
Analytical Methods for Engineering
Answers to LN Exercises

1.4.1. i) Done in class.
ii) If 𝑋 is finite, ℱ = 𝒫(𝑋), so ℱ is a 𝜎−algebra. If 𝑋 is infinite, then ℱ is not a 𝜎−algebra.
Indeed, 𝑋 ∉ ℱ for example.
iii) If 𝑋 is uncountable, 𝑋 ∉ 𝐹, so ℱ cannot be a 𝜎−algebra. Let’s consider the case when 𝑋 is
countable. Then, every subset of 𝑋 is countable, thus ℱ = 𝒫(𝑋), so it is a 𝜎−algebra. □

1.4.2. We start noticing that 𝒮 is not a 𝜎−algebra. Now, any 𝜎−algebra containing 𝒮 must
also contain {𝑎}𝑐 = {𝑏, 𝑐, 𝑑} and {𝑎, 𝑐}𝑐 = {𝑏, 𝑑} as well as the (countable) unions of its sets.
So, also {𝑎, 𝑏, 𝑑} must be in the 𝜎−algebra, as well as its complementary {𝑎, 𝑏, 𝑑}𝑐 = {𝑐}.
Therefore, any 𝜎−algebra containing 𝒮 must contain

{∅, {𝑎}, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑑}} .
Since this is a 𝜎−algebra (easy check), we conclude that it is 𝜎(𝒮). □

1.4.3. Let ℱ := 𝜎({𝐴, 𝐵}). We decompose the set 𝑋 in the following disjoint sets: 𝐴∩ 𝐵𝑐, 𝐴∩
𝐵, 𝐵 ∩ 𝐴𝑐, 𝐴𝑐 ∩ 𝐵𝑐. All these sets must belong to 𝜎({𝐴, 𝐵}), so all possible finite unions of
these. Among them, notice that we have

𝐴 = (𝐴 ∩ 𝐵𝑐) ∪ (𝐴 ∩ 𝐵), 𝐵 = (𝐵 ∩ 𝐴𝑐) ∪ (𝐵 ∩ 𝐴).
Since these 4 sets are disjoint, it is easy to check that the family ℱ made of all possible finite
unions of them is a 𝜎−algebra that, by construction, must be contained in 𝜎(𝒮). On the other
hand, since {𝐴, 𝐵} ⊂ ℱ, and ℱ is a 𝜎−algebra, we have (by definition of 𝜎(𝒮)), 𝜎(𝒮) ⊂ ℱ.
So,

𝜎(𝒮) = ℱ = {∅, 𝐴 ∩ 𝐵𝑐, 𝐴 ∩ 𝐵, 𝐵 ∩ 𝐴𝑐, 𝐴𝑐 ∩ 𝐵𝑐, 𝐴, 𝐵, 𝐴𝑐, 𝐵𝑐,

𝐴 ∪ 𝐵, 𝐴 ∪ 𝐵𝑐, 𝐴𝑐 ∪ 𝐵, 𝐴𝑐 ∪ 𝐵𝑐, (𝐴△𝐵), (𝐴△𝐵)𝑐}. □

1.4.4. We already proved in class that ℱ is a 𝜎−algebra. We may notice that, in this case, for
every 𝐴 ∈ ℱ only one of 𝐴 or 𝐴𝑐 can be countable. This because 𝑋 is uncountable, so if for
example 𝐴 is countable, then 𝐴𝑐 = 𝑋\𝐴 is uncountable and vice versa. This remark is important
because it says that the function 𝜇 is well defined for every 𝐴 ∈ ℱ. Indeed: since if 𝐴 ∈ ℱ only
one of 𝐴, 𝐴𝑐 can be countable, the value 𝜇(𝐴) is well defined.

Now, let’s check whether 𝜇 is a measure or not. According to the definition we have to check
that 𝜇(∅) = 0 and countable additivity. Now, since ∅ has 0 elements, it is countable, thus
𝜇(∅) = 0 by definition of 𝜇. Let not (𝐴𝑛) ⊂ ℱ be a disjoint family. We have to determine if

(★) 𝜇
(⊔
𝑛

𝐴𝑛

)
=

∑︁
𝑛

𝜇(𝐴𝑛).

Since 𝐴𝑛 ∈ ℱ for every 𝑛 ∈ N, either 𝐴𝑛 or 𝐴𝑐𝑛 is countable. We have the following alternative:
1
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• either 𝐴𝑛 is countable for every 𝑛 ∈ N,
• or, at least one of 𝐴𝑐𝑛 is countable, say ∃𝑁 ∈ N such that 𝐴𝑐

𝑁
is countable.

In the first case,
⊔
𝑛 𝐴𝑛 is countable (countable union of countable sets), so

𝜇

(⊔
𝑛

𝐴𝑛

)
= 0, and

∑︁
𝑛

𝜇(𝐴𝑛) =
∑︁
𝑛

0 = 0,

and (★) holds in this case. In the second case,
⊔
𝑛 𝐴𝑛 ⊃ 𝐴𝑁 , so (⊔𝑛 𝐴𝑛)𝑐 ⊂ 𝐴𝑐

𝑁
is countable, so

𝜇

(⊔
𝑛

𝐴𝑛

)
= 1.

In the sum
∑
𝑛 𝜇(𝐴𝑛) at least 𝜇(𝐴𝑁 ) = 1, so the sum is ⩾ 1. If 𝜇(𝐴𝑛) = 0 for 𝑛 ≠ 𝑁 we have

the conclusion. Assume for a moment that 𝜇(𝐴𝑀) = 1 for some 𝑀 ≠ 𝑁 . Then, 𝐴𝑐
𝑀

would be
countable and

𝐴𝑀 ∩ 𝐴𝑁 = ∅, =⇒ 𝑋 = 𝐴𝑐𝑀 ∪ 𝐴𝑐𝑁 ,
so 𝑋 would be the union of countable sets, and therefore 𝑋 itself would be countable, contra-
dicting the assumption. We conclude that 𝜇(𝐴𝑛) = 0 for all 𝑛 ≠ 𝑁 and countable additivity
follows. □

1.4.7. Let 𝐸, 𝐹, 𝐺 ∈ ℱ. We have

𝜇(𝐸 ∪ 𝐹 ∪ 𝐺) = 𝜇(𝐸) + 𝜇((𝐹 ∪ 𝐺)\𝐸) = 𝜇(𝐸) + 𝜇((𝐹\𝐸) ∪ (𝐺\𝐸)).

We recall that, if 𝐴, 𝐵 ∈ ℱ and 𝜇(𝐴 ∩ 𝐵) < +∞ we have

𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) − 𝜇(𝐴 ∩ 𝐵),

so
𝜇((𝐹\𝐸) ∪ (𝐺\𝐸)) = 𝜇(𝐹\𝐸) + 𝜇(𝐺\𝐸) − 𝜇((𝐹 ∩ 𝐺)\𝐸)

= (𝜇(𝐹) − 𝜇(𝐸 ∩ 𝐹)) + (𝜇(𝐺) − 𝜇(𝐸 ∩ 𝐺)) − 𝜇((𝐹 ∩ 𝐺)\𝐸)

= 𝜇(𝐹) + 𝜇(𝐺) − (𝜇(𝐸 ∩ 𝐹) + 𝜇(𝐸 ∩ 𝐺)) − 𝜇((𝐹 ∩ 𝐺)\𝐸).

provided 𝜇(𝐸 ∩ 𝐹), 𝜇(𝐸 ∩ 𝐺), 𝜇(𝐹 ∩ 𝐺) < +∞. Now,

𝜇((𝐹 ∩ 𝐺)\𝐸) = 𝜇(𝐹 ∩ 𝐺) − 𝜇(𝐸 ∩ 𝐹 ∩ 𝐺),

because 𝜇(𝐸 ∩ 𝐹 ∩ 𝐺) ⩽ 𝜇(𝐸 ∩ 𝐹) < +∞, so

𝜇(𝐸∪𝐹∪𝐺) = 𝜇(𝐸)+𝜇(𝐹)+𝜇(𝐺)− (𝜇(𝐸 ∩ 𝐹) + 𝜇(𝐸 ∩ 𝐺) + 𝜇(𝐹 ∩ 𝐺))+𝜇(𝐸∩𝐹∩𝐺). □
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1.4.9. i) Let’s start from the set 𝑆. An element 𝑥 ∈ 𝑆 iff 𝑥 ∈ 𝐸 𝑗 for infinitely many 𝑗 , that is

∃ 𝑗1 < 𝑗2 < . . . : 𝑥 ∈
∞⋂
𝑘=1

𝐸 𝑗𝑘 .

Of course, indexes 𝑗𝑘 depends on the specific point 𝑥. So we need to determine a better way to
characterize points of 𝑆. We may notice that the previous property is equivalent to

∀𝑛, ∃ 𝑗 ⩾ 𝑛, : 𝑥 ∈ 𝐸 𝑗 .
In this way

𝑥 ∈ 𝑆, ⇐⇒ ∀𝑛 ∈ N, 𝑥 ∈
⋃
𝑗⩾𝑛

𝐸 𝑗 , ⇐⇒ 𝑥 ∈
⋂
𝑛

⋃
𝑗⩾𝑛

𝐸 𝑗 .

So,
𝑆 =

⋂
𝑛

⋃
𝑗⩾𝑛

𝐸 𝑗 ,

and since this is a set operation on the (𝐸 𝑗 ) ⊂ ℱ we get 𝑆 ∈ ℱ.
ii) To determine the measure of 𝑆 we have to compute

𝜇(𝑆) = 𝜇
(⋂
𝑛

⋃
𝑗⩾𝑛

𝐸 𝑗

)
.

Call 𝐹𝑛 :=
⋃
𝑗⩾𝑛 𝐸 𝑗 . It is clear that 𝐹𝑛 ⊃ 𝐹𝑛+1, so 𝐹𝑛 ↘. So, 𝑆 is a decreasing limit of (𝐹𝑛)

and the idea could be to apply continuity from above to compute 𝜇(𝑆). This is feasible if
𝜇(𝐹0) < +∞. But,

𝜇(𝐹0) = 𝜇 ©­«
⋃
𝑗⩾0

𝐸 𝑗
ª®¬ ⩽

∑︁
𝑗

𝜇(𝐸 𝑗 ) < +∞,

because of the assumption. Therefore, continuity from above applies and
𝜇(𝑆) = lim

𝑛
𝜇(𝐹𝑛).

Finally,

𝜇(𝐹𝑛) = 𝜇
(⋃
𝑗⩾𝑛

𝐸 𝑗

)
⩽

∑︁
𝑗⩾𝑛

𝜇(𝐸 𝑗 ) −→ 0,

being this the tail of a convergent series. □

2.3.1. Suppose, by contradiction, that 𝑁𝑐 is not dense in R, that is
∃]𝑎, 𝑏[⊂ R, 𝑁𝑐∩]𝑎, 𝑏[= ∅.

Then ]𝑎, 𝑏[⊂ 𝑁 , so 0 = 𝜆(𝑁) ⩾ 𝜆(]𝑎, 𝑏[) = 𝑏 − 𝑎 > 0, which is impossible. □

2.3.2 We first notice that each 𝐶𝑛 is made of a finite union of closed intervals, thus it is a closed
set. Therefore, 𝐶𝑛 ∈ ℳ1 for every 𝑛, hence 𝐶 :=

⋂
𝑛 𝐶𝑛 ∈ ℳ1. In alternative, we may also
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notice that in general, an infinite intersection of closed sets is closed, so 𝐶 is closed. Since the
Lebesgue class ℳ1 contains both open and closed sets, we deduce 𝐶 ∈ ℳ1.

About 𝜆(𝐶) we may notice that 0 ⩽ 𝜆(𝐶) ⩽ 𝜆(𝐶𝑛) for every 𝑛. Now, each 𝐶𝑛 is the union of
2𝑛 disjoint intervals each of length 1

3𝑛 , so 𝜆(𝐶𝑛) = 2𝑛 1
3𝑛 , from which 𝜆(𝐶) ⩽ 2𝑛

3𝑛 =

(
2
3

)𝑛
−→ 0

when 𝑛→ +∞. Thus, necessarily, 𝜆(𝐶) ⩽ 0, from which 𝜆(𝐶) = 0. □

2.3.5. Let
𝐸𝑚,𝑛 := {(𝑥, 𝑦) : 𝑚𝑥 + 𝑛𝑦 = 0},

with (𝑚, 𝑛) ∈ N×N\{(0, 0)}. Since (𝑚, 𝑛) ≠ (0, 0), 𝐸𝑚,𝑛 is a plane straight line, so𝜆2(𝐸𝑚,𝑛) = 0,
and

𝐸 =
⋃

(𝑚,𝑛)∈N2\{(0,0)}
𝐸𝑚,𝑛,

is a countable union. Therefore, by sub-additivity, 𝜆2(𝐸) ⩽
∑
𝑚,𝑛 𝜆2(𝐸𝑚,𝑛) = 0. □

2.3.6. By definition,

∀𝜀 > 0, ∃𝑂𝜀, 𝑂𝜀 open : 𝜆∗(𝑂𝜀\𝐵) ⩽ 𝜀, 𝜆∗(𝑂𝜀\𝐴) ⩽ 𝜀,

2.3.7. The assumption says that 𝜆((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = 1. The thesis is to
prove that at least one of 𝜆(𝐴), 𝜆(𝐵)𝜆(𝐶) must be ⩾ 2

3 . If the conclusion were false, then
𝜆(𝐴), 𝜆(𝐵), 𝜆(𝐶) < 2

3 . Now, we notice that

𝜆(𝐸 ∪ 𝐹 ∪ 𝐺) = 𝜆(𝐸 ∪ 𝐹) + 𝜆(𝐺) − 𝜆((𝐸 ∪ 𝐹) ∩ 𝐺)

= 𝜆(𝐸) + 𝜆(𝐹) + 𝜆(𝐺) − 𝜆(𝐸 ∩ 𝐹) − (𝜆(𝐸 ∩ 𝐺) + 𝜆(𝐹 ∩ 𝐺) − 𝜆(𝐸 ∩ 𝐹 ∩ 𝐺))

= 𝜆(𝐸) + 𝜆(𝐹) + 𝜆(𝐺) − (𝜆(𝐸 ∩ 𝐹) + 𝜆(𝐸 ∩ 𝐺) + 𝜆(𝐹 ∩ 𝐺)) + 𝜆(𝐸 ∩ 𝐹 ∩ 𝐺).
We apply this a first time to 𝐸 = 𝐴, 𝐹 = 𝐵 and𝐺 = 𝐶 and a second time to 𝐸 = 𝐴∩𝐵, 𝐹 = 𝐴∩𝐶
and 𝐺 = 𝐵 ∩ 𝐶. In this last case, by the assumption, we get

1 = 𝜆(𝐴 ∩ 𝐵) + 𝜆(𝐴 ∩ 𝐶) + 𝜆(𝐵 ∩ 𝐶) − 3𝜆(𝐴 ∩ 𝐵 ∩ 𝐶) + 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶)
that is

𝜆(𝐴 ∩ 𝐵) + 𝜆(𝐴 ∩ 𝐶) + 𝜆(𝐵 ∩ 𝐶) = 1 + 2𝜆(𝐴 ∩ 𝐵 ∩ 𝐶),
and since, of course, 𝜆(𝐴 ∪ 𝐵 ∪ 𝐶) = 1, we have

1 = 𝜆(𝐴) + 𝜆(𝐵) + 𝜆(𝐶) − (1 + 2𝜆(𝐴 ∩ 𝐵 ∩ 𝐶)) + 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶),
from which

𝜆(𝐴) + 𝜆(𝐵) + 𝜆(𝐶) = 2 + 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶).
Now, if 𝜆(𝐴), 𝜆(𝐵), 𝜆(𝐶) < 2

3 then we would have

2 ⩽ 2 + 𝜆(𝐴 ∩ 𝐵 ∩ 𝐶) = 𝜆(𝐴) + 𝜆(𝐵) + 𝜆(𝐶) < 3
2
3
= 2,
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which is impossible! □

2.3.8. Let 𝑁 ⊂ [0, 1] with 𝜆(𝑁) = 0. The goal is to prove that 𝜆(𝑁2) = 0 where 𝑁2 = {𝑥2 :
𝑥 ∈ 𝑁}. Since

0 = 𝜆(𝑁) = inf

{∑︁
𝑛

|𝐼𝑛 | : 𝑁 ⊂
⋃
𝑛

𝐼𝑛

}
by the characteristics of inf we have that

∀𝜀 > 0, ∃(𝐼𝜀𝑛 )𝑛 : 𝑁 ⊂
⋃
𝑛

𝐼𝜀𝑛 ,
∑︁
𝑛

|𝐼𝜀𝑛 | ⩽ 𝜀.

Since𝑁 ⊂ [0, 1], we may assume that 𝐼𝜀𝑛 ⊂ [0, 1]. Otherwise, we replace 𝐼𝜀𝑛 with 𝐽𝜀𝑛 = 𝐼𝜀𝑛∩[0, 1]:
𝐽𝜀𝑛 is still an interval, being intersection of intervals,

𝑁 ⊂
⋃
𝑛

𝐼𝜀𝑛 , =⇒ 𝑁 = 𝑁 ∩ [0, 1] ⊂
⋃
𝑛

𝐼𝜀𝑛 ∩ [0, 1] =
⋃
𝑛

𝐽𝜀𝑛

and moreover ∑︁
𝑛

|𝐽𝜀𝑛 | ⩽
∑︁
𝑛

|𝐼𝜀𝑛 | ⩽ 𝜀.

Now, writing 𝐽𝜀𝑛 = [𝑎𝜀𝑛, 𝑏𝜀𝑛] ⊂ [0, 1], we would have

𝑁2 ⊂
⋃
𝑛

(𝐽𝜀𝑛 )2 =
⋃
𝑛

[(𝑎𝜀𝑛)2, (𝑏𝜀𝑛)2]

and∑︁
𝑛

| (𝐽𝜀𝑛 )2 | =
∑︁
𝑛

(
(𝑏𝜀𝑛)2 − (𝑎𝜀𝑛)2

)
=

∑︁
𝑛

(
𝑏𝜀𝑛 − 𝑎𝜀𝑛

) (
𝑏𝜀𝑛 + 𝑎𝜀𝑛

)︸     ︷︷     ︸
0⩽...⩽2

⩽ 2
∑︁
𝑛

(
𝑏𝜀𝑛 − 𝑎𝜀𝑛

)
= 2

∑︁
𝑛

|𝐽𝜀𝑛 | ⩽ 2𝜀.

From this and by the definition of 𝜆, we get
𝜆(𝑁2) ⩽ 2𝜀,

and since 𝜀 can be made arbitrarily small, this shows that 𝜆(𝑁2) = 0.
In 𝑁 is bounded, 𝑁 ⊂ [−𝑅, 𝑅], the previous argument leads to a similar bound 𝜆(𝑁2) ⩽ 2𝑅𝜀,

so we conclude similarly.
Finally, if 𝑁 is generic, define 𝑁𝑅 := 𝑁 ∩ [−𝑅, 𝑅]. It is clear that 𝑁2

𝑅
= 𝑁2 ∩ [0, 𝑅2] ↑ 𝑁2

(when 𝑅 → +∞) and since 𝜆(𝑁2
𝑅
) = 0 for every 𝑅, by the continuity from below of 𝜆 we obtain

also 𝜆(𝑁2) = 0. □

3.4.1. Let 𝑓 : R −→ R be, for example, increasing, so 𝑓 (𝑥) ⩽ 𝑓 (𝑦) when 𝑥 ⩽ 𝑦. We prove that
{ 𝑓 ⩽ 𝑎} is measurable. Intuitively, { 𝑓 ⩽ 𝑎} should be an interval of type ]∞, 𝛼[ or ] − ∞, 𝛼]
where 𝛼 := sup{𝑥 : 𝑓 (𝑥) ⩽ 𝑎}. Indeed: let 𝛼 be defined as above. Either 𝛼 = +∞ or 𝛼 < +∞.
In the first case, 𝑓 (𝑥) ⩽ 𝑎 for all 𝑥 ∈ R, so { 𝑓 ⩽ 𝑎} = R. In the second case, we claim that

] − ∞, 𝛼[⊂ { 𝑓 ⩽ 𝑎} ⊂] − ∞, 𝛼] .
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Indeed: if 𝑥 < 𝛼 then, by definition of sup, there exists 𝛽 > 𝑥 such that 𝑓 (𝛽) ⩽ 𝑎. But then,
being 𝑓 increasing, 𝑓 (𝑥) ⩽ 𝑓 (𝛽) ⩽ 𝑎, so 𝑥 ∈ { 𝑓 ⩽ 𝑎}. This proves that ] − ∞, 𝛼[⊂ { 𝑓 ⩽ 𝑎}.
To prove the second inclusion we prove that, if 𝑥 > 𝛼 it cannot be 𝑥 ∈ { 𝑓 ⩽ 𝑎}. Otherwise,
𝑓 (𝑥) ⩽ 𝑎, so

𝛼 = sup{𝑥 : 𝑓 (𝑥) ⩽ 𝑎} ⩾ 𝑥 > 𝛼,
obtaining a contradiction. Conclusion: { 𝑓 ⩽ 𝑎} can be only ] − ∞, 𝛼[ or ] − ∞, 𝛼], in both
cases it is an interval, so it is a measurable set. □

3.4.2. We have to prove that i) is equivalent to ii) where
i) 𝑓 is measurable

ii) { 𝑓 > 𝑎} ∈ ℱ for every 𝑎 ∈ Q.
Since i) is equivalent to { 𝑓 > 𝑎} ∈ ℱ for every 𝑎 ∈ R, i) =⇒ ii).

Let’s prove that ii) =⇒ i), that is, let’s prove that { 𝑓 > 𝑎} ∈ ℱ for every 𝑎 ∈ R. By ii), this is
true if 𝑎 ∈ Q. So let 𝑎 ∈ Q𝑐 (irrational). We notice that, if 𝑞 ∈ Q is such that 𝑞 > 𝑎, then

{ 𝑓 > 𝑞} ⊂ { 𝑓 > 𝑎}.

Since this happens for every 𝑞 ∈ Q, 𝑞 > 𝑎, we can say that⋃
𝑞∈Q, 𝑞>𝑎

{ 𝑓 > 𝑞} ⊂ { 𝑓 > 𝑎}.

At left, we have a countable union of measurable sets, so the union is a measurable set. So, if
we prove that = holds, we are done! That is, the goal is reduced to prove that

{ 𝑓 > 𝑎} ⊂
⋃

𝑞∈Q, 𝑞>𝑎
{ 𝑓 > 𝑞}.

