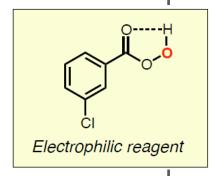

Esperienza 3: Ossidazione del calcone o del 4-metilcalcone

$$\begin{array}{c|c} & & \\ \hline \end{array}$$

• Ketone α , β -insaturo

$$\begin{array}{c|c} & & \\ \hline \\ & & \\ \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\$$

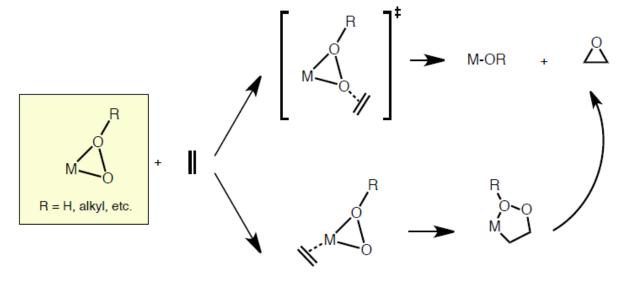

- Ketone α , β -insaturo
- Il doppio legame è elettro deficiente, non può attuare come nucleofilo, non è una adizione elettrofila!!
- Il perossido di idrogeno reagisce solo in presenza di base
- Olefine elettron-ricche non reagiscono

Meccanismo

NaOH + HOOH
$$\longrightarrow$$
 HOO $\stackrel{\Theta}{\longrightarrow}$ Na $^{\bullet}$ + H₂O

- Meccanismo in due stadi
- Primo stadio: formazione dell'anione idroperossido
- Attacco dell'anione alla posizione 1 con formazione di un enolato
- Attacco sul ossigeno perossidico ed eliminazione di HO⁻

Meccanismo epossidazione con peracidi


"butterfly transition state"

- Il doppio legame attua come nucleofilo
- Funziona con olefine attivate

Metal-catalalyzed epoxidations

Attivazione di perossidi con metalli di transizione

$$t ext{-BuOOH}$$
 + or $Ti(i ext{-PrO})_4$

Sharpless epoxidation

Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. Sharpless, K. B. J. Org. Chem. 1986, 51, 1922. Johnson, R. A.; Sharpless, K. B. Catalytic Asymmetric Synthesis. Ojima Ed. p. 103. Katsuki, T.; Martin, V. S. Organic Reactions 1996, 48, 1-299

Proposed transition state model:

Mnemonic model:

(-)-(
$$S$$
, S)-D-tartrate
$$R_{2}$$

$$R_{3}$$

$$OH$$

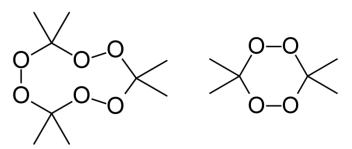
$$(+)-(R , R)-L-tartrate$$

- ❖ Electrophilic reagent electron rich double bonds react faster.
- ❖ Nucleophilic reagent conjugate carbonyl derivatives

Scheme I. Possible epoxidation products from (R)-(-)-carvone.

Reagenti usati

Trans- Calcone	*	Nocivo se ingerito o inalato, anche al contatto con la pelle. Provoca irritazioni nella pelle e occhi. Possibilità di effetti cancerogeni
Perossido di idrogeno	X	Provoca irritazione cutanea, grave irritazione oculare, può irritare le vie respiratorie. Nocivo per gli organismi acquatici
Idrossido di sodio	5	Corrosivo, causa bruciature. Tossico a contatto con la pelle, per ingestione e per inalazione.
Metanolo		Tossico a contatto con la pelle, per ingestione e per inalazione. Provoca danni al cuore e fegato, può provocare cecità. Altamente infiammabile. Provoca danni agli organi. Infiammabile
n-esano	♦	Nocivo se ingerito o inalato, anche al contatto con la pelle. Nocivo per gli organismi acquatici. Infiammabile
Cloruro di metilene	♦ ×	Nocivo se ingerito o inalato, anche al contatto con la pelle. Provoca irritazioni nella pelle e occhi. Possibilità di effetti cancerogeni


Reagenti usati

Perossido di idrogeno

Provoca irritazione cutanea, grave irritazione oculare, può irritare le vie respiratorie. Nocivo per gli organismi acquatici

• Non mescolare perossido di idrogeno e acetone in medio acido

Perossido di acetone

La molecola del trimero è molto instabile (come tutti i perossidi organici) ed esplode per urto, frizione o esposizione a fonti di calore. L'esplosione è piuttosto energica e può causare incidenti gravi, anche mortali.

Reagenti usati

reagente	M.W.	P.E./P.F	d (g/ml)	gr usati	ml usati	moli
	208.26			1		
H ₂ O ₂	34		1.1		1.5	
prodotto						
calcone epossido	224.26					

Reagenti usati

Percentage of H ₂ O ₂ (weight-	Density at 25 °C (g/ml)		
weight)			
100.00	1.4067		
50.00	1.2000		
10.00	1.0300		
3.00	1.0000		

Calculate the number of moles of hydrogen peroxide in 20.00 ml of 50% hydrogen peroxide solution if the hydrogen peroxide is

wt. of solution =
$$(20.00 \text{ mL})(\frac{1.2000 \text{ g}}{1 \text{ mL}}) = 24.00 \text{ g}$$

wt. of $H_2O_2 = 24.00 \text{ g} \times 50.00\% = 12.00 \text{ g}$
moles of $H_2O_2 = (12.00 \text{ g})(\frac{1 \text{ mol } H_2O_2}{34.01 \text{ g}}) \neq 0.353 \text{ mol}$

Reagenti usati

Tecniche usate

- ADDIZIONE LENTA A BASSA TEMPERATURA
- FILTRAZIONE SOTTO VUOTO
- ANIDRIFICAZIONE DEL SOLIDO
- RIMOZIONE DEL SOLVENTE ALL'EVAPORATORE ROTANTE

TECNICHE: Evaporatore rotante

Condensatore

Valvola di sfiato

Pallone di raccolta

Campione

Bagno termostatato

Tecniche usate

