Analytical Methods for Engineering

Answers to LN Exercises

Ex. 1.4.1. i) Done in class.

- ii) If X is finite, $\mathcal{F} = \mathcal{P}(X)$, so \mathcal{F} is a σ -algebra. If X is infinite, then \mathcal{F} is not a σ -algebra. Indeed, $X \notin \mathcal{F}$ for example.
- iii) If X is uncountable, $X \notin F$, so \mathscr{F} cannot be a σ -algebra. Let's consider the case when X is countable. Then, every subset of X is countable, thus $\mathscr{F} = \mathscr{P}(X)$, so it is a σ -algebra. \square
- **Ex. 1.4.2.** We start noticing that \mathcal{S} is not a σ -algebra. Now, any σ -algebra containing \mathcal{S} must also contain $\{a\}^c = \{b, c, d\}$ and $\{a, c\}^c = \{b, d\}$ as well as the (countable) unions of its sets. So, also $\{a, b, d\}$ must be in the σ -algebra, as well as its complementary $\{a, b, d\}^c = \{c\}$. Therefore, any σ -algebra containing \mathcal{S} must contain

$$\{\emptyset, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\}\}$$
.

Since this is a σ -algebra (easy check), we conclude that it is $\sigma(\mathcal{S})$.

Ex. 1.4.3. Let $\mathcal{F} := \sigma(\{A, B\})$. We decompose the set X in the following disjoint sets: $A \cap B^c$, $A \cap B$, $B \cap A^c$, $A^c \cap B^c$. All these sets must belong to $\sigma(\{A, B\})$, so all possible finite unions of these. Among them, notice that we have

$$A = (A \cap B^c) \cup (A \cap B), \quad B = (B \cap A^c) \cup (B \cap A).$$

Since these 4 sets are disjoint, it is easy to check that the family \mathscr{F} made of all possible finite unions of them is a σ -algebra that, by construction, must be contained in $\sigma(\mathscr{E})$. On the other hand, since $\{A,B\} \subset \mathscr{F}$, and \mathscr{F} is a σ -algebra, we have (by definition of $\sigma(\mathscr{E})$), $\sigma(\mathscr{E}) \subset \mathscr{F}$. So,

$$\sigma(\mathcal{S}) = \mathcal{F} = \{\emptyset, A \cap B^c, A \cap B, B \cap A^c, A^c \cap B^c, A, B, A^c, B^c, B^c, A^c, B^c, B^c, A^c, B^c, A^c,$$

$$A \cup B, A \cup B^c, A^c \cup B, A^c \cup B^c, (A \triangle B), (A \triangle B)^c \}. \quad \Box$$

Ex. 1.4.4. We already proved in class that \mathscr{F} is a σ -algebra. We may notice that, in this case, for every $A \in \mathscr{F}$ only one of A or A^c can be countable. This because X is uncountable, so if for example A is countable, then $A^c = X \setminus A$ is uncountable and vice versa. This remark is important because it says that the function μ is well defined for every $A \in \mathscr{F}$. Indeed: since if $A \in \mathscr{F}$ only one of A, A^c can be countable, the value $\mu(A)$ is well defined.

Now, let's check whether μ is a measure or not. According to the definition we have to check that $\mu(\emptyset) = 0$ and countable additivity. Now, since \emptyset has 0 elements, it is countable, thus $\mu(\emptyset) = 0$ by definition of μ . Let not $(A_n) \subset \mathcal{F}$ be a disjoint family. We have to determine if

$$(\star) \ \mu\left(\bigsqcup_{n} A_{n}\right) = \sum_{n} \mu(A_{n}).$$

Since $A_n \in \mathcal{F}$ for every $n \in \mathbb{N}$, either A_n or A_n^c is countable. We have the following alternative:

- either A_n is countable for every $n \in \mathbb{N}$,
- or, at least one of A_n^c is countable, say $\exists N \in \mathbb{N}$ such that A_N^c is countable.

In the first case, $\bigsqcup_n A_n$ is countable (countable union of countable sets), so

$$\mu\left(\bigsqcup_{n} A_{n}\right) = 0$$
, and $\sum_{n} \mu(A_{n}) = \sum_{n} 0 = 0$,

and (\star) holds in this case. In the second case, $\bigsqcup_n A_n \supset A_N$, so $(\bigsqcup_n A_n)^c \subset A_N^c$ is countable, so

$$\mu\left(\bigsqcup_{n}A_{n}\right)=1.$$

In the sum $\sum_n \mu(A_n)$ at least $\mu(A_N) = 1$, so the sum is ≥ 1 . If $\mu(A_n) = 0$ for $n \neq N$ we have the conclusion. Assume for a moment that $\mu(A_M) = 1$ for some $M \neq N$. Then, A_M^c would be countable and

$$A_M \cap A_N = \emptyset, \implies X = A_M^c \cup A_N^c,$$

so X would be the union of countable sets, and therefore X itself would be countable, contradicting the assumption. We conclude that $\mu(A_n) = 0$ for all $n \neq N$ and countable additivity follows.

