so f(x) = Cx + D with C, D constants. Being f € V we have 0 = f(a) = Ca + D and
0= f(b) = Cb + D, therefore

Cla-b)=0, = C=0,
then 0 = D. Conclusion: f = 0.
e Homogeneity and triangular inequality: straightforward.

ii) Clearly V c €!([a, b]). Let

1 fllgr = 11 flloo + 1l co-
We aim to bound this by || f||y. We notice that, by the Fundamental Thm of Integral calculus,
r0=f@+[ rorar=| romae.
a a

Now, since f(a) = f(b) = 0, according to Rolle’s theorem there exists ¢ € [a, b] such that
f'(c) =0. Applying the same theorem to f” we have

y y
') =f'(c)+ J f"(z) dz = J " (z) dz,
SO

dy.

fo) = j (fy () dz) dy, = 1f)] < J

Now, if y > ¢,

| e

y ry b
| o <[ o< o=
while, for y < ¢,
y c c c b
"(2) d =‘— "(2) dz| = ") dz| < | If"@ldz< | 1f"@1dz=1fllv,
szz szszzszzszzzfv
In any case
y
| rr@a <.
SO ‘

FACIIRS J I fllvdy = (x=a)llfllv, = lIflle < (b=a)lfllv,
and

1F ] = <Ifllv. = 1Nl < ISy

Ly 17(2) dz
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In conclusion

1A llgr = 11flleo + 1 Nleo < (B =a+ 1) [ fllv, ¥VfeV. O

9.4.2. Let’s start showing that
AC>0,: (u+v)? <CWw +v?P), Yu,v > 0.

Since for u = 0 or v = O it is sufficient C = 1, we suppose u, v > 0. In this case the inequality is

1% A%

(t+1)P
P+ 1

that is, setting r = £ > 0,

v

t+ 1P <C(tP +1), < C, V> 0.

Now, let ¢(1) := (i:i)lp > 0. Clearly ¢ € €([0,+00[) and since ¢(+o0) = 1, ¢ must be bounded.
We can actually find its maximum:
p(t+ )P NP +1) = (1+ 1)PptP~

p
o= TR = plr+ 1

-7t +1)
(1P +1)2

SO
P20, = P+1-t"-t"1>0, = <l = r<l.

So, ¢ attains its global maximum at ¢t = 1, with ¢(1) = % = 2P~1. We conclude that the
inequality holds with C = 2P~!, that is

(u+v)? < 2PV wP +vP), Yu,v > 0.

We can now prove that L? is a vector space: if f, g € L? then

[ v dus [ Qrreleh dus< | 2701 1gl) du=207T (1A + gl) < v,
Easilyaf € L? if @« e Rand f € L?. O
9.4.3. i) The concavity of log t means that
log (At + (1 — A)s) > Alogt+ (1 —A)logs, Vs, t >0, VA € [0, 1].
From this
log (ﬂsl—ﬂ) <log (A7 + (1 = )s)
from which
st <A+ (1 - 2)s.

Now, chose A — 1% sol—-A=1- % =: %, t = a” and s = b9 and you have the conclusion.



ii) Noticed that

[ reaul < 1r1el dn
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we prove that this lastis < [| f|| ,||g|l,. We start noticing that, as in CS inequality, the conclusion
is trivial if one of ||f]|, and ||g]|; is O: in this case one of f or g would be 0 a.e. and the
inequality is trivial. So we assume || f||,,, [|g|l; > 0. The conclusion is then equivalent to prove

that
[LL g
x LF 1 llgllg
Applying Young’s inequality with a = % and b = ﬁ, we have

1 p 1 q 1 12 1 q
J|ﬂ_gLW<J_Jﬂ JLlel UL P 1y lsldu .
X

1 1
u =—+-=
17115 lglly x P, algllg p oA, a gl P 4

9.4.4. Following the hint, we have

Hf+m$<J;Uﬂf+mrﬂm+ijV+gW*WL

By Holder’s inequality we have

L IS +gl”™" du < NN + gl g L lgIlf + 817" du < gl f + 1P llg-

Now,
1/q

1/q
|||f+g|p_1||q = (L (|f+g|p_1)q dy) = (L |f +g|?P~D d,u) ’
1

. -1
andsmceazl— =L

Il) = g = % so g(p — 1) = p, from which

O

1/q 1/p\P/ r {
|memzﬁyuw@)=«bﬂﬂwﬂ) S lf+gl? = f+gln

Therefore
-1 -1
If+glly < IFIpIF+gln™ +lglpllf +gllh -

Now, if || f + gll, = O the triangular inequality is evident. Otherwise, from last inequality and

dividing vy || f + gllﬁ_1 we obtain the conclusion.

9.4.5. i) By CS inequality,

wm=me=mew<wwwL

O
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/
where |1 = ([, 12 du) = Yu(X). so
11 < VRIS

i) If u(X) = +o0, 1) is false in general. For example X = [0, +co[ and f,(x) := ﬁl[o,n] (x).
Then f, € L' N L? because f, € €([0,n]) and f = 0 on [n, +co[. We have

1l = Jom =

n

dx = [log(1 +x)];Z; =log(n +1),

o 1+

and . —n
1 h 1
= - =1- < 1.
1 ull2 JO (1+x)2 L+x|, n+1

If || - || were stronger than || - ||; there would be a constant C > 0 such that

1/l < Cllfll2,
But then,

log(n+1) =|fulll <C, ¥n €N,
and this is impossible.

iii) As suggested, let’s take X = [0, 1] with Lebesgue’s measure. We already know that
|| - ||2 is stronger than || - ||;. The vice versa does not hold. Take f;(x) = 1[1 /n1](x). Easily,

f,€ L' N L?. We have

1
Il = L % dx= 23], = (1 - \ﬁ) <2,

1
1 1
503 = [ L ax=logxlizl, = —log L = logn
1/n X n
If || - ||y were stronger than || - ||;, there would be a constant C such that

