
Analytical Methods for Engineering
Answers to LN Exercises

Ex. 1.4.1. i) Done in class.
ii) If 𝑋 is finite, ℱ = 𝒫(𝑋), so ℱ is a 𝜎−algebra. If 𝑋 is infinite, then ℱ is not a 𝜎−algebra.
Indeed, 𝑋 ∉ ℱ for example.
iii) If 𝑋 is uncountable, 𝑋 ∉ 𝐹, so ℱ cannot be a 𝜎−algebra. Let’s consider the case when 𝑋 is
countable. Then, every subset of 𝑋 is countable, thus ℱ = 𝒫(𝑋), so it is a 𝜎−algebra. □

Ex. 1.4.2. We start noticing that 𝒮 is not a 𝜎−algebra. Now, any 𝜎−algebra containing 𝒮

must also contain {𝑎}𝑐 = {𝑏, 𝑐, 𝑑} and {𝑎, 𝑐}𝑐 = {𝑏, 𝑑} as well as the (countable) unions of its
sets. So, also {𝑎, 𝑏, 𝑑} must be in the 𝜎−algebra, as well as its complementary {𝑎, 𝑏, 𝑑}𝑐 = {𝑐}.
Therefore, any 𝜎−algebra containing 𝒮 must contain

{∅, {𝑎}, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑑}} .
Since this is a 𝜎−algebra (easy check), we conclude that it is 𝜎(𝒮). □

Ex. 1.4.3. Let ℱ := 𝜎({𝐴, 𝐵}). We decompose the set 𝑋 in the following disjoint sets:
𝐴 ∩ 𝐵𝑐, 𝐴 ∩ 𝐵, 𝐵 ∩ 𝐴𝑐, 𝐴𝑐 ∩ 𝐵𝑐. All these sets must belong to 𝜎({𝐴, 𝐵}), so all possible finite
unions of these. Among them, notice that we have

𝐴 = (𝐴 ∩ 𝐵𝑐) ∪ (𝐴 ∩ 𝐵), 𝐵 = (𝐵 ∩ 𝐴𝑐) ∪ (𝐵 ∩ 𝐴).
Since these 4 sets are disjoint, it is easy to check that the family ℱ made of all possible finite
unions of them is a 𝜎−algebra that, by construction, must be contained in 𝜎(𝒮). On the other
hand, since {𝐴, 𝐵} ⊂ ℱ, and ℱ is a 𝜎−algebra, we have (by definition of 𝜎(𝒮)), 𝜎(𝒮) ⊂ ℱ.
So,

𝜎(𝒮) = ℱ = {∅, 𝐴 ∩ 𝐵𝑐, 𝐴 ∩ 𝐵, 𝐵 ∩ 𝐴𝑐, 𝐴𝑐 ∩ 𝐵𝑐, 𝐴, 𝐵, 𝐴𝑐, 𝐵𝑐,

𝐴 ∪ 𝐵, 𝐴 ∪ 𝐵𝑐, 𝐴𝑐 ∪ 𝐵, 𝐴𝑐 ∪ 𝐵𝑐, (𝐴△𝐵), (𝐴△𝐵)𝑐}. □

Ex. 1.4.4. We already proved in class that ℱ is a 𝜎−algebra. We may notice that, in this case,
for every 𝐴 ∈ ℱ only one of 𝐴 or 𝐴𝑐 can be countable. This because 𝑋 is uncountable, so if for
example 𝐴 is countable, then 𝐴𝑐 = 𝑋\𝐴 is uncountable and vice versa. This remark is important
because it says that the function 𝜇 is well defined for every 𝐴 ∈ ℱ. Indeed: since if 𝐴 ∈ ℱ only
one of 𝐴, 𝐴𝑐 can be countable, the value 𝜇(𝐴) is well defined.

Now, let’s check whether 𝜇 is a measure or not. According to the definition we have to check
that 𝜇(∅) = 0 and countable additivity. Now, since ∅ has 0 elements, it is countable, thus
𝜇(∅) = 0 by definition of 𝜇. Let not (𝐴𝑛) ⊂ ℱ be a disjoint family. We have to determine if

(★) 𝜇

(⊔
𝑛

𝐴𝑛

)
=

∑︁
𝑛

𝜇(𝐴𝑛).