Ex. 1.4.7. Let $E, F, G \in \mathcal{F}$. We have

$$\mu(E \cup F \cup G) = \mu(E) + \mu((F \cup G) \setminus E) = \mu(E) + \mu((F \setminus E) \cup (G \setminus E)).$$

We recall that, if $A, B \in \mathcal{F}$ and $\mu(A \cap B) < +\infty$ we have

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B),$$

so

$$\mu((F \backslash E) \cup (G \backslash E)) = \mu(F \backslash E) + \mu(G \backslash E) - \mu((F \cap G) \backslash E)$$

$$= (\mu(F) - \mu(E \cap F)) + (\mu(G) - \mu(E \cap G)) - \mu((F \cap G) \backslash E)$$

$$= \mu(F) + \mu(G) - (\mu(E \cap F) + \mu(E \cap G)) - \mu((F \cap G) \backslash E).$$

provided $\mu(E \cap F)$, $\mu(E \cap G)$, $\mu(F \cap G) < +\infty$. Now,

$$\mu((F \cap G) \setminus E) = \mu(F \cap G) - \mu(E \cap F \cap G),$$

because $\mu(E \cap F \cap G) \leq \mu(E \cap F) < +\infty$, so

$$\mu(E \cup F \cup G) = \mu(E) + \mu(F) + \mu(G) - (\mu(E \cap F) + \mu(E \cap G) + \mu(F \cap G)) + \mu(E \cap F \cap G). \quad \Box$$

Ex. 1.4.9. i) Let's start from the set S. An element $x \in S$ iff $x \in E_j$ for infinitely many j, that is

$$\exists j_1 < j_2 < \dots : x \in \bigcap_{k=1}^{\infty} E_{j_k}.$$

Of course, indexes j_k depends on the specific point x. So we need to determine a better way to characterize points of S. We may notice that the previous property is equivalent to

$$\forall n, \exists j \geq n, : x \in E_j.$$

In this way

$$x \in S, \ \Longleftrightarrow \ \forall n \in \mathbb{N}, \ x \in \bigcup_{j \geq n} E_j, \ \Longleftrightarrow \ x \in \bigcap_n \bigcup_{j \geq n} E_j.$$

So,

$$S = \bigcap_{n} \bigcup_{j \geqslant n} E_j,$$

and since this is a set operation on the $(E_i) \subset \mathcal{F}$ we get $S \in \mathcal{F}$.

ii) To determine the measure of S we have to compute

$$\mu(S) = \mu\left(\bigcap_{n} \bigcup_{j \geqslant n} E_j\right).$$

Call $F_n := \bigcup_{j \ge n} E_j$. It is clear that $F_n \supset F_{n+1}$, so $F_n \searrow$. So, S is a decreasing limit of (F_n) and the idea could be to apply continuity from above to compute $\mu(S)$. This is feasible if $\mu(F_0) < +\infty$. But,

$$\mu(F_0) = \mu\left(\bigcup_{j\geqslant 0} E_j\right) \leqslant \sum_j \mu(E_j) < +\infty,$$

because of the assumption. Therefore, continuity from above applies and

$$\mu(S) = \lim_{n} \mu(F_n).$$

Finally,

$$\mu(F_n) = \mu\left(\bigcup_{j\geqslant n} E_j\right) \leqslant \sum_{j\geqslant n} \mu(E_j) \longrightarrow 0,$$

being this the tail of a convergent series.

2.3.1. Suppone, by contradiction, that N^c is not dense in \mathbb{R} , that is

$$\exists a,b \subset \mathbb{R}, N^c \cap a,b = \emptyset.$$

Then $[a, b] \subset N$, so $0 = \lambda(N) \ge \lambda([a, b]) = b - a > 0$, which is impossible. \square

2.3.2 We first notice that each C_n is made of a finite union of closed intervals, thus it is a closed set. Therefore, $C_n \in \mathcal{M}_1$ for every n, hence $C := \bigcap_n C_n \in \mathcal{M}_1$. In alternative, we may also

notice that in general, an infinite intersection of closed sets is closed, so C is closed. Since the Lebesgue class \mathcal{M}_1 contains both open and closed sets, we deduce $C \in \mathcal{M}_1$.