Viogn = |fulla < Cllfulli <2C, Vn €N, n > 1,

but this is manifestly impossible.

while

iv) If X is a finite set, say X = {1, ..., d}, and u is the counting measure, then

d
170 = [ 171de= Y170
=1

while
J 12

12
£l = (L 1 dﬂ) SO

J=1
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Identifying f with the array (f(1),..., f(d)) € R¢, and recalling that on finite dimensional
spaces any two norms are equivalent, there exists C > 0 such that
1/2

d d
= Y s <e Y irmi=lish. o
=1 =1

J J

9.4.6. i) The answer is false in general. For example, f(x) = —i— € L>(R) (f € €(R) c L(R),

1+]x|

Jg If1? < +oo being | fI? ~ 4o # which is integrable at +c0), but f ¢ L' (R) ([, | f| = +co being

| f] ~4c0 I%I which is not integrable at +o0).
ii) We know

J Ix £ (x)]? dx = J x2f(x)? dx < +c0.
R R

= [ =i e [T

by the CS inequality we get

1 1 /2, 1/2
j |f|<(J 12dx) (f |f|2dx) VRIS s
-1 -1 1

Writing

and

+00 +00 | +00 1 1/2
G —|xf<x>|dx<(j —zdx) b T aeet 2 = 0 1ol
1 1 X 1 X

and, similarly,

-1
J £l dx < 1 FTeo .

Therefore
£ < V2 gl + 1 f ey ll2 + 16 11 seofll2-
On the other hand
2 ! 2 ! ) [T 2
s 12 = J xfP? d +j JefP+ L P 3 1y 24 1 F T 1o

—00

SO

1/2
b fllo > (I e I3+ e f et 13)
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Since (a + b)? < 2(a® + b?), that os a + b < V2(a? + b?)'/2, we finally get

1A < V2 el + e Tl + e T2
1/2
< V2 (I Tl + (S e B+ e T 13)'72)
<VI(Ifl+Iefll) . ©

9.4.7. i) As in Chebyshev’s inequality, for @ > 0,

p 1 1
plfizo=| taus| Cﬁ)w:— A1 du < £
T Iflza \ @ al Jifza ar
1) We have
awaﬂ>w<j 1P du
|flza
Defining

vwr=vaw,

we have a well defined measure on (X, %), with v(X) = fx |fIP du = ||f||§ < +oo (because
f € L?). In particular, continuity from above applies, and since {|f| > a} | {|f] = +o}, we
have that

Jim a”u(lfl > @) < tim v(1f1 > @) =v(ifl =+e) = [ If17 d

|l=4oo

Since fx |fIP du < +oco, | f| < +c0 p-a.e., thus u(|f| = +o0) = 0, from which v(|f| = +o0) =
0. ]

9.4.8. 1) Applying CS inequality on [0, x], we get

CS X 1/2 X 1/2
< (L y /2 dy) (JO Y2 f(y)? dy)

J f) dy‘ =U y YU (y) dy
0 0

x 1/2
= (2vx)'/? (L Y f(y)? dy)

from which we have the conclusion.
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i) Let g(x) := }Cfg f(y) dy. We have

g = [ 1= [T L[] o

D +00 1 X +00 3 X
< J —22x1/2j Y2 f(y)* dy dx = 2J x 3/2J Y2 f(y)* dy dx
0 X 0 0 0
Fubini e 1/2 2 oo 2
L 2J0 PEFOP [ ay
Yy

—_———
[ Ry

+00
_ 4[0 Y2 E3)2y 2 dy = 42 o

949.Let feLP, geL9andhe L" with1 < p,q,r < +o0 suchthat%+é+%: 1. Then

1/p 1/s
Ifghll = L 1 llgll] du = L 1 (lgllhl) du < (L 17 dy) (JX<|g||h|)s dy) ,

1,1 _ o1 1_1,1 _ o _ g .
wherel—7+§—1,that1s3—1—1—7—5+;.Leta>Obesuchthatsa—q,thatlsa—E.Notlce
1

. 1 _q . . _ . _
that, since © > ~, @ = T > 1. Similarly, let 8 be such that s8 = r, thatis 8 = . As above 8 > 1

Ik y
and moreover
1 1 s s (1 1) 1
—+—=—4+-=s5|-4+-)=s5-—=1.
s

Therefore, by Holder inequality,

1/a 1/8
J el llf du < (j gl dy) (J N2 dﬂ) = llgls 1Al
X X X

v ]/S I/S
([ astay aa) < (neteee) ™ = el

and now the conclusion follows. O

10.3.1. #1. Let f,(x) = %I[O,n] (x). For x > O fixed, as soon as n > [x] + 1 we have

from which

fulx) = rll — 0. So f, 0 everywhere on [0, +co[. Since we hawe pw convergence, the
unique possible L? limit is the pw limit, thus 0. We have

to 1 1r”
||fn—0||1=||fn||1=j —l[o,n]dx:—J dr=1 400,

0o n nJo
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L! 1
so f, 7 0, hence (f,) cannot be convergent in L' (if f,, L, f then, modulo a subsequence,

iy LN f ae., but f, EAN 0, whence f = 0 a.e.). Similar argument for L? convergence: the
unique possible limit candidate is f = 0:

+00

2

1 1 (" 1
_1[0’,1] :—2‘[ 1dx:——>0,
n n

0 n

nﬁ—fﬁ=nﬁ@=f

0

L? . .. . . e eqea -
so f, — 0. For L* convergence, since this implies pw convergence, the unique possibility is
LOO
Ja — 0. We have

1
1f = Olleo = Il fulleo = ess. sup,s0 1 fu ()] = — — 0.

#2. Let x > 0. Here we distinguish x = 0 from x > 0. In the first case we have f,,(0) =n —
+00. For x > 0, as soon as% < x (thatis, forn > }C, orn > [}C] +1) we have f,,(x) =0 — 0. We
conclude that f, 2 0ae. on [0, +oo[. Because of a.e. pw convergence, the unique possibility
1
for f, L fis f =0. We have
1/n

Im—ﬂhﬂMM:J ndv =14 0.