Since 𝐴𝑛 ∈ ℱ for every 𝑛 ∈ N, either 𝐴𝑛 or 𝐴𝑐
𝑛 is countable. We have the following alternative:
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• either 𝐴𝑛 is countable for every 𝑛 ∈ N,
• or, at least one of 𝐴𝑐

𝑛 is countable, say ∃𝑁 ∈ N such that 𝐴𝑐
𝑁

is countable.
In the first case,

⊔
𝑛 𝐴𝑛 is countable (countable union of countable sets), so

𝜇

(⊔
𝑛

𝐴𝑛

)
= 0, and

∑︁
𝑛

𝜇(𝐴𝑛) =
∑︁
𝑛

0 = 0,

and (★) holds in this case. In the second case,
⊔

𝑛 𝐴𝑛 ⊃ 𝐴𝑁 , so (⊔𝑛 𝐴𝑛)𝑐 ⊂ 𝐴𝑐
𝑁

is countable, so

𝜇

(⊔
𝑛

𝐴𝑛

)
= 1.

In the sum
∑

𝑛 𝜇(𝐴𝑛) at least 𝜇(𝐴𝑁 ) = 1, so the sum is ⩾ 1. If 𝜇(𝐴𝑛) = 0 for 𝑛 ≠ 𝑁 we have
the conclusion. Assume for a moment that 𝜇(𝐴𝑀) = 1 for some 𝑀 ≠ 𝑁 . Then, 𝐴𝑐

𝑀
would be

countable and
𝐴𝑀 ∩ 𝐴𝑁 = ∅, =⇒ 𝑋 = 𝐴𝑐

𝑀 ∪ 𝐴𝑐
𝑁 ,

so 𝑋 would be the union of countable sets, and therefore 𝑋 itself would be countable, contra-
dicting the assumption. We conclude that 𝜇(𝐴𝑛) = 0 for all 𝑛 ≠ 𝑁 and countable additivity
follows. □

Ex. 1.4.7. Let 𝐸, 𝐹, 𝐺 ∈ ℱ. We have

𝜇(𝐸 ∪ 𝐹 ∪ 𝐺) = 𝜇(𝐸) + 𝜇((𝐹 ∪ 𝐺)\𝐸) = 𝜇(𝐸) + 𝜇((𝐹\𝐸) ∪ (𝐺\𝐸)).

We recall that, if 𝐴, 𝐵 ∈ ℱ and 𝜇(𝐴 ∩ 𝐵) < +∞ we have

𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) − 𝜇(𝐴 ∩ 𝐵),

so
𝜇((𝐹\𝐸) ∪ (𝐺\𝐸)) = 𝜇(𝐹\𝐸) + 𝜇(𝐺\𝐸) − 𝜇((𝐹 ∩ 𝐺)\𝐸)

= (𝜇(𝐹) − 𝜇(𝐸 ∩ 𝐹)) + (𝜇(𝐺) − 𝜇(𝐸 ∩ 𝐺)) − 𝜇((𝐹 ∩ 𝐺)\𝐸)

= 𝜇(𝐹) + 𝜇(𝐺) − (𝜇(𝐸 ∩ 𝐹) + 𝜇(𝐸 ∩ 𝐺)) − 𝜇((𝐹 ∩ 𝐺)\𝐸).

