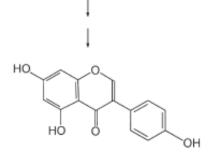



### Esperienza 2: Sintesi di calconi in assenza di solvente

- Sintesi di calconi
  - composti con diverse attività biologica importanti intermedi nella sintesi di flavonoidi
- 2. Reazione di **condensazione aldolica incrociata**, formazione di legame C-C, chimica di enolati
- 3. Chimica verde: reazioni in assenza di solventi «solvent-free reactions»
- 4. NMR: doppio legame C=C

### Calconi e flavonoidi

# 2,3-diaril-2-propen-1-one **Calcone**


Appartengono alla famiglia dei flavonoidi C6-C3-C6

### Calconi e flavonoidi

#### Intermedi sintetici

$$HO$$
  $OH$   $3$   $OH$   $HO$   $OH$   $OH$ 

Chalcones



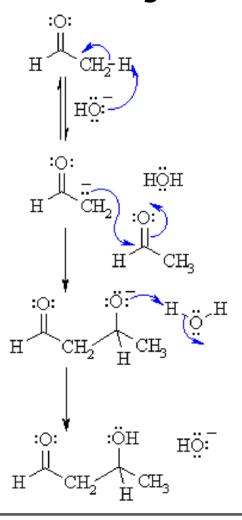
Isoflavonoids

Flavonols

Flavone (luteolin)

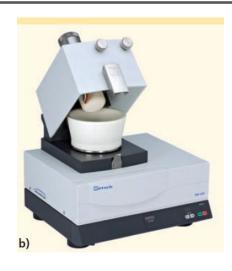
#### **Antiossidanti**



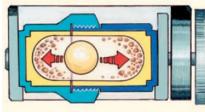

xantumolo

## Sintesi di calconi per condensazione aldolica incrociata

Adizione di un enolato ad un aldeide o chetone seguita da disidratazione


## Sintesi di calconi per condensazione aldolica incrociata


#### **Meccanismo generale**




#### Sintesi in assenza di solvente









- In soluzione la reazione richiede riflusso in solvente organico
- Eliminiamo l'utilizzo di solvente organico e risparmiamo energia
- Il composto ottenuto è isolato facilmente perché insolubile in acqua

### Sintesi in assenza di solvente



- Macinare per 15 min
- Aggiungere acqua al mortaio e filtrare il solido
- Lavare il solido con acqua e EtOH freddo
- Analisi TLC

## **Esperienza 2: reagenti**

| 4-metilbenzaldeide       | ×                                | Nocivo se ingerito. Provoca irritazioni nella pelle e oc                                                                                                                                                            |
|--------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| acetofenone              | <b>X</b>                         | Provoca irritazione cutanea, grave irritazione oculare, può irritare le vie respiratorie.                                                                                                                           |
| etanolo                  | <b>(b)</b>                       | Liquido e vapori facilmente infiammabili. Irritante per occhi e a contatto con la pelle                                                                                                                             |
| Acetato di etile         | <b>(1)</b>                       | Liquido e vapori facilmente infiammabili. Provoca grave irritazione oculare. Può provocare sonnolenza o vertigini.                                                                                                  |
| Etere di Petrolio        | <b>*</b> ① <b>③</b><br><u>**</u> | Nocivo se ingerito o inalato, anche al contatto con la pelle. Provoca irritazioni nella pelle e occhi. Altament infiammabile. I vapori possono provocare uno stato confusionale. Provoca danni all'ambiente.        |
| n-esano                  | <b>♦</b>                         | Nocivo se ingerito o inalato, anche al contatto con la pelle. Nocivo per gli organismi acquatici. Infiammabile                                                                                                      |
| Cloruro di metilene      | <b>*</b>                         | Nocivo se ingerito o inalato, anche al contatto con la pelle. Provoca irritazioni nella pelle e occhi. Possibilità effetti cancerogeni                                                                              |
| Cloroformio<br>deuterato | <b>\$</b>                        | Possibilità di effetti cancerogeni - prove insufficienti. Nocivo per ingestione. Nocivo: pericolo di gravi danni alla salute in caso di esposizione prolungata per inalazione e ingestione. Irritante per la pelle. |

## **Esperienza 2**

#### **Tecniche usate**

- MACINAZIONE PROCEDURA!!!!
- FILTRAZIONE SOTTO VUOTO
- CRISTALLIZZAZIONE A CALDO
- TLC



\* Cristallizzare da n-esano o etanolo a caldo. Trasferire il solido in un pallone da 250 mL, aggiungere 50 mL di solvente, munire il pallone di ricadere e riscaldare a riflusso. Aggiungere piccole aliquote di solvente (10 mL) alla volta fino a dissoluzione del solido. Lasciare raffreddare il pallone. Eventualmente filtrare il solido sospeso non solubile (il prodotto della addizione di Michael) e trasferire su una beuta il filtrato. Tappare la beuta o il pallone e lasciare sotto cappa. Si decanta la soluzione, si lavano i cristalli con poco solvente a freddo e si secca.