About $\lambda(C)$ we may notice that $0 \le \lambda(C) \le \lambda(C_n)$ for every n. Now, each C_n is the union of 2^n disjoint intervals each of length $\frac{1}{3^n}$, so $\lambda(C_n) = 2^n \frac{1}{3^n}$, from which $\lambda(C) \le \frac{2^n}{3^n} = \left(\frac{2}{3}\right)^n \longrightarrow 0$ when $n \to +\infty$. Thus, necessarily, $\lambda(C) \le 0$, from which $\lambda(C) = 0$.

2.3.5. Let

$$E_{m,n} := \{(x, y) : mx + ny = 0\},\$$

with $(m, n) \in \mathbb{N} \times \mathbb{N} \setminus \{(0, 0)\}$. Since $(m, n) \neq (0, 0)$, $E_{m, n}$ is a plane straight line, so $\lambda_2(E_{m, n}) = 0$, and

$$E = \bigcup_{(m,n)\in\mathbb{N}^2\setminus\{(0,0)\}} E_{m,n},$$

is a countable union. Therefore, by sub-additivity, $\lambda_2(E) \leq \sum_{m,n} \lambda_2(E_{m,n}) = 0$.

2.3.6. By definition,

$$\forall \varepsilon > 0, \ \exists O_{\varepsilon}, \widetilde{O_{\varepsilon}} \text{ open } : \lambda^*(O_{\varepsilon} \backslash B) \leqslant \varepsilon, \ \lambda^*(\widetilde{O_{\varepsilon}} \backslash A) \leqslant \varepsilon,$$

2.3.7. The assumption says that $\lambda((A \cap B) \cup (A \cap C) \cup (B \cap C)) = 1$. The thesis is to prove that at least one of $\lambda(A), \lambda(B)\lambda(C)$ must be $\geq \frac{2}{3}$. If the conclusion were false, then $\lambda(A), \lambda(B), \lambda(C) < \frac{2}{3}$. Now, we notice that

$$\lambda(E \cup F \cup G) = \lambda(E \cup F) + \lambda(G) - \lambda((E \cup F) \cap G)$$

$$= \lambda(E) + \lambda(F) + \lambda(G) - \lambda(E \cap F) - (\lambda(E \cap G) + \lambda(F \cap G) - \lambda(E \cap F \cap G))$$

$$= \lambda(E) + \lambda(F) + \lambda(G) - (\lambda(E \cap F) + \lambda(E \cap G) + \lambda(F \cap G)) + \lambda(E \cap F \cap G).$$

We apply this a first time to E = A, F = B and G = C and a second time to $E = A \cap B$, $F = A \cap C$ and $G = B \cap C$. In this last case, by the assumption, we get

$$1 = \lambda(A \cap B) + \lambda(A \cap C) + \lambda(B \cap C) - 3\lambda(A \cap B \cap C) + \lambda(A \cap B \cap C)$$

that is

$$\lambda(A \cap B) + \lambda(A \cap C) + \lambda(B \cap C) = 1 + 2\lambda(A \cap B \cap C),$$

and since, of course, $\lambda(A \cup B \cup C) = 1$, we have

$$1 = \lambda(A) + \lambda(B) + \lambda(C) - (1 + 2\lambda(A \cap B \cap C)) + \lambda(A \cap B \cap C),$$

from which

$$\lambda(A) + \lambda(B) + \lambda(C) = 2 + \lambda(A \cap B \cap C).$$

Now, if $\lambda(A)$, $\lambda(B)$, $\lambda(C) < \frac{2}{3}$ then we would have

$$2 \leq 2 + \lambda(A \cap B \cap C) = \lambda(A) + \lambda(B) + \lambda(C) < 3\frac{2}{3} = 2,$$

which is impossible!