provided 𝜇(𝐸 ∩ 𝐹), 𝜇(𝐸 ∩ 𝐺), 𝜇(𝐹 ∩ 𝐺) < +∞. Now,

𝜇((𝐹 ∩ 𝐺)\𝐸) = 𝜇(𝐹 ∩ 𝐺) − 𝜇(𝐸 ∩ 𝐹 ∩ 𝐺),

because 𝜇(𝐸 ∩ 𝐹 ∩ 𝐺) ⩽ 𝜇(𝐸 ∩ 𝐹) < +∞, so

𝜇(𝐸∪𝐹∪𝐺) = 𝜇(𝐸)+𝜇(𝐹)+𝜇(𝐺)− (𝜇(𝐸 ∩ 𝐹) + 𝜇(𝐸 ∩ 𝐺) + 𝜇(𝐹 ∩ 𝐺))+𝜇(𝐸∩𝐹∩𝐺). □
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Ex. 1.4.9. i) Let’s start from the set 𝑆. An element 𝑥 ∈ 𝑆 iff 𝑥 ∈ 𝐸 𝑗 for infinitely many 𝑗 , that is

∃ 𝑗1 < 𝑗2 < . . . : 𝑥 ∈
∞⋂
𝑘=1

𝐸 𝑗𝑘 .

Of course, indexes 𝑗𝑘 depends on the specific point 𝑥. So we need to determine a better way to
characterize points of 𝑆. We may notice that the previous property is equivalent to

∀𝑛, ∃ 𝑗 ⩾ 𝑛, : 𝑥 ∈ 𝐸 𝑗 .

In this way
𝑥 ∈ 𝑆, ⇐⇒ ∀𝑛 ∈ N, 𝑥 ∈

⋃
𝑗⩾𝑛

𝐸 𝑗 , ⇐⇒ 𝑥 ∈
⋂
𝑛

⋃
𝑗⩾𝑛

𝐸 𝑗 .

So,
𝑆 =

⋂
𝑛

⋃
𝑗⩾𝑛

𝐸 𝑗 ,

and since this is a set operation on the (𝐸 𝑗 ) ⊂ ℱ we get 𝑆 ∈ ℱ.
ii) To determine the measure of 𝑆 we have to compute

𝜇(𝑆) = 𝜇

(⋂
𝑛

⋃
𝑗⩾𝑛

𝐸 𝑗

)
.

Call 𝐹𝑛 :=
⋃

𝑗⩾𝑛 𝐸 𝑗 . It is clear that 𝐹𝑛 ⊃ 𝐹𝑛+1, so 𝐹𝑛 ↘. So, 𝑆 is a decreasing limit of (𝐹𝑛)
and the idea could be to apply continuity from above to compute 𝜇(𝑆). This is feasible if
𝜇(𝐹0) < +∞. But,

𝜇(𝐹0) = 𝜇
©­«
⋃
𝑗⩾0

𝐸 𝑗
ª®¬ ⩽

∑︁
𝑗

𝜇(𝐸 𝑗 ) < +∞,

because of the assumption. Therefore, continuity from above applies and
𝜇(𝑆) = lim

𝑛
𝜇(𝐹𝑛).

Finally,

𝜇(𝐹𝑛) = 𝜇

(⋃
𝑗⩾𝑛

𝐸 𝑗

)
⩽

∑︁
𝑗⩾𝑛

𝜇(𝐸 𝑗 ) −→ 0,

being this the tail of a convergent series. □

2.3.1. Suppone, by contradiction, that 𝑁𝑐 is not dense in R, that is
∃]𝑎, 𝑏[⊂ R, 𝑁𝑐∩]𝑎, 𝑏[= ∅.

Then ]𝑎, 𝑏[⊂ 𝑁 , so 0 = 𝜆(𝑁) ⩾ 𝜆(]𝑎, 𝑏[) = 𝑏 − 𝑎 > 0, which is impossible. □

2.3.2 We first notice that each 𝐶𝑛 is made of a finite union of closed intervals, thus it is a closed
set. Therefore, 𝐶𝑛 ∈ ℳ1 for every 𝑛, hence 𝐶 :=

⋂
𝑛 𝐶𝑛 ∈ ℳ1. In alternative, we may also
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notice that in general, an infinite intersection of closed sets is closed, so 𝐶 is closed. Since the
Lebesgue class ℳ1 contains both open and closed sets, we deduce 𝐶 ∈ ℳ1.