0

Thus, (f,) is not convergent in L. Similar for L? convergence:

1/n
|m—ﬂ@ﬂmﬁ:L 22 dr = 1 — oo,

so (f,) is not convergent in L2. For L*® convergence,

| fn = flleo = €8S.8Up, s | fn(x)] =n — +o0,
so (fn) is not convergent in L.

#3. Let f,(x) = X7 %l[k’k o ](x). For x > O fixed, there exists a unique N such that
x € [N,N + 1[. In particular, 1, ](x) = 0 for all k except, at most, for k = N. Now, if

k.k+5
x =N, Iy n+1/27(x) = 1 for every n, so, forn > N,
1 1 1
Su(x) = Nl[N,NH/Z"](x) =¥ N

If x €]N,N + 1] then, for n > N and such that N + 2%, < x (this happens for n — +oo being
N + zin —> N), we have

1
fa(x) = NI[N,NH/Z"](X) =0.



Conclusion:

Thus, f, 2, Oa.e. on [0, +oo].
About L' convergence, the unique possible limit is 0. We have

ol = f,l_>o+°°”11 d_1”1
1= Oll = 1Aall =7 | ;% ko)) = 35 2 7

. Ll
Now, since 37_, 1 = logn we have || f, - Ol|; < 102‘3" —0,s0 f, — 0.

Similarly,
) ) +00 n 1 2
1= 00 = 1205 = | DIATNIE)

As said above, for every x > 0 fixed, only at most one of I, , 3 (x) is = 1. Therefore

(Zk [k k+ 5 (x)) Z [k.k+5r (x)

whence
+oo0 I

L, 1o 1
2 _ 2 : — E
l.f» = Oll5 = o 2 [k kt5kr (x) dx = n 2 — 0,
being >\, # < +00.
10.3.3. A quick plot of f;:

] 1 1

We see that, for x < 0, f,(x) =1 — 1. For x > 0, taking n such that % < x, thatisn >

n > [%] + 1, we have f,,(x) =0 — 0. Thus

pw
fo— 1-101

27

lOI‘
X
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In this case 1[_1 o] can be the unique possible L? limit. We notice that li-1,0 € L? and

1/n 1/n 1 2 x=1/n 1
||fn—1[_10]||%:‘[ Vl—nx) dx—j l-nxdx=—--n|— =— —0,
’ n 2 |- 2n
L2
$0 fu — l-1,0]- O
10.3.5. The graph of f,:
Clearly, fu € ([0, +00[) and since f,(x) ~400 = 1s integrable at +co for every n > 2, we have
fn € L'([0, +00[) for every n > 2. We notlce that
0, 0<x<l, 1 1, 0<x<1,
Xt—q 1, x=1, = fulx) = %, x=1,
+oo, x > 1. 0, x>1

So, f» PRAE [0,1]- Since this is the unique possible L' limit, let’s check this. We have

+00 1 +00 1 1 1 +00 1
£l L =] L x+f1 o d L o X+L i

On [0, 1] we have

i) 1+n—>13€ x € [0,1];

ii) 0 < <1eL'(]0,1]),Vx € [0,1], Vn € N.
Therefore, domlnated convergence applies and

1 1 1
J dx—>J 1dx=1.
01+Xn
1

lin n, for every x > 1, and since -5 € L' ([1,+oc0]),

1
— =1
1+ x"

On [1, +co[, noticed that x” T in n, 1+x"
decreasing monotone convergence (or dominated convergence) applies and

+00 1 +00
J dx—>J 0dx =0.
1 1

1+ x
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1
Gathering these facts together, we get || f,, — f|l1 — O, thus f, L, f. i

10.3.6. All the proposed norms are true norm. This is evident for || - || being || - || @ norm. For
| - |l we have that it is well defined (f € €' means f’ € €, thus || f’||l makes sense). Let’s
check the characteristic properties:

i) Positivity: evident.

ii) Vanishing: we have

|f(0)[ =0, f(0) =0,

”f ||** =0, &= —
| f'lleo =0, f'(x) = 0.
From the second, f = C (constant), and since f(0) = 0, we get f = 0.
111) Homogeneity and triangular inequality: straightforward.

For || - ||.ss We have || fllwe = | f(1)|+]|f']|1. Again, this is well defined because f” € € ([0, 1]).
Let’s check the characteristic properties:

1) Positivity: evident.
ii) Vanishing: we have

lf(D] =0, f(1) =0,

[ fllisx =0, —
Il 1l =0, f'(x) = 0 (being f’ € ©)

From the second, f = C (constant), and since f(1) =0, we get f = 0.
iii) Homogeneity and triangular inequality: straightforward.

Lo . pw
Let now f,(x) := - sin(n“x). We notice that f, — 0. We have

1 falls = 1 falleo + 11 fylleo,

where
1 o 1 . 1
| fulloo = MaxXyeqo,17 3| sin(nx)| = + max cjo,p2 | siny| = 1,
[ f7lleo = Maxyepo,1) 51n* cos(nx)| = nmaxyefon | cos y| = n,
so || full« = % +n — +oo, thus (f;;) is unbounded, whence it cannot have a limit in || - ||..

Similarly, being f,(0) =0,
| fullie = 0 —> +o0,

so (f,) cannot be convergent for || - ||.. too.
Finally, | f,(1)| = L sinn? and

n
2

1 n
, 1
||fn||1:j |ncos<n2x>|dx:—f |cos y] dy.
0 nJo
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Since Ig/zlcosyl dy = 1,if K € N is such that K7 < n’> < (K + 1)7, thatis K = [%nz], we

have
K% n’ (K+1)%
K:J |cosy|dy<J |Cosy|dy<J |cosy|dy=K+1
0 0 0
SO
2 " 2
[—nz < J |cosy| dy < [=n?|+1
T 0 T
from which
[3%] 1" (22 +1
<—J |cosy| dy < ———,
n n Jo n

2
and since [%nz] ~ %nz we deduce that %f(;l |cosy| dy — +co. Conclusion: (f,) is not
convergent also for || - |-

About relations: since | f(0)| < || f]|e, it is clear that || f||«« < || f]]+, s0O || - ||« is stronger than

|| - ||««. The viceversa also holds: from the fundamental formula of integral calculus,

F) = £(0) + L £(v) dy.