Pick 𝑥 ∈ { 𝑓 > 𝑎}. So, 𝑓 (𝑥) > 𝑎. Because of the density of rationals in reals, there exists
𝑟 ∈ Q such that 𝑓 (𝑥) > 𝑟 > 𝑎, so 𝑥 ∈ { 𝑓 > 𝑟} ⊂ ⋃

𝑞∈Q, 𝑞>𝑎{ 𝑓 > 𝑞}. This means that
{ 𝑓 > 𝑎} ⊂ ⋃

𝑞∈Q, 𝑞>𝑎{ 𝑓 > 𝑞} as claimed. □

3.4.4. Notice that

{ 𝑓 𝑔 > 𝑎} = { 𝑓 𝑔 > 𝑎, 𝑔 > 0} ∩ { 𝑓 𝑔 > 𝑎, 𝑔 = 0} ∩ { 𝑓 𝑔 > 𝑎, 𝑔 < 0}.

Let’s analyze the three sets, starting by the second one (easier), and the first and the third ones
being similar. We have

{ 𝑓 𝑔 > 𝑎, 𝑔 = 0} = {0 > 𝑎, 𝑔 = 0} =


∅ ∈ ℱ, 𝑎 ⩾ 0,

{𝑔 = 0} ∈ ℱ, 𝑎 < 0
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For the first set we have

{ 𝑓 𝑔 > 𝑎, 𝑔 > 0} = { 𝑓 > 𝑎

𝑔
, 𝑔 > 0} =

⋃
𝑞∈Q

{
𝑓 > 𝑞 >

𝑎

𝑔
, 𝑔 > 0

}
=

⋃
𝑞∈Q

{ 𝑓 > 𝑞}︸   ︷︷   ︸
∈ℱ

∩
{
𝑔 > 0, 𝑔 >

𝑎

𝑞

}
︸             ︷︷             ︸

∈ℱ

from which we see that { 𝑓 𝑔 > 𝑎, 𝑔 > 0} ∈ ℱ. Similar argument for the third set. From this
the conclusion follows. □

3.4.6. i) Claim: 𝑓𝑛 (𝑥) −→ 0 for every 𝑥 ∈ R. Take 𝑛 ⩾ [𝑥] + 1. Then 𝑥 < [𝑥] + 1 ⩽ 𝑛, from
which 𝑓𝑛 (𝑥) = 0. This means that ( 𝑓𝑛 (𝑥)) is constantly = 0 for 𝑛 large, thus 𝑓𝑛 (𝑥) −→ 0.

ii) Claim: 𝑓𝑛 (𝑥) −→ 1]0,+∞[ (𝑥) for every 𝑥. Indeed: if 𝑥 ⩽ 0, 𝑓𝑛 (𝑥) ≡ 0 −→ 0. If 𝑥 > 0,
since 1

𝑛
→ 0 and 𝑛→ +∞, for 𝑛 large enough 1

𝑛
< 𝑥 < 𝑛, so 𝑓𝑛 (𝑥) ≡ 1 −→ 1.

iii) We notice that

𝑓2𝑘 (𝑥) = 1[0,1/2] (𝑥), 𝑓2𝑘+1(𝑥) = 1[1/2,1] (𝑥).

For 𝑥 < 0 and 𝑥 > 1 we have 𝑓𝑛 (𝑥) ≡ 0 −→ 0. For 𝑥 = 1/2 we have also 𝑓𝑛 (𝑥) ≡ 1 −→ 1. If
however 0 ⩽ 𝑥 < 1/2 we have that ( 𝑓𝑛 (𝑥)) = (1, 0, 1, 0, . . .) so there is no limit. Similarly, for
1/2 < 𝑥 ⩽ 1, ( 𝑓𝑛 (𝑥)) has no limit. Since the limit of ( 𝑓𝑛) does not exist for 𝑥 ∈ [0, 1/2[∪]1/2, 1],
which is a positive measure set, we cannot conclude that ( 𝑓𝑛) converges pointwise a.e..

3.4.7. We do the proof in dimension 𝑑 = 1 for simplicity, the argument is the same for the
general case. Suppose that 𝑔(𝑥) > 0 for some 𝑥 ∈ R. By continuity, there exists a neighborhood
𝑈𝑥 of 𝑥 for which 𝑔(𝑦) > 0, ∀𝑦 ∈ 𝑈𝑥 . We can always assume that𝑈𝑥 = [𝑥 − 𝜀, 𝑥 + 𝜀]. Therefore

{𝑔 ≠ 0} ⊃ [𝑥 − 𝜀, 𝑥 + 𝜀], 0 = 𝜆({𝑔 ≠ 0}) ⩾ 𝜆( [𝑥 − 𝜀, 𝑥 + 𝜀]) = 2𝜀 > 0,

which is a contradiction. □

4.3.4. The thesis is to prove that 𝜇( 𝑓 < 𝑀) = 0. Suppose 𝜇( 𝑓 < 𝑀) > 0. We claim that

∃𝜀 > 0, : 𝜇( 𝑓 ⩽ 𝑀 − 𝜀) > 0.

This can be proved as follows: since { 𝑓 ⩽ 𝑀 − 1
𝑛
} ↗ { 𝑓 < 𝑀}, by the continuity from below

lim
𝑛
𝜇

(
𝑓 ⩽ 𝑀 − 1

𝑛

)
= 𝜇( 𝑓 < 𝑀) > 0,

so, by the permanence of sign, there exists 𝑁 such that

𝜇

(
𝑓 ⩽ 𝑀 − 1

𝑛

)
⩾
𝜇( 𝑓 < 𝑀)

2
, ∀𝑛 ⩾ 𝑁.
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But then
𝑀𝜇(𝐸) =

∫
𝐸

𝑓 𝑑𝜇 =

∫
𝑓 ⩽𝑀−𝜀

𝑓 𝑑𝜇 +
∫
𝑓 >𝑀−𝜀

𝑓 𝑑𝜇

⩽ (𝑀 − 𝜀)𝜇( 𝑓 ⩽ 𝑀 − 𝜀) + 𝑀𝜇( 𝑓 > 𝑀 − 𝜀)

= 𝑀𝜇(𝐸) − 𝜀𝜇( 𝑓 ⩽ 𝑀 − 𝜀) < 𝑀𝜇(𝐸),
which is a contradiction. □

4.3.5. The assumption says that ∫
𝐸

𝑓 𝑑𝜇 = ±
∫
𝐸

| 𝑓 | 𝑑𝜇.

Suppose, for example, that ∫
𝐸

𝑓 𝑑𝜇 =

∫
𝐸

| 𝑓 | 𝑑𝜇.

We show that 𝜇( 𝑓 < 0) = 0 (a similar argument for the other case). Assume, by contradiction,
that 𝜇( 𝑓 < 0) > 0. As in the previous problem, we can find 𝜀 > 0 such that 𝜇( 𝑓 < −𝜀) > 0.
Then∫

𝐸

| 𝑓 | 𝑑𝜇 =

∫
𝐸

𝑓 𝑑𝜇 =

∫
𝑓 ⩽−𝜀

𝑓 𝑑𝜇 +
∫
𝑓 >−𝜀

𝑓 𝑑𝜇 ⩽ −𝜀𝜇( 𝑓 ⩽ −𝜀) +
∫
𝐸

| 𝑓 | 𝑑𝜇 <
∫
𝐸

| 𝑓 | 𝑑𝜇,

which is a contradiction. □

4.3.7. As in the proof of the Chebyshev’s inequality, for 𝛼 > 0 we have

𝜇( 𝑓 ⩾ 𝛼) =
∫
𝑓 ⩾𝛼

1𝑑𝜇

Now, 𝜙 is convex and this means that
𝜙(𝜆𝑥 + (1 − 𝜆)𝑦) ⩽ 𝜆𝜙(𝑥) + (1 − 𝜆)𝜙(𝑦), ∀𝑥, 𝑦 ⩾ 0, 𝜆 ∈ [0, 1] .

Let’s consider an 𝑥 for which 𝑓 (𝑥) > 𝛼. Looking at 𝛼 as convex combination of 0 and 𝑓 (𝑥),
𝛼 =

(
𝛼
𝑓 (𝑥)

)
𝑓 (𝑥) +

(
1 − 𝛼

𝑓 (𝑥)

)
0, we have

𝜙(𝛼) ⩽ 𝛼

𝑓 (𝑥) 𝜙( 𝑓 (𝑥)) +
(
1 − 𝛼

𝑓 (𝑥)

)
𝜙(0) = 𝛼

𝑓 (𝑥) 𝜙( 𝑓 (𝑥)),

from which
𝑓 (𝑥)
𝛼
⩽
𝜙( 𝑓 (𝑥))
𝜙(𝛼) .

Therefore ∫
𝑓 ⩾𝛼

1 𝑑𝜇 ⩽
∫
𝑓 ⩾𝛼

𝑓

𝛼
𝑑𝜇 ⩽

∫
𝑓 ⩾𝛼

𝜙( 𝑓 (𝑥))
𝜙(𝛼) 𝑑𝜇 =

1
𝜙(𝛼)

∫
𝑓 ⩾𝛼

𝜙( 𝑓 ) 𝑑𝜇.
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From this, the conclusion follows. □

4.3.8. Suppose, by contradiction, that 𝜇( 𝑓 < 0) > 0. As in previous problems, we may always
find 𝜀 > 0 such that 𝜇( 𝑓 ⩽ −𝜀) > 0. But then

0 ⩽
∫
𝑓 ⩽−𝜀

𝑓 𝑑𝜇 ⩽

∫
𝑓 ⩽−𝜀

−𝜀 𝑑𝜇 = −𝜀𝜇( 𝑓 ⩽ −𝜀) < 0,

which is impossible. □

4.3.9. Let’s follow the hint and consider the set 𝐸 := { 𝑓 ⩾ 𝑀 + 𝜀} with 𝜀 > 0. By Chebyshev
inequality

𝜇( 𝑓 ⩾ 𝑀 + 𝜀) ⩽ 1
𝑀 + 𝜀

∫
𝑓 ⩾𝑀+𝜀

𝑓 𝑑𝜇 ⩽
1

𝑀 + 𝜀

∫
𝑋

| 𝑓 | 𝑑𝜇 < +∞.

Moreover, ����∫
𝐸

𝑓 𝑑𝜇

���� = ∫
𝐸

𝑓 𝑑𝜇 ⩾

∫
𝐸

(𝑀 + 𝜀) 𝑑𝜇 = (𝑀 + 𝜀)𝜇(𝐸),

so, because of the assumption, we would get

(𝑀 + 𝜀)𝜇(𝐸) ⩽ 𝑀𝜇(𝐸),

and since, as proved above 𝜇(𝐸) < +∞, either 𝜇(𝐸) = 0 or 𝑀 + 𝜀 ⩽ 𝑀 , which is impossible.
We conclude that 𝜇( 𝑓 ⩾ 𝑀 + 𝜀) = 0 for every 𝜀 > 0. In a similar way, 𝜇( 𝑓 ⩽ −𝑀 − 𝜀) = 0.
So, 𝜇( | 𝑓 | ⩾ 𝑀 + 𝜀) = 0 for every 𝜀 > 0. When 𝜀 ↓ 0, {| 𝑓 | ⩾ 𝑀 + 𝜀} ↓ {| 𝑓 | > 𝑀}, and since
they have finite measures, continuity from above applies, and

𝜇( | 𝑓 | > 𝑀) = lim
𝑛
𝜇

(
| 𝑓 | ⩾ 𝑀 + 1

𝑛

)
= 0,

from which the conclusion follows. □

6.3.3. Let 𝑓𝑛 (𝑥) := 𝑛

𝑥(1+𝑥2) sin 𝑥
𝑛
. Clearly 𝑓𝑛 ∈ 𝒞(]0, +∞[), so 𝑓𝑛 ∈ 𝐿 ( [0, +∞[). We apply the

dominated convergence theorem. We have
i)

lim
𝑛→+∞

𝑓𝑛 (𝑥) = lim
𝑛→+∞

1
1 + 𝑥2

sin(𝑥/𝑛)
𝑥/𝑛 =

1
1 + 𝑥2 , ∀𝑥 > 0.

ii) Let’s determine and integrable dominant: since | sin 𝑡 | ⩽ |𝑡 |, we have

| 𝑓𝑛 (𝑥) | =
���� 1
1 + 𝑥2

sin(𝑥/𝑛)
𝑥/𝑛

���� ⩽ 1
1 + 𝑥2 =: 𝑔(𝑥), ∀𝑥 > 0, ∀𝑛 ∈ N,

and clearly 𝑔 ∈ 𝐿1( [0, +∞[).
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Therefore, the dominated convergence applies and

lim
𝑛→+∞

∫ +∞

0
𝑓𝑛 (𝑥) 𝑑𝑥 =

∫ +∞

0

1
1 + 𝑥2 𝑑𝑥 = [arctan 𝑥]𝑥=+∞𝑥=0 =

𝜋

2
. □

6.3.4. Let 𝑓𝑛 (𝑥) := 1+𝑛𝑥2

(1+𝑥2)𝑛 . Clearly, 𝑓𝑛 ∈ 𝒞( [0, +∞[) ⊂ 𝐿 ( [0, +∞[). Being 𝑓𝑛 continuous,
𝑓𝑛 ∈ 𝐿1( [0, 𝑅]) for every 𝑅 > 0. Thus, the integrability of 𝑓𝑛 depends on its behavior at +∞:
we have

𝑓𝑛 (𝑥) ∼+∞
𝑛𝑥2

𝑥2𝑛 =
𝑛

𝑥2𝑛−2 , so ∃
∫ +∞

| 𝑓𝑛 (𝑥) | 𝑑𝑥 ⇐⇒ ∃
∫ +∞ 𝑛

𝑥2𝑛−2 𝑑𝑥 ⇐⇒ 2𝑛 − 2 > 1,

that is for 𝑛 ⩾ 2. To compute the limit of integrals
∫ +∞

0 𝑓𝑛 (𝑥) 𝑑𝑥, we apply the dominated
convergence theorem. We have

lim
𝑛→+∞

𝑓𝑛 (𝑥) = lim
𝑛→+∞

1 + 𝑛𝑥2

(1 + 𝑥2)𝑛
=

{
1, 𝑥 = 0,
0, 𝑥 > 0

being, for 𝑥 > 0, 1 + 𝑛𝑥2 ∼ 𝑥2𝑛 = 𝑜((1 + 𝑥2)𝑛). Therefore lim𝑛 𝑓𝑛 (𝑥) = 0 a.e. 𝑥 ∈ [0, +∞[.
Let’s look for an integrable dominant. We notice that

(1 + 𝑥2)𝑛 = 1 + 𝑛𝑥2 + 𝑛(𝑛 − 1)
2

𝑥4 + . . . ⩾ 1 + 𝑛𝑥2 + 𝑛(𝑛 − 1)
2

𝑥4 ⩾ 1 + 𝑛𝑥2 + 𝑛𝑥4,

provided 𝑛 ⩾ 3. Therefore, for 𝑛 ⩾ 3,

| 𝑓𝑛 (𝑥) |
𝑓𝑛⩾0
=

1 + 𝑛𝑥2

(1 + 𝑥2)𝑛
⩽

1
1 + 𝑛𝑥4

1+𝑛𝑥2

⩽
1

1 + 𝑛𝑥4

𝑛+𝑛𝑥2

=
1

1 + 𝑥4

1+𝑥2

=
𝑥2 + 1

𝑥4 + 𝑥2 + 1
=: 𝑔(𝑥).

Since 𝑔 ∈ 𝒞( [0, +∞[) ⊂ 𝐿 ( [0, +∞[), and 𝑔(𝑥) ∼+∞
1
𝑥2 , we have 𝑔 ∈ 𝐿1( [0, +∞[). Conclusion:

the dominated convergence theorem applies and

lim
𝑛

∫ +∞

0
𝑓𝑛 (𝑥) 𝑑𝑥 =

∫ +∞

0
lim
𝑛
𝑓𝑛 (𝑥) 𝑑𝑥 =

∫ +∞

0
0 𝑑𝑥 = 0. □

6.3.6. Let 𝜇 𝑓 (𝐸) :=
∫
𝐸
𝑓 𝑑𝜇. We already know that 𝜇 𝑓 is a measure provided 𝑓 ∈ 𝐿 (𝑋), 𝑓 ⩾ 0.

Let 𝑔 =
∑
𝑘 𝑐𝑘1𝐸𝑘

be simple and positive measurable. Then∫
𝑋
𝑔 𝑑𝜇 𝑓 =

∫
𝑋

∑
𝑘 𝑐𝑘1𝐸𝑘

𝑑𝜇 𝑓 =
∑
𝑘 𝑐𝑘𝜇 𝑓 (𝐸𝑘 ) =

∑
𝑘 𝑐𝑘

∫
𝐸𝑘
𝑓 𝑑𝜇 =

∑
𝑘 𝑐𝑘

∫
𝑋

1𝐸𝑘
𝑓 𝑑𝜇

=
∫
𝑋

∑︁
𝑘

𝑐𝑘1𝐸𝑘︸     ︷︷     ︸
𝑔

𝑓 𝑑𝜇 =
∫
𝑋
𝑔 𝑓 𝑑𝜇.
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We now extend this identity to any 𝑔 ∈ 𝐿 (𝑋) positive (𝑔 ⩾ 0). We remind that, ∃(𝑠𝑛) sequence
of simple measurable functions such that i) 0 ⩽ 𝑠𝑛 ⩽ 𝑠𝑛+1 for every 𝑥 ∈ 𝑋 and ∀𝑛 ∈ N; ii)
𝑠𝑛 (𝑥) −→ 𝑔(𝑥) for every 𝑥 ∈ 𝑋 . Now, for 𝑠𝑛 we have∫

𝑋

𝑠𝑛 𝑑𝜇 𝑓 =

∫
𝑋

𝑠𝑛 𝑓 𝑑𝜇.

We now apply to both sides the Beppo-Levi theorem and we conclude that∫
𝑋

𝑔 𝑑𝜇 𝑓 =

∫
𝑋

𝑔 𝑓 𝑑𝜇.

Finally, if 𝑔 ∈ 𝐿1, the previous identity holds for 𝑔±. By subracting the corresponding identities
the conclusion follows. □

6.3.7. We remind that, if 𝑓 ∈ 𝐿 (𝑋), then

𝑓 ∈ 𝐿1(𝑋), ⇐⇒
∫
𝑋

| 𝑓 | 𝑑𝜇 < +∞.

=⇒. Assume 𝑓 ∈ 𝐿1(𝑋). Then∫
𝑋

| 𝑓 | 𝑑𝜇 =
∑︁
𝑛

∫
𝑛⩽ | 𝑓 |<𝑛+1

| 𝑓 | 𝑑𝜇 ⩾
∑︁
𝑛

∫
𝑛⩽ | 𝑓 |<𝑛+1

𝑛 𝑑𝜇 =
∑︁
𝑛

𝑛𝜇 (𝑛 ⩽ | 𝑓 | < 𝑛 + 1) .

From this the conclusion follows being
∫
𝑋
| 𝑓 | 𝑑𝜇 < +∞.

⇐= The same argument shows that∫
𝑋

| 𝑓 | 𝑑𝜇 ⩽
∑︁
𝑛

(𝑛 + 1)𝜇(𝑛 ⩽ | 𝑓 | < 𝑛 + 1).

Now, (𝑛 + 1)𝜇(𝑛 ⩽ | 𝑓 | < 𝑛 + 1) ∼ 𝑛𝜇(𝑛 ⩽ | 𝑓 | < 𝑛 + 1), we have that
∑
𝑛 𝑛𝜇(𝑛 ⩽ | 𝑓 | < 𝑛 + 1)

converges iff
∑
𝑛 (𝑛 + 1)𝜇(𝑛 ⩽ | 𝑓 | < 𝑛 + 1), and from this the conclusion follows. □

6.3.8. By assumption, ∫
𝑋

| 𝑓𝑛 | 𝑑𝜇 ⩽
𝐶

𝑛𝛼
.

Summing these inequalities, nd applying the monotone convergence for series, we have∫
𝑋

∑︁
𝑛

| 𝑓𝑛 | 𝑑𝜇 =
∑︁
𝑛

∫
𝑋

| 𝑓𝑛 | 𝑑𝜇 ⩽
∑︁
𝑛

𝐶

𝑛𝛼
< +∞,

being 𝛼 > 1. Therefore
∫
𝑋

∑
𝑛 | 𝑓𝑛 | 𝑑𝜇 < +∞ and from this

∑
𝑛 | 𝑓𝑛 | < +∞ a.e. 𝑥 ∈ 𝑋 . As

well known, a necessary (but not sufficient) condition for convergence is | 𝑓𝑛 | −→ 0, that is
𝑓𝑛 −→ 0. □
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6.3.9. We notice that ∫
𝐸

| 𝑓 | 𝑑𝜇 =

∫
𝐸∩{| 𝑓 |⩽𝐾}

| 𝑓 | 𝑑𝜇 +
∫
𝐸∩{| 𝑓 |>𝐾}

| 𝑓 | 𝑑𝜇.

We have ∫
𝐸∩{| 𝑓 |>𝐾}

| 𝑓 | 𝑑𝜇 ⩽
∫
| 𝑓 |>𝐾

| 𝑓 | 𝑑𝜇 := 𝜈( | 𝑓 | > 𝐾),

where 𝜈(𝐹) :=
∫
𝐹
| 𝑓 | 𝑑𝜇. As well known, 𝜈 is a measure on (𝑋,ℱ) and since 𝑓 ∈ 𝐿1(𝑋) we

have 𝜈(𝑋) =
∫
𝑋
| 𝑓 | 𝑑𝜈 < +∞, so 𝜈 is a finite measure. As a consequence of this, continuity

from above applies to 𝜈, and since {| 𝑓 | > 𝐾 ∥ ↓ {| 𝑓 | = +∞} we have

𝜈( | 𝑓 | > 𝐾) −→ 𝜈( | 𝑓 | = +∞) =
∫
| 𝑓 |=+∞

| 𝑓 | 𝑑𝜇.

But since 𝑓 ∈ 𝐿1(𝑋), 𝜇( | 𝑓 | = +∞) = 0, so also 𝜈( | 𝑓 | = +∞) = 0. We can then choose 𝐾 in
such a way

𝜈( | 𝑓 | > 𝐾) ⩽ 𝜀
2
.

And since ∫
𝐸∩{| 𝑓 |⩽𝐾}

| 𝑓 | 𝑑𝜇 ⩽ 𝐾
∫
𝐸

1 𝑑𝜇 = 𝐾𝜇(𝐸) ⩽ 𝜀
2
, ⇐⇒ 𝜇(𝐸) ⩽ 𝜀

2𝐾
=: 𝛿.

