October 3, 2025

ESERCIZI PER IL CORSO DI MATEMATICA CHIMICA-CHIMICA INDUSTRIALE-SCIENZA DEI MATERIALI SETTIMANA I

Exercizio 1. Dimostrare che non esiste nessun numero $x \in \mathbb{Q}$ tale che $x^2 = 2$.

Exercizio 2. Ricavare la formula risolutiva $x_{1,2} = \frac{-b+\sqrt{\Delta}}{2a}$ per le equazioni di secondo grado $ax^2 + bx + c = 0$, dove $a, b, c \in \mathbb{R}$, $a \neq 0$ e si suppone che $\Delta = b^2 - 4ac \geq 0$.

Exercizio 3. Dati due vettori \vec{v} e \vec{w} , ricordo la definizione geometrica del prodotto scalare come $\vec{v} \cdot \vec{w} = \parallel \vec{v} \parallel \parallel \vec{w} \parallel \cos(\alpha)$ dove $\alpha \in [0, \pi]$ è l'angolo compreso tra i due vettori. Dimostrare che valgono le seguenti formule (per ogni scelta di vettori \vec{v} , \vec{w} , \vec{v}_1 , \vec{v}_2 e per ogni $\lambda \in \mathbb{R}$):

- (a) $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$;
- (b) $(\lambda \vec{v}) \cdot \vec{w} = \lambda (\vec{v} \cdot \vec{w});$
- (c) $(\vec{v}_1 + \vec{v}_2) \cdot \vec{w} = \vec{v}_1 \cdot \vec{w} + \vec{v}_2 \cdot \vec{w}$.

Exercizio 4. Calcolare la diagonale del cubo di \mathbb{R}^3 di lato 1.

Exercizio 5. Calcolare la diagonale dell'ipercubo di \mathbb{R}^4 di lato 1.

Exercizio 6. Calcolare la diagonale dell'ipercubo di \mathbb{R}^n di lato 1 per ogni intero $n \geq 2$.

Exercizio 7. (1) Dato il vettore $\vec{v} = (2, -1, 3)$ di \mathbb{R}^3 scrivere un vettore \vec{w} che sia perpendicolare a \vec{v} .

- (2) Scrivere un vettore \vec{z} di \mathbb{R}^3 che sia perpendicolare sia a \vec{v} che a \vec{w} .
- (3) Trovare un vettore \vec{w}' che sia perpendicolare a \vec{v} e non sia multiplo di \vec{w} .

Exercizio 8. Sia r la retta di equazione cartesiana r: 2x-3y+4=0 e sia P il punto P=(5,-1). Determinare le equazioni cartesiane e parametriche della retta s passante per P e perpendicolare a r.

Exercizio 9. Sia r la retta di equazione cartesiana r: 3x + 5y - 4 = 0. Trovare un vettore direttore di r (ovvero, un vettore parallelo a r) e un vettore perpendicolare a r, verificando che questi due vettori risultano perpendicolari tra loro.