ANALYTICAL METHODS FOR ENGINEERING
ANSWERS TO LN EXERCISES

Ex. 1.4.1. i) Done in class.
ii) If X is finite, # = P(X), so F is a o —algebra. If X is infinite, then F is not a o—algebra.
Indeed, X ¢ & for example.
iii) If X is uncountable, X ¢ F, so & cannot be a o-—algebra. Let’s consider the case when X is
countable. Then, every subset of X is countable, thus F = 9 (X), so it is a o—algebra. m]

Ex. 1.4.2. We start noticing that & is not a o-—algebra. Now, any o —algebra containing &
must also contain {a}° = {b,c,d} and {a, c}¢ = {b, d} as well as the (countable) unions of its
sets. So, also {a, b, d} must be in the o-—algebra, as well as its complementary {a, b, d} = {c}.
Therefore, any o-—algebra containing & must contain

{@,{a},{c}.{a.c},{b,d}.{a,b,d},{D,c,d},{a,b,c,d}}.
Since this is a o—algebra (easy check), we conclude that it is o (S). O

Ex. 1.4.3. Let ¥ := 0({A, B}). We decompose the set X in the following disjoint sets:
ANB,ANB,BN A€, A° N B¢. All these sets must belong to o ({A, B}), so all possible finite
unions of these. Among them, notice that we have

A=(ANB)U(ANB), B=(BNA°)U(BNA).

Since these 4 sets are disjoint, it is easy to check that the family & made of all possible finite
unions of them is a o-—algebra that, by construction, must be contained in o-(&’). On the other
hand, since {A, B} ¢ &, and & is a o—algebra, we have (by definition of o (&)), o (§) C F.
So,

c(8)=F = {0, ANB°,ANB,BNA°,A°N B¢, A, B, A°, B,

AUB,AU B, A° U B, A° U B¢, (AAB), (AAB)°}. O

Ex. 1.4.4. We already proved in class that # is a o-—algebra. We may notice that, in this case,
for every A € & only one of A or A° can be countable. This because X is uncountable, so if for
example A is countable, then A = X\ A is uncountable and vice versa. This remark is important
because it says that the function u is well defined for every A € &. Indeed: since if A € F only
one of A, A€ can be countable, the value u(A) is well defined.

Now, let’s check whether u is a measure or not. According to the definition we have to check
that u(@) = 0 and countable additivity. Now, since @ has 0 elements, it is countable, thus
u(@) = 0 by definition of u. Let not (A,) C F be a disjoint family. We have to determine if

(%) 4 (|_| An) = > n(A).

Since A, € & for every n € N, either A, or A{ is countable. We have the following alternative:
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e cither A, is countable for every n € N,
e or, at least one of A{ is countable, say 3N € N such that AICV is countable.

In the first case, | |, A, is countable (countable union of countable sets), so

| | 4| =0, and ) u(a,)=> 0=0,

and (x) holds in this case. In the second case, | |, A, D Ay, so (L, A»)° C A§, is countable, so

ﬂ(|_|An

n

J7i

= 1.

In the sum ), u(A,) at least u(Ay) = 1, so the sumis > 1. If u(A,) = 0 for n # N we have
the conclusion. Assume for a moment that p(Ay) = 1 for some M # N. Then, A{, would be
countable and

Ay NAy =0, = XZA;[UA]CV’
so X would be the union of countable sets, and therefore X itself would be countable, contra-
dicting the assumption. We conclude that u(A,) = O for all n # N and countable additivity
follows. O
Ex. 1.4.7. Let E,F,G € . We have
H(EUFUG)=u(E)+u((FUG)\E) = u(E) + u((F\E) U (G\E)).
We recall that, if A, B € & and u(A N B) < +oo we have
u(AU B) = u(A) + u(B) — u(A N B),
SO
H((F\E) U (G\E)) =pu(F\E)+u(G\E) —u((FNG)\E)
= (u(F) —pw(ENF))+ (u(G) —u(ENG)) —u((FNG)\E)
= pu(F) +p(G) = (WENF) +w(ENG)) — pu((FNG)\E).
provided u(ENF), u(ENG), u(F NG) < +oco. Now,
p((FNGN\E) =pu(FNG)—u(ENFNG),
because u(ENFNG) < u(ENF) < +00, 50
UWEUFUG) = u(E)+u(F)+u(G)—(M(ENF)+ u(ENG)+u(FNG))+u(ENFNG). 0O
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Ex. 1.4.9. 1) Let’s start from the set S. An element x € § iff x € E; for infinitely many j, that is
dji<j<...: xeﬂEjk.
k=1

Of course, indexes j; depends on the specific point x. So we need to determine a better way to
characterize points of S. We may notice that the previous property is equivalent to

Vn, dj > n, : x € Ej.