7.3.3. Let

𝐹 (𝜉) :=
∫ 1

0

𝑥𝜉 − 1
log 𝑥

𝑑𝑥 =

∫ 1

0
𝑓 (𝑥, 𝜉) 𝑑𝑥,

We notice that 𝑓 (♯, 𝜉) is well defined and continuous on ]0, 1[, for every 𝜉 ∈ R. Let’s discuss
absolute integrability at 𝑥 = 0 and 𝑥 = 1. We start noticing that

𝑓 (𝑥, 0) ≡ 0, =⇒ 𝑓 (♯, 0) ∈ 𝐿1( [0, 1]).
Furthermore,

| 𝑓 (𝑥, 𝜉) | =
����𝑒𝜉 log 𝑥 − 1

log 𝑥

���� ∼𝑥→0+


− 1

log 𝑥 , 𝜉 > 0,

− 𝑒 𝜉 log 𝑥

log 𝑥 , 𝜉 < 0.
so

∃
∫

0
| 𝑓 (𝑥, 𝜉) | 𝑑𝑥 ⇐⇒



𝜉 > 0, ∃
∫

0 −
1

log 𝑥 𝑑𝑥 =
∫
−∞ − 𝑒𝑦

𝑦
𝑑𝑦, yes!

𝜉 < 0, ∃
∫

0 − log 𝑥 𝑑𝑥 =
∫
−∞ − 𝑒 𝜉 𝑦

𝑦
𝑒𝑦 𝑑𝑦 = −

∫
−∞

𝑒 ( 𝜉+1)𝑦

𝑦
𝑑𝑦,

⇐⇒ 𝜉 + 1 > 0, ⇐⇒ 𝜉 > −1.
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Similarly, recalling that 𝑒𝑡 − 1 = 𝑡 + 𝑜(𝑡) ∼𝑡→0 𝑡, we have

| 𝑓 (𝑥, 𝜉) | ∼𝑥→1

����𝜉 log 𝑥
log 𝑥

���� = |𝜉 |,

so we conclude that 𝑓 (♯, 𝜉) ∈ 𝐿1( [0, 1]) iff 𝜉 > −1.
To compute 𝜕𝜉𝐹 we apply the differentiation under integral sign theorem:

𝜕𝜉𝐹 (𝜉) =
∫ 1

0
𝜕𝜉 𝑓 (𝑥, 𝜉) 𝑑𝑥. (★)

To apply this theorem we notice that:
i)

∃𝜕𝜉 𝑓 (𝑥, 𝜉) = 𝜕𝜉
𝑒𝜉 log 𝑥 − 1

log 𝑥
=
𝑒𝜉 log 𝑥 log 𝑥

log 𝑥
= 𝑒𝜉 log 𝑥 = 𝑥𝜉 , ∀𝑥 > 0, ∀𝜉 > −1.

In particular, this holds a.e. 𝑥 ∈ [0, 1], ∀𝜉 > −1.
ii) Integrable dominant:

|𝜕𝑥 𝑓 (𝑥, 𝜉) | = |𝑥𝜉 | ⩽ 1, 𝑎.𝑒. 𝑥 ∈ [0, 1], ∀𝜉 ⩾ 0.
If 𝑎 ⩽ 𝜉 < 0 with 𝑎 fixed and 𝑎 > −1, we have

|𝜕𝑥 𝑓 (𝑥, 𝜉) | = |𝑥𝜉 | ⩽ 𝑥𝑎 = 1
𝑥−𝑎

∈ 𝐿1( [0, 1]) ⇐⇒ 𝑎 > −1.

This bound holds for a.e. 𝑥 ∈ [0, 1] and ∀𝜉 ⩾ 𝑎. Since 𝑥𝑎 ⩾ 1, we conclude that :

|𝜕𝑥 𝑓 (𝑥, 𝜉) | ⩽
1
𝑥−𝑎

, 𝑎.𝑒. 𝑥 ∈ [0, 1], ∀𝜉 > 𝑎.

Therefore, we can apply the theorem on 𝐷𝑎 = [𝑎, +∞[ and conclude that (★) holds
true for all 𝜉 ∈ 𝐷𝑎. Being 𝑎 > −1 free, we can conclude that the relation holds for
𝜉 ∈] − 1, +∞[.

In particular,

𝜕𝜉𝐹 (𝜉) =
∫ 1

0
𝑥𝜉 𝑑𝑥

𝜉>−1
=

[
𝑥𝜉+1

𝜉 + 1

]𝑥=1

𝑥=0
=

1
𝜉 + 1

.

Therefore,
𝐹 (𝜉) log(𝜉 + 1) + 𝑘,

where 𝑘 is a constant, and since 𝐹 (0) = 0, we deduce 0 = 𝑙𝑜𝑔1 + 𝑘 = 𝑘 , from which
𝐹 (𝜉) = log(𝜉 + 1). □

7.3.5. Let

𝐹 (𝑎, 𝑏) :=
∫ +∞

0

(
𝑒
− 𝑎

𝑥2 − 𝑒−
𝑏

𝑥2
)
𝑑𝑥

𝑦=1/𝑥
=

∫ +∞

0

𝑒−𝑎𝑦
2 − 𝑒−𝑏𝑦2

−𝑦2 𝑑𝑦 =

∫ +∞

0

𝑒−𝑏𝑦
2 − 𝑒−𝑎𝑦2

𝑦2 𝑑𝑦.
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Let’s discuss the existence of the integral 𝐹 (𝑎, 𝑏). We notice that it is not convenient to split the
integrals, because

∫ +∞
0

𝑒−𝑎𝑦
2

𝑦2 𝑑𝑦 is divergent at 𝑦 = 0. However, remembering of 𝑒𝑡 = 1+ 𝑡 +𝑜(𝑡),
we have

𝑓 (𝑎, 𝑏, 𝑦) = 𝑒−𝑏𝑦
2 − 𝑒−𝑎𝑦2

𝑦2 ∼𝑦→0
(𝑎 − 𝑏)𝑦2

𝑦2 = (𝑎 − 𝑏), if 𝑎 ≠ 𝑏,

while 𝑓 (𝑎, 𝑎, 𝑦) ≡ 0. Thus, 𝑓 (𝑎, 𝑏, 𝑦) is 𝐿1 at 𝑦 = 0. Since it is also a continuous function on
]0, +∞[, we discuss the integrability at +∞. We notice that if 𝑎 = 𝑏 then 𝑓 (𝑎, 𝑎, 𝑦) ≡ 0 it is
integrable at +∞. If 𝑎 ≠ 𝑏 and one of 𝑎, 𝑏 is negative, for example 𝑎 < 𝑏, 𝑎 < 0, then

𝑓 (𝑎, 𝑏, 𝑦) ∼𝑦→+∞
𝑒−𝑎𝑦

2

𝑦2 −→ +∞,

so 𝑓 (𝑎, 𝑏, ♯) ∉ 𝐿1(+∞). If 𝑎 = 0 and 𝑏 > 0 (or 𝑎 > 0 and 𝑏 = 0), then

𝑓 (0, 𝑏, 𝑦) = 1 − 𝑒−𝑏𝑦2

𝑦2 ∼ 1
𝑦2 , =⇒ 𝑓 (0, 𝑏, 𝑦) ∈ 𝐿1(+∞).

Finally, if both 𝑎, 𝑏 > 0 and, for example 0 < 𝑎 < 𝑏 (the same for 0 < 𝑏 < 𝑎), then

𝑓 (𝑎, 𝑏, 𝑦) ∼𝑦→+∞
𝑒−𝑎𝑦

2

𝑦2 ⩽
1
𝑦2 ∈ 𝐿1(+∞).

Conclusion: 𝑓 (𝑎, 𝑏, ♯) ∈ 𝐿1( [0, +∞[) if 𝑎 = 𝑏 or 𝑎, 𝑏 ⩾ 0.
To compute 𝐹 (𝑎, 𝑏) we notice that 𝐹 (𝑎, 𝑎) ≡ 0, while

𝜕𝑎𝐹 (𝑎, 𝑏) =
∫ +∞

0
𝜕𝑎 𝑓 (𝑎, 𝑏, 𝑦) 𝑑𝑦,

provided we can exchange derivative and integral. We notice that
i)

∃𝜕𝑎 𝑓 (𝑎, 𝑏, 𝑥) = 𝜕𝑎
𝑒−𝑏𝑦

2 − 𝑒−𝑎𝑦2

𝑦2 =
1
𝑦2 (−𝑒

−𝑎𝑦2 (−𝑦2)) = 𝑒−𝑎𝑦2
, ∀𝑦 > 0 (𝑎.𝑒. 𝑦 ∈ [0, +∞[), ∀𝑎, 𝑏.

ii) If 𝜀 > 0, and 𝑎 ⩾ 𝜀, we have

|𝜕𝑎 𝑓 (𝑎, 𝑏, 𝑥) | = 𝑒−𝑎𝑦
2
⩽ 𝑒−𝜀𝑦

2
, 𝑎.𝑒. 𝑦 ∈ [0, +∞[, ∀𝑎 ⩾ 𝜀,

so,

∃𝜕𝑎𝐹 (𝑎, 𝑏) =
∫ +∞

0
𝑒−𝑎𝑦

2
𝑑𝑦 =

1
2

√︂
𝜋

𝑎
.

This holds for every 𝑎 ⩾ 𝜀, and since 𝜀 > 0 is arbitrary, we conclude that it holds for
every 𝑎 > 0.
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Similarly,

∃𝜕𝑏𝐹 (𝑎, 𝑏) = −1
2

√︂
𝜋

𝑏
, ∀𝑏 > 0.

To determine 𝐹 (𝑎, 𝑏) for 𝑎, 𝑏 ⩾ 0, fix 𝑏 > 0: since

𝜕𝑎𝐹 (𝑎, 𝑏) =
1
2

√︂
𝜋

𝑎
, =⇒ 𝐹 (𝑎, 𝑏) =

√
𝜋𝑎 + 𝜑(𝑏),

where 𝜑(𝑏) is a function of 𝑏 (constant in 𝑎). Taking the derivative w.r.t. 𝑏, we have

𝜑′(𝑏) = 𝜕𝑏𝐹 (𝑎, 𝑏) = −1
2

√︂
𝜋

𝑏
, =⇒ 𝜑(𝑏) = −

√
𝜋𝑏 + 𝑘,

where 𝑘 is now a constant. Therefore,

𝐹 (𝑎, 𝑏) =
√
𝜋

(√
𝑎 −

√
𝑏

)
+ 𝑘,

and since 𝐹 (𝑎, 𝑎) = 0, we deduce 𝑘 = 0. □

7.3.7. Let

𝐹 (𝜉) :=
∫ 1

0

log(1 + 𝜉𝑥)
1 + 𝑥2 𝑑𝑥.

Let’s determine the domain of definition of 𝐹, that is the set

𝐷 :=
{
𝜉 ∈ R : 𝑓 (♯, 𝜉) ∈ 𝐿1( [0, 1])

}
where 𝑓 (𝑥, 𝜉) :=

log(1 + 𝜉𝑥)
1 + 𝑥2 .

First notice that 𝑓 is defined provided 1 + 𝜉𝑥 > 0, and since 𝑥 ∈ [0, 1], 𝑓 is well defined for
every 𝜉 ⩾ 0, while for 𝜉 < 0, 1 + 𝜉𝑥 ⩾ 1 + 𝜉 > 0 iff 𝜉 > −1. Notice that, if 𝜉 = −1, 𝑓 (𝑥,−1) =
log(1−𝑥)

1+𝑥2 ∈ 𝒞(]0, 1]). Therefore, 𝐷 ⊂ [−1, +∞[. If 𝜉 > −1, 𝑓 (♯, 𝜉) ∈ 𝒞( [0, 1]) ⊂ 𝐿1( [0, 1]).
For 𝜉 = −1, 𝑓 (𝑥,−1) = log(1−𝑥)

1+𝑥2 ∈ 𝒞(]0, 1]) ⊂ 𝐿 ( [0, 1]) and since log(1 + 𝑡) = 𝑡 + 𝑜(𝑡),

𝑓 (𝑥,−1) ∼𝑥→0
−𝑥

1 + 𝑥2 = −𝑥,

we have that 𝑓 (♯,−1) ∈ 𝐿1( [0, 1]). We conclude that 𝐷 = [−1, +∞[.
We compute 𝜕𝜉𝐹 applying the differentiation under integral sign theorem:

𝜕𝜉𝐹 (𝜉) =
∫ 1

0
𝜕𝜉 𝑓 (𝑥, 𝜉) 𝑑𝑥.

We notice that, for −1 ⩽ 𝑎 ⩽ 𝜉,
i)

𝜕𝜉 𝑓 (𝑥, 𝜉) =
𝑥

(1 + 𝜉𝑥) (1 + 𝑥2)
, ∀𝑥 ∈]0, 1], ∀𝜉 ⩾ −1.
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ii)

|𝜕𝜉 𝑓 (𝑥, 𝜉) | =
1

|1 + 𝜉𝑥 |
𝑥

1 + 𝑥2 =


𝜉 ⩾ 0, 1

|1+𝜉𝑥 |
𝑥

1+𝑥2 ⩽
𝑥

1+𝑥2 ⩽
1

1+𝑎
𝑥

1+𝑥2 ,

−1 < 𝑎 ⩽ 𝜉 < 0, ⩽ 1
1+𝑎

𝑥

1+𝑥2

⩽
1

1 + 𝑎
𝑥

1 + 𝑥2 =: 𝑔𝑎 (𝑥) ∈ 𝐿1( [0, 1]).

Therefore, we can apply the differentiability theorem and conclude that

𝜕𝜉𝐹 (𝜉) =
∫ 1

0

𝑥

(1 + 𝜉𝑥) (1 + 𝑥2)
𝑑𝑥, ∀𝜉 ⩾ 𝑎.

Since 𝑎 > −1 is arbitrary, we conclude that the previous formula holds for every 𝜉 > −1. Now,
according to Hermite’s decomposition,

𝑥

(1 + 𝜉𝑥) (1 + 𝑥2)
=

𝐴

1 + 𝜉𝑥 + 𝐵𝑥 + 𝐶
1 + 𝑥2 =

𝐴(1 + 𝑥2) + (𝐵𝑥 + 𝐶) (1 + 𝜉𝑥)
(1 + 𝜉𝑥) (1 + 𝑥2)

where, as easily checked, 𝐴 = − 𝜉

1+𝜉2 , 𝐵 = 1
1+𝜉2 and 𝐶 =

𝜉

1+𝜉2 . Therefore

𝜕𝜉𝐹 (𝜉) = − 𝜉

1 + 𝜉2

∫ 1

0

1
1 + 𝜉𝑥 𝑑𝑥 +

1
1 + 𝜉2

∫ 1

0

𝑥 + 𝜉
1 + 𝑥2 𝑑𝑥

= − 1
1 + 𝜉2 [log(1 + 𝜉𝑥)]𝑥=1

𝑥=0 +
1

1 + 𝜉2

([
1
2

log(1 + 𝑥2)
]𝑥=1

𝑥=0
+ 𝜉 [arctan 𝑥]𝑥=1

𝑥=0

)

= − log(1 + 𝜉)
1 + 𝜉2 + 1

1 + 𝜉2

(
1
2

log 2 + 𝜉 𝜋
4

)
.

Therefore, integrating on [0, 𝜉]

𝐹 (𝜉) − 𝐹 (0) = −
∫ 𝜉

0

log(1 + 𝑥)
1 + 𝑥2 𝑑𝑥 + log 2

2
arctan 𝜉 + 𝜋

8
log(1 + 𝜉2).

Now, 𝐹 (0) =
∫ 1

0
log 1
1+𝑥2 𝑑𝑥 = 0 so we finally obtain

𝐹 (𝜉) = −
∫ 𝜉

0

log(1 + 𝑥)
1 + 𝑥2 𝑑𝑥 + log 2

2
arctan 𝜉 + 𝜋

8
log(1 + 𝜉2).

The first integral cannot be further simplified. □

8.3.1. Clearly ∥(𝑥, 𝑦)∥∗ is well defined for every (𝑥, 𝑦) ∈ R2. It verifies positivity and vanishing.
It is also homogeneous as easily checked. However, the triangular inequality is not verified. Take



17

(1, 1) = (1, 0) + (0, 1). We have that ∥(1, 1)∥∗ = (
√

1 +
√

1)2 = 4, but ∥(1, 0)∥∗ = ∥(0, 1)∥∗ = 1,
so if the triangular inequality were true, we should have

4 = ∥(1, 1)∥∗ = ∥(1, 0) + (0, 1)∥∗ ⩽ ∥(1, 0)∥∗ + ∥(0, 1)∥∗ = 1 + 1 = 2,
which is manifestly false. □

8.3.2. We check that ∥ · ∥∞ is a norm on R𝑑 (the other check has been done in class). Clearly,
∥𝑥∥∞ = max 𝑗 |𝑥 𝑗 | is well defined (it is the maximum of a finite number of numbers).

Positivity: evident by definition.
Vanishing: we have ∥𝑥∥∞ = 0 iff max 𝑗 |𝑥 𝑗 | = 0. In particular then, |𝑥 𝑗 | ⩽ 0 for every 𝑗 , that

is |𝑥 𝑗 | = 0 for every 𝑗 , so 𝑥 𝑗 = 0 for every 𝑗 , from which 𝑥 = (0, 0, . . . , 0).
Homogeneity: we have

∥𝛼𝑥∥∞ = max
𝑗

|𝛼𝑥 𝑗 | = max
𝑗

|𝛼 | |𝑥 𝑗 | = |𝛼 | max
𝑗

|𝑥 𝑗 | = |𝛼 |∥𝑥∥∞.

Triangular inequality: We have

∥𝑥 + 𝑦∥∞ = max
𝑗

|𝑥 𝑗 + 𝑦 𝑗 |,

and since
|𝑥 𝑗 + 𝑦 𝑗 | ⩽ |𝑥 𝑗 | + |𝑦 𝑗 | ⩽ max

𝑘
|𝑥𝑘 | + max

𝑘
|𝑦𝑘 | = ∥𝑥∥∞ + ∥𝑦∥∞,

for every 𝑗 , we have
∥𝑥 + 𝑦∥∞ = max

𝑗
|𝑥 𝑗 + 𝑦 + 𝑗 | ⩽ ∥𝑥∥∞ + ∥𝑦∥∞. □

8.3.3. Let ∥ 𝑓 ∥𝑉 := ∥ 𝑓 ∥∞ + ∥ 𝑓 ′∥∞. Then
∥ 𝑓 ∥𝑉 ⩾ ∥ 𝑓 ∥∞,

which means that ∥ · ∥𝑉 is stronger than ∥ · ∥∞. To check that they are not equivalent, we have
to find a family ( 𝑓𝑛) ⊂ 𝑉 = 𝒞

1( [0, 1]) such that ∥ 𝑓𝑛∥∞ ⩽ 𝐶 but ∥ 𝑓𝑛∥𝑉 −→ +∞. Since part of
∥ 𝑓𝑛∥𝑉 is made of ∥ 𝑓𝑛∥∞, we look for 𝑓𝑛 ∈ 𝒞

1 with ”big” derivative. Take
𝑓𝑛 (𝑥) := sin(𝑛𝑥).

Clearly 𝑓𝑛 ∈ 𝒞
1( [0, 1]), for every 𝑛. Morevoer,

∥ 𝑓𝑛∥∞ = max
𝑥∈[0,1]

| sin(𝑛𝑥) | = max
𝑦∈[0,𝑛]

| sin 𝑦 | = 1,

as soon as 𝑛 ⩾ 2. However,
∥ 𝑓𝑛∥𝑉 = ∥ 𝑓𝑛∥∞ + ∥ 𝑓 ′𝑛∥∞ = 1 + ∥ 𝑓 ′𝑛∥∞,

and since
∥ 𝑓 ′𝑛∥∞ = max

𝑥∈[0,1]
|𝑛 cos(𝑛𝑥) | = 𝑛 max

𝑦∈[0,𝑛]
| cos 𝑦 | = 𝑛,
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we conclude that there cannot be a 𝐶 such that

∥ 𝑓 ∥𝑉 ⩽ 𝐶∥ 𝑓 ∥∞, ∀ 𝑓 ∈ 𝑉.
Indeed, if this is true, then 𝑛 = ∥ 𝑓𝑛∥𝑉 ⩽ 𝐶, for every 𝑛 ∈ N. □

8.3.5. i) Let 𝑉 := { 𝑓 ∈ 𝒞
1( [𝑎, 𝑏]) : 𝑓 (𝑎) = 0}, ∥ 𝑓 ∥𝑉 :=

∫ 𝑏
𝑎
| 𝑓 ′(𝑥) | 𝑑𝑥. Since 𝑓 ∈ 𝒞

1, 𝑓 ′ ∈ 𝒞

so also | 𝑓 ′| ∈ 𝒞, and ∥ 𝑓 ∥𝑉 is well defined. We check the characteristic properties fulfilled by
any norm:

• Positivity: evident.

• Vanishing: we have ∥ 𝑓 ∥𝑉 = 0 iff
∫ 𝑏
𝑎
| 𝑓 ′(𝑥) | 𝑑𝑥 = 0. Since | 𝑓 ′| ∈ 𝒞, by a well known

result we have | 𝑓 ′(𝑥) | ≡ 0, so 𝑓 ′ ≡ 0 on [𝑎, 𝑏]. By a well known property of Differential
Calculus, this implies 𝑓 ≡ 𝐶 (constant), and since 𝑓 (𝑎) = 0, we conclude that 𝑓 ≡ 0.

• Homogeneity: we have

∥𝛼 𝑓 ∥𝑉 =

∫ 𝑏

𝑎

| (𝛼 𝑓 )′(𝑥) | 𝑑𝑥 =
∫ 𝑏

𝑎

|𝛼 𝑓 ′(𝑥) | 𝑑𝑥 =
∫ 𝑏

𝑎

|𝛼 | | 𝑓 ′(𝑥) | 𝑑𝑥 = |𝛼 |∥ 𝑓 ∥𝑉 .

• Triang. inequality: we have

∥ 𝑓 + 𝑔∥𝑉 =

∫ 𝑏

𝑎

| 𝑓 ′(𝑥) + 𝑔′(𝑥) | 𝑑𝑥 ⩽
∫ 𝑏

𝑎

| 𝑓 ′(𝑥) | + |𝑔′(𝑥) | 𝑑𝑥 = ∥ 𝑓 ∥𝑉 + ∥𝑔∥𝑉 .

ii) We prove that (𝑉, ∥ · ∥𝑉 ) ↩→ (𝒞( [𝑎, 𝑏]), ∥ · ∥∞). Clearly, 𝑉 = 𝒞
1( [𝑎, 𝑏]) ⊂ 𝒞( [𝑎, 𝑏]).