2.3.8. Let $N \subset [0,1]$ with $\lambda(N) = 0$. The goal is to prove that $\lambda(N^2) = 0$ where $N^2 = \{x^2 : x \in N\}$. Since

$$0 = \lambda(N) = \inf \left\{ \sum_{n} |I_n| : N \subset \bigcup_{n} I_n \right\}$$

by the characteristics of inf we have that

$$\forall \varepsilon > 0, \ \exists (I_n^{\varepsilon})_n \ : \ N \subset \bigcup_n I_n^{\varepsilon}, \ \sum_n |I_n^{\varepsilon}| \leq \varepsilon.$$

Since $N \subset [0, 1]$, we may assume that $I_n^{\varepsilon} \subset [0, 1]$. Otherwise, we replace I_n^{ε} with $J_n^{\varepsilon} = I_n^{\varepsilon} \cap [0, 1]$: J_n^{ε} is still an interval, being intersection of intervals,

$$N \subset \bigcup_{n} I_{n}^{\varepsilon}, \implies N = N \cap [0,1] \subset \bigcup_{n} I_{n}^{\varepsilon} \cap [0,1] = \bigcup_{n} J_{n}^{\varepsilon}$$

and moreover

$$\sum_{n} |J_n^{\varepsilon}| \leqslant \sum_{n} |I_n^{\varepsilon}| \leqslant \varepsilon.$$

Now, writing $J_n^{\varepsilon} = [a_n^{\varepsilon}, b_n^{\varepsilon}] \subset [0, 1]$, we would have

$$N^2 \subset \bigcup_n (J_n^{\varepsilon})^2 = \bigcup_n [(a_n^{\varepsilon})^2, (b_n^{\varepsilon})^2]$$

and

$$\sum_{n} |(J_n^{\varepsilon})^2| = \sum_{n} \left((b_n^{\varepsilon})^2 - (a_n^{\varepsilon})^2 \right) = \sum_{n} \left(b_n^{\varepsilon} - a_n^{\varepsilon} \right) \underbrace{\left(b_n^{\varepsilon} + a_n^{\varepsilon} \right)}_{0 \leq \dots \leq 2} \leq 2 \sum_{n} \left(b_n^{\varepsilon} - a_n^{\varepsilon} \right) = 2 \sum_{n} |J_n^{\varepsilon}| \leq 2\varepsilon.$$

From this and by the definition of λ , we get

$$\lambda(N^2) \le 2\varepsilon,$$

and since ε can be made arbitrarily small, this shows that $\lambda(N^2) = 0$.

In N is bounded, $N \subset [-R, R]$, the previous argument leads to a similar bound $\lambda(N^2) \leq 2R\varepsilon$, so we conclude similarly.

Finally, if N is generic, define $N_R := N \cap [-R, R]$. It is clear that $N_R^2 = N^2 \cap [0, R^2] \uparrow N^2$ (when $R \to +\infty$) and since $\lambda(N_R^2) = 0$ for every R, by the continuity from below of λ we obtain also $\lambda(N^2) = 0$.

3.4.1. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be, for example, increasing, so $f(x) \le f(y)$ when $x \le y$. We prove that $\{f \le a\}$ is measurable. Intuitively, $\{f \le a\}$ should be an interval of type $]\infty, \alpha[$ or $]-\infty, \alpha[$ where $\alpha := \sup\{x : f(x) \le a\}$. Indeed: let α be defined as above. Either $\alpha = +\infty$ or $\alpha < +\infty$. In the first case, $f(x) \le a$ for all $x \in \mathbb{R}$, so $\{f \le a\} = \mathbb{R}$. In the second case, we claim that

$$]-\infty,\alpha[\subset\{f\leqslant a\}\subset]-\infty,\alpha].$$

Indeed: if $x < \alpha$ then, by definition of sup, there exists $\beta > x$ such that $f(\beta) \le a$. But then, being f increasing, $f(x) \le f(\beta) \le a$, so $x \in \{f \le a\}$. This proves that $]-\infty, \alpha[\subset \{f \le a\}$. To prove the second inclusion we prove that, if $x > \alpha$ it cannot be $x \in \{f \le a\}$. Otherwise, $f(x) \le a$, so

$$\alpha = \sup\{x : f(x) \le a\} \ge x > \alpha$$

obtaining a contradiction. Conclusion: $\{f \leq a\}$ can be only $]-\infty, \alpha[$ or $]-\infty, \alpha]$, in both cases it is an interval, so it is a measurable set.

- **3.4.2.** We have to prove that i) is equivalent to ii) where
 - i) f is measurable
 - ii) $\{f > a\} \in \mathcal{F}$ for every $a \in \mathbb{Q}$.

Since i) is equivalent to $\{f > a\} \in \mathcal{F}$ for every $a \in \mathbb{R}$, i) \Longrightarrow ii).