In this way
xes, VneN,erEj, — xeﬂUEj.
j=n n jzn
So,
s=JEs
n o jzn

and since this is a set operation on the (E;) C % we get S € F.
i1) To determine the measure of S we have to compute

p(S) = p (ﬂUEJ

n jzn

Call F,, := Uj% E;. Itis clear that F;,, D Fy.1, so F, \,. So, S is a decreasing limit of (F,)
and the idea could be to apply continuity from above to compute u(S). This is feasible if
u(Fy) < +o0. But,

u(Fo) = p UEJ' < Z'U(Ef) < +00,
Jj=0 J
because of the assumption. Therefore, continuity from above applies and
u(S) = lim p(Fy).
Finally,

JE

j=n

H(F) = < D H(E) —0.

j=n

being this the tail of a convergent series. O

2.3.1. Suppone, by contradiction, that N is not dense in R, that is
Ala,b[Cc R, N°N]a,b[= 2.
Then Ja,b[C N,s00=A(N) > A(]a, b[) = b —a > 0, which is impossible. O

2.3.2 We first notice that each C,, is made of a finite union of closed intervals, thus it is a closed
set. Therefore, C,, € .#, for every n, hence C := (), C, € #,. In alternative, we may also
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notice that in general, an infinite intersection of closed sets is closed, so C is closed. Since the
Lebesgue class .# contains both open and closed sets, we deduce C € /.

About A(C) we may notice that 0 < A(C) < A(C,) for every n. Now, each C,, is the union of
2" disjoint intervals each of length 3% so A(Cy) = 2”3%,, from which A(C) < % = (%) — 0
when n — +co. Thus, necessarily, 1(C) < 0, from which A(C) = 0. O
2.3.5. Let

Epnn:={(x,y) : mx+ny=0},
with (m, n) € NxN\{(0,0)}. Since (m,n) # (0,0), E,, , is a plane straight line, so A (E,;, ) = 0,

and
E=  |J)  Ewnm
(m,n)eN?\{(0,0)}
is a countable union. Therefore, by sub-additivity, A2(E) < 3, , A2(Ep.») = 0. m|

2.3.6. By definition,
Ve > 0, 30,,0, open : 1*(0,\B) < &, 1*(0,\A) < &,
2.3.7. The assumption says that A((ANB) U (ANC)U (BNC)) = 1. The thesis is to

prove that at least one of A1(A), A(B)A(C) must be > % If the conclusion were false, then
A(A),A(B),A(C) < % Now, we notice that

MEUFUG) =A(EUF)+A(G)-A((EUF)NG)
=AUE)+AF)+A(G) - AENF)—(AUENG)+A(FNG) - A(ENFNG))

=UE)+AF)+AG)—(HENF)+A(ENG)+A(FNG))+A(ENFNG).
We apply this a firsttimeto E = A, F = Band G = C and asecondtimeto E = ANB,F = ANC
and G = BN C. In this last case, by the assumption, we get
I1=A(ANB)+A(ANC)+A(BNC)-31(ANBNC)+A(ANBNC)
that is
AANB)+A(ANC)+A(BNC)=1+221(ANBNC),
and since, of course, A(A U BU C) = 1, we have
1=A2(A)+A(B)+A(C) = (1 +2A(ANBNC))+A(ANBNC),
from which
A(A) +A(B)+A(C) =2+ A(ANBNC).
Now, if 1(A), A(B),A(C) < % then we would have

2
2<2+A(ANBNC) = A(A) + AB) +A(C) <35 =2,



which is impossible! O
2.3.8. Let N c [0, 1] with A(N) = 0. The goal is to prove that 1(N?) = 0 where N? = {x2

x € N}. Since
0= A(N) :inf{z II,| : N c Ul}

by the characteristics of inf we have that
Ve >0, 35, : Nc| JI5, Y IEl<e
n n

Since N c [0, 1], we may assume that /5 C [0, 1]. Otherwise, wereplace IZ with J¢ = IN[0, 1]:
J¢ is still an interval, being intersection of intervals,

NcU18,=>N NN[0,1] UIE 0.1 =| JJs
n
DEI< Y g <e
n n

Now, writing J3 = [a%, bf] C [O 1], we would have

2c U(ﬁ)2 U [(a5)?, (b))

and
Z (J5)?] = Z ((bi)2 - (af,)z) = Z (bE - af) (b +af) < 22 (b% - af) = 22 lJZ| < 2e.

n g n n

and moreover

From this and by the definition of A, we get
A(N?) < 2¢

and since & can be made arbitrarily small, this shows that A(N?) = 0

In N is bounded, N c [—=R, R], the previous argument leads to a similar bound A(N?) < 2Re,
so we conclude similarly.