We need to prove also that ∥ · ∥𝑉 is stronger than ∥ · ∥∞. Let 𝑓 ∈ 𝑉 and 𝑥 ∈ [𝑎, 𝑏]. By the
Fundamental Thm of Integral Calculus,

𝑓 (𝑥) = 𝑓 (𝑎) +
∫ 𝑥

𝑎

𝑓 ′(𝑦) 𝑑𝑦 =
∫ 𝑥

𝑎

𝑓 ′(𝑦) 𝑑𝑦,

so

| 𝑓 (𝑥) | =
����∫ 𝑥

𝑎

𝑓 ′(𝑦) 𝑑𝑦
���� ⩽ ∫ 𝑥

𝑎

| 𝑓 ′(𝑦) | 𝑑𝑦

from which

∥ 𝑓 ∥∞ = max
𝑥∈[𝑎,𝑏]

| 𝑓 (𝑥) | ⩽ max
𝑥∈[𝑎,𝑏]

∫ 𝑥

𝑎

| 𝑓 ′(𝑦) | 𝑑𝑦 =
∫ 𝑏

𝑎

| 𝑓 ′(𝑦) | 𝑑𝑦 = ∥ 𝑓 ∥𝑉 . □

8.3.6. i) Let𝑉 := { 𝑓 ∈ 𝒞
2( [𝑎, 𝑏]) : 𝑓 (𝑎) = 𝑓 (𝑏) = 0} and ∥ 𝑓 ∥𝑉 :=

∫ 𝑏
𝑎
| 𝑓 ′′(𝑥) | 𝑑𝑥. Notice that

∥ 𝑓 ∥𝑉 is well defined for 𝑓 ∈ 𝑉 (=⇒ 𝑓 ′′ ∈ 𝒞, =⇒ | 𝑓 ′′| ∈ 𝒞( [𝑎, 𝑏]) =⇒
∫ 𝑏
𝑎
| 𝑓 ′′| makes sense).

Let’s now check the characteristic properties fulfilled by any norm.
• Positivity: evident.
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• Vanishing: ∥ 𝑓 ∥𝑉 = 0 iff
∫ 𝑏
𝑎
| 𝑓 ′′(𝑥) | 𝑑𝑥 = 0, from which, by a well known property,

| 𝑓 ′′(𝑥) | ≡ 0 on [𝑎, 𝑏], that is 𝑓 ′′ ≡ 0 on [𝑎, 𝑏]. Since 𝑓 ′′ = ( 𝑓 ′)′ ≡ 0, we deduce 𝑓 ′ ≡ 𝐶,
so 𝑓 (𝑥) = 𝐶𝑥 + 𝐷 with 𝐶, 𝐷 constants. Being 𝑓 ∈ 𝑉 we have 0 = 𝑓 (𝑎) = 𝐶𝑎 + 𝐷 and
0 = 𝑓 (𝑏) = 𝐶𝑏 + 𝐷, therefore

𝐶 (𝑎 − 𝑏) = 0, =⇒ 𝐶 = 0,

then 0 = 𝐷. Conclusion: 𝑓 ≡ 0.
• Homogeneity and triangular inequality: straightforward.

ii) Clearly 𝑉 ⊂ 𝒞
1( [𝑎, 𝑏]). Let

∥ 𝑓 ∥𝒞1 = ∥ 𝑓 ∥∞ + ∥ 𝑓 ′∥∞.
We aim to bound this by ∥ 𝑓 ∥𝑉 . We notice that, by the Fundamental Thm of Integral calculus,

𝑓 (𝑥) = 𝑓 (𝑎) +
∫ 𝑥

𝑎

𝑓 ′(𝑦) 𝑑𝑦 =
∫ 𝑥

𝑎

𝑓 ′(𝑦) 𝑑𝑦.

Now, since 𝑓 (𝑎) = 𝑓 (𝑏) = 0, according to Rolle’s theorem there exists 𝑐 ∈ [𝑎, 𝑏] such that
𝑓 ′(𝑐) = 0. Applying the same theorem to 𝑓 ′ we have

𝑓 ′(𝑦) = 𝑓 ′(𝑐) +
∫ 𝑦

𝑐

𝑓 ′′(𝑧) 𝑑𝑧 =
∫ 𝑦

𝑐

𝑓 ′′(𝑧) 𝑑𝑧,

so
𝑓 (𝑥) =

∫ 𝑥

𝑎

(∫ 𝑦

𝑐

𝑓 ′′(𝑧) 𝑑𝑧
)
𝑑𝑦, =⇒ | 𝑓 (𝑥) | ⩽

∫ 𝑥

𝑎

����∫ 𝑦

𝑐

𝑓 ′′(𝑧) 𝑑𝑧
���� 𝑑𝑦.

Now, if 𝑦 ⩾ 𝑐, ����∫ 𝑦

𝑐

𝑓 ′′(𝑧) 𝑑𝑧
���� ⩽ ∫ 𝑦

𝑐

| 𝑓 ′′(𝑧) | 𝑑𝑧 ⩽
∫ 𝑏

𝑎

| 𝑓 ′′(𝑧) | 𝑑𝑧 = ∥ 𝑓 ∥𝑉 ,

while, for 𝑦 ⩽ 𝑐,����∫ 𝑦

𝑐

𝑓 ′′(𝑧) 𝑑𝑧
���� = ����−∫ 𝑐

𝑦

𝑓 ′′(𝑧) 𝑑𝑧
���� = ����∫ 𝑐

𝑦

𝑓 ′′(𝑧) 𝑑𝑧
���� ⩽ ∫ 𝑐

𝑦

| 𝑓 ′′(𝑧) | 𝑑𝑧 ⩽
∫ 𝑏

𝑎

| 𝑓 ′′(𝑧) | 𝑑𝑧 = ∥ 𝑓 ∥𝑉 ,

In any case ����∫ 𝑦

𝑐

𝑓 ′′(𝑧) 𝑑𝑧
���� ⩽ ∥ 𝑓 ∥𝑉 ,

so
| 𝑓 (𝑥) | ⩽

∫ 𝑥

𝑎

∥ 𝑓 ∥𝑉 𝑑𝑦 = (𝑥 − 𝑎)∥ 𝑓 ∥𝑉 , =⇒ ∥ 𝑓 ∥∞ ⩽ (𝑏 − 𝑎)∥ 𝑓 ∥𝑉 ,

and
| 𝑓 ′(𝑦) | =

����∫ 𝑦

𝑐

𝑓 ′′(𝑧) 𝑑𝑧
���� ⩽ ∥ 𝑓 ∥𝑉 , =⇒ ∥ 𝑓 ′∥∞ ⩽ ∥ 𝑓 ∥𝑉 .
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In conclusion

∥ 𝑓 ∥𝒞1 = ∥ 𝑓 ∥∞ + ∥ 𝑓 ′∥∞ ⩽ (𝑏 − 𝑎 + 1) ∥ 𝑓 ∥𝑉 , ∀ 𝑓 ∈ 𝑉. □

9.4.2. Let’s start showing that

∃𝐶 > 0, : (𝑢 + 𝑣)𝑝 ⩽ 𝐶 (𝑢𝑝 + 𝑣𝑝), ∀𝑢, 𝑣 ⩾ 0.

Since for 𝑢 = 0 or 𝑣 = 0 it is sufficient 𝐶 = 1, we suppose 𝑢, 𝑣 > 0. In this case the inequality is
equivalent to (𝑢

𝑣
+ 1

) 𝑝
⩽ 𝐶

((𝑢
𝑣

) 𝑝
+ 1

)
,

that is, setting 𝑡 = 𝑢
𝑣
> 0,

(𝑡 + 1)𝑝 ⩽ 𝐶 (𝑡 𝑝 + 1), ⇐⇒ (𝑡 + 1)𝑝
𝑡 𝑝 + 1

⩽ 𝐶, ∀𝑡 > 0.

Now, let 𝜑(𝑡) := (𝑡+1)𝑝
𝑡 𝑝+1 ⩾ 0. Clearly 𝜑 ∈ 𝒞( [0, +∞[) and since 𝜑(+∞) = 1, 𝜑 must be bounded.

We can actually find its maximum:

𝜑′(𝑡) = 𝑝(𝑡 + 1)𝑝−1(𝑡 𝑝 + 1) − (𝑡 + 1)𝑝𝑝𝑡 𝑝−1

(𝑡 𝑝 + 1)2 = 𝑝(𝑡 + 1)𝑝−1 𝑡
𝑝 + 1 − 𝑡 𝑝−1(𝑡 + 1)

(𝑡 𝑝 + 1)2

so
𝜑′(𝑡) ⩾ 0, ⇐⇒ 𝑡 𝑝 + 1 − 𝑡 𝑝 − 𝑡 𝑝−1 ⩾ 0, ⇐⇒ 𝑡 𝑝−1 ⩽ 1, ⇐⇒ 𝑡 ⩽ 1.

So, 𝜑 attains its global maximum at 𝑡 = 1, with 𝜑(1) = 2𝑝

2 = 2𝑝−1. We conclude that the
inequality holds with 𝐶 = 2𝑝−1, that is

(𝑢 + 𝑣)𝑝 ⩽ 2𝑝−1(𝑢𝑝 + 𝑣𝑝), ∀𝑢, 𝑣 ⩾ 0.

We can now prove that 𝐿𝑝 is a vector space: if 𝑓 , 𝑔 ∈ 𝐿𝑝 then∫
𝑋

| 𝑓 + 𝑔 |𝑝 𝑑𝜇 ⩽
∫
𝑋

( | 𝑓 | + |𝑔 |)𝑝 𝑑𝜇 ⩽
∫
𝑋

2𝑝−1 ( | 𝑓 |𝑝 + |𝑔 |𝑝) 𝑑𝜇 = 2𝑝−1 (
∥ 𝑓 ∥𝑝𝑝 + ∥𝑔∥𝑝𝑝

)
< +∞,

Easily 𝛼 𝑓 ∈ 𝐿𝑝 if 𝛼 ∈ R and 𝑓 ∈ 𝐿𝑝. □

9.4.3. i) The concavity of log 𝑡 means that

log (𝜆𝑡 + (1 − 𝜆)𝑠) ⩾ 𝜆 log 𝑡 + (1 − 𝜆) log 𝑠, ∀𝑠, 𝑡 > 0, ∀𝜆 ∈ [0, 1] .
From this

log
(
𝑡𝜆𝑠1−𝜆

)
⩽ log (𝜆𝑡 + (1 − 𝜆)𝑠) ,

from which
𝑡𝜆𝑠1−𝜆 ⩽ 𝜆𝑡 + (1 − 𝜆)𝑠.

Now, chose 𝜆 − 1
𝑝

so 1 − 𝜆 = 1 − 1
𝑝
=: 1

𝑞
, 𝑡 = 𝑎𝑝 and 𝑠 = 𝑏𝑞 and you have the conclusion.
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ii) Noticed that ����∫
𝑋

𝑓 𝑔 𝑑𝜇

���� ⩽ ∫
𝑋

| 𝑓 | |𝑔 | 𝑑𝜇,

we prove that this last is ⩽ ∥ 𝑓 ∥𝑝 ∥𝑔∥𝑞. We start noticing that, as in CS inequality, the conclusion
is trivial if one of ∥ 𝑓 ∥𝑝 and ∥𝑔∥𝑞 is 0: in this case one of 𝑓 or 𝑔 would be 0 a.e. and the
inequality is trivial. So we assume ∥ 𝑓 ∥𝑝, ∥𝑔∥𝑞 > 0. The conclusion is then equivalent to prove
that ∫

𝑋

| 𝑓 |
∥ 𝑓 ∥𝑝

|𝑔 |
∥𝑔∥𝑞

𝑑𝜇 ⩽ 1.

Applying Young’s inequality with 𝑎 =
| 𝑓 |

∥ 𝑓 ∥𝑝 and 𝑏 =
|𝑔 |
∥𝑔∥𝑞 , we have∫

𝑋

| 𝑓 |
∥ 𝑓 ∥𝑝

|𝑔 |
∥𝑔∥𝑞

𝑑𝜇 ⩽

∫
𝑋

1
𝑝

| 𝑓 |𝑝

∥ 𝑓 ∥𝑝𝑝
+ 1
𝑞

|𝑔 |𝑞

∥𝑔∥𝑞𝑞
𝑑𝜇 =

1
𝑝

∫
𝑋
| 𝑓 |𝑝 𝑑𝜇
∥ 𝑓 ∥𝑝𝑝

+ 1
𝑞

∫
𝑋
|𝑔 |𝑞 𝑑𝜇
∥𝑔∥𝑞𝑞

=
1
𝑝
+ 1
𝑞
= 1. □

9.4.4. Following the hint, we have

∥ 𝑓 + 𝑔∥𝑝𝑝 ⩽
∫
𝑋

| 𝑓 | | 𝑓 + 𝑔 |𝑝−1 𝑑𝜇 +
∫
𝑋

|𝑔 | | 𝑓 + 𝑔 |𝑝−1 𝑑𝜇.

By Hölder’s inequality we have∫
𝑋

| 𝑓 | | 𝑓 + 𝑔 |𝑝−1 𝑑𝜇 ⩽ ∥ 𝑓 ∥𝑝 ∥| 𝑓 + 𝑔 |𝑝−1∥𝑞,
∫
𝑋

|𝑔 | | 𝑓 + 𝑔 |𝑝−1 𝑑𝜇 ⩽ ∥𝑔∥𝑝 ∥| 𝑓 + 𝑔 |𝑝−1∥𝑞 .

Now,

∥| 𝑓 + 𝑔 |𝑝−1∥𝑞 =
(∫
𝑋

(
| 𝑓 + 𝑔 |𝑝−1

)𝑞
𝑑𝜇

)1/𝑞
=

(∫
𝑋

| 𝑓 + 𝑔 |𝑞(𝑝−1) 𝑑𝜇

)1/𝑞
,

and since 1
𝑞
= 1 − 1

𝑝
=

𝑝−1
𝑝

, 𝑞 =
𝑝

𝑝−1 so 𝑞(𝑝 − 1) = 𝑝, from which

∥| 𝑓 + 𝑔 |𝑝−1∥𝑞 =
(∫
𝑋

| 𝑓 + 𝑔 |𝑝 𝑑𝜇
)1/𝑞

=

((∫
𝑋

| 𝑓 + 𝑔 |𝑝 𝑑𝜇
)1/𝑝

) 𝑝/𝑞
= ∥ 𝑓 + 𝑔∥

𝑝

𝑞

𝑝 = ∥ 𝑓 + 𝑔∥𝑝−1
𝑝 .

Therefore
∥ 𝑓 + 𝑔∥𝑝𝑝 ⩽ ∥ 𝑓 ∥𝑝 ∥ 𝑓 + 𝑔∥𝑝−1

𝑝 + ∥𝑔∥𝑝 ∥ 𝑓 + 𝑔∥𝑝−1
𝑝 .

Now, if ∥ 𝑓 + 𝑔∥𝑝 = 0 the triangular inequality is evident. Otherwise, from last inequality and
dividing vy ∥ 𝑓 + 𝑔∥𝑝−1

𝑝 we obtain the conclusion. □

9.4.5. i) By CS inequality,

∥ 𝑓 ∥1 =

∫
𝑋

| 𝑓 | 𝑑𝜇 =

∫
𝑋

| 𝑓 | · 1 𝑑𝜇 ⩽ ∥ 𝑓 ∥2∥1∥2,
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where ∥1∥2 =

(∫
𝑋

12 𝑑𝜇
)1/2

=
√︁
𝜇(𝑋), so

∥ 𝑓 ∥1 ⩽
√︁
𝜇(𝑋)∥ 𝑓 ∥2.

ii) If 𝜇(𝑋) = +∞, i) is false in general. For example 𝑋 = [0, +∞[ and 𝑓𝑛 (𝑥) := 1
1+𝑥1[0,𝑛] (𝑥).

Then 𝑓𝑛 ∈ 𝐿1 ∩ 𝐿2 because 𝑓𝑛 ∈ 𝒞( [0, 𝑛]) and 𝑓 ≡ 0 on [𝑛, +∞[. We have

∥ 𝑓𝑛∥1 =

∫ +∞

0
| 𝑓𝑛 (𝑥) | 𝑑𝑥 =

∫ 𝑛

0

1
1 + 𝑥 𝑑𝑥 = [log(1 + 𝑥)]𝑥=𝑛𝑥=0 = log(𝑛 + 1),

and
∥ 𝑓𝑛∥2 =

∫ 𝑛

0

1
(1 + 𝑥)2 𝑑𝑥 =

[
− 1

1 + 𝑥

]𝑥=𝑛
𝑥=0

= 1 − 1
𝑛 + 1

⩽ 1.

If ∥ · ∥2 were stronger than ∥ · ∥1 there would be a constant 𝐶 > 0 such that
∥ 𝑓 ∥1 ⩽ 𝐶∥ 𝑓 ∥2,

But then,
log(𝑛 + 1) = ∥ 𝑓𝑛∥1 ⩽ 𝐶, ∀𝑛 ∈ N,

and this is impossible.
iii) As suggested, let’s take 𝑋 = [0, 1] with Lebesgue’s measure. We already know that

∥ · ∥2 is stronger than ∥ · ∥1. The vice versa does not hold. Take 𝑓𝑛 (𝑥) = 1√
𝑥
1[1/𝑛,1] (𝑥). Easily,

𝑓𝑛 ∈ 𝐿1 ∩ 𝐿2. We have

∥ 𝑓𝑛∥1 =

∫ 1

1/𝑛

1
√
𝑥
𝑑𝑥 =

[
2
√
𝑥
]𝑥=1
𝑥=1/𝑛 = 2

(
1 −

√︂
1
𝑛

)
⩽ 2,

while

∥ 𝑓𝑛∥2
2 =

∫ 1

1/𝑛

1
𝑥
𝑑𝑥 = [log 𝑥]𝑥=1

𝑥=1/𝑛 = − log
1
𝑛
= log 𝑛.

If ∥ · ∥1 were stronger than ∥ · ∥1, there would be a constant 𝐶 such that√︁
log 𝑛 = ∥ 𝑓𝑛∥2 ⩽ 𝐶∥ 𝑓𝑛∥1 ⩽ 2𝐶, ∀𝑛 ∈ N, 𝑛 ⩾ 1,

but this is manifestly impossible.
iv) If 𝑋 is a finite set, say 𝑋 = {1, . . . , 𝑑}, and 𝜇 is the counting measure, then

∥ 𝑓 ∥1 =

∫
𝑋

| 𝑓 | 𝑑𝜇 =

𝑑∑︁
𝑗=1

| 𝑓 ( 𝑗) |,

while

∥ 𝑓 ∥2 =

(∫
𝑋

| 𝑓 | 𝑑𝜇
)1/2

=
©­«
𝑑∑︁
𝑗=1

| 𝑓 ( 𝑗) |2ª®¬
1/2

.
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Identifying 𝑓 with the array ( 𝑓 (1), . . . , 𝑓 (𝑑)) ∈ R𝑑 , and recalling that on finite dimensional
spaces any two norms are equivalent, there exists 𝐶 > 0 such that

∥ 𝑓 ∥2 =
©­«
𝑑∑︁
𝑗=1

| 𝑓 ( 𝑗) |2ª®¬
1/2

⩽ 𝐶
𝑑∑︁
𝑗=1

| 𝑓 ( 𝑗) | = ∥ 𝑓 ∥1. □

9.4.6. i) The answer is false in general. For example, 𝑓 (𝑥) = 1
1+|𝑥 | ∈ 𝐿

2(R) ( 𝑓 ∈ 𝒞(R) ⊂ 𝐿 (R),∫
R
| 𝑓 |2 < +∞ being | 𝑓 |2 ∼+∞

1
|𝑥 |2 which is integrable at ±∞), but 𝑓 ∉ 𝐿1(R) (

∫
R
| 𝑓 | = +∞ being

| 𝑓 | ∼+∞
1
|𝑥 | which is not integrable at ±∞).

ii) We know ∫
R
|𝑥 𝑓 (𝑥) |2 𝑑𝑥 =

∫
R
𝑥2 𝑓 (𝑥)2 𝑑𝑥 < +∞.

Writing

∥ 𝑓 ∥1 =

∫
R
| 𝑓 | =

∫ −1

−∞
| 𝑓 | +

∫ 1

−1
| 𝑓 | +

∫ +∞

1
| 𝑓 |,

by the CS inequality we get∫ 1

−1
| 𝑓 | ⩽

(∫ 1

−1
12 𝑑𝑥

)1/2 (∫ 1

−1
| 𝑓 |2 𝑑𝑥

)1/2

=
√

2∥ 𝑓 1[−1,1] ∥2,

and ∫ +∞

1
| 𝑓 | 𝑑𝑥 =

∫ +∞

1

1
𝑥
|𝑥 𝑓 (𝑥) | 𝑑𝑥 ⩽

(∫ +∞

1

1
𝑥2 𝑑𝑥

)1/2
∥𝑥 𝑓 1[1,+∞[∥2 = ∥𝑥 𝑓 1[1,+∞[∥2

and, similarly, ∫ −1

−∞
| 𝑓 | 𝑑𝑥 ⩽ ∥𝑥 𝑓 1]−∞,1] ∥2.

Therefore
∥ 𝑓 ∥1 ⩽

√
2∥ 𝑓 1[−1,1] ∥2 + ∥𝑥 𝑓 1]−∞,1] ∥2 + ∥𝑥 𝑓 1[1,+∞[∥2.