S0,

£ < 1F0)] + L £ dy| < 1F(0)] +L PO dy < 17O+ 1l
Therefore, || fllee < [£(0)] + [Lfllees 50

£l = 1 lloo + 11 Moo < LA O+ 211 f Moo < 201 f s

We can see also that || - ||« is stronger than || - ||... (so also || - ||« it is). Indeed,
[f e = LA+ < N lloo + 1 Moo = £ -
We claim that || - ||, is not equivalent to || - ||.. Take f,(x) = x". We have

= max |x"|=1, Nl = max |nx""! =n.
Iill = max 1¢'] = 1, £l = max fox"'|

Therefore, || f,||. = n+ 1. However

1
I follee =L D1+ 1570 = 1 [ ™ = 14 1) = 2
In particular, there cannot be a constant C > 0 such that || f||. < C|| f||. for all £ € V. O

10.3.7. We notice that f,,(0) = n — +co while, for 0 < x < 1,

n 1
fn(x) ~n—+o00 n9_x3 = — 0.

x3n8
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So f, P 0on [0, 1]. The unique possible L? limit is f = 0. We have
n

—  _=pn— 400
1+ n°x3 " oo

| fulloo = ess. supyejo.1) [fn(x)] = ess. sup,¢(o 13

so (f,) is not convergent in L® norm. Let’s check L? norm:

1 2 3 }13
2 n y:n’xlj 1
2= | ———=dx = - | —— dy,
Il L (T+mox?)? nlo ey

1
(1+y?)?

. 3 00 L?
and since fg m dy — L; dy < +oco we have ||fn||§ =0 (}l) — 0,0 f,, — 0.

Now, recalling that (see Ex. 9.4.5), when u(X) < +oo, || - ||2 is stronger than || - ||; norm, and
precisely
1/l < VOl 2,
1
we have || f,,|l[1 — 0, so f;, o O

1
10.3.9. Let 1g, L, f for some f € L'. Modulo a sub-sequence, we can say that (1g,)
converges a.e.. Since lg (x) € {0, 1} this means that f(x) € {0,1} for ae. x € X. Let
E:={xeX : f(x) =1}so f(x) = 1g(x). We need to check that E is a measurable set.
We may notice that in order lim, 1¢, (x) = 1 we must have 1g, (x) = 1 for all n > N for some
suitable N. Thus,

xeE, Vn>N, = x¢€ mEn, for some N, — XEUﬂEn.
n=N N n=N

The vice versa also holds, thus,

xelk erﬂEn, — E:UﬂEn.

N n=N N n=N

Since the E,, are measurable, also E it is. m]

11.4.3. We have

frg(—x) = JRf(y)g(—x V) dy = jR FOg(x+y) dy

= IR f(-2)g(x —2) dz = JR f(2)g(x —2) dz

=f=*gx). O
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11.4.5. We have
Frg)l = U FOgx —y) dy
R

CcS 2 1/2( X — 2 )l/
< (JRIf(y)I dy) JRIg( y)|° dy

= [l f1l21lgll2-
This holds a.e. x € R. Therefore

<j FOgCx— )] dy
R

2

. 1/2
S f (J 8P dz)
R

1f * glleo < NIf1I2llg]l2-

For the extension the unique difference is using Holder inequality:

f FO)glr— ) dy <j FO)lgCx— )] dy
R R

|fxg)l =

1/p Vg _ 1/q
2(] FOP dy) (f G =)l dy) == AL (f 22 dz)
R R R

=7 lpligllg
a.e., from which || f * glleo < [I1lpll8llg- .

11.4.6. i) Let f € L' and g € L™. From

1 g0l < jR FOg G =) dy =< ligllo JR FO) dy = lgllwllfI.

from which

1 8lleo < I f11118]lco-

ii) Letnow f € L' and g € L. We have integrating w.r.t. x we get

2
1+ gl = JR 1 * (O dx < jR (fR FOgCx =)l dy) dx.

As suggested we write |f(y)]|lg(x — y)| = £ )2 f()["?|g(x — y)| and we apply the CS
inequality:

[ rose=nay = [ (1700") (O Plste =) dy

1/2

12
< (j £ dy) (f FO) gl =P dy)
R R
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SO

J 1 g dx <J (f If(y)ldy) (j FDlls - P dy) dx
R R R R

ub.

e fR L@ Ol = dy dx ™ 1171 JR JR FOIgCx— P dx dy

= AN IS = £ Il

from which [| f + gll2 < |l fll1llgll2-
iii) Forthe f € L' and g € L? 1 < p < +co case the trick is similar. We start noticing that

P
If gt = fR 1 g (I dr < jR (fR FOgtx =)l dy) dx.

Following the idea of the case p = 2, we write | f(¥)||g(x — ¥)| = [F )" £ ()P |g(x = y)I,
where 117 + % = 1, and we apply the Holder’s inequality:

[ rose=wiay = [ (1700") (1) Pl 1) d

1/p

1/q
< (j If(y)ldy) (J FOlgCe = )1P dy)
R R

SO
rlq
[1reswra <] (j If(y)ldy) (j FO) gl = )P dy) dx
R R R R

Fub.