Let's prove that ii) \Longrightarrow i), that is, let's prove that $\{f > a\} \in \mathcal{F}$ for every $a \in \mathbb{R}$. By ii), this is true if $a \in \mathbb{Q}$. So let $a \in \mathbb{Q}^c$ (irrational). We notice that, if $q \in \mathbb{Q}$ is such that q > a, then

$$\{f>q\}\subset\{f>a\}.$$

Since this happens for every $q \in \mathbb{Q}$, q > a, we can say that

$$\bigcup_{q \in \mathbb{Q}, \ q > a} \{f > q\} \subset \{f > a\}.$$

At left, we have a countable union of measurable sets, so the union is a measurable set. So, if we prove that = holds, we are done! That is, the goal is reduced to prove that

$$\{f > a\} \subset \bigcup_{q \in \mathbb{Q}, \ q > a} \{f > q\}.$$

Pick $x \in \{f > a\}$. So, f(x) > a. Because of the density of rationals in reals, there exists $r \in \mathbb{Q}$ such that f(x) > r > a, so $x \in \{f > r\} \subset \bigcup_{q \in \mathbb{Q}, \ q > a} \{f > q\}$. This means that $\{f > a\} \subset \bigcup_{q \in \mathbb{Q}, \ q > a} \{f > q\}$ as claimed. \square

3.4.4. Notice that

$$\{fg > a\} = \{fg > a, g > 0\} \cap \{fg > a, g = 0\} \cap \{fg > a, g < 0\}.$$

Let's analyze the three sets, starting by the second one (easier), and the first and the third ones being similar. We have

$$\{fg>a,\ g=0\}=\{0>a,\ g=0\}=\left\{ \begin{array}{ll} \varnothing\in\mathcal{F}, & a\geqslant 0,\\ \\ \{g=0\}\in\mathcal{F}, & a<0 \end{array} \right.$$

For the first set we have

$$\{fg > a, g > 0\} = \{f > \frac{a}{g}, g > 0\} = \bigcup_{q \in \mathbb{Q}} \left\{f > q > \frac{a}{g}, g > 0\right\} = \bigcup_{q \in \mathbb{Q}} \underbrace{\{f > q\}}_{\in \mathcal{F}} \cap \underbrace{\left\{g > 0, g > \frac{a}{q}\right\}}_{\in \mathcal{F}}$$

from which we see that $\{fg > a, g > 0\} \in \mathcal{F}$. Similar argument for the third set. From this the conclusion follows.

- **3.4.6.** i) Claim: $f_n(x) \longrightarrow 0$ for every $x \in \mathbb{R}$. Take $n \ge [x] + 1$. Then $x < [x] + 1 \le n$, from which $f_n(x) = 0$. This means that $(f_n(x))$ is constantly = 0 for n large, thus $f_n(x) \longrightarrow 0$.
- ii) Claim: $f_n(x) \longrightarrow 1_{]0,+\infty[}(x)$ for every x. Indeed: if $x \le 0$, $f_n(x) \equiv 0 \longrightarrow 0$. If x > 0, since $\frac{1}{n} \to 0$ and $n \to +\infty$, for n large enough $\frac{1}{n} < x < n$, so $f_n(x) \equiv 1 \longrightarrow 1$.
 - iii) We notice that

$$f_{2k}(x) = 1_{[0,1/2]}(x), \quad f_{2k+1}(x) = 1_{[1/2,1]}(x).$$

For x < 0 and x > 1 we have $f_n(x) \equiv 0 \longrightarrow 0$. For x = 1/2 we have also $f_n(x) \equiv 1 \longrightarrow 1$. If however $0 \le x < 1/2$ we have that $(f_n(x)) = (1, 0, 1, 0, ...)$ so there is no limit. Similarly, for $1/2 < x \le 1$, $(f_n(x))$ has no limit. Since the limit of (f_n) does not exist for $x \in [0, 1/2[\cup]1/2, 1]$, which is a positive measure set, we cannot conclude that (f_n) converges pointwise a.e..

3.4.7. We do the proof in dimension d=1 for simplicity, the argument is the same for the general case. Suppose that g(x) > 0 for some $x \in \mathbb{R}$. By continuity, there exists a neighborhood U_x of x for which g(y) > 0, $\forall y \in U_x$. We can always assume that $U_x = [x - \varepsilon, x + \varepsilon]$. Therefore

$$\{g\neq 0\}\supset [x-\varepsilon,x+\varepsilon],\ \ 0=\lambda(\{g\neq 0\})\geqslant \lambda([x-\varepsilon,x+\varepsilon])=2\varepsilon>0,$$

which is a contradiction.