On the other hand

∥𝑥 𝑓 ∥2
2 =

∫ −1

−∞
|𝑥 𝑓 |2 𝑑𝑥 +

∫ 1

−1
|𝑥 𝑓 |2 +

∫ +∞

1
|𝑥 𝑓 |2 ⩾ ∥𝑥 𝑓 1]−∞,1] ∥2

2 + ∥𝑥 𝑓 1[1,+∞[∥2
2,

so

∥𝑥 𝑓 ∥2 ⩾
(
∥𝑥 𝑓 1]−∞,1] ∥2

2 + ∥𝑥 𝑓 1[1,+∞[∥2
2

)1/2
,
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Since (𝑎 + 𝑏)2 ⩽ 2(𝑎2 + 𝑏2), that os 𝑎 + 𝑏 ⩽
√

2(𝑎2 + 𝑏2)1/2, we finally get

∥ 𝑓 ∥1 ⩽
√

2∥ 𝑓 1[−1,1] ∥2 + ∥𝑥 𝑓 1]−∞,1] ∥2 + ∥𝑥 𝑓 1[1,+∞[∥2

⩽
√

2
(
∥ 𝑓 1[−1,1] ∥2 +

(
∥𝑥 𝑓 1]−∞,1] ∥2

2 + ∥𝑥 𝑓 1[1,+∞[∥2
2
)1/2

)
⩽
√

2 (∥ 𝑓 ∥2 + ∥𝑥 𝑓 ∥2) . □

9.4.7. i) As in Chebyshev’s inequality, for 𝛼 > 0,

𝜇( | 𝑓 | ⩾ 𝛼) =
∫
| 𝑓 |⩾𝛼

1 𝑑𝜇 ⩽
∫
| 𝑓 |⩾𝛼

(
| 𝑓 |
𝛼

) 𝑝
𝑑𝜇 =

1
𝛼𝑝

∫
| 𝑓 |⩾𝛼

| 𝑓 |𝑝 𝑑𝜇 ⩽ 1
𝛼𝑝

∥ 𝑓 ∥𝑝𝑝 .

ii) We have

𝛼𝑝𝜇( | 𝑓 | ⩾ 𝛼) ⩽
∫
| 𝑓 |⩾𝛼

| 𝑓 |𝑝 𝑑𝜇.

Defining

𝜈(𝐸) :=
∫
𝐸

| 𝑓 |𝑝 𝑑𝜇,

we have a well defined measure on (𝑋,ℱ), with 𝜈(𝑋) =
∫
𝑋
| 𝑓 |𝑝 𝑑𝜇 = ∥ 𝑓 ∥𝑝𝑝 < +∞ (because

𝑓 ∈ 𝐿𝑝). In particular, continuity from above applies, and since {| 𝑓 | ⩾ 𝛼} ↓ {| 𝑓 | = +∞}, we
have that

lim
𝛼→+∞

𝛼𝑝𝜇( | 𝑓 | ⩾ 𝛼) ⩽ lim
𝛼→+∞

𝜈( | 𝑓 | ⩾ 𝛼) = 𝜈( | 𝑓 | = +∞) =
∫
| 𝑓 |=+∞

| 𝑓 |𝑝 𝑑𝜇.

Since
∫
𝑋
| 𝑓 |𝑝 𝑑𝜇 < +∞, | 𝑓 | < +∞ 𝜇-a.e., thus 𝜇( | 𝑓 | = +∞) = 0, from which 𝜈( | 𝑓 | = +∞) =

0. □

9.4.8. i) Applying CS inequality on [0, 𝑥], we get����∫ 𝑥

0
𝑓 (𝑦) 𝑑𝑦

���� =

����∫ 𝑥

0
𝑦−1/4𝑦1/4 𝑓 (𝑦) 𝑑𝑦

���� 𝐶𝑆⩽ (∫ 𝑥

0
𝑦−1/2 𝑑𝑦

)1/2 (∫ 𝑥

0
𝑦1/2 𝑓 (𝑦)2 𝑑𝑦

)1/2

= (2
√
𝑥)1/2

(∫ 𝑥

0
𝑦1/2 𝑓 (𝑦)2 𝑑𝑦

)1/2

from which we have the conclusion.
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ii) Let 𝑔(𝑥) := 1
𝑥

∫ 𝑥
0 𝑓 (𝑦) 𝑑𝑦. We have

∥𝑔∥2
2 =

∫ +∞

0
|𝑔 |2 =

∫ +∞

0

1
𝑥2

(∫ 𝑥

0
𝑓 (𝑦) 𝑑𝑦

)2
𝑑𝑦

𝑖)
⩽

∫ +∞

0

1
𝑥2 2𝑥1/2

∫ 𝑥

0
𝑦1/2 𝑓 (𝑦)2 𝑑𝑦 𝑑𝑥 = 2

∫ +∞

0
𝑥−3/2

∫ 𝑥

0
𝑦1/2 𝑓 (𝑦)2 𝑑𝑦 𝑑𝑥

𝐹𝑢𝑏𝑖𝑛𝑖
= 2

∫ +∞

0
𝑦1/2 𝑓 (𝑦)2

∫ +∞

𝑦

𝑥−3/2 𝑑𝑥︸          ︷︷          ︸
=[−2𝑥−1/2] 𝑥=+∞𝑥=𝑦

=2𝑦−1/2

𝑑𝑦

= 4
∫ +∞

0
𝑦1/2 𝑓 (𝑦)2𝑦−1/2 𝑑𝑦 = 4∥ 𝑓 ∥2

2. □

9.4.9. Let 𝑓 ∈ 𝐿𝑝, 𝑔 ∈ 𝐿𝑞 and ℎ ∈ 𝐿𝑟 with 1 < 𝑝, 𝑞, 𝑟 < +∞ such that 1
𝑝
+ 1
𝑞
+ 1
𝑟
= 1. Then

∥ 𝑓 𝑔ℎ∥1 =

∫
𝑋

| 𝑓 | |𝑔 | |ℎ| 𝑑𝜇 =

∫
𝑋

| 𝑓 | ( |𝑔 | |ℎ|) 𝑑𝜇
𝐻

⩽

(∫
𝑋

| 𝑓 |𝑝 𝑑𝜇
)1/𝑝 (∫

𝑋

( |𝑔 | |ℎ |)𝑠 𝑑𝜇
)1/𝑠

,

where 1
𝑝
+ 1
𝑠
= 1, that is 1

𝑠
= 1− 1

𝑝
= 1

𝑞
+ 1
𝑟
. Let 𝛼 > 0 be such that 𝑠𝛼 = 𝑞, that is 𝛼 =

𝑞

𝑠
. Notice

that, since 1
𝑠
> 1

𝑞
, 𝛼 =

𝑞

𝑠
> 1. Similarly, let 𝛽 be such that 𝑠𝛽 = 𝑟 , that is 𝛽 = 𝑟

𝑠
. As above 𝛽 > 1

and moreover
1
𝛼
+ 1
𝛽
=
𝑠

𝑞
+ 𝑠
𝑟
= 𝑠

(
1
𝑞
+ 1
𝑟

)
= 𝑠 · 1

𝑠
= 1.

Therefore, by Hölder inequality,∫
𝑋

|𝑔 |𝑠 |ℎ |𝑠 𝑑𝜇 ⩽
(∫
𝑋

|𝑔 |𝛼𝑠 𝑑𝜇
)1/𝛼 (∫

𝑋

|ℎ |𝛽𝑠 𝑑𝜇
)1/𝛽

= ∥𝑔∥𝑠𝑞 ∥ℎ∥𝑠𝑟 ,

from which (∫
𝑋

( |𝑔 | |ℎ|)𝑠 𝑑𝜇
)1/𝑠
⩽

(
∥𝑔∥𝑠𝑞 ∥ℎ∥𝑠𝑟

)1/𝑠
= ∥𝑔∥𝑞 ∥ℎ∥𝑟 ,

and now the conclusion follows. □

10.3.1. #1. Let 𝑓𝑛 (𝑥) := 1
𝑛
1[0,𝑛] (𝑥). For 𝑥 ⩾ 0 fixed, as soon as 𝑛 ⩾ [𝑥] + 1 we have

𝑓𝑛 (𝑥) = 1
𝑛
−→ 0. So 𝑓𝑛

𝑝𝑤
−→ 0 everywhere on [0, +∞[. Since we hawe pw convergence, the

unique possible 𝐿𝑝 limit is the pw limit, thus 0. We have

∥ 𝑓𝑛 − 0∥1 = ∥ 𝑓𝑛∥1 =

∫ +∞

0

1
𝑛

1[0,𝑛] 𝑑𝑥 =
1
𝑛

∫ 𝑛

0
𝑑𝑥 ≡ 1 ̸−→ 0,
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so 𝑓𝑛
𝐿1

̸−→ 0, hence ( 𝑓𝑛) cannot be convergent in 𝐿1 (if 𝑓𝑛
𝐿1

−→ 𝑓 then, modulo a subsequence,
𝑓𝑛𝑘

𝑝𝑤
−→ 𝑓 a.e., but 𝑓𝑛

𝑝𝑤
−→ 0, whence 𝑓 = 0 a.e.). Similar argument for 𝐿2 convergence: the

unique possible limit candidate is 𝑓 = 0:

∥ 𝑓𝑛 − 𝑓 ∥2
2 = ∥ 𝑓𝑛∥2

2 =

∫ +∞

0

����1𝑛1[0,𝑛]

����2 =
1
𝑛2

∫ 𝑛

0
1 𝑑𝑥 =

1
𝑛
−→ 0,

so 𝑓𝑛
𝐿2

−→ 0. For 𝐿∞ convergence, since this implies pw convergence, the unique possibility is
𝑓𝑛

𝐿∞−→ 0. We have

∥ 𝑓𝑛 − 0∥∞ = ∥ 𝑓𝑛∥∞ = ess. sup𝑥⩾0 | 𝑓𝑛 (𝑥) | =
1
𝑛
−→ 0.

#2. Let 𝑥 ⩾ 0. Here we distinguish 𝑥 = 0 from 𝑥 > 0. In the first case we have 𝑓𝑛 (0) = 𝑛 −→
+∞. For 𝑥 > 0, as soon as 1

𝑛
< 𝑥 (that is, for 𝑛 > 1

𝑥
, or 𝑛 ⩾ [ 1

𝑥
] +1) we have 𝑓𝑛 (𝑥) = 0 −→ 0. We

conclude that 𝑓𝑛
𝑝𝑤
−→ 0 a.e. on [0, +∞[. Because of a.e. pw convergence, the unique possibility

for 𝑓𝑛
𝐿1

−→ 𝑓 is 𝑓 = 0. We have

∥ 𝑓𝑛 − 𝑓 ∥1 = ∥ 𝑓𝑛∥1 =

∫ 1/𝑛

0
𝑛 𝑑𝑥 ≡ 1 ̸−→ 0.

Thus, ( 𝑓𝑛) is not convergent in 𝐿1. Similar for 𝐿2 convergence:

∥ 𝑓𝑛 − 𝑓 ∥2
2 = ∥ 𝑓𝑛∥2

2 =

∫ 1/𝑛

0
𝑛2 𝑑𝑥 = 𝑛 −→ +∞,

so ( 𝑓𝑛) is not convergent in 𝐿2. For 𝐿∞ convergence,

∥ 𝑓𝑛 − 𝑓 ∥∞ = ess. sup𝑥⩾0 | 𝑓𝑛 (𝑥) | = 𝑛 −→ +∞,
so ( 𝑓𝑛) is not convergent in 𝐿∞.

#3. Let 𝑓𝑛 (𝑥) :=
∑𝑛
𝑘=1

1
𝑘
1[𝑘,𝑘+ 1

2𝑛 ]
(𝑥). For 𝑥 ⩾ 0 fixed, there exists a unique 𝑁 such that

𝑥 ∈ [𝑁, 𝑁 + 1[. In particular, 1[𝑘,𝑘+ 1
2𝑛 ]

(𝑥) = 0 for all 𝑘 except, at most, for 𝑘 = 𝑁 . Now, if
𝑥 = 𝑁 , 1[𝑁,𝑁+1/2𝑛] (𝑥) = 1 for every 𝑛, so, for 𝑛 ⩾ 𝑁 ,

𝑓𝑛 (𝑥) =
1
𝑁

1[𝑁,𝑁+1/2𝑛] (𝑥) =
1
𝑁

−→ 1
𝑁
.

If 𝑥 ∈]𝑁, 𝑁 + 1[ then, for 𝑛 ⩾ 𝑁 and such that 𝑁 + 1
2𝑛 < 𝑥 (this happens for 𝑛 → +∞ being

𝑁 + 1
2𝑛 −→ 𝑁), we have

𝑓𝑛 (𝑥) =
1
𝑁

1[𝑁,𝑁+1/2𝑛] (𝑥) = 0.
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Conclusion:

𝑓𝑛 (𝑥) −→
{ 1

𝑁
, 𝑥 = 𝑁 ∈ N,

0, 𝑥 ∉ N.

Thus, 𝑓𝑛
𝑝𝑤
−→ 0 a.e. on [0, +∞[.

About 𝐿1 convergence, the unique possible limit is 0. We have

∥ 𝑓𝑛 − 0∥1 = ∥ 𝑓𝑛∥1
𝑓𝑛⩾0
=

∫ +∞

0

𝑛∑︁
𝑘=1

1
𝑘

1[𝑘,𝑘+ 1
2𝑛 ]

(𝑥) 𝑑𝑥 = 1
2𝑛

𝑛∑︁
𝑘=1

1
𝑘

Now, since
∑𝑛
𝑘=1

1
𝑘
≍ log 𝑛 we have ∥ 𝑓𝑛 − 0∥1 ≍ log 𝑛

2𝑛 −→ 0, so 𝑓𝑛
𝐿1

−→ 0.
Similarly,

∥ 𝑓𝑛 − 0∥2
2 = ∥ 𝑓𝑛∥2

2 =

∫ +∞

0

(
𝑛∑︁
𝑘=1

1
𝑘

1[𝑘,𝑘+ 1
2𝑛 ]

(𝑥)
)2

𝑑𝑥

As said above, for every 𝑥 ⩾ 0 fixed, only at most one of 1[𝑘,𝑘+ 1
2𝑛 ]

(𝑥) is = 1. Therefore(
𝑛∑︁
𝑘=1

1
𝑘

1[𝑘,𝑘+ 1
2𝑛 ]

(𝑥)
)2

=

𝑛∑︁
𝑘=1

1
𝑘2 1[𝑘,𝑘+ 1

2𝑛 ]
(𝑥)

whence

∥ 𝑓𝑛 − 0∥2
2 =

∫ +∞

0

𝑛∑︁
𝑘=1

1
𝑘2 1[𝑘,𝑘+ 1

2𝑛 ]
(𝑥) 𝑑𝑥 = 1

2𝑛
𝑛∑︁
𝑘=1

1
𝑘2 −→ 0,

being
∑∞
𝑘=1

1
𝑘2 < +∞. □

10.3.3. A quick plot of 𝑓𝑛:

-1 11/n

1

We see that, for 𝑥 ⩽ 0, 𝑓𝑛 (𝑥) ≡ 1 −→ 1. For 𝑥 > 0, taking 𝑛 such that 1
𝑛
< 𝑥, that is 𝑛 > 1

𝑥
or

𝑛 ⩾
[ 1
𝑥

]
+ 1, we have 𝑓𝑛 (𝑥) = 0 −→ 0. Thus

𝑓𝑛
𝑝𝑤
−→ 1[−1,0] .
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In this case 1[−1,0] can be the unique possible 𝐿2 limit. We notice that 1[−1,0] ∈ 𝐿2 and

∥ 𝑓𝑛 − 1[−1,0] ∥2
2 =

∫ 1/𝑛

0

���√1 − 𝑛𝑥
���2 𝑑𝑥 = ∫ 1/𝑛

0
1 − 𝑛𝑥 𝑑𝑥 = 1

𝑛
− 𝑛

[
𝑥2

2

]𝑥=1/𝑛

𝑥=0
=

1
2𝑛

→ 0,

so 𝑓𝑛
𝐿2

−→ 1[−1,0] . □

10.3.5. The graph of 𝑓𝑛:

1

Clearly, 𝑓𝑛 ∈ 𝒞( [0, +∞[) and since 𝑓𝑛 (𝑥) ∼+∞
1
𝑥𝑛

is integrable at +∞ for every 𝑛 ⩾ 2, we have
𝑓𝑛 ∈ 𝐿1( [0, +∞[) for every 𝑛 ⩾ 2. We notice that

𝑥𝑛 −→


0, 0 ⩽ 𝑥 < 1,
1, 𝑥 = 1,
+∞, 𝑥 > 1.

=⇒ 𝑓𝑛 (𝑥) =
1

1 + 𝑥𝑛 −→


1, 0 ⩽ 𝑥 < 1,
1
2 , 𝑥 = 1,
0, 𝑥 > 1.

So, 𝑓𝑛
𝑝𝑤 𝑎.𝑒.
−→ 1[0,1] . Since this is the unique possible 𝐿1 limit, let’s check this. We have

∥ 𝑓𝑛− 𝑓 ∥1 =

∫ +∞

0
| 𝑓𝑛− 𝑓 | =

∫ 1

0

���� 1
1 + 𝑥𝑛 − 1

���� 𝑑𝑥+∫ +∞

1

1
1 + 𝑥𝑛 𝑑𝑥 = 1−

∫ 1

0

1
1 + 𝑥𝑛 𝑑𝑥+

∫ +∞

1

1
1 + 𝑥𝑛 𝑑𝑥.

On [0, 1] we have
i) 1

1+𝑥𝑛 −→ 1 a.e. 𝑥 ∈ [0, 1];
ii) 0 ⩽ 1

1+𝑥𝑛 ⩽ 1 ∈ 𝐿1( [0, 1]), ∀𝑥 ∈ [0, 1], ∀𝑛 ∈ N.
Therefore, dominated convergence applies and∫ 1

0

1
1 + 𝑥𝑛 𝑑𝑥 −→

∫ 1

0
1 𝑑𝑥 = 1.

On [1, +∞[, noticed that 𝑥𝑛 ↑ in 𝑛, 1
1+𝑥𝑛 ↓ in 𝑛, for every 𝑥 ⩾ 1, and since 1

1+𝑥2 ∈ 𝐿1( [1, +∞[),
decreasing monotone convergence (or dominated convergence) applies and∫ +∞

1

1
1 + 𝑥𝑛 𝑑𝑥 −→

∫ +∞

1
0 𝑑𝑥 = 0.
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Gathering these facts together, we get ∥ 𝑓𝑛 − 𝑓 ∥1 −→ 0, thus 𝑓𝑛
𝐿1

−→ 𝑓 . □

10.3.6. All the proposed norms are true norm. This is evident for ∥ · ∥∗ being ∥ · ∥∞ a norm. For
∥ · ∥∗∗ we have that it is well defined ( 𝑓 ∈ 𝒞

1 means 𝑓 ′ ∈ 𝒞, thus ∥ 𝑓 ′∥∞ makes sense). Let’s
check the characteristic properties:

i) Positivity: evident.
ii) Vanishing: we have

∥ 𝑓 ∥∗∗ = 0, ⇐⇒


| 𝑓 (0) | = 0,

∥ 𝑓 ′∥∞ = 0,
⇐⇒


𝑓 (0) = 0,

𝑓 ′(𝑥) ≡ 0.

From the second, 𝑓 ≡ 𝐶 (constant), and since 𝑓 (0) = 0, we get 𝑓 ≡ 0.
iii) Homogeneity and triangular inequality: straightforward.

For ∥ · ∥∗∗∗ we have ∥ 𝑓 ∥∗∗∗ = | 𝑓 (1) | + ∥ 𝑓 ′∥1. Again, this is well defined because 𝑓 ′ ∈ 𝒞( [0, 1]).
Let’s check the characteristic properties:

i) Positivity: evident.
ii) Vanishing: we have

∥ 𝑓 ∥∗∗∗ = 0, ⇐⇒


| 𝑓 (1) | = 0,

∥ 𝑓 ′∥1 = 0,
⇐⇒


𝑓 (1) = 0,

𝑓 ′(𝑥) ≡ 0 (being 𝑓 ′ ∈ 𝒞)
From the second, 𝑓 ≡ 𝐶 (constant), and since 𝑓 (1) = 0, we get 𝑓 ≡ 0.

iii) Homogeneity and triangular inequality: straightforward.

Let now 𝑓𝑛 (𝑥) := 1
𝑛

sin(𝑛2𝑥). We notice that 𝑓𝑛
𝑝𝑤
−→ 0. We have

∥ 𝑓𝑛∥∗ = ∥ 𝑓𝑛∥∞ + ∥ 𝑓 ′𝑛∥∞,
where

∥ 𝑓𝑛∥∞ = max𝑥∈[0,1] 1
𝑛
| sin(𝑛2𝑥) | = 1

𝑛
max𝑦∈[0,𝑛]2 | sin 𝑦 | = 1

𝑛
,

∥ 𝑓 ′𝑛∥∞ = max𝑥∈[0,1] 1
𝑛
|𝑛2 cos(𝑛2𝑥) | = 𝑛max𝑦∈[0,𝑛] | cos 𝑦 | = 𝑛,

so ∥ 𝑓𝑛∥∗ = 1
𝑛
+ 𝑛 −→ +∞, thus ( 𝑓𝑛) is unbounded, whence it cannot have a limit in ∥ · ∥∗.

Similarly, being 𝑓𝑛 (0) = 0,
∥ 𝑓𝑛∥∗∗ = 𝑛 −→ +∞,

so ( 𝑓𝑛) cannot be convergent for ∥ · ∥∗∗ too.
Finally, | 𝑓𝑛 (1) | = 1

𝑛
sin 𝑛2 and

∥ 𝑓 ′𝑛∥1 =

∫ 1

0
|𝑛 cos(𝑛2𝑥) | 𝑑𝑥 = 1

𝑛

∫ 𝑛2

0
| cos 𝑦 | 𝑑𝑦.
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Since
∫ 𝜋/2

0 | cos 𝑦 | 𝑑𝑦 = 1, if 𝐾 ∈ N is such that 𝐾 𝜋
2 ⩽ 𝑛

2 < (𝐾 + 1) 𝜋2 , that is 𝐾 =
[ 2
𝜋
𝑛2] , we

have

𝐾 =

∫ 𝐾 𝜋
2

0
| cos 𝑦 | 𝑑𝑦 ⩽

∫ 𝑛2

0
| cos 𝑦 | 𝑑𝑦 ⩽

∫ (𝐾+1) 𝜋
2

0
| cos 𝑦 | 𝑑𝑦 = 𝐾 + 1

so [
2
𝜋
𝑛2

]
⩽

∫ 𝑛2

0
| cos 𝑦 | 𝑑𝑦 ⩽

[
2
𝜋
𝑛2

]
+ 1

from which [ 2
𝜋
𝑛2]
𝑛
⩽

1
𝑛

∫ 𝑛2

0
| cos 𝑦 | 𝑑𝑦 ⩽

[ 2
𝜋
𝑛2] + 1
𝑛

,

and since [ 2
𝜋
𝑛2] ∼ 2

𝜋
𝑛2 we deduce that 1

𝑛

∫ 𝑛2

0 | cos 𝑦 | 𝑑𝑦 −→ +∞. Conclusion: ( 𝑓𝑛) is not
convergent also for ∥ · ∥∗∗∗.