_ rlq —v)IP u rlq — )7
T jRij(y)ng(x DI dy dx L1 JRJRIf(y)IIg(x DI dx dy

= IFI791 1 gl = A1 Ngh.
from which || f + g|l, < |[fll1ligll,- O

11.4.8. We have

+00 R
fes =] fOue-n =] roue-yar

Sincey € [-R,R], - R < x—-y < Riff 2R < -R+y < x < R+y < 2R, soif |[x| > 2R,
x —y ¢ [-R, R], thus in particular g(x — y) = 0 for every y € [-R, R]. So

f*xgx)=0, V|x| >2R. O
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11.4.9. The exercise misses an hypothesis: g’ must be bounded, that is g’ € L*™. Indeed, we
apply the differentiation under integral sign:

0(f <) = |

+o00

o= dy= | oI @

This provided the theorem applies. To this aim we have
e 30, (F(y)g(x-y)) = fF(»)g'(x —y),ae. y €R,Vx € Rbecause g € €.

o 0:(f(Mgx =) = 1FWIlg’(x = )| < [1gllel f(Y)] € L'(R), ae. y and for every
x €R.

Therefore, th edifferentiation theorem applies and 0, (f * g)(x) = f * g’(x). O

12.4.1. i) Notice that || - || is, by definition, well defined for every f € V,. If f,g € V, then
/8 € €([0,+c0[), s0 f +g € €([0,+o0[) and

1/ + gl = sup (™| £ (x) + g(x)]) < sup (e™|f (x)[ +e“|g(x)]) < |IfII+llgll < +oo.

x>0 x>0
At once, this proves that f + g € V, and also the triangular inequality for the || - ||. Similarly,
af €V, forevery a € R and ||af|| = |a|||f]|, thus homogeneity holds. From these it follows

that V,, is a vector space. It remains to check positivity and vanishing. Positivity is evident from
the definition of || - ||. Assuming that 0 = || f|| = lle?® £, We have e f(x) = 0, that is f = 0.
Therefore, vanishing holds and || - || is a well defined norm on V,,.

i) Let (f,) € V, be a Cauchy sequence, that is

Ve >0, AN : ||fu— full <& Vn,m > N.
We already noticed that || f|| = |[e®* f||e. So, setting g,(x) := ¢®* f,(x) we have that
Ve >0, AN : ||lgn — gmllo < &, Yn,m > N.
Thus, (g,) is a Cauchy sequence w.r.t. |- ||e, and since (g,,) € B([0,+0[) (||gnlleo = € fo]| <

. lIlleo . . . . .
+o0 being f, € V,), g — g € B(X). Moreover, since uniform limit of continuous functions

is a continuous function, g € € ([0, +co[). Setting f(x) := e g(x) € €([0,+0co[) we have
IL£1l = le® flleo = lIglloo < +00, 50 f € Vq, and

1o = f1l = e fo = € flloo = llgn = 8lleo — O,
SO fu M) f, and this shows that V,, is a Banach space. O
12.4.2.
12.4.4.
12.4.5. Let (f,) € €'([a, b]) be a Cauchy sequence, that is
Ve >0, 3N, i |Ifu = full = 1fo = finllo + 1S5 = fullo < & ¥r,m > N. (%)
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The goal is to show that 3f € €'([a, b]) such that f, M> f. We start noticing that, from
the Cauchy property, (f,) is a Cauchy sequence in uniform norm. As we know, this norm is

complete, so f, w; f for some f € €([a,b]). We now have a limit, the next step is to show
that this f € €'([a, b]). As suggested, since f, € €!([a,b]) the fundamental formula of
integral calculus applies:

£2(0) = fula) +j £10y) d.

We show now that we can pass this to the limit. Indeed, since f, w? f, in particular f, LN f,
so fu(x) — f(x) and f,(a) — f(a). About (f,) we also may notice that, from (%),

also (f;) € €([a, b]) is a Cauchy sequence in uniform norm: therefore f, w; g, for some

g € 6(la,b]). Then

X X
J f,idy—j g dy
(0]

S

[0 a

X
< j =gl dy < =)l fi=glloo < (b= fi=gllo

X X
f f,idy—>J ¢ dy, Vx € [a,b].

So we can say that

X

f(x)=f(a)+J ¢(y) dy, Vx € [a.b], = 3F(x) = g().

a

This shows that f € €!([a, b]), so f € V. To finish, we prove that f,, M) f. Letting m — +o0
into (x) we get
1fo = fll = 11fa = fllo + 1 fy = f'llo < & ¥n >N,

which is the conclusion. ]
12.4.6. We have only to prove the =. Let (f,,) C V be a generic Cauchy sequence,
Ve >0, 3N, : ||fu— full <& Vo,m > N. (%)

We first show that (|| f,]|) is a Cauchy sequence in R: this follows by the triangular inequality
because

and switching f,, with f,, we also have

[ fnll = L full < N fw = finll

from which

=l = fnll < Wfall = M fmll < M1 for = Sfull, = M fall = Wfnlll < WSw = finll-
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Therefore,
[ fall = I fmlll < &, ¥n,m > N.

Since (R, | - |) is a complete space, 3lim, || f;|| = € > 0. If £ = 0 we have f, M) 0, so (fy)
converges. Otherwise £ > 0. By the permanence of sign, 2¢ > || f,,|| = g > 0 forn > M, so,
without any restriction, we may assume 2¢ > || f,,|| > g for every n. Define now

n
U, = es.
[1fll
We claim that u, is a Cauchy sequence. We have
Jo  Jm 1 ( 1 1 )
Up —Upm = - = (fo = Jm) + |55 — Jm
Wl A fmll (1Al Al L fonl
[ fnll = 1l full
(fo = fn) + ==
IIntI SR VA T VA e
SO
1S | = 11 £l 4 6
lun — umll < | fu mll + —— | m”g_ +—&2t=—-g, Vn,m > N.
il 1 2T

By the hypothesis, u, M) u e S. Let f :=fu. We claim that f, ﬂ) f. Indeed,

Ifo = FI = flleen = €ael| = 1l foull (i = 1) + (Ul foll = €|
< W falllln = ull +[Ifull = €llull — £-0+0-1=0. @
12.4.7. Let s, := 2.} _; fx. We check that (s,) is a Cauchy sequence: for n > m we have

Zn:fk

k=m+1

n
o= Il
k=0

By hypothesis, (05;) C R is convergent, so it is a Cauchy sequence. This means that

Ve >0, AN, : |0, —owm| <&, VYn,m > N.