About 𝜆(𝐶) we may notice that 0 ⩽ 𝜆(𝐶) ⩽ 𝜆(𝐶𝑛) for every 𝑛. Now, each 𝐶𝑛 is the union of
2𝑛 disjoint intervals each of length 1

3𝑛 , so 𝜆(𝐶𝑛) = 2𝑛 1
3𝑛 , from which 𝜆(𝐶) ⩽ 2𝑛

3𝑛 =

(
2
3

)𝑛
−→ 0

when 𝑛 → +∞. Thus, necessarily, 𝜆(𝐶) ⩽ 0, from which 𝜆(𝐶) = 0. □

2.3.5. Let
𝐸𝑚,𝑛 := {(𝑥, 𝑦) : 𝑚𝑥 + 𝑛𝑦 = 0},

with (𝑚, 𝑛) ∈ N×N\{(0, 0)}. Since (𝑚, 𝑛) ≠ (0, 0), 𝐸𝑚,𝑛 is a plane straight line, so𝜆2(𝐸𝑚,𝑛) = 0,
and

𝐸 =
⋃

(𝑚,𝑛)∈N2\{(0,0)}
𝐸𝑚,𝑛,

is a countable union. Therefore, by sub-additivity, 𝜆2(𝐸) ⩽
∑

𝑚,𝑛 𝜆2(𝐸𝑚,𝑛) = 0. □

2.3.6. By definition,

∀𝜀 > 0, ∃𝑂𝜀, 𝑂𝜀 open : 𝜆∗(𝑂𝜀\𝐵) ⩽ 𝜀, 𝜆∗(𝑂𝜀\𝐴) ⩽ 𝜀,

2.3.7. The assumption says that 𝜆((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = 1. The thesis is to
prove that at least one of 𝜆(𝐴), 𝜆(𝐵)𝜆(𝐶) must be ⩾ 2

3 . If the conclusion were false, then
𝜆(𝐴), 𝜆(𝐵), 𝜆(𝐶) < 2

3 . Now, we notice that

𝜆(𝐸 ∪ 𝐹 ∪ 𝐺) = 𝜆(𝐸 ∪ 𝐹) + 𝜆(𝐺) − 𝜆((𝐸 ∪ 𝐹) ∩ 𝐺)

= 𝜆(𝐸) + 𝜆(𝐹) + 𝜆(𝐺) − 𝜆(𝐸 ∩ 𝐹) − (𝜆(𝐸 ∩ 𝐺) + 𝜆(𝐹 ∩ 𝐺) − 𝜆(𝐸 ∩ 𝐹 ∩ 𝐺))

= 𝜆(𝐸) + 𝜆(𝐹) + 𝜆(𝐺) − (𝜆(𝐸 ∩ 𝐹) + 𝜆(𝐸 ∩ 𝐺) + 𝜆(𝐹 ∩ 𝐺)) + 𝜆(𝐸 ∩ 𝐹 ∩ 𝐺).
We apply this a first time to 𝐸 = 𝐴, 𝐹 = 𝐵 and 𝐺 = 𝐶 and a second time to 𝐸 = 𝐴∩𝐵, 𝐹 = 𝐴∩𝐶
and 𝐺 = 𝐵 ∩ 𝐶. In this last case, by the assumption, we get

1 = 𝜆(𝐴 ∩ 𝐵) + 𝜆(𝐴 ∩ 𝐶) + 𝜆(𝐵 ∩ 𝐶) − 3𝜆(𝐴 ∩ 𝐵 ∩ 𝐶) + 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶)
that is

𝜆(𝐴 ∩ 𝐵) + 𝜆(𝐴 ∩ 𝐶) + 𝜆(𝐵 ∩ 𝐶) = 1 + 2𝜆(𝐴 ∩ 𝐵 ∩ 𝐶),
and since, of course, 𝜆(𝐴 ∪ 𝐵 ∪ 𝐶) = 1, we have

1 = 𝜆(𝐴) + 𝜆(𝐵) + 𝜆(𝐶) − (1 + 2𝜆(𝐴 ∩ 𝐵 ∩ 𝐶)) + 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶),
from which