About relations: since | 𝑓 (0) | ⩽ ∥ 𝑓 ∥∞, it is clear that ∥ 𝑓 ∥∗∗ ⩽ ∥ 𝑓 ∥∗, so ∥ · ∥∗ is stronger than
∥ · ∥∗∗. The viceversa also holds: from the fundamental formula of integral calculus,

𝑓 (𝑥) = 𝑓 (0) +
∫ 𝑥

0
𝑓 ′(𝑦) 𝑑𝑦,

so,

| 𝑓 (𝑥) | ⩽ | 𝑓 (0) | +
����∫ 𝑥

0
𝑓 ′(𝑦) 𝑑𝑦

���� ⩽ | 𝑓 (0) | +
∫ 𝑥

0
| 𝑓 ′(𝑦) | 𝑑𝑦 ⩽ | 𝑓 (0) | + ∥ 𝑓 ′∥∞.

Therefore, ∥ 𝑓 ∥∞ ⩽ | 𝑓 (0) | + ∥ 𝑓 ′∥∞, so

∥ 𝑓 ∥∗ = ∥ 𝑓 ∥∞ + ∥ 𝑓 ′∥∞ ⩽ | 𝑓 (0) | + 2∥ 𝑓 ′∥∞ ⩽ 2∥ 𝑓 ∥∗∗.
We can see also that ∥ · ∥∗ is stronger than ∥ · ∥∗∗∗ (so also ∥ · ∥∗∗ it is). Indeed,

∥ 𝑓 ∥∗∗∗ = | 𝑓 (1) | + ∥ 𝑓 ′∥1 ⩽ ∥ 𝑓 ∥∞ + ∥ 𝑓 ′∥∞ = ∥ 𝑓 ∥∗.
We claim that ∥ · ∥∗∗∗ is not equivalent to ∥ · ∥∗. Take 𝑓𝑛 (𝑥) = 𝑥𝑛. We have

∥ 𝑓𝑛∥∞ = max
𝑥∈[0,1]

|𝑥𝑛 | = 1, ∥ 𝑓 ′𝑛∥∞ = max
𝑥∈[0,1]

|𝑛𝑥𝑛−1 | = 𝑛.

Therefore, ∥ 𝑓𝑛∥∗ = 𝑛 + 1. However

∥ 𝑓𝑛∥∗∗∗ = | 𝑓𝑛 (1) | + ∥ 𝑓 ′𝑛∥1 = 1 +
∫ 1

0
𝑛𝑥𝑛−1 𝑑𝑥 = 1 + [𝑥𝑛]𝑥=1

𝑥=0 = 2.

In particular, there cannot be a constant 𝐶 > 0 such that ∥ 𝑓 ∥∗ ⩽ 𝐶∥ 𝑓 ∥∗∗∗ for all 𝑓 ∈ 𝑉 . □

10.3.7. We notice that 𝑓𝑛 (0) = 𝑛 −→ +∞ while, for 0 < 𝑥 ⩽ 1,

𝑓𝑛 (𝑥) ∼𝑛→+∞
𝑛

𝑛9𝑥3 =
1
𝑥3𝑛8 −→ 0.
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So 𝑓𝑛
𝑝𝑤 𝑎.𝑒.
−→ 0 on [0, 1]. The unique possible 𝐿𝑝 limit is 𝑓 = 0. We have

∥ 𝑓𝑛∥∞ = ess. sup𝑥∈[0,1] | 𝑓𝑛 (𝑥) | = ess. sup𝑥∈[0,1]
𝑛

1 + 𝑛9𝑥3 = 𝑛 −→ +∞,

so ( 𝑓𝑛) is not convergent in 𝐿∞ norm. Let’s check 𝐿2 norm:

∥ 𝑓𝑛∥2
2 =

∫ 1

0

𝑛2

(1 + 𝑛9𝑥3)2 𝑑𝑥
𝑦=𝑛3𝑥
=

1
𝑛

∫ 𝑛3

0

1
(1 + 𝑦3)2 𝑑𝑦,

and since
∫ 𝑛3

0
1

(1+𝑦3)2 𝑑𝑦 −→
∫ +∞

0
1

(1+𝑦3)2 𝑑𝑦 < +∞ we have ∥ 𝑓𝑛∥2
2 = 𝑜

(
1
𝑛

)
−→ 0, so 𝑓𝑛

𝐿2

−→ 0.
Now, recalling that (see Ex. 9.4.5), when 𝜇(𝑋) < +∞, ∥ · ∥2 is stronger than ∥ · ∥1 norm, and
precisely

∥ 𝑓 ∥1 ⩽
√︁
𝜇(𝑋)∥ 𝑓 ∥2,

we have ∥ 𝑓𝑛∥1 −→ 0, so 𝑓𝑛
𝐿1

−→ 0. □

10.3.9. Let 1𝐸𝑛

𝐿1

−→ 𝑓 for some 𝑓 ∈ 𝐿1. Modulo a sub-sequence, we can say that (1𝐸𝑛
)

converges a.e.. Since 1𝐸𝑛
(𝑥) ∈ {0, 1} this means that 𝑓 (𝑥) ∈ {0, 1} for a.e. 𝑥 ∈ 𝑋 . Let

𝐸 := {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 1} so 𝑓 (𝑥) = 1𝐸 (𝑥). We need to check that 𝐸 is a measurable set.
We may notice that in order lim𝑛 1𝐸𝑛

(𝑥) = 1 we must have 1𝐸𝑛
(𝑥) = 1 for all 𝑛 ⩾ 𝑁 for some

suitable 𝑁 . Thus,

𝑥 ∈ 𝐸𝑛, ∀𝑛 ⩾ 𝑁, =⇒ 𝑥 ∈
⋂
𝑛⩾𝑁

𝐸𝑛, for some 𝑁, =⇒ 𝑥 ∈
⋃
𝑁

⋂
𝑛⩾𝑁

𝐸𝑛.

The vice versa also holds, thus,

𝑥 ∈ 𝐸 ⇐⇒ 𝑥 ∈
⋃
𝑁

⋂
𝑛⩾𝑁

𝐸𝑛, ⇐⇒ 𝐸 =
⋃
𝑁

⋂
𝑛⩾𝑁

𝐸𝑛.

Since the 𝐸𝑛 are measurable, also 𝐸 it is. □

11.4.3. We have

𝑓 ∗ 𝑔(−𝑥) =

∫
R
𝑓 (𝑦)𝑔(−𝑥 − 𝑦) 𝑑𝑦 =

∫
R
𝑓 (𝑦)𝑔(𝑥 + 𝑦) 𝑑𝑦

𝑦=−𝑧
=

∫
R
𝑓 (−𝑧)𝑔(𝑥 − 𝑧) 𝑑𝑧 =

∫
R
𝑓 (𝑧)𝑔(𝑥 − 𝑧) 𝑑𝑧

= 𝑓 ∗ 𝑔(𝑥). □
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11.4.5. We have

| 𝑓 ∗ 𝑔(𝑥) | =

����∫
R
𝑓 (𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦

���� ⩽ ∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | 𝑑𝑦

𝐶𝑆

⩽

(∫
R
| 𝑓 (𝑦) |2 𝑑𝑦

)1/2 (∫
R
|𝑔(𝑥 − 𝑦) |2 𝑑𝑦

)1/2
𝑧=𝑥−𝑦
= ∥ 𝑓 ∥2

(∫
R
|𝑔(𝑧) |2 𝑑𝑧

)1/2

= ∥ 𝑓 ∥2∥𝑔∥2.

This holds a.e. 𝑥 ∈ R. Therefore
∥ 𝑓 ∗ 𝑔∥∞ ⩽ ∥ 𝑓 ∥2∥𝑔∥2.

For the extension the unique difference is using Hölder inequality:

| 𝑓 ∗ 𝑔(𝑥) | =

����∫
R
𝑓 (𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦

���� ⩽ ∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | 𝑑𝑦

𝐻

⩽

(∫
R
| 𝑓 (𝑦) |𝑝 𝑑𝑦

)1/𝑝 (∫
R
|𝑔(𝑥 − 𝑦) |𝑞 𝑑𝑦

)1/𝑞
𝑧=𝑥−𝑦
= ∥ 𝑓 ∥𝑝

(∫
R
|𝑔(𝑧) |𝑞 𝑑𝑧

)1/𝑞

= ∥ 𝑓 ∥𝑝 ∥𝑔∥𝑞,
a.e., from which ∥ 𝑓 ∗ 𝑔∥∞ ⩽ ∥ 𝑓 ∥𝑝 ∥𝑔∥𝑞. □

11.4.6. i) Let 𝑓 ∈ 𝐿1 and 𝑔 ∈ 𝐿∞. From

| 𝑓 ∗ 𝑔(𝑥) | ⩽
∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | 𝑑𝑦 =⩽ ∥𝑔∥∞

∫
R
| 𝑓 (𝑦) | 𝑑𝑦 = ∥𝑔∥∞∥ 𝑓 ∥1,

from which
∥ 𝑓 ∗ 𝑔∥∞ ⩽ ∥ 𝑓 ∥1∥𝑔∥∞.

ii) Let now 𝑓 ∈ 𝐿1 and 𝑔 ∈ 𝐿2. We have integrating w.r.t. 𝑥 we get

∥ 𝑓 ∗ 𝑔∥2
2 =

∫
R
| 𝑓 ∗ 𝑔(𝑥) |2 𝑑𝑥 ⩽

∫
R

(∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | 𝑑𝑦

)2
𝑑𝑥.

As suggested we write | 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | = | 𝑓 (𝑦) |1/2 | 𝑓 (𝑦) |1/2 |𝑔(𝑥 − 𝑦) | and we apply the CS
inequality:∫

R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | 𝑑𝑦 =

∫
R

(
| 𝑓 (𝑦) |1/2

) (
| 𝑓 (𝑦) |1/2 |𝑔(𝑥 − 𝑦) |

)
𝑑𝑦

⩽

(∫
R
| 𝑓 (𝑦) | 𝑑𝑦

)1/2 (∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) |2 𝑑𝑦

)1/2
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so∫
R
| 𝑓 ∗ 𝑔(𝑥) |2 𝑑𝑥 ⩽

∫
R

(∫
R
| 𝑓 (𝑦) | 𝑑𝑦

) (∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) |2 𝑑𝑦

)
𝑑𝑥

= ∥ 𝑓 ∥1

∫
R

∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) |2 𝑑𝑦 𝑑𝑥 𝐹𝑢𝑏.

= ∥ 𝑓 ∥1

∫
R

∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) |2 𝑑𝑥 𝑑𝑦

= ∥ 𝑓 ∥1∥ 𝑓 ∥1∥𝑔∥2
2 = ∥ 𝑓 ∥2

1∥𝑔∥
,

2

from which ∥ 𝑓 ∗ 𝑔∥2 ⩽ ∥ 𝑓 ∥1∥𝑔∥2.
iii) For the 𝑓 ∈ 𝐿1 and 𝑔 ∈ 𝐿𝑝 1 < 𝑝 < +∞ case the trick is similar. We start noticing that

∥ 𝑓 ∗ 𝑔∥𝑝𝑝 =
∫
R
| 𝑓 ∗ 𝑔(𝑥) |𝑝 𝑑𝑥 ⩽

∫
R

(∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | 𝑑𝑦

) 𝑝
𝑑𝑥.

Following the idea of the case 𝑝 = 2, we write | 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | = | 𝑓 (𝑦) |1/𝑞 | 𝑓 (𝑦) |1/𝑝 |𝑔(𝑥 − 𝑦) |,
where 1

𝑝
+ 1
𝑞
= 1, and we apply the Hölder’s inequality:∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) | 𝑑𝑦 =

∫
R

(
| 𝑓 (𝑦) |1/𝑞

) (
| 𝑓 (𝑦) |1/𝑝 |𝑔(𝑥 − 𝑦) |

)
𝑑𝑦

⩽

(∫
R
| 𝑓 (𝑦) | 𝑑𝑦

)1/𝑞 (∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) |𝑝 𝑑𝑦

)1/𝑝

so∫
R
| 𝑓 ∗ 𝑔(𝑥) |𝑝 𝑑𝑥 ⩽

∫
R

(∫
R
| 𝑓 (𝑦) | 𝑑𝑦

) 𝑝/𝑞 (∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) |𝑝 𝑑𝑦

)
𝑑𝑥

= ∥ 𝑓 ∥𝑝/𝑞1

∫
R

∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) |𝑝 𝑑𝑦 𝑑𝑥 𝐹𝑢𝑏.

= ∥ 𝑓 ∥𝑝/𝑞1

∫
R

∫
R
| 𝑓 (𝑦) | |𝑔(𝑥 − 𝑦) |𝑝 𝑑𝑥 𝑑𝑦

= ∥ 𝑓 ∥𝑝/𝑞1 ∥ 𝑓 ∥1∥𝑔∥𝑝𝑝 = ∥ 𝑓 ∥𝑝1 ∥𝑔∥
𝑝
𝑝,

from which ∥ 𝑓 ∗ 𝑔∥𝑝 ⩽ ∥ 𝑓 ∥1∥𝑔∥𝑝. □

11.4.8. We have

𝑓 ∗ 𝑔(𝑥) =
∫ +∞

−∞
𝑓 (𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦 =

∫ 𝑅

−𝑅
𝑓 (𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦.

Since 𝑦 ∈ [−𝑅, 𝑅], −𝑅 ⩽ 𝑥 − 𝑦 ⩽ 𝑅 iff −2𝑅 ⩽ −𝑅 + 𝑦 ⩽ 𝑥 ⩽ 𝑅 + 𝑦 ⩽ 2𝑅, so if |𝑥 | > 2𝑅,
𝑥 − 𝑦 ∉ [−𝑅, 𝑅], thus in particular 𝑔(𝑥 − 𝑦) = 0 for every 𝑦 ∈ [−𝑅, 𝑅]. So

𝑓 ∗ 𝑔(𝑥) = 0, ∀|𝑥 | > 2𝑅. □
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11.4.9. The exercise misses an hypothesis: 𝑔′ must be bounded, that is 𝑔′ ∈ 𝐿∞. Indeed, we
apply the differentiation under integral sign:

𝜕𝑥 ( 𝑓 ∗ 𝑔) (𝑥) =
∫ +∞

−∞
𝜕𝑥

(
𝑓 (𝑦)𝑔(𝑥 − 𝑦)

)
𝑑𝑦 =

∫ +∞

−∞
𝑓 (𝑦)𝑔′(𝑥 − 𝑦) 𝑑𝑦.

This provided the theorem applies. To this aim we have
• ∃𝜕𝑥

(
𝑓 (𝑦)𝑔(𝑥 − 𝑦)

)
= 𝑓 (𝑦)𝑔′(𝑥 − 𝑦), a.e. 𝑦 ∈ R, ∀𝑥 ∈ R because 𝑔 ∈ 𝒞

1.
• |𝜕𝑥

(
𝑓 (𝑦)𝑔(𝑥 − 𝑦)

)
| = | 𝑓 (𝑦) | |𝑔′(𝑥 − 𝑦) | ⩽ ∥𝑔′∥∞ | 𝑓 (𝑦) | ∈ 𝐿1(R), a.e. 𝑦 and for every

𝑥 ∈ R.
Therefore, th edifferentiation theorem applies and 𝜕𝑥 ( 𝑓 ∗ 𝑔) (𝑥) = 𝑓 ∗ 𝑔′(𝑥). □

12.4.1. i) Notice that ∥ · ∥ is, by definition, well defined for every 𝑓 ∈ 𝑉𝛼. If 𝑓 , 𝑔 ∈ 𝑉𝛼 then
𝑓 , 𝑔 ∈ 𝒞( [0, +∞[), so 𝑓 + 𝑔 ∈ 𝒞( [0, +∞[) and

∥ 𝑓 + 𝑔∥ = sup
𝑥⩾0

(𝑒𝑎𝑥 | 𝑓 (𝑥) + 𝑔(𝑥) |) ⩽ sup
𝑥⩾0

(𝑒𝑎𝑥 | 𝑓 (𝑥) | + 𝑒𝑎𝑥 |𝑔(𝑥) |) ⩽ ∥ 𝑓 ∥ + ∥𝑔∥ < +∞.

At once, this proves that 𝑓 + 𝑔 ∈ 𝑉𝛼 and also the triangular inequality for the ∥ · ∥. Similarly,
𝑎 𝑓 ∈ 𝑉𝛼 for every 𝑎 ∈ R and ∥𝑎 𝑓 ∥ = |𝑎 |∥ 𝑓 ∥, thus homogeneity holds. From these it follows
that𝑉𝛼 is a vector space. It remains to check positivity and vanishing. Positivity is evident from
the definition of ∥ · ∥. Assuming that 0 = ∥ 𝑓 ∥ = ∥𝑒𝛼♯ 𝑓 ∥∞, we have 𝑒𝛼𝑥 𝑓 (𝑥) ≡ 0, that is 𝑓 ≡ 0.
Therefore, vanishing holds and ∥ · ∥ is a well defined norm on 𝑉𝛼.

ii) Let ( 𝑓𝑛) ⊂ 𝑉𝛼 be a Cauchy sequence, that is

∀𝜀 > 0, ∃𝑁 : ∥ 𝑓𝑛 − 𝑓𝑚 ∥ ⩽ 𝜀, ∀𝑛, 𝑚 ⩾ 𝑁.
We already noticed that ∥ 𝑓 ∥ = ∥𝑒𝛼♯ 𝑓 ∥∞. So, setting 𝑔𝑛 (𝑥) := 𝑒𝛼𝑥 𝑓𝑛 (𝑥) we have that

∀𝜀 > 0, ∃𝑁 : ∥𝑔𝑛 − 𝑔𝑚 ∥∞ ⩽ 𝜀, ∀𝑛, 𝑚 ⩾ 𝑁.
Thus, (𝑔𝑛) is a Cauchy sequence w.r.t. ∥ · ∥∞, and since (𝑔𝑛) ⊂ 𝐵( [0, +∞[) (∥𝑔𝑛∥∞ = ∥𝑒𝛼♯ 𝑓𝑛∥ <
+∞ being 𝑓𝑛 ∈ 𝑉𝛼), 𝑔𝑛

∥·∥∞−→ 𝑔 ∈ 𝐵(𝑋). Moreover, since uniform limit of continuous functions
is a continuous function, 𝑔 ∈ 𝒞( [0, +∞[). Setting 𝑓 (𝑥) := 𝑒−𝛼𝑥𝑔(𝑥) ∈ 𝒞( [0, +∞[) we have
∥ 𝑓 ∥ = ∥𝑒𝛼♯ 𝑓 ∥∞ = ∥𝑔∥∞ < +∞, so 𝑓 ∈ 𝑉𝛼, and

∥ 𝑓𝑛 − 𝑓 ∥ = ∥𝑒𝛼♯ 𝑓𝑛 − 𝑒𝛼♯ 𝑓 ∥∞ = ∥𝑔𝑛 − 𝑔∥∞ −→ 0,

so 𝑓𝑛
∥·∥
−→ 𝑓 , and this shows that 𝑉𝛼 is a Banach space. □

12.4.2.

12.4.4.

12.4.5. Let ( 𝑓𝑛) ⊂ 𝒞
1( [𝑎, 𝑏]) be a Cauchy sequence, that is

∀𝜀 > 0, ∃𝑁, : ∥ 𝑓𝑛 − 𝑓𝑚 ∥ = ∥ 𝑓𝑛 − 𝑓𝑚 ∥∞ + ∥ 𝑓 ′𝑛 − 𝑓 ′𝑚 ∥∞ ⩽ 𝜀, ∀𝑛, 𝑚 ⩾ 𝑁. (★)
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The goal is to show that ∃ 𝑓 ∈ 𝒞
1( [𝑎, 𝑏]) such that 𝑓𝑛

∥·∥
−→ 𝑓 . We start noticing that, from

the Cauchy property, ( 𝑓𝑛) is a Cauchy sequence in uniform norm. As we know, this norm is
complete, so 𝑓𝑛

∥·∥∞−→ 𝑓 for some 𝑓 ∈ 𝒞( [𝑎, 𝑏]). We now have a limit, the next step is to show
that this 𝑓 ∈ 𝒞

1( [𝑎, 𝑏]). As suggested, since 𝑓𝑛 ∈ 𝒞
1( [𝑎, 𝑏]) the fundamental formula of

integral calculus applies:

𝑓𝑛 (𝑥) = 𝑓𝑛 (𝑎) +
∫ 𝑥

𝑎

𝑓 ′𝑛 (𝑦) 𝑑𝑦.

We show now that we can pass this to the limit. Indeed, since 𝑓𝑛
∥·∥∞−→ 𝑓 , in particular 𝑓𝑛

𝑝𝑤
−→ 𝑓 ,

so 𝑓𝑛 (𝑥) −→ 𝑓 (𝑥) and 𝑓𝑛 (𝑎) −→ 𝑓 (𝑎). About ( 𝑓 ′𝑛) we also may notice that, from (★),
also ( 𝑓 ′𝑛) ⊂ 𝒞( [𝑎, 𝑏]) is a Cauchy sequence in uniform norm: therefore 𝑓 ′𝑛

∥·∥∞−→ 𝑔, for some
𝑔 ∈ 𝒞( [𝑎, 𝑏]). Then����∫ 𝑥

𝑎

𝑓 ′𝑛 𝑑𝑦 −
∫ 𝑥

𝑎

𝑔 𝑑𝑦

���� = ����∫ 𝑥

𝑎

( 𝑓 ′𝑛 − 𝑔) 𝑑𝑦
���� ⩽ ∫ 𝑥

𝑎

| 𝑓 ′𝑛−𝑔 | 𝑑𝑦 ⩽ (𝑥−𝑎)∥ 𝑓 ′𝑛−𝑔∥∞ ⩽ (𝑏−𝑎)∥ 𝑓 ′𝑛−𝑔∥∞

so ∫ 𝑥

𝑎

𝑓 ′𝑛 𝑑𝑦 −→
∫ 𝑥

𝑎

𝑔 𝑑𝑦, ∀𝑥 ∈ [𝑎, 𝑏] .

So we can say that

𝑓 (𝑥) = 𝑓 (𝑎) +
∫ 𝑥

𝑎

𝑔(𝑦) 𝑑𝑦, ∀𝑥 ∈ [𝑎, 𝑏], =⇒ ∃ 𝑓 ′(𝑥) = 𝑔(𝑥).