ISn = Smll =

n
il = o = o,

k=m+1

where

So,if n > m > N, noticed that o, > 0;, we have
Isp = smll S o — O =|on—om| < &

that is (s,) is a Cauchy sequence. Since (V, || - ||) is a Banach space, 3lim, s, € V. O
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13.3.2. i) If p, g are polynomials, p - g is a polynomials so |p(x)g(x)| < alx|" + b, from which

J |p(x)q(x)e‘x2| dx < J (alx|" + b)e_’€2 dx < 400,
R R

and the scalar product is well defined. The characteristic properties of the scalar product are
straightforward (vanishing in strong form since functions are continuous).
1) We have
2
X" XMy = J x"Me ™ dx.
R

If n + m is odd, x™ is odd, thus the integral vanishes and (x", x")y = 0. Now, n + m is odd iff
n is odd (even) and m is even (odd). In all other cases, setting k = n + m,

1
Iy = J xke™ dx = ——J xk=1 (—er'xz) dx
R 2 Jr
S —

2

=0xe >
VAT ke1 2] k=2 ,—x
=—= [x ex] —(k=1)| x"%e™ dx
2 xX=—00 R
k-1
= I .
7 k2
Therefore, if k = 2h,
_(2h-1) _ (2h-1)(2h-3) _ _@h-D@h-3)--3-1,
Ly = > Lp-1) = » hLp2y=...= o 0
Since Iy = IR e dx = v/, we have
_ 72 (2h)!
2Ty
Therefore, if n + m is even,
72 (n+m)!

(" xMy = prevse

iii) We have

Ix% - (ax + b)||‘2, = (x* - (ax+b),x* — (ax+ b))y

= (x%,x%)y = 2b(x%, Dy + a*(x,x)y ++b*(1, L)y

_ g2 (%—b+%a2+b2) =: f(a,b).
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We have lim, 3) -0, f(a,b) = +00, and being also f € C(R?) we conclude that a min point
exists and must fulfill V f (a, b) = 0, thatis (a,2b-1) = (0,0) fromwhicha =0andb =1/2. O

13.3.3. We have

(fus f) = -[[O,I]d ol 2mNX p=i2nmx . — I[O,l]d ei2m(n—m)x .
= f[o 1] [192, emt=mihs dx, - dxg

— H?’:l f()l €i27r(nj—mj)xj de
Now, being

(njimj), =0,

_ ei27r(nj7mj)x szl
T | 2n(nj-mj)

! )
J ei27r(nj—mj)xj dx] — Xj=
0 1
(nj =m;j), :fo ldx; =1,
we have that (f;, f,) = 0 whenn # m and (f,, f,,) = 1 iff n = m. O
13.3.4. From the Cauchy-Schwarz inequality,

(ol < NI = 111 it flgll = 1.

Therefore
sup  [(f @ < IIfII-
eV« llgli=1
If f = O clearly equality holds. So assume f # 0. Taking g = ﬁ we have ||g|]| = 1 and
(f.8) = /s f) = ””J}—””z = [l£1l- So, [lfII < sup[(f, g)] (where ||g]| = 1). O
13.3.5. There is no issue with the definition. Let’s prove the characteristic properties.
e positivity: (A, A) = Tr(A*A). Let A*A = [m;;]. Then, if ¢; = (6;1,...,0;4) are the

vectors of the canonical basis,
mii = (A*A)e; - e; = (Ae;) - (Ae;) = || Aeil|* > 0,
where || - || is the euclidean norm of R¢. So m;; > 0O for every i, therefore (A, A) =
Zi m;; = 0.
e vanishing: suppose (A, A) = 0, that is Tr(A*A) = 0. Using notations of previous point,
0=23,my=Y,l|lAei||>, so Ae; = 0 for every i. But then, for every vector v € R,
writing v = »; v,e; we have

Av = Z V,'Ael' = O,
i

that is A = 0 (matrix with all entries = 0).
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e linearity: we have
(1A +uB,C) =Tr[(A1A+ uB)*C] = Tr[(1A* + uB*)C]
=ATr[A*C] + uTr[B*C] = A{A,C) + u(B, C).
e symmetry: since Tr M = Tr M* we have

(A,B) =Tr[A*B] = Tr [(B*A)"| = Tr [B*A] = (B,A). O

13.3.7. We prove that (f,) is a Cauchy sequence, the convergence will follow from the com-
pleteness of V (Hilbert space). To this aim we recall that, by the parallelogram identity,

Lot Sl + 11 = full® =2 (Il + 1 fonl) = 2
being || .|| = 1 for every n. So
Il fn — fm”2 =2-|fut fm”2

If limy, jy— o0 || fr + full? =2 (there is a typo in the text), for £ > 0 fixed there exists N such that
”fn - fm”2 =2- ”fn +fm||2 <ég Vn,m >N,

so (f) is a Cauchy sequence. ]
13.3.9. i) & ii) Let s, := X}_, fx and o, := 21, || f2]|>. We notice that if n > m,
- S
2 yin. 2
sa sl = > Al "= D Ml? = 0w = 0w = low = ol.
k=m+1 k=m+1

So, (s) is a Cauchy sequence in (V, (-, -)) iff (o;,) is a Cauchy sequence in (R, | - |). Since
both spaces are complete (V by Hypothesis), Cauchy sequence means convergent so we have the
conclusion.

i) & iii). If ), f, converges to s € V, then

(s,8) = <ngrym Sns g> = hlgn<sn, g) = lim <kZ_;) T g> = lim kZ_;)(fk’ g)-

This means that };,( f,, g) is convergent for every g € V.

Vice versa, assume ., { f,, g) is convergent for every g € V. Let’s prove that )., || f||* < +co.
Assume, by contradiction, that 3, || f,||> = +c0. We can assume f, # O for every n (otherwise
we eliminate the vector). Let g = Y, ¢, fy. By i), g € Viff Y, lleafull*> = 2, 2l full < +00. On

the other hand
D ()= callfull.