𝜆(𝐴) + 𝜆(𝐵) + 𝜆(𝐶) = 2 + 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶).
Now, if 𝜆(𝐴), 𝜆(𝐵), 𝜆(𝐶) < 2

3 then we would have

2 ⩽ 2 + 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶) = 𝜆(𝐴) + 𝜆(𝐵) + 𝜆(𝐶) < 3
2
3
= 2,
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which is impossible! □

2.3.8. Let 𝑁 ⊂ [0, 1] with 𝜆(𝑁) = 0. The goal is to prove that 𝜆(𝑁2) = 0 where 𝑁2 = {𝑥2 :
𝑥 ∈ 𝑁}. Since

0 = 𝜆(𝑁) = inf

{∑︁
𝑛

|𝐼𝑛 | : 𝑁 ⊂
⋃
𝑛

𝐼𝑛

}
by the characteristics of inf we have that

∀𝜀 > 0, ∃(𝐼𝜀𝑛 )𝑛 : 𝑁 ⊂
⋃
𝑛

𝐼𝜀𝑛 ,
∑︁
𝑛

|𝐼𝜀𝑛 | ⩽ 𝜀.

Since 𝑁 ⊂ [0, 1], we may assume that 𝐼𝜀𝑛 ⊂ [0, 1]. Otherwise, we replace 𝐼𝜀𝑛 with 𝐽𝜀𝑛 = 𝐼𝜀𝑛∩[0, 1]:
𝐽𝜀𝑛 is still an interval, being intersection of intervals,

𝑁 ⊂
⋃
𝑛

𝐼𝜀𝑛 , =⇒ 𝑁 = 𝑁 ∩ [0, 1] ⊂
⋃
𝑛

𝐼𝜀𝑛 ∩ [0, 1] =
⋃
𝑛

𝐽𝜀𝑛

and moreover ∑︁
𝑛

|𝐽𝜀𝑛 | ⩽
∑︁
𝑛

|𝐼𝜀𝑛 | ⩽ 𝜀.

Now, writing 𝐽𝜀𝑛 = [𝑎𝜀𝑛, 𝑏𝜀𝑛] ⊂ [0, 1], we would have

𝑁2 ⊂
⋃
𝑛

(𝐽𝜀𝑛 )2 =
⋃
𝑛

[(𝑎𝜀𝑛)2, (𝑏𝜀𝑛)2]

and∑︁
𝑛

| (𝐽𝜀𝑛 )2 | =
∑︁
𝑛

(
(𝑏𝜀𝑛)2 − (𝑎𝜀𝑛)2

)
=

∑︁
𝑛

(
𝑏𝜀𝑛 − 𝑎𝜀𝑛

) (
𝑏𝜀𝑛 + 𝑎𝜀𝑛

)︸     ︷︷     ︸
0⩽...⩽2

⩽ 2
∑︁
𝑛

(
𝑏𝜀𝑛 − 𝑎𝜀𝑛

)
= 2

∑︁
𝑛

|𝐽𝜀𝑛 | ⩽ 2𝜀.

From this and by the definition of 𝜆, we get
𝜆(𝑁2) ⩽ 2𝜀,

and since 𝜀 can be made arbitrarily small, this shows that 𝜆(𝑁2) = 0.
In 𝑁 is bounded, 𝑁 ⊂ [−𝑅, 𝑅], the previous argument leads to a similar bound 𝜆(𝑁2) ⩽ 2𝑅𝜀,

so we conclude similarly.
Finally, if 𝑁 is generic, define 𝑁𝑅 := 𝑁 ∩ [−𝑅, 𝑅]. It is clear that 𝑁2