This shows that 𝑓 ∈ 𝒞
1( [𝑎, 𝑏]), so 𝑓 ∈ 𝑉 . To finish, we prove that 𝑓𝑛

∥·∥
−→ 𝑓 . Letting 𝑚 → +∞

into (★) we get
∥ 𝑓𝑛 − 𝑓 ∥ = ∥ 𝑓𝑛 − 𝑓 ∥∞ + ∥ 𝑓 ′𝑛 − 𝑓 ′∥∞ ⩽ 𝜀, ∀𝑛 ⩾ 𝑁,

which is the conclusion. □

12.4.6. We have only to prove the =⇒. Let ( 𝑓𝑛) ⊂ 𝑉 be a generic Cauchy sequence,

∀𝜀 > 0, ∃𝑁, : ∥ 𝑓𝑛 − 𝑓𝑚 ∥ ⩽ 𝜀, ∀𝑛, 𝑚 ⩾ 𝑁. (★)
We first show that (∥ 𝑓𝑛∥) is a Cauchy sequence in R: this follows by the triangular inequality
because

∥ 𝑓𝑛∥ = ∥ 𝑓𝑛 − 𝑓𝑚 + 𝑓𝑚 ∥ ⩽ ∥ 𝑓𝑛 − 𝑓𝑚 ∥ + ∥ 𝑓𝑚 ∥, =⇒ ∥ 𝑓𝑛∥ − ∥ 𝑓𝑚 ∥ ⩽ ∥ 𝑓𝑛 − 𝑓𝑚 ∥,
and switching 𝑓𝑛 with 𝑓𝑚 we also have

∥ 𝑓𝑚 ∥ − ∥ 𝑓𝑛∥ ⩽ ∥ 𝑓𝑛 − 𝑓𝑚 ∥
from which

−∥ 𝑓𝑛 − 𝑓𝑚 ∥ ⩽ ∥ 𝑓𝑛∥ − ∥ 𝑓𝑚 ∥ ⩽ ∥ 𝑓𝑛 − 𝑓𝑚 ∥, ⇐⇒ |∥ 𝑓𝑛∥ − ∥ 𝑓𝑚 ∥| ⩽ ∥ 𝑓𝑛 − 𝑓𝑚 ∥.
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Therefore,
|∥ 𝑓𝑛∥ − ∥ 𝑓𝑚 ∥| ⩽ 𝜀, ∀𝑛, 𝑚 ⩾ 𝑁.

Since (R, | · |) is a complete space, ∃ lim𝑛 ∥ 𝑓𝑛∥ = ℓ ⩾ 0. If ℓ = 0 we have 𝑓𝑛
∥·∥
−→ 0, so ( 𝑓𝑛)

converges. Otherwise ℓ > 0. By the permanence of sign, 2ℓ ⩾ ∥ 𝑓𝑛∥ ⩾ ℓ
2 > 0 for 𝑛 ⩾ 𝑀 , so,

without any restriction, we may assume 2ℓ ⩾ ∥ 𝑓𝑛∥ ⩾ ℓ
2 for every 𝑛. Define now

𝑢𝑛 :=
𝑓𝑛

∥ 𝑓𝑛∥
∈ 𝑆.

We claim that 𝑢𝑛 is a Cauchy sequence. We have

𝑢𝑛 − 𝑢𝑚 =
𝑓𝑛

∥ 𝑓𝑛∥
− 𝑓𝑚

∥ 𝑓𝑚 ∥
=

1
∥ 𝑓𝑛∥

( 𝑓𝑛 − 𝑓𝑚) +
(

1
∥ 𝑓𝑛∥

− 1
∥ 𝑓𝑚 ∥

)
𝑓𝑚

=
1

∥ 𝑓𝑛∥
( 𝑓𝑛 − 𝑓𝑚) +

∥ 𝑓𝑚 ∥ − ∥ 𝑓𝑛∥
∥ 𝑓𝑛∥∥ 𝑓𝑚 ∥

𝑓𝑚

so

∥𝑢𝑛 − 𝑢𝑚 ∥ ⩽
1

∥ 𝑓𝑛∥
∥ 𝑓𝑛 − 𝑓𝑚 ∥ +

|∥ 𝑓𝑚 ∥ − ∥ 𝑓𝑛∥|
∥ 𝑓𝑛∥∥ 𝑓𝑚 ∥

∥ 𝑓𝑚 ∥ ⩽
2
ℓ
𝜀 + 4

ℓ2 𝜀2ℓ =
6
ℓ
𝜀, ∀𝑛, 𝑚 ⩾ 𝑁.

By the hypothesis, 𝑢𝑛
∥·∥
−→ 𝑢 ∈ 𝑆. Let 𝑓 := ℓ𝑢. We claim that 𝑓𝑛

∥·∥
−→ 𝑓 . Indeed,

∥ 𝑓𝑛 − 𝑓 ∥ =


∥ 𝑓𝑛∥𝑢𝑛 − ℓ𝑢

 = 

∥ 𝑓𝑛∥(𝑢𝑛 − 𝑢) + (∥ 𝑓𝑛∥ − ℓ)𝑢




⩽ ∥ 𝑓𝑛∥∥𝑢𝑛 − 𝑢∥ +

��∥ 𝑓𝑛∥ − ℓ��∥𝑢∥ −→ ℓ · 0 + 0 · 1 = 0. □

12.4.7. Let 𝑠𝑛 :=
∑𝑛
𝑘=1 𝑓𝑘 . We check that (𝑠𝑛) is a Cauchy sequence: for 𝑛 > 𝑚 we have

∥𝑠𝑛 − 𝑠𝑚 ∥ =





 𝑛∑︁
𝑘=𝑚+1

𝑓𝑘






 ⩽ 𝑛∑︁
𝑘=𝑚+1

∥ 𝑓𝑘 ∥ = 𝜎𝑛 − 𝜎𝑚,

where

𝜎𝑛 :=
𝑛∑︁
𝑘=0

∥ 𝑓𝑘 ∥.

By hypothesis, (𝜎𝑛) ⊂ R is convergent, so it is a Cauchy sequence. This means that

∀𝜀 > 0, ∃𝑁, : |𝜎𝑛 − 𝜎𝑚 | ⩽ 𝜀, ∀𝑛, 𝑚 ⩾ 𝑁.
So, if 𝑛 > 𝑚 ⩾ 𝑁 , noticed that 𝜎𝑛 ⩾ 𝜎𝑚 we have

∥𝑠𝑛 − 𝑠𝑚 ∥ ⩽ 𝜎𝑛 − 𝜎𝑚 = |𝜎𝑛 − 𝜎𝑚 | ⩽ 𝜀,
that is (𝑠𝑛) is a Cauchy sequence. Since (𝑉, ∥ · ∥) is a Banach space, ∃ lim𝑛 𝑠𝑛 ∈ 𝑉 . □
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13.3.2. i) If 𝑝, 𝑞 are polynomials, 𝑝 · 𝑞 is a polynomials so |𝑝(𝑥)𝑞(𝑥) | ⩽ 𝑎 |𝑥 |𝑛 + 𝑏, from which∫
R
|𝑝(𝑥)𝑞(𝑥)𝑒−𝑥2 | 𝑑𝑥 ⩽

∫
R
(𝑎 |𝑥 |𝑛 + 𝑏)𝑒−𝑥2

𝑑𝑥 < +∞,

and the scalar product is well defined. The characteristic properties of the scalar product are
straightforward (vanishing in strong form since functions are continuous).

ii) We have

⟨𝑥𝑚, 𝑥𝑛⟩𝑉 =

∫
R
𝑥𝑛+𝑚𝑒−𝑥

2
𝑑𝑥.

If 𝑛 + 𝑚 is odd, 𝑥𝑛+𝑚 is odd, thus the integral vanishes and ⟨𝑥𝑛, 𝑥𝑚⟩𝑉 = 0. Now, 𝑛 + 𝑚 is odd iff
𝑛 is odd (even) and 𝑚 is even (odd). In all other cases, setting 𝑘 = 𝑛 + 𝑚,

𝐼𝑘 :=
∫
R
𝑥𝑘𝑒−𝑥

2
𝑑𝑥 = −1

2

∫
R
𝑥𝑘−1

(
−2𝑥𝑒−𝑥

2
)

︸      ︷︷      ︸
=𝜕𝑥𝑒

−𝑥2

𝑑𝑥

= −1
2

[ [
𝑥𝑘−1𝑒−𝑥

2
]𝑥=+∞
𝑥=−∞

− (𝑘 − 1)
∫
R
𝑥𝑘−2𝑒−𝑥

2
𝑑𝑥

]
=
𝑘 − 1

2
𝐼𝑘−2.

Therefore, if 𝑘 = 2ℎ,

𝐼2ℎ =
(2ℎ − 1)

2
𝐼2(ℎ−1) =

(2ℎ − 1) (2ℎ − 3)
22 𝐼2(ℎ−2) = . . . =

(2ℎ − 1) (2ℎ − 3) · · · 3 · 1
2ℎ

𝐼0

Since 𝐼0 =
∫
R
𝑒−𝑥

2
𝑑𝑥 =

√
𝜋, we have

𝐼2ℎ =
𝜋1/2

22ℎ
(2ℎ)!
ℎ!

.

Therefore, if 𝑛 + 𝑚 is even,

⟨𝑥𝑛, 𝑥𝑚⟩𝑉 =
𝜋1/2

2𝑛+𝑚
(𝑛 + 𝑚)!(
𝑛+𝑚

2
)
!
.

iii) We have

∥𝑥2 − (𝑎𝑥 + 𝑏)∥2
𝑉

= ⟨𝑥2 − (𝑎𝑥 + 𝑏), 𝑥2 − (𝑎𝑥 + 𝑏)⟩𝑉

= ⟨𝑥2, 𝑥2⟩𝑉 − 2𝑏⟨𝑥2, 1⟩𝑉 + 𝑎2⟨𝑥, 𝑥⟩𝑉 + +𝑏2⟨1, 1⟩𝑉

= 𝜋1/2
(

3
4 − 𝑏 + 1

2𝑎
2 + 𝑏2

)
=: 𝑓 (𝑎, 𝑏).
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We have lim(𝑎,𝑏)→∞2 𝑓 (𝑎, 𝑏) = +∞, and being also 𝑓 ∈ C(R2) we conclude that a min point
exists and must fulfill∇ 𝑓 (𝑎, 𝑏) = ®0, that is (𝑎, 2𝑏−1) = (0, 0) from which 𝑎 = 0 and 𝑏 = 1/2. □
13.3.3. We have

⟨ 𝑓𝑛, 𝑓𝑚⟩ =
∫
[0,1]𝑑 𝑒

𝑖2𝜋𝑛·𝑥𝑒−𝑖2𝜋𝑚·𝑥 𝑑𝑥 =
∫
[0,1]𝑑 𝑒

𝑖2𝜋(𝑛−𝑚)·𝑥 𝑑𝑥

=
∫
[0,1]𝑑

∏𝑑
𝑗=1 𝑒

𝑖2𝜋(𝑛 𝑗−𝑚 𝑗 )𝑥 𝑗 𝑑𝑥1 · · · 𝑑𝑥𝑑

=
∏𝑑

𝑗=1
∫ 1

0 𝑒
𝑖2𝜋(𝑛 𝑗−𝑚 𝑗 )𝑥 𝑗 𝑑𝑥 𝑗

Now, being ∫ 1

0
𝑒𝑖2𝜋(𝑛 𝑗−𝑚 𝑗 )𝑥 𝑗 𝑑𝑥 𝑗 =


(𝑛 𝑗 ≠ 𝑚 𝑗 ), =

[
𝑒
𝑖2𝜋 (𝑛 𝑗−𝑚𝑗 )𝑥

𝑖2𝜋(𝑛 𝑗−𝑚 𝑗 )

]𝑥 𝑗=1

𝑥 𝑗=0
= 0,

(𝑛 𝑗 = 𝑚 𝑗 ), =
∫ 1

0 1 𝑑𝑥 𝑗 = 1,

we have that ⟨ 𝑓𝑛, 𝑓𝑚⟩ = 0 when 𝑛 ≠ 𝑚 and ⟨ 𝑓𝑛, 𝑓𝑚⟩ = 1 iff 𝑛 = 𝑚. □

13.3.4. From the Cauchy-Schwarz inequality,
|⟨ 𝑓 , 𝑔⟩| ⩽ ∥ 𝑓 ∥∥𝑔∥ = ∥ 𝑓 ∥, if ∥𝑔∥ = 1.

Therefore
sup

𝑔∈𝑉 : ∥𝑔∥=1
|⟨ 𝑓 , 𝑔⟩| ⩽ ∥ 𝑓 ∥.

If 𝑓 = 0 clearly equality holds. So assume 𝑓 ≠ 0. Taking 𝑔 =
𝑓

∥ 𝑓 ∥ we have ∥𝑔∥ = 1 and

⟨ 𝑓 , 𝑔⟩ = 1
∥ 𝑓 ∥ ⟨ 𝑓 , 𝑓 ⟩ =

∥ 𝑓 ∥2

∥ 𝑓 ∥ = ∥ 𝑓 ∥. So, ∥ 𝑓 ∥ ⩽ sup |⟨ 𝑓 , 𝑔⟩| (where ∥𝑔∥ = 1). □

13.3.5. There is no issue with the definition. Let’s prove the characteristic properties.
• positivity: ⟨𝐴, 𝐴⟩ = Tr(𝐴∗𝐴). Let 𝐴∗𝐴 = [𝑚𝑖 𝑗 ]. Then, if 𝑒𝑖 = (𝛿𝑖1, . . . , 𝛿𝑖𝑑) are the

vectors of the canonical basis,
𝑚𝑖𝑖 = (𝐴∗𝐴)𝑒𝑖 · 𝑒𝑖 = (𝐴𝑒𝑖) · (𝐴𝑒𝑖) = ∥𝐴𝑒𝑖∥2 ⩾ 0,

where ∥ · ∥ is the euclidean norm of R𝑑 . So 𝑚𝑖𝑖 ⩾ 0 for every 𝑖, therefore ⟨𝐴, 𝐴⟩ =∑
𝑖 𝑚𝑖𝑖 ⩾ 0.

• vanishing: suppose ⟨𝐴, 𝐴⟩ = 0, that is Tr(𝐴∗𝐴) = 0. Using notations of previous point,
0 =

∑
𝑖 𝑚𝑖𝑖 =

∑
𝑖 ∥𝐴𝑒𝑖∥2, so 𝐴𝑒𝑖 = 0 for every 𝑖. But then, for every vector 𝑣 ∈ R𝑑 ,

writing 𝑣 =
∑
𝑖 𝑣𝑖𝑒𝑖 we have

𝐴𝑣 =
∑︁
𝑖

𝑣𝑖𝐴𝑒𝑖 = 0,

that is 𝐴 = 0 (matrix with all entries = 0).
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• linearity: we have

⟨𝜆𝐴 + 𝜇𝐵, 𝐶⟩ = Tr[(𝜆𝐴 + 𝜇𝐵)∗𝐶] = Tr[(𝜆𝐴∗ + 𝜇𝐵∗)𝐶]

= 𝜆 Tr[𝐴∗𝐶] + 𝜇 Tr[𝐵∗𝐶] = 𝜆⟨𝐴,𝐶⟩ + 𝜇⟨𝐵,𝐶⟩.
• symmetry: since Tr𝑀 = Tr𝑀∗ we have

⟨𝐴, 𝐵⟩ = Tr[𝐴∗𝐵] = Tr
[
(𝐵∗𝐴)∗

]
= Tr [𝐵∗𝐴] = ⟨𝐵, 𝐴⟩. □

13.3.7. We prove that ( 𝑓𝑛) is a Cauchy sequence, the convergence will follow from the com-
pleteness of 𝑉 (Hilbert space). To this aim we recall that, by the parallelogram identity,

∥ 𝑓𝑛 + 𝑓𝑚 ∥2 + ∥ 𝑓𝑛 − 𝑓𝑚 ∥2 = 2
(
∥ 𝑓𝑛∥2 + ∥ 𝑓𝑚 ∥2

)
= 2,

being ∥ 𝑓𝑛∥ = 1 for every 𝑛. So

∥ 𝑓𝑛 − 𝑓𝑚 ∥2 = 2 − ∥ 𝑓𝑛 + 𝑓𝑚 ∥2.

If lim𝑛,𝑚→+∞ ∥ 𝑓𝑛 + 𝑓𝑚 ∥2 = 2 (there is a typo in the text), for 𝜀 > 0 fixed there exists 𝑁 such that

∥ 𝑓𝑛 − 𝑓𝑚 ∥2 = 2 − ∥ 𝑓𝑛 + 𝑓𝑚 ∥2 ⩽ 𝜀, ∀𝑛, 𝑚 ⩾ 𝑁,
so ( 𝑓𝑛) is a Cauchy sequence. □

13.3.9. i) ⇐⇒ ii) Let 𝑠𝑛 :=
∑𝑛
𝑘=0 𝑓𝑘 and 𝜎𝑛 :=

∑𝑛
𝑘=0 ∥ 𝑓𝑛∥2. We notice that if 𝑛 > 𝑚,

∥𝑠𝑛 − 𝑠𝑚 ∥2 =






 𝑛∑︁
𝑘=𝑚+1

𝑓𝑘






2
𝑃𝑦𝑡ℎ.
=

𝑛∑︁
𝑘=𝑚+1

∥ 𝑓𝑘 ∥2 = 𝜎𝑛 − 𝜎𝑚 = |𝜎𝑛 − 𝜎𝑚 |.

So, (𝑠𝑛) is a Cauchy sequence in (𝑉, ⟨·, ·⟩) iff (𝜎𝑛) is a Cauchy sequence in (R, | · |). Since
both spaces are complete (𝑉 by Hypothesis), Cauchy sequence means convergent so we have the
conclusion.

i) ⇐⇒ iii). If
∑
𝑛 𝑓𝑛 converges to 𝑠 ∈ 𝑉 , then

⟨𝑠, 𝑔⟩ =
〈

lim
𝑛→+∞

𝑠𝑛, 𝑔

〉
= lim

𝑛
⟨𝑠𝑛, 𝑔⟩ = lim

𝑛

〈
𝑛∑︁
𝑘=0

𝑓𝑘 , 𝑔

〉
= lim

𝑛

𝑛∑︁
𝑘=0

⟨ 𝑓𝑘 , 𝑔⟩.

This means that
∑
𝑛⟨ 𝑓𝑛, 𝑔⟩ is convergent for every 𝑔 ∈ 𝑉 .

Vice versa, assume
∑
𝑛⟨ 𝑓𝑛, 𝑔⟩ is convergent for every 𝑔 ∈ 𝑉 . Let’s prove that

∑
𝑛 ∥ 𝑓𝑛∥2 < +∞.

Assume, by contradiction, that
∑
𝑛 ∥ 𝑓𝑛∥2 = +∞. We can assume 𝑓𝑛 ≠ 0 for every 𝑛 (otherwise

we eliminate the vector). Let 𝑔 =
∑
𝑛 𝑐𝑛 𝑓𝑛. By i), 𝑔 ∈ 𝑉 iff

∑
𝑛 ∥𝑐𝑛 𝑓𝑛∥2 =

∑
𝑛 𝑐

2
𝑛∥ 𝑓𝑛∥ < +∞. On

the other hand ∑︁
𝑛

⟨ 𝑓𝑛, 𝑔⟩ =
∑︁
𝑛

𝑐𝑛∥ 𝑓𝑛∥2.



40

So, the goal is to build (𝑐𝑛) in such a way that∑︁
𝑛

𝑐2
𝑛∥ 𝑓𝑛∥2 < +∞,

∑︁
𝑛

𝑐𝑛∥ 𝑓𝑛∥2 = +∞.

Let 𝑎𝑛 := ∥ 𝑓𝑛∥2, so
∑
𝑛 𝑎𝑛 = +∞. We define 𝑁𝑘 as the first integer for which

∑𝑁𝑘

𝑛=0 𝑎𝑛 ⩾ 2𝑘 and
we set 𝑐𝑛 = 1

2𝑘 for 𝑁𝑘 ⩽ 𝑛 < 𝑁𝑘+1. Then∑︁
𝑛

𝑐2
𝑛𝑎𝑛 =

∑︁
𝑘

𝑁𝑘+1∑︁
𝑛=𝑁𝑘

𝑐2
𝑛𝑎𝑛 =

∑︁
𝑘

1
22𝑘

𝑁𝑘+1∑︁
𝑛=𝑁𝑘

𝑎𝑛︸  ︷︷  ︸
⩽2𝑘+1

⩽
∑︁
𝑘

1
22𝑘 2𝑘+1 = 2

∑︁
𝑘

1
2𝑘

< +∞

while ∑︁
𝑛

𝑐𝑛𝑎𝑛 =
∑︁
𝑘

𝑁𝑘+1∑︁
𝑛=𝑁𝑘

𝑐𝑛𝑎𝑛 =
∑︁
𝑘

1
2𝑘

𝑁𝑘+1∑︁
𝑛=𝑁𝑘

𝑎𝑛︸  ︷︷  ︸
⩾2𝑘

⩽
∑︁
𝑘

1
2𝑘

2𝑘 =
∑︁
𝑘

1 = +∞

(rmk:
∑𝑁𝑘+1
𝑛=𝑁𝑘

𝑎𝑛 ⩾ 2𝑘 because, if < 2𝑘 we would have
∑𝑁𝑘+1
𝑛=0 𝑎𝑛 =

∑𝑁𝑘−1
𝑛=0 𝑎𝑛 +

∑𝑁𝑘+1
𝑛=𝑁𝑘

𝑎𝑛; since,
by definition of 𝑁𝑘 ,

∑𝑁𝑘−1
𝑛=0 𝑎𝑛 < 2𝑘 , if

∑𝑁𝑘+1
𝑛=𝑁𝑘

𝑎𝑛 < 2𝑘 then
∑𝑁𝑘+1
𝑛=0 𝑎𝑛 < 2𝑘 + 2𝑘 = 2𝑘+1). □

14.3.1. We have to solve for
min
𝑎,𝑏,𝑐∈R

∥ cos 𝑥 − (𝑎𝑥2 + 𝑏𝑥 + 𝑐)∥2. (★)

Let 𝐻 = 𝐿2( [0, 2𝜋]) be the Hilbert space equipped with standard svalar product ⟨ 𝑓 , 𝑔⟩2 =∫ 2𝜋
0 𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥, and𝑈 := Span(1, 𝑥, 𝑥2). Since𝑈 is finite dimensional it is closed. According

to the orthogonal projection thm, the solution of problem (★) is Π𝑈 cos verifying
⟨cos−Π𝑈 cos, 𝑢⟩2 = 0, ∀𝑢 ∈ 𝑈.