12
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So, the goal is to build (c,) in such a way that

2 2 2
DTENflP < H00. D enllfull® =
n

n
Leta, := ||fn|| SO ., a, = +o0o. We define Ny as the first integer for which Zr[:/:k() a, > 2* and
we set ¢, = for Ni € n < Nisi. Then

Ni+1 Ni+1

1
2, = 2, _ k+1
St 3 S - ey ENE R
n k n=Ny k n=Ny k
~——
<2k+1
while
Ni+1 Nit1
1 1,
PILEEDIDICTEDICDICEDIZED LA
n k n=Ny k n=Ny k k
——
>0k
(rmk: ZN“' a, > 2* because, if < 2¥ we would have ZN"*‘ a, = ZnN:kO Ya, + ZNk*‘ a,; since,
by definition of Ny, ZNk Va, < 2%, if ZN"“ a, < 2k then 22’561 a, <2k +2k = 2k+1)_ 0

14.3.1. We have to solve for

min_ || cosx — (ax* + bx +¢)||2. (%)
a,b,ceR

Let H = L?([0,2x]) be the Hilbert space equipped with standard svalar product (f,g), =

foz i f(x)g(x) dx, and U := Span(1, x,x?). Since U is finite dimensional it is closed. According
to the orthogonal projection thm, the solution of problem (%) is 1y cos verifying
(cos —=IIy cos,u); =0, Yu € U.
Equivalently, since ITy cos = ax? + bx + ¢, we must verify
(cos—(ax® +bx +¢),x*) =0, k =0,1,2. (%%)
‘We notice that,
2n
(cos, 1), = J Cosx dx = [sinx];‘zg” =0,

0
while, for k > 1,

2r 2r 2r
(cos, x¥), = J xF cosx dx = [x* sinx]'Z 3” - J kx*'sinx dx = —kj x*=sinx d.
0 0 0

Therefore
2r

— ; _ x=21 _
(cos,x), = — L sinx dx = [cosx]—5" =0,
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and

2 2r

(cos, x*)y = —2J xsinx dx =2 [[x cos x]ijg” - J COS X dx] =4r.

0 0

Moreover,
. =2 .
<xj xk>2 _ J‘Zﬂ' xj+x g = x]+k+1 x=2n _ (27_[)]+k+1
’ 0 J+k+1] j+k+1"

From this, the orthogonality condition (x%) yields the system

—a—(zg)S - b—(zg)2 —c2n =0,

_a(ZX)4 _ ]9(27;)3 _ C(Zfzr)z -0

b

(2m)° (2m)* (2n)® _
dr —a z -b T —C 3 =0.

STraightforward calculations lead to a = 4—5, b=-Yandc=1, O
271 3 w2

14.3.2. We can recast the problem as follows: let H = L>([—1, 1]) equipped with usual product,

then
1

1
minJ IX? + ax? + bx + ¢|? dx = minJ
a,b,c

Ix* — (ax® + bx + ¢)|* dx = min ||’ - u||%
a,b,c J_1 -1 uelU

where U = Span(l,x,xz). Since U is finite dimensional, U is closed, and the solution to the
previous problem is ITy#>. This is characterized by solving

# — (af* + b+ ), B2 =0, k=0,1,2.
‘We notice that

' 1 . 1 . _xj+k+] x=1 0, lf] + k is Odd,
(ﬁf,ﬁk):J x/xk dx:‘[ xR dy = | ——— T =
-1 -1 JHrF = ﬂ%, if j + k is even.
Therefore, the orthogonality condition yields the system
—a% -2c¢ =0,
:-b3=0 —c=0,b=2
3 - 03=VY, — a=c=0, = g O
—Cl§ - Cg = 0,

14.3.3. Let H := L*([0, +o0[) equipped with standard scalar product (f, g) = J(; * fg dx. The
problem consists in folving for

min [le™* — ull2,

uel
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where U = Span(e™>*, e73*). Since H is a Hilbert space, U is finite dimensional hence closed,
the solution is ITye ¥ characterized by the orthogonality condition

(e_ﬁ - (ae—2jj + be_w), e‘kﬁ)z =0, k=2,3.
We notice that

X=+00

+00 —(j+k
(e7/, e7kty, =J e"UHRx gy = [—e o L
0 _(J + k) x=0 ] +k
Therefore, the orthogonslity condition yields the system
1 1 1 _
3743~ b5=0, 10 5
— a= ?, b= —E. O
1 1 1 _
i~ ag — bg =0.

14.3.4. We equip L?([0, 1]) with standard scalar product. We may recast the problem as

max  (f,e*),.
FeL, ifli=1

By CS inequality, |(f, e*)a| < I fll2lle*]l2 = [l*l2, where

1 1 2x 1x=1 2

e ec—1
le*]]3 = J (€)% dx = J e™ dx = [—] :
? 0 0 2 x=0 2

Therefore, (f,e*), < [(f,e*)] < \/822_1 for every f € L? such that || f||» = 1. Now, taking
f* = et we have £* € L2([0,1]), |If*[l2 = 1 and

2 e -1
N B2 —
(f,€>2—\/62_1||€||2—\/ >

From this,
21
max (f, eﬁ)z =4/S )
feL2, | fl=1 2
and optimal f is f~*. |
14.3.5. See slides. m]
14.3.6. See slides. O

17.2.1. #1. Clearly xrect,(x) € L' (R) and

_ ' a |
firect, (£) = J Xl _ga (x)e™ dx = J xe ¥ dx.
R

—a
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Here we may compute the integral by parts or, in an alternative way, noticed that xe ™~ =
_il.(')ge_’fx = i@ge_’fx, S0,

a

ﬂ?ec\ta(f) = J iﬁge_igx dx.