#### Osservazioni generali

- foto (o copia) prima pagina + numero del gruppo
- scrivere in modo leggibile!!
- non usare mattita e poi la penna
- Titolo: nome + codice (p.e. LP-gruppoX-esp1) + data dell'esperimento
  - il nome viene poi usato per dare un nome agli spettri (p.e. LP-gruppoX-esp1-NMR)
- Schema di reazione (strutture di reagenti e prodotti)
  - schematico il meccanismo dettagliato viene dato dopo
- Dare titoli alle varie paragrafi e evidenziarli (reazione, tabella, meccanismo etc)
- Tabella: aggiungere una colonna con le indicazioni di rischio e sicurezza
   bastano i numeri (nel quaderno si puo incollare una pagina con il significato)
   nella tabella si può anche aggiungere l'origine dei reagenti (Sigma, Across, sintesi)

procedura sperimentale

non ripetere la procedura 2 volte (quella del manuale e quella fatta in laboratorio) bisogno essere molto sintetico. Descrizione punto per punto. disegni di attrezzatura solo se sono particolari. Al limite si possono aggiungere alla fine del quaderno e fare un riferimento. non usare il tempo reale, ma il tempo percorso dopo l'inizio dell' esperimento

resultati (& discussione)

descrizione sintetico dei risultati ottenuti
stato fisico del prodotto (solido/liquido, colore) + resa + punto di fusione
TLC indicare cosa rappresentano le corsie
non serve mostrare il calcolo. sull'disegno indicare le distanza e al fianco

non serve mostrare il calcolo. sull'disegno indicare le distanza e al fianco mettere i valori di Rf.

non esagerare con i numeri significativi (di solito 2, con macchie grosse 1)

characterization data (NMR, IR, GC in tables)

#### **TABELLA NMR**

(CDCl<sub>3</sub>, 200 MHz)

| segnale | δ (ppm)   | molteplicità | J (Hz)    | integrale | gruppo |
|---------|-----------|--------------|-----------|-----------|--------|
|         |           |              |           |           |        |
|         |           |              |           |           |        |
| 1.      | 8,45      | s:singoletta | 1.8       | 0.9 (1)   | СН     |
| (ordine | (2        | d:doppietta  | (1        |           |        |
| ppm)    | decimali) | t:tripletta  | decimale) |           |        |
|         |           | q:quartetta  |           |           |        |
|         |           | m:multiplett |           |           |        |
|         |           | а            |           |           |        |

gruppo : conviene inserire la struttura del prodotto e numerare i protoni anche segnali di impurezze vengono indicate

#### **TABELLA IR**

(KBr, FT-IR)

| picco                | v (cm <sup>-1</sup> ) | intensità | tipo              | legame |
|----------------------|-----------------------|-----------|-------------------|--------|
|                      |                       |           |                   |        |
|                      |                       |           |                   |        |
|                      |                       |           |                   |        |
| 1.                   | 1653                  | s: strong | stretch,          | C=O    |
| (ordine              | (0                    | m: medium | bend in plane     |        |
| lunghezza<br>d'onda) | decimali)             | w: weak   | bend out of plane |        |
|                      |                       |           |                   |        |

#### **TABELLA GC-MS**

condizioni cromatografiche (colonna, T gradient etc)

| picco                               | Tempo di<br>ritenzion<br>e (min) | Massa osservata   |
|-------------------------------------|----------------------------------|-------------------|
| 1. (in base al tempo di ritenzione) | 6,47                             | Tutti i frammenti |

#### discussione

segue la parte finale - molto importante nella quale viene discusso il risultato ottenuto

resa?

identità del prodotto? C'è stato una trasformazione? Quali sono i dati che la confermano? Su che base viene confermato che si è formato il prodotto desiderato? (riguardare i risultati ottenuti e indicare/discuttere i segnali principali)

purezza del prodotto ? Ci sono impurezze / sotto-prodotti ?

Osservazioni generali / suggerimenti per migliorare?