Equivalently, since Π𝑈 cos = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, we must verify
⟨cos−(𝑎𝑥2 + 𝑏𝑥 + 𝑐), 𝑥𝑘⟩2 = 0, 𝑘 = 0, 1, 2. (★★)

We notice that,

⟨cos, 1⟩2 =

∫ 2𝜋

0
cos 𝑥 𝑑𝑥 = [sin 𝑥]𝑥=2𝜋

𝑥=0 = 0,

while, for 𝑘 ⩾ 1,

⟨cos, 𝑥𝑘⟩2 =

∫ 2𝜋

0
𝑥𝑘 cos 𝑥 𝑑𝑥 = [𝑥𝑘 sin 𝑥]𝑥=2𝜋

𝑥=0 −
∫ 2𝜋

0
𝑘𝑥𝑘−1 sin 𝑥 𝑑𝑥 = −𝑘

∫ 2𝜋

0
𝑥𝑘−1 sin 𝑥 𝑑𝑥.

Therefore

⟨cos, 𝑥⟩2 = −
∫ 2𝜋

0
sin 𝑥 𝑑𝑥 = [cos 𝑥]𝑥=2𝜋

𝑥=0 = 0,
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and

⟨cos, 𝑥2⟩2 = −2
∫ 2𝜋

0
𝑥 sin 𝑥 𝑑𝑥 = 2

[
[𝑥 cos 𝑥]𝑥=2𝜋

𝑥=0 −
∫ 2𝜋

0
cos 𝑥 𝑑𝑥

]
= 4𝜋.

Moreover,

⟨𝑥 𝑗 , 𝑥𝑘⟩2 =

∫ 2𝜋

0
𝑥 𝑗+𝑥 𝑑𝑥 =

[
𝑥 𝑗+𝑘+1

𝑗 + 𝑘 + 1

]𝑥=2𝜋

𝑥=0
=

(2𝜋) 𝑗+𝑘+1

𝑗 + 𝑘 + 1
.

From this, the orthogonality condition (★★) yields the system

−𝑎 (2𝜋)3

3 − 𝑏 (2𝜋)2

2 − 𝑐2𝜋 = 0,

−𝑎 (2𝜋)4

4 − 𝑏 (2𝜋)3

3 − 𝑐 (2𝜋)
2

2 = 0,

4𝜋 − 𝑎 (2𝜋)5

5 − 𝑏 (2𝜋)4

4 − 𝑐 (2𝜋)
3

3 = 0.

STraightforward calculations lead to 𝑎 = 45
2𝜋4 , 𝑏 = −45

𝜋3 and 𝑐 = 15
𝜋2 . □

14.3.2. We can recast the problem as follows: let 𝐻 = 𝐿2( [−1, 1]) equipped with usual product,
then

min
𝑎,𝑏,𝑐

∫ 1

−1
|𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 |2 𝑑𝑥 = min

𝑎,𝑏,𝑐

∫ 1

−1
|𝑥3 − (𝑎𝑥2 + 𝑏𝑥 + 𝑐) |2 𝑑𝑥 = min

𝑢∈𝑈
∥♯3 − 𝑢∥2

2

where 𝑈 = Span(1, 𝑥, 𝑥2). Since 𝑈 is finite dimensional, 𝑈 is closed, and the solution to the
previous problem is Π𝑈♯3. This is characterized by solving

⟨♯3 − (𝑎♯2 + 𝑏♯ + 𝑐), ♯𝑘⟩2 = 0, 𝑘 = 0, 1, 2.
We notice that

⟨♯ 𝑗 , ♯𝑘⟩ =
∫ 1

−1
𝑥 𝑗𝑥𝑘 𝑑𝑥 =

∫ 1

−1
𝑥 𝑗+𝑘 𝑑𝑥 =

[
𝑥 𝑗+𝑘+1

𝑗 + 𝑘 + 1

]𝑥=1

𝑥=−1
=


0, if 𝑗 + 𝑘 is odd,

2
𝑗+𝑘+1 , if 𝑗 + 𝑘 is even.

Therefore, the orthogonality condition yields the system
−𝑎 2

3 − 2𝑐 = 0,

2
5 − 𝑏 2

3 = 0,

−𝑎 2
5 − 𝑐 2

3 = 0,

⇐⇒ 𝑎 = 𝑐 = 0, 𝑏 =
3
5
. □

14.3.3. Let 𝐻 := 𝐿2( [0, +∞[) equipped with standard scalar product ⟨ 𝑓 , 𝑔⟩ =
∫ +∞

0 𝑓 𝑔 𝑑𝑥. The
problem consists in folving for

min
𝑢∈𝑈

∥𝑒−♯ − 𝑢∥2,
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where 𝑈 = Span(𝑒−2𝑥 , 𝑒−3𝑥). Since 𝐻 is a Hilbert space, 𝑈 is finite dimensional hence closed,
the solution is Π𝑈𝑒−♯ characterized by the orthogonality condition

⟨𝑒−♯ − (𝑎𝑒−2♯ + 𝑏𝑒−3♯), 𝑒−𝑘♯⟩2 = 0, 𝑘 = 2, 3.

We notice that

⟨𝑒− 𝑗♯, 𝑒−𝑘♯⟩2 =

∫ +∞

0
𝑒−( 𝑗+𝑘)𝑥 𝑑𝑥 =

[
𝑒−( 𝑗+𝑘)𝑥

−( 𝑗 + 𝑘)

]𝑥=+∞
𝑥=0

=
1
𝑗 + 𝑘 .

Therefore, the orthogonslity condition yields the system
1
3 − 𝑎 1

4 − 𝑏 1
5 = 0,

1
4 − 𝑎 1

5 − 𝑏 1
6 = 0.

⇐⇒ 𝑎 =
10
3
, 𝑏 = −5

2
. □

14.3.4. We equip 𝐿2( [0, 1]) with standard scalar product. We may recast the problem as

max
𝑓 ∈𝐿2, ∥ 𝑓 ∥=1

⟨ 𝑓 , 𝑒♯⟩2.

By CS inequality, |⟨ 𝑓 , 𝑒♯⟩2 | ⩽ ∥ 𝑓 ∥2∥𝑒♯∥2 = ∥𝑒♯∥2, where

∥𝑒♯∥2
2 =

∫ 1

0
(𝑒𝑥)2 𝑑𝑥 =

∫ 1

0
𝑒2𝑥 𝑑𝑥 =

[
𝑒2𝑥

2

]𝑥=1

𝑥=0
=
𝑒2 − 1

2
.

Therefore, ⟨ 𝑓 , 𝑒♯⟩2 ⩽ |⟨ 𝑓 , 𝑒♯⟩2 | ⩽
√︃
𝑒2−1

2 for every 𝑓 ∈ 𝐿2 such that ∥ 𝑓 ∥2 = 1. Now, taking

𝑓 ∗ =
√︃

2
𝑒2−1𝑒

♯ we have 𝑓 ∗ ∈ 𝐿2( [0, 1]), ∥ 𝑓 ∗∥2 = 1 and

⟨ 𝑓 ∗, 𝑒♯⟩2 =

√︂
2

𝑒2 − 1
∥𝑒♯∥2

2 =

√︂
𝑒2 − 1

2
.

From this,

max
𝑓 ∈𝐿2, ∥ 𝑓 ∥=1

⟨ 𝑓 , 𝑒♯⟩2 =

√︂
𝑒2 − 1

2
,

and optimal 𝑓 is 𝑓 ∗. □

14.3.5. See slides. □

14.3.6. See slides. □

17.2.1. #1. Clearly 𝑥rect𝑎 (𝑥) ∈ 𝐿1(R) and�♯rect𝑎 (𝜉) =
∫
R
𝑥1[−𝑎,𝑎] (𝑥)𝑒−𝑖𝜉𝑥 𝑑𝑥 =

∫ 𝑎

−𝑎
𝑥𝑒−𝑖𝜉𝑥 𝑑𝑥.
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Here we may compute the integral by parts or, in an alternative way, noticed that 𝑥𝑒−𝑖𝜉𝑥 =
1
−𝑖𝜕𝜉𝑒

−𝑖𝜉𝑥 = 𝑖𝜕𝜉𝑒−𝑖𝜉𝑥 , so, �♯rect𝑎 (𝜉) =
∫ 𝑎

−𝑎
𝑖𝜕𝜉𝑒

−𝑖𝜉𝑥 𝑑𝑥.

Now, since differentiability under integral sign applies (we already check that 𝜕𝑥𝑒−𝑖𝜉𝑥 = −𝑖𝑥𝑒−𝑖𝜉𝑥
exists ∀𝑥 ∈ [−𝑎, 𝑎], ∀𝜉 ∈ R and |𝜕𝜉𝑒−𝑖𝜉𝑥 | = | − 𝑖𝑥𝑒−𝑖𝜉𝑥 | = |𝑥 | ∈ 𝐿1( [−𝑎, 𝑎])), we have

�♯rect𝑎 (𝜉) = 𝑖𝜕𝜉
∫ 𝑎

−𝑎
𝑒−𝑖𝜉𝑥 𝑑𝑥 = 𝑖𝜕𝜉�rect𝑎 (𝜉) = 𝑖𝜕𝜉2𝑎

sin(𝑎𝜉)
𝑎𝜉

= 2𝑖
𝑎𝜉 cos(𝑎𝜉) − sin(𝑎𝜉)

𝜉2 .

This for 𝜉 ≠ 0. For 𝜉 = 0 we have directly,

�♯rect𝑎 (0) =
∫ 𝑎

−𝑎
𝑥 𝑑𝑥 = 0.

#2. 𝑓̂ (𝜉) = 21−cos(𝑎𝜉)
𝜉2 .

#3. Clearly 𝑓 (𝑥) = cos 𝑥rect𝜋/2(𝑥) ∈ 𝐿1(R). By Euler’s formulas, cos 𝑥 = 𝑒𝑖𝑥+𝑒−𝑖𝑥
2 so

𝑓̂ (𝜉) = 1
2

( �𝑒𝑖♯rect𝜋/2(𝜉) + �𝑒−𝑖♯rect𝜋/2(𝜉)
)
.

Now, recalling that, for 𝑔 ∈ 𝐿1, �𝑒𝑖𝑚♯𝑔(𝜉) = 𝑔̂(𝜉 − 𝑚), we have

𝑓̂ (𝜉) = 1
2

(�rect𝜋/2(𝜉 − 1) + �rect𝜋/2(𝜉 + 1)
)
=

sin( 𝜋2 (𝜉 − 1))
𝜉 − 1

+
sin( 𝜋2 (𝜉 + 1))

𝜉 + 1
. □

#4. Clearly, 𝑓 (𝑥) = 𝑒−|𝑥 | sgn(𝑥) ∈ 𝐿1(R). We have

𝑓̂ (𝜉) =

∫
R
𝑒−|𝑥 | sgn(𝑥)𝑒−𝑖𝜉𝑥 𝑑𝑥 =

∫ 0

−∞
−𝑒𝑥𝑒−𝑖𝜉𝑥 𝑑𝑥 +

∫ +∞

0
𝑒−𝑥𝑒−𝑖𝜉𝑥 𝑑𝑥

=

[
−𝑒

(1−𝑖𝜉)𝑥

1 − 𝑖𝜉

]𝑥=0

𝑥=−∞
+

[
𝑒−(1+𝑖𝜉)𝑥

−(1 + 𝑖𝜉)

]𝑥=+∞
𝑥=0

= − 1
1 − 𝑖𝜉 + 1

1 + 𝑖𝜉 = − 2𝑖𝜉
1 + 𝜉2 . □

#5. Clearly 𝑓 (𝑥) = 𝑒−𝑥1[0,+∞[ (𝑥) ∈ 𝐿1. Now,

𝑓̂ (𝜉) =
∫ +∞

0
𝑒−𝑥𝑒−𝑖𝜉𝑥 𝑑𝑥 =

[
𝑒−(1+𝑖𝜉)𝑥

−(1 + 𝑖𝜉)

]𝑥=+∞
𝑥=0

=
1

1 + 𝑖𝜉 . □
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17.2.4. If 𝑓 is even and real valued, then

𝑓̂ (𝜉) =

∫
R
𝑓 (𝑥)𝑒−𝑖𝜉𝑥 𝑑𝑥 =

∫
R
𝑓 (𝑥)𝑒−𝑖𝜉𝑥 𝑑𝑥 =

∫
R
𝑓 (𝑥)𝑒𝑖𝜉𝑥 𝑑𝑥

𝑦=−𝑥
=

∫
R
𝑓 (−𝑦)𝑒−𝑖𝜉𝑦 𝑑𝑦 =

∫
R
𝑓 (𝑦)𝑒−𝑖𝜉𝑦 𝑑𝑦 = 𝑓̂ (𝜉).

Therefore 𝑓̂ (𝜉) ∈ R, ∀𝜉 ∈ R. □

17.2.8. Warning! The exercise contains a typo: the correct statement is

| 𝑓̂ (𝜉) | < 𝑓̂ (0), ∀𝜉 ≠ 0.

We start noticing that

| 𝑓̂ (𝜉) | ⩽
∫
R
| 𝑓 (𝑥) | 𝑑𝑥 𝑓 >0

=

∫
R
𝑓 (𝑥) 𝑑𝑥 = 𝑓̂ (0), ∀𝜉 ∈ R.

The problem is showing that the inequality must be strict. We notice that

𝑓̂ (𝜉) =
∫
R
𝑓 (𝑥) (cos(−𝜉𝑥) + 𝑖 sin(−𝜉𝑥)) 𝑑𝑥 =

∫
R
𝑓 (𝑥) cos(𝜉𝑥) 𝑑𝑥 − 𝑖

∫
R
𝑓 (𝑥) sin(𝜉𝑥) 𝑑𝑥.

So,

| 𝑓̂ (𝜉) |2 =

(∫
R
𝑓 (𝑥) cos(𝜉𝑥) 𝑑𝑥

)2
+

(∫
R
𝑓 (𝑥) sin(𝜉𝑥) 𝑑𝑥

)2
.

By CS inequality, (∫
R
𝑓 cos

)2
=

(∫
R
𝑓 1/2 𝑓 1/2 cos

)2
⩽

∫
R
𝑓 𝑑𝑥

∫
R
𝑓 cos2

and = holds iff 𝑓 1/2 = 𝜆 𝑓 1/2 cos a.e. for some 𝜆. Since 𝑓 > 0 always, 𝜆 cos(𝜉𝑥) = 1 a.e. 𝑥
which is impossible. Thus, = never holds, and < holds. Similarly,(∫

R
𝑓 sin

)2
<

∫
R
𝑓 𝑑𝑥

∫
R
𝑓 sin2 .

Therefore

| 𝑓̂ (𝜉) |2 <
∫
R
𝑓

(∫
R
𝑓 (cos2 + sin2)

)
=

(∫
R
𝑓

)2
= 𝑓̂ (0)2. □

17.2.9. Since 𝑓 ≡ 0 for |𝑥 | ⩾ 𝑅, we have

𝑓̂ (𝜉) =
∫ 𝑅

−𝑅
𝑓 (𝑥)𝑒−𝑖𝜉𝑥 𝑑𝑥.
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Now, recall that

𝑒𝑧 =

∞∑︁
𝑛=0

𝑧𝑛

𝑛!
, ∀𝑧 ∈ C.

Therefore

𝑒−𝑖𝜉𝑥 =
∞∑︁
𝑛=0

(−𝑖𝜉𝑥)𝑛
𝑛!

=

∞∑︁
𝑛=0

(−𝑖𝜉)𝑛
𝑛!

𝑥𝑛,

so,

𝑓̂ (𝜉) =
∫ 𝑅

−𝑅
𝑓 (𝑥)

∞∑︁
𝑛=0

(−𝑖𝜉)𝑛
𝑛!

𝑥𝑛 𝑑𝑥
?
=

∞∑︁
𝑛=0

∫ 𝑅

−𝑅
𝑓 (𝑥) (−𝑖𝜉)

𝑛

𝑛!
𝑥𝑛 𝑑𝑥.

To justify ?
= we apply the dominated convergence for series. We remind that if ( 𝑓𝑛) ∈ 𝐿1(𝐸) are

such that ∑︁
𝑛

∫
𝐸

| 𝑓𝑛 | 𝑑𝜇 < +∞, =⇒
∫
𝐸

∑︁
𝑛

𝑓𝑛 𝑑𝜇 =
∑︁
𝑛

∫
𝐸

𝑓𝑛 𝑑𝜇.

In our case,∑︁
𝑛

∫ 𝑅

−𝑅

���� 𝑓 (𝑥) (−𝑖𝜉)𝑛𝑛!
𝑥𝑛

���� 𝑑𝑥 ⩽∑︁
𝑛

∫ 𝑅

−𝑅
| 𝑓 (𝑥) | ( |𝑅𝜉 |)

𝑛

𝑛!
𝑑𝑥 =

∑︁
𝑛

( |𝑅𝜉 |)𝑛
𝑛!

∥ 𝑓 ∥1 = 𝑒𝑅 |𝜉 | ∥ 𝑓 ∥1 < +∞,

so

𝑓̂ (𝜉) =
∞∑︁
𝑛=0

(−𝑖)𝑛
∫ 𝑅
−𝑅 𝑥

𝑛 𝑓 (𝑥) 𝑑𝑥
𝑛!

𝜉𝑛 ≡
∑︁
𝑛

𝑐𝑛𝜉
𝑛, ∀𝜉 ∈ R,

that is 𝑓̂ is a power series. □

18.5.1. We notice that 1[−1,1] , 𝑥1[−1,1] , 𝑥
21[−1,1] ∈ 𝐿1(R). By the well known rule 𝜕𝜉 𝑓̂ =�−𝑖♯ 𝑓 (𝜉), we have�(−𝑖♯)21[−1,1] (𝜉) = 𝜕𝜉

�−𝑖♯1[−1,1] (𝜉) = 𝜕𝜉𝜉�1[−1,1] (𝜉) = 𝜕𝜉𝜉
(
2

sin 𝜉
𝜉

)
= 2𝜕𝜉

𝜉 cos 𝜉 − sin 𝜉
𝜉2 = 2

−𝜉3 sin 𝜉 − (𝜉 cos 𝜉 − sin 𝜉)2𝜉
𝜉4 . □

18.5.3. Clearly, 𝑓𝑎 ∈ 𝐿1(R) for every 𝑎 > 0, so 𝑓𝑎 ∗ 𝑓𝑏 is well defined and 𝐿1 if 𝑎, 𝑏 > 0. By
the rule of the FT of a convolution product, we have�𝑓𝑎 ∗ 𝑓𝑏 (𝜉) = 𝑓̂𝑎 (𝜉) 𝑓̂𝑏 (𝜉).
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Let’s compute 𝑓̂𝑎. By the definition

𝑓̂𝑎 (𝜉) =
∫ +∞

0
𝑒−𝑎𝑥𝑒−𝑖𝜉𝑥 𝑑𝑥 =

∫ +∞

0
𝑒−(𝑎+𝑖𝜉)𝑥 𝑑𝑥 =

[
𝑒−(𝑎+𝑖𝜉)𝑥

−(𝑎 + 𝑖𝜉)

]𝑥=+∞
𝑥=0

.

Now, since for 𝑎 > 0 we have
|𝑒−(𝑎+𝑖𝜉)𝑥 | = 𝑒−𝑎𝑥 𝑥→+∞−→ 0,

we conclude that
𝑓̂𝑎 (𝜉) =

1
𝑎 + 𝑖𝜉 .

Therefore, �𝑓𝑎 ∗ 𝑓𝑏 (𝜉) = 1
(𝑎 + 𝑖𝜉) (𝑏 + 𝑖𝜉) . □

18.5.5. Let 𝑓 (𝑥) = 𝑒−𝑥2/2. As noticed, 𝑓 ′(𝑥) = −𝑥 𝑓 (𝑥), so

𝑓̂ ′(𝜉) = −̂♯ 𝑓 (𝜉), ⇐⇒ 𝑖𝜉 𝑓̂ (𝜉) = −𝑖𝜕𝜉 𝑓̂ (𝜉), ⇐⇒ 𝜕𝜉 𝑓̂ (𝜉) = −𝜉 𝑓̂ (𝜉),
from which

𝑓̂ (𝜉) = 𝑘𝑒−
𝜉2
2 .

To determine 𝑘 we notice that

𝑘 = 𝑓̂ (0) =
∫
R
𝑓 (𝑥) 𝑑𝑥 =

∫
R
𝑒−

𝑥2
2 𝑑𝑥 =

√
2𝜋. □

18.5.9. (Warning! this exercise contains a typo and it demands the une of the inversion
formula) i) We verify that

𝑓𝜀 (𝑥) :=
1

2𝜋
𝑔𝜀 (−𝑥), 𝑔𝜀 (𝜉) =

1
2𝜋
𝑒−

1
2 𝜀

2𝜉2
𝑓̂ (𝜉),

is well defined. Since 𝑓 ∈ 𝐿1, 𝑓̂ is continuous and bounded, so if 𝑔𝜀 ∈ 𝒞(R) ⊂ 𝐿 (R) and,
because of the bound | 𝑓̂ (𝜉) | ⩽ ∥ 𝑓 ∥1, we have∫

R
|𝑔𝜀 (𝜉) | 𝑑𝜉 ⩽

1
2𝜋

∫
R
𝑒−

1
2 𝜀

2𝜉2 ∥ 𝑓 ∥1 𝑑𝜉 < +∞,

so 𝑔𝜀 ∈ 𝐿1. Therefore, 𝑓𝜀 = 𝑔𝜀 is well defined.
ii) Recall that�

𝑒
− ♯2

2𝜎2 (𝜉) =
√︁

2𝜋𝜎2𝑒−
1
2𝜎

2𝜉2
, =⇒ 𝑒−

1
2 𝜀

2𝜉2
=

�1
√

2𝜋𝜀2
𝑒
− ♯2

2𝜀2 (𝜉) =: 𝛿𝜀 (𝜉),

from which

𝑔𝜀 (𝜉) =
1

2𝜋
𝑒−

1
2 𝜀

2𝜉2
𝑓̂ (𝜉) = 1

2𝜋
�1

√
2𝜋𝜀2

𝑒
− ♯2

2𝜀2 (𝜉) 𝑓̂ (𝜉) = 1
2𝜋

�𝛿𝜀 ∗ 𝑓 (𝜉).
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Therefore, by the inversion formula

𝑓𝜀 (𝑥) =
1

2𝜋
��𝛿𝜀 ∗ 𝑓 (−𝑥) = (𝛿𝜀 ∗ 𝑓 ) (𝑥).

Now, let 𝛿𝜀 (𝑥) is an approximate unit. It is a well known fact that 𝑓𝜀 = 𝑓 ∗ 𝛿𝜀
𝐿1

−→ 𝑓 when
𝜀 → 0, from which the conclusion follows. □