—a

Now, since differentiability under integral sign applies (we already check that 9 e ~¢¥ = —ixe %~

exists Vx € [—a, a], V¢ € R and |0ge ™| = | — ixe ™| = |x| € L!([~a, a])), we have
firect, (&) = 0 J e dx = idgrect, (€) = i0¢2a sm(;zf) = 2iaf cos(afézz— sm(af).
€] : p

This for & # 0. For ¢ = 0 we have directly,
a

ﬁ?ec\ta(O):J x dx = 0.

—a

#2. f(§) = 25
+e~ X

#3. Clearly f(x) = cos xrecty/>(x) € L'(R). By Euler’s formulas, cosx = £ so

—~ 1/ - -
F(&) = 3 (efFrectea(é) + e recty o (6))

Now, recalling that, for g € L', eimtg(&) = g(£& — m), we have

sin(3 (& - 1)) N sin(3 (£ + 1))
-1 E+1 '

NGE % (TCCtn/z(cf — 1) +1ect,p (€ + 1)) =

#4. Clearly, f(x) = e ¥ sgn(x) € L'(R). We have

0 +00
f(& = I e Wlsgn(x)e ™ dx = J —e" e dx + J e e " dx
R —00 0
o (1-i)x %70 o~ (14i€)x [¥=+e 1 1 2ig
= |— + | — = — + = — .
[ 1-ié Lz_m [—(1+i§) =0 1-ié 1+i€ 1+ &2
#5. Clearly f(x) = e 1g4o0[(x) € L'. Now,
+00 —(14i&)x 1¥=F® 1
y = —x _ifx d = —e = —
AL L ¢ ¢ * -(1+i¢) ], 1+i&
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17.2.4. If f is even and real valued, then

7o = [ reeea= [ Fwew ac= [ pwee ax

y::_xj F=y)e ™ dy =f FO)e dy = F(&).
R R

Therefore f () e R, V¢ eR. O

17.2.8. Warning! The exercise contains a typo: the correct statement is

1F(£)] < F(0), V& #0.

We start noticing that

ROE jR £ ()] dx ijoc) dx = J(0), V& € R.

The problem is showing that the inequality must be strict. We notice that

f(f) = J f(x) (cos(—&éx) +isin(—éx)) dx = J f(x)cos(éx) dx — i‘[ f(x) sin(éx) dx.
R R R
So,

>0

. 2 2
FOP = (fR £(x) cos(éx) dx) + (ijm sin(éx) dx) .

By CS inequality,
2 2
(J fcos) :(J fl/zfl/zcos) <J fdxj f cos?
R R R R

and = holds iff f'/2 = Af'/2cos a.e. for some A. Since f > 0 always, Acos(éx) = 1 ae. x
which is impossible. Thus, = never holds, and < holds. Similarly,

(JR fsin)2 < LR f dx fR f sin?.

2
"y 2 2 -2 _ Y 2
7@ <fRf(ij<cos +sin >)—(fRf) _ 702 o

17.2.9. Since f = 0 for |x| > R, we have

Therefore

Fo=] rwea
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Now, recall that

sl n
Z —' Vz € C.
n=0
Therefore
e ix — Z( l‘fx)n Z( l‘f)n ,
SO,

= . > (=), o (R (i),
f(f)zf_Rﬂx);Tx dx:;J_Rf(x) 0" g

To justify < we apply the dominated convergence for series. We remind that if (f,) € L'(E) are

such that
n d o, nd = nd .

Zn:LIfI p < +o0, = L;f u Z,,:Lf 1

In our case,
NG N (IR£D" (IRgD"

D] S a3 [ ot aes 3 = s < s
SO

SR dx )

f(§)=; Rn! £ E;cnf,vgeR,
that is f 1S a power series. O

18.5.1. We notice that 1[_j 7, x1{_117,x*1[_11] € L'(R). By the well known rule d;f =
—iff(£), we have

(i) 1111 (€) =0 lﬂl _1.11(8) _5&:1 @) —(9&:( 51;15)
Ecosé —siné _ 2_53 Sin€ — (£ cosé — sin £)2¢

= 285 62 54

O

18.5.3. Clearly, f, € L'(R) for every a > 0, so f, * f, is well defined and L' if ¢, b > 0. By
the rule of the FT of a convolution product, we have

Fa* (&) = fa(O) F5(£).
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Let’s compute ﬁ By the definition

fa(£) =J

0
Now, since for a > 0 we have

X=+00

+00 +00

e—axe—i.fx dx = J e—(a+i§)x dx =
0

e—(a+i§)x

—(a+i¢)

x=0

_ ; _ X—+00
|e (a+l.f)X| — o X 0,

we conclude that

-~ 1
fa(f) = a+i§'
Therefore, |
Jax fp(€) = (a+i§)(b+i§)'

18.5.5. Let f(x) = e*/2. Asnoticed, f'(x) = —x f(x), S0
P& =—4f (&), e i£f(&)=-idef(§), = 8[(&)=—EF(),

from which

Fie) = ke

To determine k we notice that

k:ﬂ@:kﬂ@ﬂ:kangﬁﬁ o

18.5.9. (Warning! this exercise contains a typo and it demands the une of the inversion
formula) i) We verify that

1 1 1,242 ~
fe(x) = ﬂga(_x)a g:(&) = ge_ig ¢ f(é€),

is well defined. Since f € L!, fis continuous and bounded, so if g, € €(R) c L(R) and,
because of the bound | f(&)| < || f]]1, we have

1 1.0
| et de < o [ s d <o,
so g. € L'. Therefore, f, = g, is well defined.

ii) Recall that

R

_ 8 1 2.0 124 1 8 ~
e 22 (&) = V2no2e 278 = 258 = e 252 (&) =: 6.(8),
V2re? °

from which

_ L e ra o L e = LiTT
0l6) = 3 ) = e OF0) = 55 T6).
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Therefore, by the inversion formula

fol®) = 500 % (=) = (0,5 ) ().

1
Now, let d.(x) is an approximate unit. It is a well known fact that f; = f = d, L, f when
£ — 0, from which the conclusion follows. m]