𝑅
= 𝑁2 ∩ [0, 𝑅2] ↑ 𝑁2

(when 𝑅 → +∞) and since 𝜆(𝑁2
𝑅
) = 0 for every 𝑅, by the continuity from below of 𝜆 we obtain

also 𝜆(𝑁2) = 0. □

3.4.1. Let 𝑓 : R −→ R be, for example, increasing, so 𝑓 (𝑥) ⩽ 𝑓 (𝑦) when 𝑥 ⩽ 𝑦. We prove that
{ 𝑓 ⩽ 𝑎} is measurable. Intuitively, { 𝑓 ⩽ 𝑎} should be an interval of type ]∞, 𝛼[ or ] − ∞, 𝛼]
where 𝛼 := sup{𝑥 : 𝑓 (𝑥) ⩽ 𝑎}. Indeed: let 𝛼 be defined as above. Either 𝛼 = +∞ or 𝛼 < +∞.
In the first case, 𝑓 (𝑥) ⩽ 𝑎 for all 𝑥 ∈ R, so { 𝑓 ⩽ 𝑎} = R. In the second case, we claim that

] − ∞, 𝛼[⊂ { 𝑓 ⩽ 𝑎} ⊂] − ∞, 𝛼] .
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Indeed: if 𝑥 < 𝛼 then, by definition of sup, there exists 𝛽 > 𝑥 such that 𝑓 (𝛽) ⩽ 𝑎. But then,
being 𝑓 increasing, 𝑓 (𝑥) ⩽ 𝑓 (𝛽) ⩽ 𝑎, so 𝑥 ∈ { 𝑓 ⩽ 𝑎}. This proves that ] − ∞, 𝛼[⊂ { 𝑓 ⩽ 𝑎}.
To prove the second inclusion we prove that, if 𝑥 > 𝛼 it cannot be 𝑥 ∈ { 𝑓 ⩽ 𝑎}. Otherwise,
𝑓 (𝑥) ⩽ 𝑎, so

𝛼 = sup{𝑥 : 𝑓 (𝑥) ⩽ 𝑎} ⩾ 𝑥 > 𝛼,

obtaining a contradiction. Conclusion: { 𝑓 ⩽ 𝑎} can be only ] − ∞, 𝛼[ or ] − ∞, 𝛼], in both
cases it is an interval, so it is a measurable set. □

3.4.2. We have to prove that i) is equivalent to ii) where
i) 𝑓 is measurable

ii) { 𝑓 > 𝑎} ∈ ℱ for every 𝑎 ∈ Q.
Since i) is equivalent to { 𝑓 > 𝑎} ∈ ℱ for every 𝑎 ∈ R, i) =⇒ ii).

Let’s prove that ii) =⇒ i), that is, let’s prove that { 𝑓 > 𝑎} ∈ ℱ for every 𝑎 ∈ R. By ii), this is
true if 𝑎 ∈ Q. So let 𝑎 ∈ Q𝑐 (irrational). We notice that, if 𝑞 ∈ Q is such that 𝑞 > 𝑎, then

{ 𝑓 > 𝑞} ⊂ { 𝑓 > 𝑎}.

Since this happens for every 𝑞 ∈ Q, 𝑞 > 𝑎, we can say that⋃
𝑞∈Q, 𝑞>𝑎

{ 𝑓 > 𝑞} ⊂ { 𝑓 > 𝑎}.

At left, we have a countable union of measurable sets, so the union is a measurable set. So, if
we prove that = holds, we are done! That is, the goal is reduced to prove that

{ 𝑓 > 𝑎} ⊂
⋃

𝑞∈Q, 𝑞>𝑎
{ 𝑓 > 𝑞}.

Pick 𝑥 ∈ { 𝑓 > 𝑎}. So, 𝑓 (𝑥) > 𝑎. Because of the density of rationals in reals, there exists
𝑟 ∈ Q such that 𝑓 (𝑥) > 𝑟 > 𝑎, so 𝑥 ∈ { 𝑓 > 𝑟} ⊂ ⋃

𝑞∈Q, 𝑞>𝑎{ 𝑓 > 𝑞}. This means that
{ 𝑓 > 𝑎} ⊂ ⋃

𝑞∈Q, 𝑞>𝑎{ 𝑓 > 𝑞} as claimed. □

3.4.4. Notice that

{ 𝑓 𝑔 > 𝑎} = { 𝑓 𝑔 > 𝑎, 𝑔 > 0} ∩ { 𝑓 𝑔 > 𝑎, 𝑔 = 0} ∩ { 𝑓 𝑔 > 𝑎, 𝑔 < 0}.