Finally, if N is generic, define Ng := N N [—R, R]. It is clear that lee = N?2n[0,R*] T N?
(when R — +c0) and since /1(N123) = (0 for every R, by the continuity from below of 1 we obtain
also A(N?) = 0. O
3.4.1. Let f : R — R be, for example, increasing, so f(x) < f(y) when x < y. We prove that
{f < a} is measurable. Intuitively, { f < a} should be an interval of type oo, @[ or | — oo, ]

where @ := sup{x : f(x) < a}. Indeed: let a be defined as above. Either @ = +o0 or a < +o0.
In the first case, f(x) < a for all x € R, so {f < a} = R. In the second case, we claim that

| —oo,a[Cc {f <a}C]—o0,a].
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Indeed: if x < « then, by definition of sup, there exists S > x such that f(8) < a. But then,
being f increasing, f(x) < f(B) < a, sox € {f < a}. This proves that | — co,¢[C {f < a}.
To prove the second inclusion we prove that, if x > « it cannot be x € {f < a}. Otherwise,
f(x) <a,so

b

a=sup{x : f(x) <a}>x>a,
obtaining a contradiction. Conclusion: {f < a} can be only | — oo, @[ or | — oo, ], in both
cases it is an interval, so it is a measurable set. m]
3.4.2. We have to prove that i) is equivalent to ii) where

1) f is measurable
i) {f >a} € F forevery a € Q.

Since i) is equivalent to {f > a} € & forevery a € R, i) = ii).
Let’s prove that ii) = 1), that is, let’s prove that { f > a} € & for every a € R. By ii), this is
true if a € Q. So let a € Q° (irrational). We notice that, if g € Q is such that g > a, then

{f>q} c{f>a}
Since this happens for every g € Q, g > a, we can say that
| (r>atcir>a)
q€Q, g>a

At left, we have a countable union of measurable sets, so the union is a measurable set. So, if
we prove that = holds, we are done! That is, the goal is reduced to prove that

{f>atc | {£>qh
q€Q, g>a

Pick x € {f > a}. So, f(x) > a. Because of the density of rationals in reals, there exists
r € Q such that f(x) > r > a, sox € {f > r} C Ueq, g>«{f > q}. This means that

{f > a} € Ugeq, g>alf > g} as claimed. O
3.4.4. Notice that

{fge>at={fg>a, g>0n{fg>a, g=0Nn{fg>a, g <0}

Let’s analyze the three sets, starting by the second one (easier), and the first and the third ones
being similar. We have

o eF, a >0,

{fg>a, g=0y={0>a, g=0} =
{g=0}eZF, a<0



For the first set we have

{fg>a,g>0}={f>g,g>0}=U{f>q>g,g>0}=U{f>q}ﬂ{g>0,g>g}
& q€Q & q€Q 4

eEF
from which we see that { fg > a, g > 0} € %. Similar argument for the third set. From this
the conclusion follows. O

3.4.6. i) Claim: f,(x) — Oforevery x € R. Take n > [x] + 1. Then x < [x] + 1 < n, from
which f,,(x) = 0. This means that ( f,,(x)) is constantly = O for n large, thus f,(x) — O.

ii) Claim: f,(x) — 1j0+c0[(x) for every x. Indeed: if x < 0, f,(x) =0 — 0. If x > 0,
since % — 0 and n — +oo, for n large enough % <x<nsof(x)=1—1.

i11) We notice that

S (x) = Tj0a721(%)s Sfarr1(x) = T[1y2,17(x).
For x < 0 and x > 1 we have f,,(x) =0 — 0. Forx = 1/2 we have also f,(x) =1 — 1. If
however 0 < x < 1/2 we have that (f,(x)) = (1,0, 1,0, ...) so there is no limit. Similarly, for

1/2 < x < 1, (fu(x)) hasno limit. Since the limit of ( f;,) does notexist forx € [0, 1/2[U]1/2, 1],
which is a positive measure set, we cannot conclude that ( f,,) converges pointwise a.e..

3.4.7. We do the proof in dimension d = 1 for simplicity, the argument is the same for the
general case. Suppose that g(x) > 0 for some x € R. By continuity, there exists a neighborhood
U, of x for which g(y) > 0, Vy € U,. We can always assume that U, = [x — &, x + £]. Therefore

{g#0}D[x—g,x+¢], 0=A{g#0}) > A([x —e,x+¢&]) =2 >0,

which is a contradiction. O