Let’s analyze the three sets, starting by the second one (easier), and the first and the third ones
being similar. We have

{ 𝑓 𝑔 > 𝑎, 𝑔 = 0} = {0 > 𝑎, 𝑔 = 0} =


∅ ∈ ℱ, 𝑎 ⩾ 0,

{𝑔 = 0} ∈ ℱ, 𝑎 < 0



7

For the first set we have

{ 𝑓 𝑔 > 𝑎, 𝑔 > 0} = { 𝑓 >
𝑎

𝑔
, 𝑔 > 0} =

⋃
𝑞∈Q

{
𝑓 > 𝑞 >

𝑎

𝑔
, 𝑔 > 0

}
=

⋃
𝑞∈Q

{ 𝑓 > 𝑞}︸   ︷︷   ︸
∈ℱ

∩
{
𝑔 > 0, 𝑔 >

𝑎

𝑞

}
︸             ︷︷             ︸

∈ℱ

from which we see that { 𝑓 𝑔 > 𝑎, 𝑔 > 0} ∈ ℱ. Similar argument for the third set. From this
the conclusion follows. □

3.4.6. i) Claim: 𝑓𝑛 (𝑥) −→ 0 for every 𝑥 ∈ R. Take 𝑛 ⩾ [𝑥] + 1. Then 𝑥 < [𝑥] + 1 ⩽ 𝑛, from
which 𝑓𝑛 (𝑥) = 0. This means that ( 𝑓𝑛 (𝑥)) is constantly = 0 for 𝑛 large, thus 𝑓𝑛 (𝑥) −→ 0.

ii) Claim: 𝑓𝑛 (𝑥) −→ 1]0,+∞[ (𝑥) for every 𝑥. Indeed: if 𝑥 ⩽ 0, 𝑓𝑛 (𝑥) ≡ 0 −→ 0. If 𝑥 > 0,
since 1

𝑛
→ 0 and 𝑛 → +∞, for 𝑛 large enough 1

𝑛
< 𝑥 < 𝑛, so 𝑓𝑛 (𝑥) ≡ 1 −→ 1.

iii) We notice that
𝑓2𝑘 (𝑥) = 1[0,1/2] (𝑥), 𝑓2𝑘+1(𝑥) = 1[1/2,1] (𝑥).

For 𝑥 < 0 and 𝑥 > 1 we have 𝑓𝑛 (𝑥) ≡ 0 −→ 0. For 𝑥 = 1/2 we have also 𝑓𝑛 (𝑥) ≡ 1 −→ 1. If
however 0 ⩽ 𝑥 < 1/2 we have that ( 𝑓𝑛 (𝑥)) = (1, 0, 1, 0, . . .) so there is no limit. Similarly, for
1/2 < 𝑥 ⩽ 1, ( 𝑓𝑛 (𝑥)) has no limit. Since the limit of ( 𝑓𝑛) does not exist for 𝑥 ∈ [0, 1/2[∪]1/2, 1],
which is a positive measure set, we cannot conclude that ( 𝑓𝑛) converges pointwise a.e..
3.4.7. We do the proof in dimension 𝑑 = 1 for simplicity, the argument is the same for the
general case. Suppose that 𝑔(𝑥) > 0 for some 𝑥 ∈ R. By continuity, there exists a neighborhood
𝑈𝑥 of 𝑥 for which 𝑔(𝑦) > 0, ∀𝑦 ∈ 𝑈𝑥 . We can always assume that 𝑈𝑥 = [𝑥 − 𝜀, 𝑥 + 𝜀]. Therefore

{𝑔 ≠ 0} ⊃ [𝑥 − 𝜀, 𝑥 + 𝜀], 0 = 𝜆({𝑔 ≠ 0}) ⩾ 𝜆( [𝑥 − 𝜀, 𝑥 + 𝜀]) = 2𝜀 > 0,
which is a contradiction. □


